Category Archives: Thi vào 10

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2021

Bài 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$

a) Giải hệ với $m=7$

b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$

Bài 2. Cho $M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}, N=\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}, K=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

a) Chứng minh nếu $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c}$ thì $N=0$

b) Cho $M=K=4, N=1$. Tính tích $a b c$.

Bài 3. Cho dãy $n$ số thực $x_{1} ; x_{2} ; \ldots ; x_{n}(n \geq 5)$ thỏa: $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ và $x_{1}+x_{2}+\ldots x_{n}=1$

a) Chứng minh nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Chứng minh nếu $x_{n} \leq \frac{2}{3}$ thì tìm được số nguyên dương $k<n$ sao cho

$\frac{1}{3} \leq x_{1}+x_{2}+\ldots+x_{k} \leq \frac{2}{3}$

Bài 4. a) Tìm tất cả các số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$

b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\frac{2 n+2}{p}$ và $\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. Cho tam giác $A B C$ vuông tại $A$. Các điểm $E, F$ lần lượt thay đổi trên các cạnh $A B, A C$ sao cho $E F | B C$. Gọi $D$ là giao điểm của $B F$ và $C E, H$ là hình chiếu của $D$ lên $E F$. Đường tròn $(I)$ đường kính $E F$ cắt $B F, C E$ tại $M, N$. ( $M$ khác $F, N$ khác $E$ )

a) Chứng minh $A D$ và đường tròn ngoại tiếp $\triangle H M N$ cùng đi qua tâm $I$ của đường tròn tâm $I$.

b) Gọi $K, L$ lần lượt là hình chiếu vuông góc của $E, F$ lên $B C$ và $P, Q$ tương ứng là giao điểm của $E M, F N$ với $B C$. Chứng minh tứ giác $A E P L, A F Q K$ nội tiếp và $\frac{B P \cdot B L}{C Q \cdot C K}$ không đổi khi $E, F$ thay đổi.

c) Chứng minh nếu $E L$ và $F K$ cắt nhau trên đường tròn $(I)$ thì $E M$ và $F N$ cắt nhau trên đường thẳng $B C$.

Bài 6. Cho $N$ tập hợp $(N \geq 6)$, mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b, c, \ldots, x, y, z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.

Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.

b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.

Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

 

LỜI GIẢI

 

Bài 1.

a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$ (1)

ĐKXĐ: $x \geq 2, y \geq 1$

(1) $\Leftrightarrow\left\{\begin{array}{l}x-2+y-1+2 \sqrt{(x-2)(y-1)}=4 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}2 \sqrt{(x-2)(y-1)}=0 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left[\left\{\begin{array}{l}x-2=0 \\ x+y=7 \\ y-1=0 \\ x+y=7\end{array} \Leftrightarrow\left\{\left\{\begin{array}{l}x=2 \\ y=5 \\ y=1 \\ x=6\end{array}(n)\right.\right.\right.\right.$

Vậy $(x, y) \in[(2 ; 5),(6 ; 1)]$

b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$

Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\ u^{2}+v^{2}=m-3\end{array}\right.$

$\Rightarrow 2 u^{2}-4 u+7-m=0$ (2)

Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2 , khi và chỉ khi:

$\left\{\begin{array} { l }{ \Delta ^ { \prime } \geq 0 } \\ { S > 0 } \\ { P \geq 0 } \\ { ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\ { S \leq 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l}m \geq 7 \\ m \leq 7\end{array}\right.\right.$

Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$

Bài 2.

a) $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$.

$M K =\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) $

$=\frac{1}{b+c}+\frac{b}{a(c+a)}+\frac{c}{a(a+b)}+\frac{a}{b(b+c)}+\frac{1}{c+a}+\frac{c}{b(a+b)}+$

$ \frac{a}{c(b+c)}+\frac{b}{c(c+a)}+\frac{1}{a+b} $

$=N+\frac{b}{c+a}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{c}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{a}{b+c}\left(\frac{1}{b}+\frac{1}{c}\right) $

$=N+\frac{b}{a c}+\frac{c}{a b}+\frac{a}{b c} $

$=N+\frac{a^{2}+b^{2}+c^{2}}{a b c}$

Mà $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N+\frac{a^{2}+b^{2}+c^{2}}{a b c}=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$M K=N+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow 16=1+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow a^{2}+b^{2}+c^{2}=15 a b c $

$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c(*)$

Ta có:

$K+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=(a+b+c) N \Rightarrow 7=a+b+c $

$M=4 \Rightarrow a b+b c+c a=4 a b c .$

Thay vào $(*) \Rightarrow 7^{2}-2.4 a b c=15 a b c \Rightarrow a b c=\frac{49}{23}$.

Bài 3.

a) Giả sử rằng $x_{1}+x_{2}>x_{n} \geq \frac{1}{3}>0$

$\Rightarrow x_{2}>0 \Rightarrow x_{i}>0, \forall i \geq 2 \text {. }$

Suy ra $x_{1}+x_{2}+x_{n-2}+x_{n-1}+x_{n} \leq x_{1}+x_{2}+\ldots+x_{n-2}+x_{n-1}+x_{n}=1$

Nhưng $x_{1}+x_{2}>\frac{1}{3}$ và $x_{n-1}, x_{n-2}>\frac{1}{2}\left(x_{1}+x_{2}\right)>\frac{1}{6}$ và $x_{n} \geq \frac{1}{3}$ nên khi cộng theo vế, ta có $V T>1$, vô lý.

Vậy điều giả sử là sai hay nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Giả sử không tồn tại số $k$ như trên.

Khi đó tồn tại chỉ số $l \leq n-1$ để

$x_{1}+\ldots+x_{l}<\frac{1}{3} \text { và } x_{1}+\ldots+x_{l+1}>\frac{2}{3}$

Suy ra $x_{l+1}>\frac{1}{3} \Rightarrow x_{k}>\frac{1}{3}>0, \forall k \geq l+1$.

Nếu $l<n-1$ thì tồn tại $x_{l+2}$ do $l+2 \leq n$. Ta có

$x_{l+2} \geq x_{l+1}>\frac{1}{3} \Rightarrow\left(x_{1}+x_{2}+\ldots+x_{l+1}\right)+x_{l+2}>1$, vô lý do $x_{1}+\ldots+x_{n}=1$.

Từ đó $l=n-1$. Để ý rằng $x_{n} \leq \frac{2}{3}$ nên $x_{1}+\ldots+x_{n-1}=1-x_{n} \geq 1-\frac{2}{3}=\frac{1}{3}$.

Kết hợp với $l=n-1$ nên $x_{1}+\ldots+x_{n-1}>\frac{2}{3} \Rightarrow x_{n}<\frac{1}{3}$, vô lý.

Vậy điều giả sử là sai hay phải tồn tại chỉ số $k<n$ để:

$\frac{1}{3} \leq x_{1}+x_{2}+\cdots+x_{k} \leq \frac{2}{3}$

Bài 4.

(a) $(2 n+1)^{3}+1 \vdots 2^{2021} $

$\Leftrightarrow(2 n+2)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow 2(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2020} $

$\Leftrightarrow n+1 \vdots 2^{2020} \quad\left(\text { do } 4 n^{2}+2 n+1 \equiv 1(\bmod 2)\right) $

$\Leftrightarrow n=2^{2020} k-1\left(k \in \mathbb{Z}^{+}\right)$

b) Từ $p \mid 2 n+2$ và $p \mid 4 n^{2}+2 n+1$ thì $p$ phải là số lẻ, dẫn đến $p \mid n+1$.

Do $4 n+2+2 n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p \mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p \mid n+1$ thì $n=3 k-1$ với $k \in \mathbb{Z}^{+}$.

Ta chứng minh rằng $\frac{2 n+2}{3}$ và $\frac{4 n+2+2 n+1}{3}$ không cùng là số chính phương. Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:

$\frac{2 n+2}{3} \cdot \frac{4 n^{2}+2 n+1}{3}=s^{2}\left(s \in \mathbb{Z}^{+}\right)$

Viết lại thành $(2 n+1)^{3}=(3 s-1)(3 s+1)$. Do $s$ là số chẵn nên $(3 s-1,3 s+1)=1$, dẫn đến việc tồn tại các số nguyên $a, b$ để $a b=2 n+1,(a, b)=1$ và:

$\left\{\begin{array}{l}3 s-1=a^{3} \\ 3 s+1=b^{3}\end{array}\right.$

Từ đây $2=(b-a)\left(b^{2}+b a+a^{2}\right)$. Do $b>a$ nên $b-a \in{1,2}$. Xét từng trường hợp và giải ra cụ thể, ta được $(a, b)=(-1,1)$. Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.

Bài 5.

a) a. Qua $D$ vế đường thẳng song song $B C$ cắt $A B, A C$ tại $X, Y$.

Ta có $\frac{D Y}{B C}=\frac{D F}{B F}=\frac{D E}{E C}=\frac{D X}{B C}$.

Suy ra $D X=D Y$. Suy ra $D$ là trung điểm của $X Y$.

Do đó $A D$ qua trung điểm $I$ của $E F$.

Ta có $D H F N, D H E M$ nội tiếp. Suy ra $\widehat{D H N}=\widehat{D F N}=\widehat{M A N}$ và $\widehat{D H M}=$ $\widehat{N E M}=\widehat{N A M}$.

Suy ra $\widehat{M H N}=2 \widehat{M A N}=\widehat{M I N}$.

Suy ra tứ giác $M I H N$ nội tiếp. Ta có điều cần chứng minh.

b) Ta có $\triangle B M P \backsim \triangle B L F$. Suy ra $B M \cdot B F=B P \cdot B L$. Mặt khác $\triangle B A F \backsim \triangle B E M$, suy ra $B E \cdot B A=B M \cdot B E$.

Do đó $B A \cdot B E=B P \cdot B L$.

Từ đó ta có tứ giác $A E P L$ nội tiếp.

Chứng minh tương tự thì tứ giác $A F Q K$ nội tiếp.

Và $\frac{B P \cdot B L}{C Q \cdot C K}=\frac{B E \cdot B A}{C F \cdot C A}=\frac{A B^{2}}{A C^{2}}$.

c) Giả sử $E L, F K$ cắt nhau tại $S$ thuộc $(I)$. Khi đó $\angle E S F=90^{\circ}$ và $E F L K$ là hình vuông. Vẽ $P U \perp A B, Q V \perp A C$.

Ta có $\frac{B P}{B C}=\frac{B U}{B A}=\frac{B K}{B L}$ và $\frac{C Q}{B C}=\frac{C V}{C A}=\frac{C L}{C K}$ Đặt $x=E F=K L$

Ta cần chứng minh $\frac{B K}{B L}+\frac{C L}{C K}=1$.

$\Leftrightarrow B K \cdot C K+B L \cdot C L=B L \cdot C K $

$\Leftrightarrow B K(C L+x)+(B K+x) C L=(B K+x)(C L+x) \Leftrightarrow x^{2}=B K \cdot C L .$

Đúng vì tam giác $B E K$ và $C F L$ đồng dạng.

 

Bài 6.

a) Giả sử có chữ cái $\sigma$ sao cho $\sigma$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_{1}, A_{2}, \ldots, A_{6}$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chũ cái chung duy nhất là $\sigma$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

$-$ Nếu $N=6$ thì vô lý do $\sigma$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \geq 7$.

$-$ Với $N \geq 7$, lấy tập $A_{7}$, có 2 khả năng:

$-$ $A_{7}$ chứa $\sigma$ : Vì $A_{7}$ và những tập $A_{1}, A_{2}, \ldots, A_{6}$ có chung đúng một chũ̃ cái $\sigma$ nên $A_{7}$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_{1}, A_{2}$, …, $A_{6}$.

Suy ra tổng số chữ cái trong 7 tập trên là: $1+7(5-1)=29>26$ (vô lý)

$-$ $A_{7}$ không chứa $\sigma$.

Khi đó $A_{7}$ sẽ có chung đúng 1 phần tử với mỗi tập $A_{1}, A_{2}, \ldots, A_{6}$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_{1}, A_{2}, \ldots, A_{6}$ đã có chung $\sigma$ )

Do đó $A_{7}$ có ít nhất 6 phần tử. (vô lý).

Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b) Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $a$ và $b$.

Khi đó dễ thấy $k \geq N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X, X$ không chứa ${a, b}$.

  • Nếu $X$ không chứa cả $a$ lẫn $b$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2 k \leq 5 \Rightarrow k \leq 2$

  • Nếu $X$ chỉ chứa $a$, không chứa $b$.

Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $\mathrm{X}$ có 5 phần tử nên $k \leq 4$.

Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

Để chỉ ra một ví dụ về khả năng có 4 tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ 1 đến 26 . Khi đó chọn bộ $N$ tập hợp như sau:

$\left\{\begin{array}{l}A_{1}={1,2,3,4,5} \ A_{2}={1,2,6,7,8} \\ A_{3}={1,2,9,10,11} \\ A_{4}={1,2,12,13,14} \\ A_{5}={1,3,6,10,13} \\ A_{6}={2,3,6,9,12}\end{array}\right.$

Bộ 6 tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

 

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Vương Trung Dũng, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2020

Bài 1. (2 điểm) Cho các phương trình: $x^{2}+a x+3=0$ và $x^{2}+b x+5=0$ với $a, b$ là tham số.

(a) Chứng minh nếu $a b \geq 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm.

(b) Giả sử hai phương trình trên có nghiệm chung $x_{0}$. Tìm $a, b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất.

Bài 2. (1,5 điểm) Cho phương trình: $3 x^{2}-y^{2}=23^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.

(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Bài 3. (3,5 điểm) Cho đường tròn $(O)$, dây cung $B C$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $B C$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle A B E=\angle C A E=$ $\angle A C F=\angle B A F=90^{\circ}$.

(a) Chứng minh rằng $A E \cdot A C=A F \cdot A B$ và điểm $O$ là trung điểm $E F$.

(b) Hạ $A D$ vuông góc với $E F(D \in E F)$. Chứng minh các tam giác $D A B$ và $D C A$ đồng dạng và điểm $D$ thuộc một đường tròn cố định.

(c) Gọi $G$ là giao điểm của $A D$ với đường tròn $(O)(G \neq A)$. Chứng minh $A D$ đi qua một điểm cố định và $G B \cdot A C=G C \cdot A B$.

(d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh $A K$ đi qua một điểm cố định.

Bài 4. (1,5 điểm) Cho số tự nhiên $a=3^{13} \cdot 5^{7} \cdot 7^{20}$

(a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105. Hỏi tập $A$ có bao nhiêu phần tử?

(b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương.

Bài 5. (1,5 điểm) Cho hệ phương trình với $k$ là tham số:

$\left\{\begin{array}{l}\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\ \frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\ \frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k\end{array}\right.$

(a) Giải hệ với $k=1$.

(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

 

LỜI GIẢI

 

Bài 1. ( 2 điểm) Cho các phương trình: $x^{2}+a x+3=0$ và $x^{2}+b x+5=0$ với $a, b$ là tham số.

(a) Chứng minh nếu $a b \geq 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm.

(b) Giả sử hai phương trình trên có nghiệm chung $x_{0}$. Tìm $a, b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất.

Lời giải.

(a) Xét phương trình: $x^{2}+a x+3=0 \quad(1)$, ta có: $\Delta_{1}=a^{2}-12$.

Xét phương trình: $x^{2}+b x+5=0 \quad(2)$, ta có: $\Delta_{2}=b^{2}-20$

Ta có: $\Delta_{1}+\Delta_{2}=a^{2}+b^{2}-32 \geq 2 a b-32 \geq 0$

Vậy trong hai số $\Delta_{1}$ và $\Delta_{2}$ có ít nhất một số không âm hay một trong hai phương trình đã cho có nghiệm.

(b) Có hai cách giải tham khảo sau:

Cách 1. Vì $x_{0}$ là nghiệm chung của phương trình (1) và (2) nên phương trình $2 x^{2}+(a+b) x+8=0$ có nghiệm.

Suy ra: $\Delta=(a+b)^{2}-64 \geq 0 \Leftrightarrow|a+b| \geq 8$

Ta có: $|a|+|b| \geq|a+b| \geq 8$. Dấu ” $=$ ” xảy ra khi và chỉ khi: $\left\{\begin{array}{l}a b \geq 0 \\|a+b|=8\end{array}\right.$

  • Nếu $a+b=8$ thì $x_{0}=-2$, suy ra: $\left\{\begin{array}{l}(-2)^{2}-2 a+3=0 \\ (-2)^{2}-2 b+5=0\end{array} \Leftrightarrow\right.$

$\left\{\begin{array}{l}a=\frac{7}{2} \\ b=\frac{9}{2}\end{array}\right.$

  • Nếu $a+b=-8$ thì $x_{0}=2$, suy ra: $\left\{\begin{array}{l}2^{2}+2 a+3=0 \\ 2^{2}+2 b+5=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-\frac{7}{2} \\ b=-\frac{9}{2}\end{array}\right.\right.$

Cách 2. Dễ thấy $x_{0} \neq 0$.

  • $(1) \Leftrightarrow-a=\frac{x_{0}^{2}+3}{x_{0}} \Leftrightarrow|a|=\frac{x_{0}^{2}+3}{\left|x_{0}\right|}$

$(2) \Leftrightarrow-b=\frac{x_{0}^{2}+5}{x_{0}} \Leftrightarrow|b|=\frac{x_{0}^{2}+5}{\left|x_{0}\right|}$

  • Suy ra $|a|+|b|=2\left|x_{0}\right|+\frac{8}{\left|x_{0}\right|} \geq 2 \sqrt{2\left|x_{0}\right| \cdot \frac{8}{\left|x_{0}\right|}}=8$ Dấu ” $=$ “xảy ra khi và chỉ khi: $x_{0}^{2}=4 \Leftrightarrow\left[\begin{array}{l}x_{0}=2 \ x_{0}=-2\end{array}\right.$ Với $x_{0}=2$ hoặc $x_{0}=-2$, lần lượt giải được $a=\frac{7}{2} ; b=\frac{9}{2}$ hoặc $a=-\frac{7}{2} ; b=-\frac{9}{2}$

Vậy giá trị nhỏ nhất của $|a|+|b|$ là 8 khi $a=\frac{7}{2} ; b=\frac{9}{2}$ hoặc $a=-\frac{7}{2} ; b=$ $-\frac{9}{2}$

 

Bài 2. (1,5 điểm) Cho phương trình: $3 x^{2}-y^{2}=23^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.

(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Lời giải.

(a) Ta nhận thấy 1 số chính phương $m=a^{2}$ khi chia cho 3 thì có số dư lần lượt là 0 hoặc 1 .

Nên tổng 2 số chính phương nếu chia hết cho 3 thì mỗi số đều phải chia hết cho $3 .$

Quay lại bài toán, do $n$ chẵn nên $23^{n}$ và $y^{2}$ đều là các số chính phương mà $23^{n}+y^{2}=3 x^{2} \vdots 3 \Rightarrow 23^{n} \vdots 3$ (vô lý)

Vậy $n$ chẵn thì phương trình đã cho không có nghiệm nguyên.

(b) Do $n$ lẻ $\Rightarrow n=2 k+1\left(k \in \mathbb{N}^{*}\right)$

Xét $\left\{\begin{array}{l}x=3 \cdot 23^{k} \\ y=2 \cdot 23^{k}\end{array} \Rightarrow 3 x^{2}-y^{2}=23^{2 k+1}=23^{n}\right.$

Vậy phương trình có nghiệm nguyên

 

Bài 3. (3,5 điểm) Cho đường tròn $(O)$, dây cung $B C$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $B C$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle A B E=$ $\angle C A E=\angle A C F=\angle B A F=90^{\circ}$.

(a) Chứng minh rằng $A E \cdot A C=A F \cdot A B$ và điểm $O$ là trung điểm $E F$.

(b) Hạ $A D$ vuông góc với $E F(D \in E F)$. Chứng minh các tam giác $D A B$ và $D C A$ đồng dạng và điểm $D$ thuộc một đường tròn cố định.

(c) Gọi $G$ là giao điểm của $A D$ với đường tròn $(O)(G \neq A)$. Chứng minh $A D$ đi qua một điểm cố định và $G B \cdot A C=G C \cdot A B$.

(d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh $A K$ đi qua một điểm cố định.

Lời giải.

(a) Ta có $\angle B A E+\angle E A F=90^{\circ}$ và $\angle C A F+\angle E A F=90^{\circ}$.

Suy ra $\angle B A E=\angle C A F . \triangle A B E \backsim \triangle A C F$, suy ra $A E \cdot A C=A B \cdot A F$

Gọi $I$ là giao điểm của $B E$ và $C F$. Khi đó $A I$ là đường kính của $O$.

Tứ giác $A E I F$ là hình bình hành, $O$ là trung điểm $A I$ nên là trung điểm $E F$.

(b) Các tứ giác $A D B E, A D F C$ nội tiếp.

Khi đó $\angle A D B=\angle A E B=\angle A F C=\angle A C D . \angle A B D=\angle A E C=\angle I F E=$ $\angle A F C=\angle A D C$. Suy ra $\triangle A D B \sim \triangle A C D A$. (g.g)

Ta có $\angle B D C=2 \angle A D B=2 \angle A E B=2 \angle E I F=\angle B O C$.

Suy ra tứ giác $B D O C$ nội tiếp. $D$ thuộc đường tròn ngoại tiếp tam giác BOC cố định.

(d) Gọi $M$ là trung điểm của $B C$. Ta chứng minh $A, M, K$ thẳng hàng.

Ta chứng minh được $\angle D A E=\angle K A F\left(\angle 90^{\circ}-\angle A E D\right)$.

Gọi $T$ là trung điểm $C G$. Ta có $\triangle A C D \sim \triangle B C G$ suy ra $\triangle A B C \sim \triangle D C G$.

Từ đó ta có $\triangle A C M \backsim \triangle D C T$.

Khi đó $\angle C A M=\angle C D T=\angle A C D=\angle B A D$.

Mà $\angle C A M=\angle C A F+\angle F A M$ và $\angle B A D=\angle B A E+\angle E A D$.

Suy ra $\angle F A M=\angle E A D=\angle F A K$. Vậy $A, M, K$ thẳng hàng. $A K$ qua trung điểm $M$ của $B C$ cố định.

 

Bài 4. (1,5 điểm) Cho số tự nhiên $a=3^{13} \cdot 5^{7} \cdot 7^{20}$

(a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105 . Hỏi tập $A$ có bao nhiêu phần tử?

(b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương.

Lời giải.

(a) $k: 105 \Rightarrow k$ chia hết cho $3,5,7$

$\Rightarrow k=3^{n} \cdot 5^{m} \cdot 7^{p} \text { với } m, n, p \text { nguyên dương }$

$\Rightarrow \text { có } 13 \cdot 7 \cdot 20=1820 \text { cách. }$

(b) Cách 1: Giả sử $B$ là tập hợp 9 số nguyên dương $a_{i}, i=\overline{1,9}$ với $a_{i}=3^{n_{i}} \cdot 5^{m_{i}} \cdot 7^{p_{i}}$ trong đó $0 \leq n_{i} \leq 13 ; 0 \leq m_{i} \leq 7$ và $0 \leq p_{i} \leq 20$

Do $B$ có 9 phân tử. Xét nguyên lý Dirichlet với tập các số $n_{i}$ thì ta có ít nhất 5 số hạng $a_{i}$ sao cho các số mũ $n_{i}$ của 3 tương ứng cùng tính chẵn lẻ.

Xét tiếp nguyên lý Dirichlet 5 số này cho số mũ $m_{i}$ của 5 tương ứng thì ta có ít nhất 3 số mà số mũ $m_{i}$ cũng cùng tính chẵn lẻ.

Với 3 số còn lại này ta cũng xét nguyên lý Dirichlet cho số mũ $p_{i}$ của 7 thì ta sẽ có ít nhất 2 số cũng tính chẵn lẻ.

Do 2 số được chọn này có số mũ cùng tính chẵn lẻ với cả các số 3,5 và 7 nên tích chúng lại sẽ là số chính phương.

– Cách 2: Ta chia 9 số từ tập $B$ vào 8 tập con như sau:

$B_{1}$= ( số mũ của 3,5,7 đều chẵn )

$B_{2}$= ( số mũ 3,5,7 đều lẻ )

$B_{3}$= ( số mũ của 3 chẵn; 5,7 đều lẻ )

$B_{4}$= ( số mũ của 5 chẵn; 3,7 lẻ )

$B_{5}$= ( số mũ của 7 chẵn; 3,5 lẻ )

$B_{6}$= ( số mũ của 3,5 đều chẵn; 7 lẻ )

$B_{7}$= ( số mũ của 3,7 đều chẵn; 5 lẻ )

$B_{8}$= ( số mữ của 5,7 đều chẵn; 3 lẻ )

Do có 8 tập mà có 9 số nên theo nguyên lý Dirichlet thì có ít nhất 2 số thuộc cùng một tập $B_{i}$ nên tích của chúng sẽ là một số chính phương.

Bài 5. (1,5 điểm) Cho hệ phương trình với $k$ là tham số:

$\left\{\begin{array}{l}\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\ \frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\ \frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k \ \text { (a) Giải hệ với } k=1\end{array}\right.$

(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

Lời giải.

– Cách 1: Điều kiện $x, y, z$ cùng dấu đôi một.

Ta xét hệ phương trình với $k \geq 1$

Hệ phương trình $\Leftrightarrow\left\{\begin{array}{l}x+\sqrt{x z}+\sqrt{x y}=k \sqrt{y z} \\ y+\sqrt{x y}+\sqrt{y z}=k \sqrt{z x} \\ z+\sqrt{z y}+\sqrt{z x}=k \sqrt{x y}\end{array}\right.$

Đặt $a=\sqrt{x y}, b=\sqrt{y z}, c=\sqrt{z x}(a, b, c>0)$

  • Trường hợp 1: $x, y, z>0 \Rightarrow x=\frac{a c}{b} ; y=\frac{a b}{c} ; z=\frac{b c}{a}$ Hệ phương trình $\Leftrightarrow\left\{\begin{array}{l}\frac{a c}{b}+a+c=k b \\ \frac{a b}{c}+a+b=k c \\ \frac{b c}{a}+b+c=k a\end{array} \Rightarrow\left\{\begin{array}{l}k a^{2}=a b+a c+b c(1) \\ k b^{2}=a b+b c+c a(2) \\ k c^{2}=a b+a c+b c(3)\end{array}\right.\right.$ Lấy (1)-(2): $k\left(a^{2}-b^{2}\right)=0 \Leftrightarrow a^{2}=b^{2} \Leftrightarrow\left\{\begin{array}{l}a=b \\ a=-b \text { (loại) }\end{array}\right.$

Tương tự lấy (2)-(3): $b=c$

Vậy $a=b=c \Rightarrow k a^{2}=3 a^{2} \Rightarrow k=3$

  • Trường hợp 2: $x, y, z<0 \Rightarrow x=-\frac{a c}{b} ; y=-\frac{a b}{c} ; z=-\frac{b c}{a}$

Hệ phương trình $\Rightarrow\left\{\begin{array}{l}k a^{2}=a b+a c-b c \\ k b^{2}=a b+b c-c a \\ k c^{2}=a c+b c-a b\end{array}\right.$

Cộng các phương trình lại ta có: $k\left(a^{2}+b^{2}+c^{2}\right)=a b+b c+a c$ mà $a b+b c+c a \leq a^{2}+b^{2}+c^{2}$

Suy ra $k\left(a^{2}+b^{2}+c^{2}\right) \leq a^{2}+b^{2}+c^{2} \Leftrightarrow k \leq 1$

Vậy $k=1$ và $a=b=c \Leftrightarrow x=y=z<0$

Câu a) Áp dụng điều trên, hệ có nghiệm $x=y=z<0$.

Câu b) Suy ra điều phải chứng minh.

– Cách 2: Điều kiện xác định là: $x, y, z$ cùng dương hoặc cùng âm.

Đặt $a=\sqrt{\frac{x}{y}}, b=\sqrt{\frac{y}{z}}, c=\sqrt{\frac{z}{x}}$ thì $a, b, c>0$ và $a b c=1$.

Ta có: $\frac{a}{c}=\frac{|x|}{\sqrt{y z}}, \frac{b}{a}=\frac{|y|}{\sqrt{z x}}, \frac{c}{b}=\frac{|z|}{\sqrt{x y}}$.

(a) Khi $k=1$, nếu $x, y, z>0$ thì $\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=1$. Cộng lại suy ra $\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)=3$ Theo bất đẳng thức Cô-si thì rõ ràng $a+\frac{1}{a} \geq 2, b+\frac{1}{b} \geq 2, c+\frac{1}{c} \geq 2$ nên đẳng thức trên không thể xảy ra.

Xét trường hợp $x, y, z$ cùng âm thì $-\frac{a}{c}+a+\frac{1}{c}=-\frac{b}{a}+b+\frac{1}{a}=-\frac{c}{a}+c+\frac{1}{b}=1$

Trừ vào các vế và phân tích, ta suy ra: $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=0$

Từ đây dễ dàng suy ra ít nhất 2 trong $a, b, c$ phải là 1 mà $a b c=1$ nên

$a=b=c=1$. Vì thế nên thay vào ta có $x=y=z<0$. Và mọi bộ số như thế đều thỏa mãn hệ.

(b) Với $k \geq 2$, giả sử hệ có nghiệm $(x, y, z)$. Nếu như $x, y, z<0$ thì ta có $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=k-1>0 .$

Từ đó suy ra $a-1, b-1, c-1$ đều cùng dấu, kéo theo $a, b, c>1$ hoặc $a, b, c<1$ Tuy nhiên $a b c=1$ nên điều này không thể xảy ra.

Do đó, ta phải có $a, b, c>0$ nên đưa về

$\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=k$

Trong các số $a, b, c$ giả sử $a=\max {a, b, c}$ thì $k=\frac{a}{c}+a+\frac{1}{c} \geq$ $\frac{a}{c}+2 \sqrt{\frac{a}{c}} \geq 1+2=3$ nên ta cần có $k \geq 3$. Vì $k \neq 3$ nên $k>3$.

Vì $a=\max {a, b, c} \geq 1$ nên ta có $2 b+1 \geq \frac{b}{a}+b+\frac{1}{a}=k>3$ kéo theo $b>1$. Tương tự từ $2 c+1>\frac{c}{b}+c+\frac{1}{b}=k>3$ nên $c>1$. Từ đây suy ra $a, b, c>1$ trong khi $a b c=1$, vô lý.

Vậy hệ luôn vô nghiệm với $k \geq 2$ và $k \neq 3$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2019

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho $9 .$

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}$, $d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60 . Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

 

LỜI GIẢI

 

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Lời giải.

(a) Có

$|b|>2 \sqrt{|a c|}$

nên $b^{2}>4 a c$. Suy ra $\Delta=b^{2}-4 a c>0$ vậy phương trình có hai nghiệm phân biệt.

$|b|<a+c$

$\Leftrightarrow-a-c<b<a+c $

$\Leftrightarrow\left\{\begin{array}{l}a+b+c>0 \\ a-b+c>0\end{array}\right.$

Suy ra

$\left(1-x_{1}\right)\left(1-x_{2}\right)$

$=1-\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1+\frac{b}{a}+\frac{c}{a}$

$=\frac{a+b+c}{a}>0$

$\left(1+x_{1}\right)\left(1+x_{2}\right)$

$=1+\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1-\frac{b}{a}+\frac{c}{a}$

$=\frac{a-b+c}{a}>0$

(b) Có

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0$

Xét Trường hợp :

$\left\{\begin{array}{l}x_{1}>1 \\ x_{2}>1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}<1$.

$\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

Xét trường hợp:

$\left\{\begin{array}{l}x_{1}<-1 \\ x_{2}<-1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}>-1$.

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho 9 .

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Lời giải.

(a) $n=3 k$, suy ra $2^{n}+1=8^{k}+1 \equiv(-1)^{k}+1(\bmod 9)$. Suy ra $k$ lẻ, $k=$ $2 t+1$. Suy ra $n=3(2 t+1)=6 t+3$.

Nếu $n=3 k+1$ ta có $2^{n}+1=3 \cdot 8^{k}+1 \equiv(-1)^{k} \cdot 3+1(\bmod 9)$, suy ra $2^{n}+1$ không chia hết cho 9 .

Nếu $n=3 k+2$ ta có $2^{n}+1=4 \cdot 8^{k}+1 \equiv 4(-1)^{k}+1$, suy ra $2^{n}+1$ không chia hết cho 9 .

Vậy với $n=6 t+2$, với $t$ là số tự nhiên là các số cần tìm.

(b) Cách 1: Ta có $2^{k m}-1: 2^{m}-1$. Từ $2^{2 n}=\left(2^{n}+1\right)\left(2^{n}-1\right)$ chia hết cho $2^{m}-1$. Đặt $2 n=k m+q(0 \leq q<m)$.

Khi đó $2^{2 n}-1=2^{k m+q}-2^{q}+2^{q}-1=2^{q}\left(2^{k m}-1\right)+2^{q}-1$ chia hết cho $2^{m}-1$, suy ra $2^{q}-1$ chia hết cho $m$ mà $0 \leq 2^{q}-1<2^{m}-1$, suy ra $q=0$. Do đó $2 n=k m$.

Trường hợp 1: Nếu $m$ lẻ, suy ra $k$ chẵn, $k=2 k^{\prime}$, suy ra $n=k^{\prime} m, 2^{n}+1=$ $2^{k^{\prime} m}+1=2^{k^{\prime} m}-1+2$ chia hết cho $2^{m}-1$, suy ra 2 chia hết cho $2^{m}-1$ (vô lý)

Trường hợp 2: Nếu $m$ chẵn $m=2 m^{\prime}$ thì $n=k m^{\prime}$, suy ra $2^{k m^{\prime}}+1$ chia hết cho $2^{m}-1$, mà $2^{m}-1$ chia hết cho $2^{m^{\prime}}-1$ nên $2^{k m^{\prime}}+1$ chia hết cho $2^{m^{\prime}}-1$, suy ra 2 chia hết cho $2^{m^{\prime}}-1$ vô lý vì $m^{\prime}>1$.

Cách 2: Ta có $2^{n-m}\left(2^{m}-1\right): 2^{m}-1$, suy ra $2^{n}-2^{n-m}: 2^{m}-1$, mà $2^{n}+1: 2^{m}-$ 1 suy ra $2^{n-m}+1$ chia hết cho $2^{m}-1$.

Lý luận tương tự ta có $2^{n-k m}+1$ chia hết cho $2^{m}-1$. Giả sử $n=k m+$ $q, 0 \leq q<m$. Chọn $k$ như trên ta có $2^{q}+1$ chia hết cho $2^{m}-1$. Mà $q<m$ nên $2^{q}+1=2^{m}-1$, giải ra $q=1, m=2$ (vô lý).

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=$ $b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Lời giải.

(a) Ta có $a^{4}-b^{4}=4(a-b)$, mà $a^{4}-b^{4}=(a-b)(a+b)\left(a^{2}+b^{2}\right)$ nên đẳng thức được viết lại thành

$(a-b)(a+b)\left(a^{2}+b^{2}\right)=4(a-b)$

Mà $a \neq b$ nên $(a+b)\left(a^{2}+b^{2}\right)=4$. Vi $a^{2}+b^{2}>0($ do $a, b$ không thể đồng thời bằng 0 ) nên ta có $a+b>0$.

Ngoài ra, ta cũng có đánh giá $a^{2}+b^{2}>\frac{(a+b)^{2}}{2}$ (đẳng thức không xảy ra vì $a \neq b$ ) nên

$4>\frac{(a+b)^{3}}{2} \Leftrightarrow(a+b)^{3}<8 \Leftrightarrow a+b<2 .$

Vậy ta được $0<a+b<2$.

(b) Rõ ràng $a b \neq 0$, ta sẽ chứng minh $a, b$ trái dấu. Ta xét hai trường hợp:

  • Nếu $a>0, b>0$ thì $a^{4}-4 a=a\left(a^{3}-4\right)>0$ nên $a>\sqrt[3]{4}>1$. Tương tự thì $b>1$. Khi đó $a+b>2$, mâu thuẫn với a).

  • Nếu $a<0, b<0$ thì $a+b<0$, cũng mâu thuẫn với a).

Do đó $a, b$ trái dấu và $a b<0$.

Không mất tính tổng quát, giả sử $a<0<b$ thì đặt $c=-a>0$, ta viết lại $c^{4}+4 c=b^{4}-4 b=k>0$. Từ đây dễ thấy $(b-c)\left(b^{2}+c^{2}\right)=4$ và $b \neq c$.

Ta cần chứng minh

$-\sqrt{k}<a b \Leftrightarrow-\sqrt{k}<-b c \Leftrightarrow b c<\sqrt{k} .$

Cộng hai vế của các đẳng thức trên lại, ta có

$2k =b^{4}-4 b+c^{4}+4 c=b^{4}+c^{4}-4(b-c)=b^{4}+c^{4}-(b-c)^{2}\left(b^{2}+c^{2}\right)=2 b c\left(b^{2}-b c+c^{2}\right)$

Suy ra $k=b c\left(b^{2}-b c+c^{2}\right)$, mà $b^{2}-b c+c^{2}>b c$ (đẳng thức không xảy ra vì $b \neq c)$ nên $k>b c \cdot b c=(b c)^{2} \Leftrightarrow b c<\sqrt{k}$. Vậy ta có đpcm.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}, d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=$ $\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Lời giải.

(a) Tứ giác $A M B N$ có $\angle A=\angle M=\angle N=90^{\circ}$ nên tứ giác $A M B N$ là hình chữ nhật. Suy ra $M N$ đi qua trung điểm $A B$.

Tương tự, $A P C Q$ là hình chữ nhật nên $P Q$ đi qua trung điểm $A C$.

(b) Có: $\angle N M A=\angle B A M=\angle M A C$ nên $M N | A C$ mà theo ý a) $N D$ đi qua trung điểm $A B$ nên ta thu được $N M$ đi qua trung điểm $B C$.

Tương tự, $P Q$ đi qua trung điểm $B C$ nên $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Gọi $T$ là giao điểm của $d_{1}$ và $B C$. Dễ dàng chứng minh được $\triangle A B E \sim$ $A C T(g-g)$ nên $\frac{A B}{A C}=\frac{B E}{C T}$.

Tương tự, $\triangle A B T \sim \triangle A C F(g-g)$ nên $\frac{A B}{A C}=\frac{B T}{C F}$.

Do đó, ta có:

$\left(\frac{A B}{A C}\right)^{2}=\frac{B E \cdot B T}{C T \cdot C F}$

mà $A T$ là phân giác góc $A$ nên

$\frac{B T}{C T}=\frac{A B}{A C}$

Ta thu được

$\frac{A B}{A C}=\frac{B E}{C F}$

(d) $\triangle B E T$ có:

$\angle B E T=\angle E B A+\angle E A B=\angle A C B+\angle C A T=\angle B T E$

nên $\triangle B E T$ cân tại $B$. Suy ra $M$ là trung điểm $E T$.

Có TM $|$ NB nên

$\frac{T M}{N B}=\frac{D M}{D N}=\frac{E M}{K N}$

suy ra $\triangle D M E \sim \triangle D N K(c-g-c)$.

Ta thu được $D, E, K$ thẳng hàng.

Tương tự, $L, D, F$ thẳng hàng ta có điều phải chứng minh.

 

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

Lời giải.

(a) Giả sử ngược lại rằng $n \geq \frac{k+10}{2}$ thì $2 n-k \geq 10$. Gọi $A$ là tập hợp các quốc gia có đúng 1 học sinh tham gia và $B$ là tập hợp các quốc gia còn lại. Khi đó, mỗi quốc gia trong $B$ sẽ có ít nhất 2 học sinh.

Ta chọn tất cả học sinh trong $A$ và mỗi quốc gia trong $B$, chọn 2 học sinh thì có $k+2(n-k)=2 n-k$ học sinh.

Các học sinh này có đặc điểm là: không có 3 học sinh nào đến từ cùng quốc gia. Do $2 n-k \geq 10$ nên có thể chọn ra trong đó 10 học sinh nào đó không thỏa mãn đề bài.

(b) Theo câu a, ta có $2 n-k<10$ nên $2 n-k \leq 9 \Leftrightarrow n \leq \frac{k+9}{2}$.

Do số học sinh tổng cộng là 60 , để chỉ ra có 15 học sinh đến từ cùng quốc gia thì theo nguyên lý Dirichlet, ta chỉ cần chỉ ra rằng

$\frac{60-k}{n-k} \geq 15 \Leftrightarrow 15 n-14 k \leq 60$

Ta sẽ chứng minh đánh giá trên đúng với mọi $(n, k)$. Vì ta đã có $n \leq \frac{k+9}{2}$ nên ta sẽ đưa về chứng $\operatorname{minh} 15\left(\frac{k+9}{2}\right)-14 k \leq 60 \Leftrightarrow k \geq \frac{15}{13}$. Do đó, với $k \geq 2$ thì khẳng định đúng. Tiếp theo, ta xét hai trường hợp

  • Nếu $k=0$ thì theo $(*)$, ta phải có $n \leq 4$ nên $15 n-14 k=15 n \leq 60$, đúng.

  • Nếu $k=1$ thì theo $(*)$, khi đó loại trừ học sinh ở nước đó ra thì còn lại 59 học sinh, đến từ 4 quốc gia. Theo nguyên lý Dirichlet, tồn tại 15 học sinh đến từ cùng quốc gia.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2018

Bài 1. Cho các phương trình $x^{2}-x+m=0$

(1) và $m x^{2}-x+1=0$

(2) với $m$ là tham số.

(a) Tìm $m$ để các phương trình (1) và (2) đều có 2 nghiệm dương phân biệt.

(b) Giả sử điều kiện ở câu a) được thỏa mãn gọi $x_{1}$; $x_{2}$ là nghiệm của (1) và $x_{3} ; x_{4}$ là nghiệm của (2).

Chứng minh rằng $x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}>5$

Bài 2. Cho $a, b$ là hai số nguyên thỏa mãn $a^{3}+b^{3}>0$.

(a) Chứng minh rằng $a^{3}+b^{3} \geq a+b>0$.

(b) Chứng minh rằng $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Tìm tất cả các bộ số $x, y, z, t$ nguyên sao cho $x^{3}+y^{3}=z^{2}+t^{2}$ và $z^{3}+t^{3}=$ $x^{2}+y^{2}$.

Bài 3. Cho $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh với mọi số tự nhiên $n$ thì $A_{n}$ chia hết cho 51 .

(b) Tìm tất cả những số tự nhiên $n$ sao cho $A_{n}$ chia hết cho 45 .

Bài 4. Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lây điểm $K$ sao cho từ giác $D B K C$ là hình bình hành.

(a) Chứng minh rằng $\triangle K B C$ đồng dạng với $\triangle D F E, \triangle A K C$ dồng dạng với $\triangle A D E$.

(b) Hạ $D M$ vuông góc với $A B, D N$ vuông góc với $A C$. Chứng minh rằng $M N$ vuông góc với $A K$.

(c) Gọi $I$ là trung điểm $A D$, $J$ là trung điểm $M N$. Chứng minh rằng đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.

(d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T(T \neq I)$. Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.

Bài 5. Đội văn nghệ của một trường THCS có 8 học sinh. Nhà trường muốn thành lập các nhóm tốp ca, mỗi nhóm gồm đúng 3 học sinh, (mỗi học sinh có thể tham gia vài nhóm tốp ca khác nhau). Biết rằng hai nhóm tốp ca bất kỳ có chung nhau nhiều nhất là một học sinh.

(a) Chứng minh rằng không có học sinh nào tham gia từ 4 nhóm tốp ca trở lên.

(b) Có thể thành lập nhiều nhất là bao nhiêu nhóm tốp ca như vậy?

LỜI GIẢI

 

Bài 1. Cho các phương trình $x^{2}-x+m=0 \quad$ (1) và $m x^{2}-x+1=0$

(2) với $m$ là tham số.

(a) Tìm $m$ để các phương trình (1) và $(2)$ đều có 2 nghiệm dương phân biệt.

(b) Giả sử điều kiện ở câu a) được thỏa mãn gọi $x_{1}$; $x_{2}$ là nghiệm của (1) và $x_{3} ; x_{4}$ là nghiệm của $(2)$.

Chứng minh rằng $x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}>5$

Lời giải.

(a) Xét phương trình (1): $x^{2}-x+m=0$

Phương trình (1) có hai nghiệm dương phân biệt:

$\left\{\begin{array}{l}\Delta>0 \\ S>0 \ P>0\end{array} \Leftrightarrow\left\{\begin{array}{l}1-4 m>0 \\ 1>0 \ m>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m<\frac{1}{4} \\m>0\end{array} \Leftrightarrow 0<m<\frac{1}{4}\right.\right.\right.$

Phương trình (2) có hai nghiệm dương phân biệt:

$\left\{\begin{array}{l}m \neq 0 \\ \Delta>0 \\ S>0 \\ P>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m \neq 0 \\ 1-4 m>0 \\ \frac{1}{m}>0 \\ \frac{1}{m}>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m \neq 0 \\ m<\frac{1}{4} \\ m>0\end{array} \Leftrightarrow 0<m<\frac{1}{4}\right.\right.\right.$

Vậy để $(1)$ và $(2)$ có hai nghiệm dương phân biệt thì $0<m<\frac{1}{4}$

b) Theo Viet ta có: $\left\{\begin{array}{l}x_{1}+x_{2}=1 \\ x_{1} x_{2}=m \\ x_{3}+x_{4}=\frac{1}{m} \\ x_{3} x_{4}=\frac{1}{m}\end{array}\right.$

$\text { Ta có } x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}$

$=x_{1} x_{3}+\frac{x_{2}}{m}+\frac{x_{1}}{m}+m x_{4}$

$=m\left(x_{3}+x_{4}\right)+\frac{1}{m}\left(x_{1}+x_{2}\right)$

$=1+\frac{1}{m}>1+\frac{1}{\frac{1}{4}}=5(\text { dpcm }) .$

Bài 2. Cho $a, b$ là hai số nguyên thỏa mãn $a^{3}+b^{3}>0$.

(a) Chứng minh rằng $a^{3}+b^{3} \geq a+b>0$.

(b) Chứng minh rằng $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Tìm tất cả các bộ số $x, y, z, t$ nguyên sao cho $x^{3}+y^{3}=z^{2}+t^{2}$ và $z^{3}+t^{3}=x^{2}+y^{2} .$

Lời giải. $a, b \in \mathbb{Z}: a^{3}+b^{3}>0$

(a) $a^{3}+b^{3}>0 \Leftrightarrow(a+b)\left(a^{2}-a b+b^{2}\right)>0$

Do $a^{2}-a b+b^{2}=\left(a-\frac{b}{2}\right)^{2}+\frac{3 b^{2}}{4} \geq 0$. Dấu “=” xảy ra $\Leftrightarrow a=b=0$ (loại).

$\Rightarrow a^{2}-a b+b^{2}>0$ nên $a+b>0$ (đpcm).

Ta có: $a^{3}+b^{3} \geq a+b$

$\Leftrightarrow(a+b)\left(a^{2}-a b+b^{2}-1\right) \geq 0 \quad (* *)$

Do $\left\{\begin{array}{l}a^{2}-a b+b^{2}>0 \\ a, b \in \mathbb{Z}\end{array} \Rightarrow a^{2}-a b+b^{2} \geq 1\right.$ nên $(* *)$ đúng.

Vậy $a^{3}+b^{3} \geq a+b$ và dấu “=” xảy ra $\Leftrightarrow\left\{\begin{array}{l}a=1 \\ b=0\end{array}\right.$ hay $\left\{\begin{array}{l}a=0 \\ b=1\end{array}\right.$ hay $\left\{\begin{array}{l}a=1 \\ b=1\end{array}\right.$

(b) Cách 1:

Do $a+b>0 \Rightarrow a+b \geq 1$.

TH1: $a+b=1 \Leftrightarrow b=1-a$.

Ta có: $a^{3}+b^{3} \geq a^{2}+b^{2} \Leftrightarrow a^{3}+(1-a)^{3} \geq a^{2}+(1-a)^{2}$

$\Leftrightarrow a^{2}-a \geq 0$

$\Leftrightarrow a \leq 0$ hoặc $a \geq 1$ (đúng vì $a \in \mathbb{Z}$ )

Vậy $a^{3}+b^{3} \geq a^{2}+b^{2}$ và dấu “=” xảy ra $\Leftrightarrow(a ; b) \in{(0 ; 0) ;(1 ; 1) ;(0 ; 1) ;(1 ; 0)}$.

TH2: $a+b \geq 2$

Ta có: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \geq 2\left(a^{2}-a b+b^{2}\right)=a^{2}+b^{2}+$ $(a-b)^{2} \geq a^{2}+b^{2}$.

Cách 2:

Rõ ràng $a, b$ không thể đồng thời bé hơn 0 .

TH1: $a=b=0$ : hiển nhiên $a^{3}+b^{3} \geq a^{2}+b^{2}$

TH2: Một trong hai số bằng 0 , số còn lại khác 0 .

Giả sử: $\left\{\begin{array}{l}b=0 \\ a \neq 0\end{array} \Rightarrow a>1 \Rightarrow a^{3} \geq a^{2} \Rightarrow a^{3}+b^{3} \geq a^{2}+b^{2}\right.$

Dấu “=” xảy ra khi $a=1$.

TH3: $a, b \geq 1 \Rightarrow\left\{\begin{array}{l}a^{3} \geq a^{2} \\ b^{3} \geq b^{2}\end{array} \Rightarrow a^{3}+b^{3} \geq a^{2}+b^{2}\right.$

TH4: $\left\{\begin{array}{l}a>0 \\ b<0\end{array} \Rightarrow\left\{\begin{array}{l}a \geq 1 \\ b \leq-1\end{array}\right.\right.$

Đặt $a=|b|+k, k>1$

$a^{3}+b^{3} \geq a^{2}+b^{2}$

$\Leftrightarrow(|b|+k)^{3}+b^{3} \geq(|b|+k)^{2}+b^{2}$

$\Leftrightarrow 3|b|^{2} k+3|b| k^{2}+k^{3} \geq 2|b|^{2}+2|b| k+k^{2}$

$\left.\Rightarrow 3 b^{2} k+3|b| k+k^{3} \geq 2 b^{2}+2|b| k+k^{2} \quad \text { (Do k }>1\right)$

$\Leftrightarrow(3 k-2) b^{2}+|b| k+k^{2}(k-1) \geq 0 \text { (đúng). }$

Vậy $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Từ giả thiết $\Rightarrow x^{3}+y^{3} \geq 0 ; z^{3}+t^{3} \geq 0$.

Nếu $x^{3}+y^{3}=0 \Rightarrow z^{2}+t^{2}=0 \Rightarrow z=t=0$

$\Rightarrow x^{2}+y^{2}=0 \Rightarrow x=y=0 \text {. }$

Nếu $z^{3}+t^{3}=0$, tương tự ta có $x=y=z=t=0$.

Nếu $\left\{\begin{array}{l}x^{3}+y^{3}>0 \\ z^{3}+t^{3}>0\end{array}\right.$

Từ giả thiết suy ra $\left(x^{3}+y^{3}\right)+\left(z^{3}+t^{3}\right)=x^{2}+y^{2}+z^{2}+t^{2}(* * *)$

Theo câu b) : $\left\{\begin{array}{l}x^{3}+y^{3} \geq x^{2}+y^{2} \\ z^{3}+t^{3} \geq z^{t}+t^{2}\end{array}\right.$

Nếu $(* * *) \Leftrightarrow(x ; y),(z, t)$ là một trong các bộ $(1 ; 1) ;(1 ; 0) ;(0 ; 1)$.

Vậy nghiệm phương trình:

$(x, y, z, t) \in{(0 ; 0 ; 0 ; 0),(1 ; 1 ; 1 ; 1),(1 ; 0 ; 0 ; 1),(0 ; 1 ; 1 ; 0),(1 ; 0 ; 1 ; 0),(0 ; 1 ; 0 ; 1)} \text {. }$

Bài 3. Cho $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh với mọi số tự nhiên $n$ thì $A_{n}$ chia hết cho 51 .

(b) Tìm tất cả những số tự nhiên $n$ sao cho $A_{n}$ chia hết cho 45 .

Lời giải.

(a) Do $2018 \equiv 1964 \quad(\bmod 3) \Rightarrow 2018^{n} \equiv 1964^{n} \quad(\bmod 3)$. $2032 \equiv 1984 \quad(\bmod 3) \Rightarrow 2032^{n} \equiv 1984^{n} \quad(\bmod 3) .$

$\Rightarrow A_{n} \vdots 3 .$

Ta lại có $2018 \equiv 1984 \quad(\bmod 17) \Rightarrow 2018^{n} \equiv 1984^{n} \quad(\bmod 17)$. $2032 \equiv 1964 \quad(\bmod 17) \Rightarrow 2032^{n} \equiv 1964^{n} \quad(\bmod 17) .$ $\Rightarrow A_{n} \vdots 17 .$

Do $(3 ; 17)=1$ nên $A_{n}: 51 \quad \forall n$

(b) $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$.

  • Ta xét các trường hợp của $n$ để $A_{n} \vdots 5$.

Ta có $A_{n} \equiv(-2)^{n}+2^{n}-2 \cdot(-1)^{n}(\bmod 5)$.

Do đó nếu $n$ lẻ $\Rightarrow A_{n} \equiv 2 \quad(\bmod 5) \quad$ (loại).

Nếu $n=4 k \Rightarrow A_{n} \equiv 2 \cdot 2^{4 k}-2 \equiv 2-2 \equiv 0 \quad(\bmod 5)$ (nhận)

Nếu $n=4 k+2 \Rightarrow A_{n} \equiv 2 \cdot 2^{4 k+2}-2 \equiv 8-2 \equiv 6(\bmod 5)$ (loại). Vậy $A_{n} \vdots 5 \Leftrightarrow n \vdots 4$.

  • Ta xét các trường hợp của $n$ để $A_{n}: 9$.

Ta có

$\begin{aligned} A_{n} & \equiv 2^{n}+(-2)^{n}-2^{n}-4^{n} \quad(\bmod 9) \\ & \equiv 2^{n}-4^{n} \quad(\bmod 9) \quad(\text { Do n chẵn }) \\ & \equiv 2^{n}\left(1-2^{n}\right) \quad(\bmod 9) \end{aligned}$

$\operatorname{Vi}(2 ; 9)=1 \Rightarrow 2^{n}-1: 9 .$

Xét $n=3 k$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k}-1 \equiv(-1)^{k}-1 \quad(\bmod 9) \Rightarrow k$ chẵn

Xét $n=3 k+1$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k+1}-1 \equiv 2 \cdot(-1)^{k}-$ $1(\bmod 9)$ (loại).

Xét $n=3 k+2$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k+2}-1 \equiv 4 \cdot(-1)^{k}-$ $1(\bmod 9)$ (loại).

Vậy $A_{n} \vdots 45 \Leftrightarrow n \vdots 12$.

Bài 4. Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lấy điểm $K$ sao cho từ giác $D B K C$ là hình bình hành.

(a) Chứng minh rằng $\triangle K B C$ đồng dạng với $\triangle D F E, \triangle A K C$ đồng dạng với $\triangle A D E$.

(b) Hạ $D M$ vuông góc với $A B, D N$ vuông góc với $A C$. Chứng minh rằng

$M N$ vuông góc với $A K$.

(c) Gọi $I$ là trung điểm $A D, J$ là trung điểm $M N$. Chứng minh rằng đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.

(d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T(T \neq I)$. Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.

Lời giải.

(a) Tứ giác $B E F C$ nội tiếp nên $\angle D E F=\angle D B C$ và $\angle D F E=\angle D C B$.

Và $B D C K$ là hình bình hành nên $\angle D B C=\angle K C B, \angle D C B=\angle K B C$

Do đó $\angle D E F=\angle K C B, \angle D F E=\angle K B C$, suy ra $\triangle K B C \sim \triangle D F E$

Ta có $\angle A E C=\angle A B K$ và $\angle A B K=\angle A B D+\angle D B K=\angle A C E+\angle D C K=$ $\angle A C K$ (do $\angle A B D=\angle A C E, \angle D B K=\angle D C K)$

Do $\triangle D E F \sim \triangle K C B$ nên $\frac{D E}{C K}=\frac{E F}{B C}$ (1)

Mặt khác $\triangle A E F \sim \triangle A C B$ nên $\frac{E F}{B C}=\frac{A E}{A C}$ (2)

Từ (1) và (2) suy ra $\frac{D E}{C K}=\frac{A E}{A C}$

Xét $\triangle A E D$ và $\triangle A C K$ có $\angle A E D=\angle A C K, \frac{D E}{C K}=\frac{A E}{A C}$

Suy ra $\triangle A E D \sim \triangle A C K(\mathrm{c}-\mathrm{g}-\mathrm{c})$

(b) Gọi $Q$ là giao điểm của $A K$ và $M N$

Ta có $\triangle D A E \backsim \triangle K A C$ nên $\angle K A C=\angle D A E$ hay $\angle Q A C=\angle D A M$

Tứ giác $A M D N$ có $\angle A M D+\angle A N D=90^{\circ}+90^{\circ}=180^{\circ}$ nên nội tiếp.

Suy ra $\angle D N M=\angle D A M=\angle Q A N$

Mà $\angle D N M+\angle M N A=90^{\circ}$, suy ra $\angle Q A N+\angle M N A=90^{\circ}$

Suy ra $\angle A Q N=90^{\circ}$. Vậy $A K \perp M N$.

(c) Cách 1. Ta có $I J \perp M N$ và $A K \perp M N$, suy ra $I J | A K$.

Mà $I$ là trung điểm $A D$, suy ra $I J$ qua trung điểm $P$ của $D K$. Lại có $D B K C$ là hình bình hành nên $P$ cũng là trung điểm $B C$.

Cách 2. Gọi $P$ là trung điểm của $B C$. $V, U$ lần lượt là trung điểm của $D B, D C$.

Ta có $M I=\frac{1}{2} A D=N I$, suy ra $I$ thuộc trung trực của $M N$.

Ta có $M V=\frac{1}{2} B D\left(\triangle D B M\right.$ vuông tại $M$ ) và $P U=\frac{1}{2} D B$ (đường trung bình)

Suy ra $M V=P U$

Tương tự thì ta có $P V=N U$

Ta có: $\angle M V D=2 \angle M B D=2 \angle N C D=\angle N U D$ và $\angle D V P=\angle D U P$

Suy ra $\angle M V P=\angle P U N$

Xét $\triangle M V P$ và $\triangle P U N$ có $M V=P U, P V=N U, \angle M V P=\angle P U N$

$\Rightarrow \triangle M V P=\triangle P U N(\mathrm{c}-\mathrm{g}-\mathrm{c})$

Suy ra $P M=P N$. Do đó $P$ thuộc trung trực của $M N$.

Vậy $I, P, J$ thuộc trung trực $M N$ nên $I, P, J$ thẳng hàng hay $I J$ qua trung điểm $P$ của $B C$.

(d) Ta có tam giác $I M N$ cân tại $I, I J \perp M N$ nên $I T$ là đường kính của đường tròn ngoại tiếp $\triangle I M N$

Suy ra $\angle I N T=90^{\circ}$.

Suy ra $I J \cdot I T=I N^{2}$ mà $I N=I D$ suy ra $I J \cdot I T=I D^{2}$

Do đó $I D^{2}=I J \cdot I T$. Suy ra $\triangle I D J \sim \triangle I T D(\mathrm{c}-\mathrm{g}-\mathrm{c})$ nên $\angle I D J=\angle I T D$

Từ đó ta có $I D$ là tiếp tuyến của đường tròn ngoại tiếp $\triangle D T J$.

Bài 5. Đội văn nghệ của một trường THCS có 8 học sinh. Nhà trường muốn thành lập các nhóm tốp ca, mỗi nhóm gồm đúng 3 học sinh, (mỗi học sinh có thể tham gia vài nhóm tốp ca khác nhau). Biết rằng hai nhóm tốp ca bất

kỳ có chung nhau nhiều nhất là một học sinh.

(a) Chứng minh rằng không có học sinh nào tham gia từ 4 nhóm tốp ca trở lên.

(b) Có thể thành lập nhiều nhất là bao nhiêu nhóm tốp ca như vậy?

Lời giải.

(a) Giả sử có 1 học sinh tham gia 4 nhóm $A, B, C, D$ là $x$.

Khi đó $A={(x, a, b)} \quad B={(x, c, d)} \quad C={(x, e, f)} \quad D={(x, g, h)}$.

Vi các nhóm không có chung quá 1 thành viên nên các học sinh: $a, b, c, d, e, f, g, h$

là khác nhau (vô lí vì chỉ có 8 học sinh tham gia).

(b) Ta chứng minh lập được nhiều nhất là 8 nhóm.

Thật vậy, nếu có 9 nhóm, mối nhóm có 3 học sinh thì khi đó số lượt học sinh tham gia là $9 \cdot 3=27$ lượt tham gia.

Mà chỉ có 8 học sinh nên theo nguyên lý Dirichlet thì có ít nhất một học sinh có nhiều hơn hoặc bằng 4 lượt (mâu thuẫn do câu $a$ ).

(Một học sinh tham gia 1 nhóm tính là 1 lượt).

Gọi 8 học sinh là $a, b, c, d, e, f, g, h$.

8 nhóm học sinh được chia như sau:

${(a, b, c)} ; \quad{(h, b, e)} ; \quad{(b, d, f)} ; \quad{(a, d, e)} ;$

${(h, c, f)} ;  \quad{(c, e, g)} ; \quad{(a, f, g)} ; \quad{(h, d, g)} .$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2

Thời gian làm bài 150 phút.

Bài 1. (2,0 diểm)
a) Tìm $m$ để phương trình $\frac{x^{2}-(3 m+1) x+2 m^{2}+2 m}{x}=0$ có hai nghiệm $x_{1}, x_{2}$ phân biệt thỏa $\left(\sqrt{x_{1}-m}+\sqrt{x_{2}-m}\right)^{4}=(2 m-1)^{2}$
b) Giải hệ phương trình $\left\{\begin{array}{l}\sqrt{x^{2}-y}=z-1 \\ \sqrt{y^{2}-z}=x-1 \\ \sqrt{z^{2}-x}=y-1\end{array}\right.$
Bài 2. (1,5 diểm) Cho các số $x, y, z$ nguyên dương thỏa $x>y>z$.
a) Cho $(x ; y ; z)$ thỏa $y z+x(x+y+z)=2021$.
Tìm giá trị nhỏ nhất của biểu thức $A=(x-y)^{2}+(x-z)^{2}+(y-z)^{2}$
b) Chứng minh rằng nếu $y$ không nhỏ hơn trung bình cộng của $x$ và $z$ thì
$$
(x+y+z)(x y+y z+x z-2) \geq 9 x y z
$$
Bài 3. (2,0 diềm) Cho $x, y$ là các số nguyên không đồng thời bằng 0 sao cho $x^{3}+y$ và $x+y^{3}$ chia hết cho $x^{2}+y^{2}$.
a) Tìm $x, y$ nếu $x y=0$.
b) Chứng minh rằng $x y \neq 0$ thì $x, y$ là nguyên tố cùng nhau.
c) Tìm tất cả cặp số nguyên $(x, y)$ thỏa đề bài.
Bài 4. (3,0 diểm) Cho tam giác $A B C$ nhọn, có trực tâm $H ; A H$ cắt $B C$ tại $D$. Trên tia đối tia $D H$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $M B H$ cắt $A B$ tại $E$ cắt $B C$ tại $K$; đường tròn ngoại tiếp tam giác $M C H$ cắt $A C$ tại $F$ và $B C$ tại $L$.
a) Chứng minh $B E F C$ nội tiếp và $\angle E M A=\angle F M A$.
b) $M E$ cắt $C H$ tại $P, M F$ cắt $B H$ tại $Q$. Chứng minh $P Q$ vuông góc $O A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $A B C$.
c) $H K$ cắt $A C$ tại $U, H L$ cắt $A B$ tại $V$. Chứng minh $U V$ luôn song song với một đường thẳng cố định khi $M$ thay đổi.

Bài 5. (1,5 diểm) Trong một hội nghị Toán quốc tế có n người, mỗi người trong họ có thể nói được nhiều nhất 3 ngôn ngữ. Trong 3 người bất kì thì luôn có 2 người có thể nói chung một ngôn ngữ.
a) Cho $n \geq 9$, chứng minh răng cố một ngôn ngữ được nói bởi ít nhất 3 người.
b) Nếu $n=8$, diều kết luận của câu a) còn đúng không? Tại sao?

Đáp án có sau một tuần

 

Đề thi chuyên toán vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình bậc hai $x^{2}-(m+3) x+m^{2}=0$ trong đó $m$ là tham số sao cho phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$.
(a) Khi $m=1$. Chứng minh rằng ta có hệ thức $\sqrt[8]{x_{1}}+\sqrt[8]{x_{2}}=\sqrt{2+\sqrt{2+\sqrt{6}}}$
(b) Tìm tất cả các giá trị của $m$ sao cho $\sqrt{x_{1}}+\sqrt{x_{2}}=\sqrt{5}$
(c) Xét đa thức $P(x)=x^{3}+a x^{2}+b x$. Tìm tất cả các cặp số $(a, b)$ sao cho ta có hệ thức $P\left(x_{1}\right)=P\left(x_{2}\right)$ với mọi giá trị của tham số $m$.
Bài 2. (a) Cho $a, b$ là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức
$$
P=\frac{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}{1+a b}
$$
(b) Cho các số $x, y, z$ thỏa $|x| \leq 1,|y| \leq 1,|z| \leq 1$. Chứng minh rằng:
$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+\sqrt{1-z^{2}} \leq \sqrt{9-(x+y+z)^{2}}
$$
Bài 3. Cho tam giác $A B C$ nhọn có $A B=b, A C=c . M$ là một điểm thay đổi trên cạnh $A B$. Đường tròn ngoại tiếp tam giác $B C M$ cắt $A C$ tại $N$.
(a) Chứng minh rằng tam giác $A M N$ đồng dạng với tam giác $A C B$. Tính tỉ số $\frac{M A}{M B}$ để diện tích tam giác $A M N$ bằng $\frac{1}{2}$ diện tích tam giác $A C B$.
(b) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A M N$. Chứng minh rằng $I$ luôn thuộc một đường cố định.
(c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $M B C$. Chứng minh rằng đoạn thẳng $I J$ có độ dài không đổi.
Bài 4. Cho các số nguyên $a, b, c$ sao cho $2 a+b, 2 b+c, 2 c+a$ đều là các số chính phương.
(a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho $3 .$ Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27 .
(b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện $\left(^{*}\right)$ mà $(a-b)(b-c)(c-a)$ không chia hết cho 27 ?
Bài 5. Cho hình chữ nhật $A B C D$ có $A B=3, A D=4$.
(a) Chứng minh rằng từ 7 điểm bất kì trong hình chữ nhật $A B C D$ luôn tìm được hai điểm mà khoảng cách giữa chúng không lớn hơn $\sqrt{5}$
(b) Chứng minh khẳng định ở câu $\mathrm{a}$ ) vẫn còn đúng với 6 điểm bất kì nằm trong hình chữ nhật $A B C D$.

Đáp án

 

Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021

Bài 1. (1,5 điểm) Cho biểu thức: $$P=\dfrac{a^2+b\sqrt{ab}}{a+\sqrt{ab}}+\dfrac{a\sqrt{a}-3a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\ \ (a>b>0)$$

a) Thu gọn biểu thức $P$.

b) Chứng minh $P>0$.

Bài 2. (2 điểm)

a) Giải phương trình: $(x^2 +2x -3)\left( \sqrt{3-2x} – \sqrt{x+1}\right) =0$

b) Cho $(d): y=(m+1)x+mn$ và $(d_1): y=3x+1$. Tìm $m$, $n$ biết $(d)$ đi qua $A(0;2)$, đồng thời $(d)$ song song với $(d_1)$.

Bài 3. (1,5 điểm) Cho $(P)$, $(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y= 2x+m$.

a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A(x_1;y_1)$, $B(x_2;y_2)$.

b) Tìm $m$ sao cho $(x_1-x_2)^2 + (y_1-y_2)^2 =5$.

Bài 4. (2 điểm)

a) Công ty viễn thông gói cước được tính như sau:

  • Gói I: $1800$ đồng/phút cho $60$ phút đầu tiên; $1500$ đồng/phút cho $60$ phút tiếp theo và $1000$ đồng/phút cho thời gian còn lại.
  • Gói II: $2000$ đồng/phút cho $30$ phút đầu tiên; $1800$ đồng/ phút cho $30$ phút tiếp theo; $1200$ đồng/phút cho $30$ phút tiếp theo nữa và $800$ đồng/phút cho thời gian còn lại.

Sau khi cân nhắc thì bác An chọn gói II vì sẽ tiết kiện được $95000$ đồng so với gói I. Hỏi trung bình bác An gọi bao nhiêu phút một tháng?

b) Cho $\triangle ABC$ có $AB=3$, $AC=4$, $BC=5$. $BD$ là tia phân giác của $\angle ABC$. Tính $BD$?

Bài 5. (3 điểm) Cho $\triangle ABC$ nhọn $(AB<AC)$ nội tiếp đường tròn $(T)$ có tâm $O$, bán kính $R$, $BC=R\sqrt{3}$. Tiếp tuyến tại $B$, $C$ của $(T)$ cắt nhau tại $P$. Cát tuyến $PA$ cắt $(T)$ tại $D$ (khác $A$). Đường thẳng $OP$ cắt $BC$ tại $H$.

a) Chứng minh $\triangle PBC$ đều. Tính $PA\cdot PD$ theo $R$.

b) $AH$ cắt $(T)$ tại $E$ (khác $A$). Chứng minh $HA \cdot HE = HO \cdot HP$ và $PD = PE$.

c) Trên $AB$ lấy điểm $I$ thỏa $AI =AC$, trên $AC$ lấy điểm $J$ thỏa $AJ = AB$. Đường thẳng vuông góc với $AB$ tại $I$ và đường thẳng vuông góc với $AC$ tại $J$ cắt nhau ở $K$. Chứng minh $IJ=BC$ và $AK \bot BC$. Tính $PK$ theo $R$.

 

— HẾT —


LỜI GIẢI

Bài 1.

a) Ta có $a>b>0$ nên

$P = \dfrac{{{a^2} + b\sqrt {ab} }}{{a + \sqrt {ab} }} + \dfrac{{a\sqrt a – 3a\sqrt b + 2b\sqrt a }}{{\sqrt a – \sqrt b }}$

$= \dfrac{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}}{{\sqrt a + \sqrt b }} + \dfrac{{\left( {\sqrt a – \sqrt b } \right)\left( {a – 2\sqrt {ab} } \right)}}{{\sqrt a – \sqrt b }}$

$= a – \sqrt {ab} + b + a – 2\sqrt {ab} = 2a – 3\sqrt {ab} + b.$

(1đ)

b) Ta có $a>b>0$ nên $\sqrt{a}>\sqrt{b}$, do đó

$P=2a-3\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-\sqrt{b}\right)>0. $

(0,5đ)

Bài 2.

a) $(x^{2}+2x-3)(\sqrt{3-2x}-\sqrt{x+1})=0 \quad (*)$

Điều kiện: $\left\{ \begin{array}{l} 3-2x\geq 0 \\ x+1\geq 0 \end{array} \right. \Leftrightarrow -1\leq x\leq \dfrac{3}{2}$

(0,25đ)

$(*) \Leftrightarrow (x -1)(x+3)(\sqrt{3-2x}-\sqrt{x+1})=0$

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x – 1=0}\\ {x+3=0}\\ {3-2x=x+1} \end{array}} \right.$

(0,25đ)

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x =1 \ \ \ (n)}\\ {x=-3 \ (l)}\\ {x=\dfrac{2}{3}\ \ \ (l)} \end{array}} \right.$

(0,25đ)

Vậy $S=\left\{ 1; \dfrac{2}{3}\right\}$

(0,25đ)

b) $(d) // (d_{1})\Leftrightarrow \left\{ \begin{array}{l} m+1=3 \\ m.n\neq 1 \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l} m=2 \\ n\neq \dfrac{1}{2} \end{array} \right. $

(0,5đ)

Vì $A(0;2)\in (d): y=3x+2n\Leftrightarrow 2=3.0+2n\Leftrightarrow n=1$ (n)

(0,5 đ)

Vậy $m=2$, $n=1$

Bài 3.

a) Phương trình hoành độ giao điểm của $ (P) $ và $ (d) $

$ x^2=2x+m \Leftrightarrow x^2-2x-m=0 \quad (1)$

(0,25đ)

$ (P) $ cắt $ (d) $ tại 2 điểm phân biệt $ A, B \Leftrightarrow $ $ (1) $ có $2$ nghiệm phân biệt

$ \Leftrightarrow $ $ \Delta’>0 $ $ \Leftrightarrow $ $ 1+m>0 $

$ \Leftrightarrow m>-1 $ $(*)$

(0,25đ)

Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.

b) Với điều kiện $(*)$ theo Viet ta có: $ S=x_1+x_2=2 $, $ P=x_1\cdot x_2=-m $

(0,25đ)

Ta có: $A(x_1;y_1)\in (d) \Leftrightarrow y_1 = 2x_1+m$; $B(x_2;y_2)\in (d) \Leftrightarrow y_2=2x_2+m$

Ta có:

$ (x_1-x_2)^2+(y_1-y_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2+(2x_1-2x_2)^2=5$

(0,25đ)

$ \Leftrightarrow (x_1-x_2)^2+4(x_1-x_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2=1\Leftrightarrow (x_1+x_2)^2-4x_1x_2=1$

$ \Leftrightarrow 4+4m=1 \Leftrightarrow m=\dfrac{-3}{4}$ (thỏa $(*)$)

(0,5đ)

Vậy $m=-\dfrac{3}{4}$

Bài 4.

a) Giả sử thời gian gọi trung bình mỗi tháng của bác An là $t$ (phút, $t>0$).

Gọi $A(x)$, $B(x)$ lần lượt là cước phí khi gọi $x$ phút tương ứng với gói cước I và gói cước II, theo đề bài ta có $A(t)-B(t)=95000$ (đồng).

Ta có bảng sau:

Vậy trung bình mỗi tháng bác An gọi $475$ phút.

(1đ)

b) Ta có: $3^2 + 4^2 = 5^2$ nên $AB^2 + AC^2 = BC^2$

Theo định lý Pythagore đảo, tam giác $ABC$ vuông tại $A$.

(0,25đ)

Theo tính chất đường phân giác: $\dfrac{DC}{BC} = \dfrac{DA}{BA}$.

Suy ra $\dfrac{DC}{BC} = \dfrac{DA}{BA} = \dfrac{DC + DA}{BC + BA} = \dfrac{AC}{BA + BC} = \dfrac{1}{2} \Rightarrow AD = \dfrac{1}{2} BA = \dfrac{3}{2}$.

(0,5đ)

Tam giác $ABD$ vuông tại $A$ nên: $BD^2 = AD^2 + AB^2 = \dfrac{45}{4} \Rightarrow BD =\dfrac{3\sqrt{5}}{2}$.

(0,25đ)

Bài 5.

a)

  • Ta có: $OB = OC$, $PB = PC$ suy ra $PO$ là đường trung trực của $BC$

nên $OP \bot BC$ và $H$ là trung điểm $BC$.

$\sin \angle HOC = \dfrac{HC}{OC}= \dfrac{\sqrt{3}}{2} \Rightarrow \angle HOC = 60^\circ \Rightarrow \angle HCP = \angle HOC =60^\circ $

$\triangle PBC$ có $PB = PC$ và $\angle BCP =60^\circ $ suy ra $\triangle PBC$ đều

(0,5đ)

  •  Xét $\triangle PBD$ và $\triangle PAB$ có $\angle BPD$ chung, $\angle PBD = \angle PAB$

$\Rightarrow \triangle PBD \backsim \triangle PAB$ (g.g)

$\Rightarrow \dfrac{PB}{PA}= \dfrac{PD}{PB}\Rightarrow PA\cdot PD = PB^2 = 3R^2$

(0,5đ)

b)

  • Xét $\triangle HAB $ và $\triangle HCE$ có $\angle AHB = \angle CHE$, $\angle HAB = \angle HCE$

$\Rightarrow \triangle HAB \backsim \triangle HCE$ (g.g) $\Rightarrow HA \cdot HE = HB \cdot HC = HB^2 = HO \cdot HP$

(0,5đ)

  •  Xét $\triangle HOA $ và $\triangle HEP$ có $\angle OHA = \angle EHP$, $\dfrac{HO}{HE} = \dfrac{HA}{HP}$

$\Rightarrow \triangle HOA \backsim \triangle HEP$ (c.g.c) $\Rightarrow \angle HOA = \angle HEP$, suy ra $AOEP$ là tứ giác nội tiếp.

Suy ra $\angle HPE = \angle HPD$ (chắn hai cung $OE$ và $OA$ bằng nhau)  $(1)$

Lại có $PA \cdot PD = PB^2 = PH \cdot PO \Rightarrow \dfrac{PD}{PO} = \dfrac{PH}{PA}$

$ \Rightarrow \triangle PDH \backsim \triangle POA$ (c.g.c) suy ra $OHDA$ nội tiếp.

Mà $\angle PAO = \angle ODA =\angle AHO = \angle PHE$ nên $\angle PHD = \angle PHE$  $(2)$

Từ $(1)$ và $(2)$ suy ra $\triangle HDP = \triangle HEP$ (g.c.g), suy ra $PD=PE$.

(0,5đ)

c)

  •  Xét $\triangle ABC$ và $\triangle AJI$ có $AB=AJ$, $\angle IAC$ chung, $AC=AI$

nên $\triangle ABC = \triangle AJI \Rightarrow IJ = BC$

(0,25đ)

  •  Gọi $Q = BC \cap AK$

Ta có: $\angle AIK = \angle AJK =90^\circ $ nên $AIKJ$ nội tiếp đường tròn đường kính $AK$

$ \Rightarrow \angle AKI = \angle AJI$

Mà $\angle AJI = \angle ABC$ (do $\triangle ABC = \triangle AJI$) nên $\angle AKI = \angle ABC$.

Tứ giác $BQKI$ có $\angle AKI = \angle ABC$ nên $BQKI$ là tứ giác nội tiếp.

$\Rightarrow \angle BIK + \angle BQK = 180^\circ \Rightarrow \angle BQK = 180^\circ – \angle BIK = 180^\circ – 90^\circ =90^\circ $

Suy ra $AK \bot BC$.

(0,25đ)

  •  Vì $\triangle ABC = \triangle AIJ$ nên bán kính đường tròn ngoại tiếp của hai tam giác này bằng nhau.

Mà $AK$ là đường kính của đường tròn ngoại tiếp $\triangle AIJ$ nên $AK=2R$.

$\triangle OCP$ vuông tại $C$:

$\Rightarrow OP^2 = OC^2 + CP^2 = R^2 + \left( R\sqrt{3} \right) ^2 = 4R^2$

$\Rightarrow OP=2R \Rightarrow OP=AK$.

Ta có: $AK \bot BC$, $OP \bot BC$ nên $AK // OP$.

Tứ giác $AOPK$ có $AK // OP$ và $AK=OP$ nên $AOPK$ là hình bình hành, suy ra $PK=AO=R$.

Vậy $PK=R$.

(0,5đ)

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Nguyễn Tấn Phát, cô Bùi Thị Minh Phương, Châu Cẩm Triều, Lê Quốc Anh, Nguyễn Công Thành

 

Đáp án đề thi chuyên Toán thi vào trường Phổ thông Năng khiếu năm 2021

ĐỀ BÀI

Bài 1. (1.5 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. $

a) Giải hệ với $m=7$
b) Tìm $m$ sao cho hệ có nghiệm $(x,y)$

Bài 2. (1.5 điểm) Cho $M=\dfrac{1}{a}+ \dfrac{1}{b} + \dfrac{1}{c}$, $N=\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}$, $K=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$

a) Chứng minh nếu $MK=\dfrac{a^2+b^2+c^2}{abc}$ thì $N=0$
b) Cho $M=K=4$, $N=1$. Tính tích $abc$.

Bài 3. (1.5 điểm) Cho dãy $n$ số thực $x_1; x_2; \ldots ; x_n$ ($n \ge 5$) thỏa: $x_1 \le x_2 \le \ldots \le x_n$ và $x_1 + x_2 + \ldots x_n =1$

a) Chứng minh nếu $x_n \ge \dfrac{1}{3}$ thì $x_1 + x_2 \le x_n$
b) Chứng minh nếu $x_n \le \dfrac{2}{3}$ thì tìm được số nguyên dương $k <n$ sao cho

$$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3}$$

Bài 4. (1.5 điểm)

a) Tìm tất cả các số tự nhiên $n$ sao cho $(2n+1)^3 + 1 $ chia hết cho $2^{2021}$
b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\dfrac{2n+2}{p}$ và $\dfrac{4n^2+2n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. (3 điểm)  Cho tam giác $ABC$ vuông tại $A$. Các điểm $E$, $F$ lần lượt thay đổi trên các cạnh $AB$, $AC$ sao cho $EF\parallel BC$. Gọi $D$ là giao điểm của $BF$ và $CE$, $H$ là hình chiếu của $D$ lên $EF$. Đường tròn $(I)$ đường kính $EF$ cắt $BF$, $CE$ tại $M$, $N$. ($M$ khác $F$, $N$ khác $E$)

a) Chứng minh $AD$ và đường tròn ngoại tiếp $\triangle HMN$ cùng đi qua tâm $I$ của đường tròn tâm $I$.
b) Gọi $K$, $L$ lần lượt là hình chiếu vuông góc của $E$, $F$ lên $BC$ và $P$, $Q$ tương ứng là giao điểm của $EM$, $FN$ với $BC$. Chứng minh tứ giác $AEPL$, $AFQK$ nội tiếp và $\dfrac{BP \cdot BL}{CQ \cdot CK}$ không đổi khi $E$, $F$ thay đổi.
c) Chứng minh nếu $EL$ và $FK$ cắt nhau trên đường tròn $(I)$ thì $EM$ và $FN$ cắt nhau trên đường thẳng $BC$.

Bài 6. (1 điểm) Cho $N$ tập hợp ($N \ge 6$), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b$, $c$, $\ldots$, $x$, $y$, $z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.  Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.
b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.  Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

HẾT

Bình luận chung Đề bài nhìn chung vừa dài và khó, có nhiều ý, đầy đủ các phần đại số, số học, hình học và tổ hợp. Có 3 bài đại số, 1 bài số học, 1 bài hình và 1 bài tổ hợp. Đại số chiếm $50\%$ tổng số bài.

  •  Các bài học sinh chuyên toán có thể lấy điểm được ở bài 1, 2 và bài 5a.
    Các câu mức phân loại là 3a, 4a, 5b. Nếu làm chắc các câu trên nhiều khả năng sẽ đậu.
  • Những câu khó là 3b, 4b 5c, 6b, các kĩ thuật khó đối với học sinh cấp 2, đặc biệt là 3b và 4b.
  •  Đề năm nay nhìn chung khó, các bạn làm được từ 5 điểm trở lên có hy vọng đậu vào chuyên toán, còn điểm cao tầm 9, 10 tôi nghĩ là rất khó đạt, phải thực sự có năng khiếu và làm bài chắc tay mới đạt được.

Bài 1.

a) (0.75 điểm) $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. \quad (1) $

ĐKXĐ: $x \ge 2$, $y\ge 1$

Đặt $u = \sqrt{x-2}, v = \sqrt{y-1}$ ta có $u, v \geq 0$ và $u+v = 2, u^2+v^2=4$.

Giải ra được $u = 2, v=0$ hoặc $u = 0, v=2$. Từ đó có nghiệm $(x;y)$ là $(2;5), (6;1)$.

b) (0.75 điểm)

Đặt $u=\sqrt{x-2}$, $v= \sqrt{y-1}$ ($u, v \ge 0)$

Hệ phương trình trở thành: $\left\{ \begin{array}{l}
u+v=2 \\
u^2 + v^2 =m-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
u+v=2 \\
2u^2 – 4u +7-m=0 \quad (2)
\end{array} \right. $

Để hệ $(1)$ có nghiệm khi và chỉ khi $(2)$ phải có 2 nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:

$\left\{ \begin{array}{l}
\Delta ‘ \ge 0 \\
S \geq 0 \\
\left( x_1 -2 \right) \left( x_2 -2 \right) \geq 0 \\
S \le 4
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
m \ge 5 \\
m \le 7
\end{array} \right. $

Vậy $5 \le m \le 7$ thì hệ đã cho có nghiệm $(x,y)$

 

Bài 2.

a) $MK=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0 .$

$M K =\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

$+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$
$=\dfrac{1}{b+c}+\dfrac{b}{a(c+a)}+\dfrac{c}{a(a+b)}$

$+\dfrac{a}{b(b+c)}+\dfrac{1}{c+a}+\dfrac{c}{b(a+b)}+$

$+\dfrac{a}{c(b+c)}+\dfrac{b}{c(c+a)}+\dfrac{1}{a+b}$
$=N+\dfrac{b}{c+a}(\dfrac{1}{a}+\dfrac{1}{c})$

$+\dfrac{c}{a+b}(\dfrac{1}{a}+\dfrac{1}{b})+\dfrac{a}{b+c}(\dfrac{1}{b}+\dfrac{1}{c})$
$= N+\dfrac{b}{ac}+\dfrac{c}{ab}+\dfrac{a}{bc}= N+\dfrac{a^2+b^2+c^2}{abc}$

Mà $M K=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} $

$\Rightarrow N+\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$

$\Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$MK=N+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow 16=1+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow a^{2}+b^{2}+c^{2}=15abc$
$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c (*)$

Ta có:

$K+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1=(a+b+c)N \Rightarrow 7=a+b+c$

$M=4 \Rightarrow a b+b c+c a=4 a b c$.

Thay vào $ (*) $
$\Rightarrow 7^{2}-2.4 a b c=15 a b c$
$\Rightarrow a b c=\dfrac{49}{23} .$

 

Bài 3. 

a) Có nhận xét: nếu $x_1 + x_2 +\cdots x_k > 0$ thì có ít nhất $i \in \overline{1,k}$ để $x_i > 0$ suy ra $x_{k+1}>0$.

(0.75 điểm) Giả sử rằng $ x_1+x_2>x_n\geq \dfrac{1}{3}>0 $, khi đó $x_i > 0$ với mọi $2 \leq i \leq n$.

Do $n \geq 5$ nên $x_1+\cdots x_{n-1} \geq x_1 +x_2+x_3+x_4 \leq 2(x_1+x_2) >\dfrac{2}{3} \Rightarrow x_n < \dfrac{1}{3}$ (Vô lý).

b)

  • Nếu $x_n \geq \dfrac{1}{3}$, khi đó $\dfrac{2}{3}\geq x_n \geq \dfrac{1}{3}$, Từ $x_1+x_2+\cdots x_n=1$, suy ra $$\dfrac{1}{3} \leq x_1+x_2 +\cdots +x_{n-1} = 1-x_n \geq \dfrac{2}{3}$$
  • Nếu $x_n < \dfrac{1}{3}$. Suy ra $x_i < \dfrac{1}{3}$ với mọi $i$.

    Giả sử không tồn tại $k$ thỏa đề bài, tức là không có $k$ để $$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3} (*)$$

Ta chứng minh tồn tại $l\leq n-2$ sao cho $x_1+\cdots x_l < \dfrac{1}{3}$ và $x_1+\cdots x_{l+1} > \dfrac{2}{3}$. (**)

Thật vậy nếu không tồn tại $l$ thì $x_1 < \dfrac{1}{3}$, suy ra $x_1+x_2 < \dfrac{1}{3}$, vì ngược lại thì do (**) nên $\dfrac{1}{3} \leq x_1+x_2 \leq \dfrac{2}{3}$.(mâu thuẫn do (*)

Lý luận tương tự thì $x_1+x_2+\cdots x_{n-1} <\dfrac{1}{3}$(Mâu thuẫn).

Do đó nếu tồn tại $l$ thỏa $(**)$ thì suy ra $x_{l+1} > \dfrac{1}{3} > x_n$ (vô lý).

Vậy điều giả sử sai. Do đó tồn tại $k$ thỏa đề bài.

 

Bài 4. 

a) (0.5 điểm) ${{\left(2n+1\right)}^3+1}\; \vdots\; {{2}^{2021}}$
$\Leftrightarrow {(2n+2)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {2(n+1)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {(n+1)(4n^{2}+2n+1)}\; \vdots\; {{2}^{2020}}$
$\Leftrightarrow n+1\; \vdots \; 2^{2020} \quad\text{(do$ \; 4n^{2}+2n+1 \equiv 1 \; $ (mod$ \; 2$))}$
$\Leftrightarrow n=2^{2020}k-1\ (k\in \mathbb Z^+)$

b)  (1 điểm)Từ $p\mid 2n+2$ và $p\mid 4n^2+2n+1$ thì $p$ phải là số lẻ, dẫn đến $p\mid n+1$.

Do $4n+2+2n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p\mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p\mid n+1$ thì $n=3k-1$ với $k\in \mathbb Z^+$.
(0.5 điểm)
Ta chứng minh rằng $\dfrac{2n+2}{3}$ và $\dfrac{4n+2+2n+1}{3}$ không cùng là số chính phương.

Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:
$$\dfrac{2n+2}{3}\cdot \dfrac{4n^2+2n+1}{3}=s^2\ (s\in \mathbb Z^+)$$
Viết lại thành $(2n+1)^3=(3s-1)(3s+1)$.

Do $s$ là số chẵn nên $(3s-1,3s+1)=1$, dẫn đến việc tồn tại các số nguyên $a,b$ để $ab=2n+1$, $(a,b)=1$ và:
$$\begin{cases}
3s-1=a^3\\
3s+1=b^3
\end{cases}$$

Từ đây $2=(b-a)(b^2+ba+a^2)$.

Do $b>a$ nên $b-a\in{1,2}$.

Xét từng trường hợp và giải ra cụ thể, ta được $(a,b)=(-1,1)$.

Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.
(0.5 điểm)

Bài 5.

a) (1 điểm) Qua $D$ vẽ đường thẳng song song $BC$ cắt $AB, AC$ tại $X, Y$.

Ta có $\dfrac{DY}{BC} = \dfrac{DF}{BF} = \dfrac{DE}{EC} = \dfrac{DX}{BC}$.

Suy ra $DX = DY$. Suy ra $D$ là trung điểm của $XY$.

Do đó $AD$ qua trung điểm $I$ của $EF$.

Ta có $DHFN, DHEM$ nội tiếp. Suy ra $\widehat{DHN} = \widehat {DFN} = \widehat {MAN}$ và
$\widehat {DHM} = \widehat {NEM} = \widehat {NAM}$.

Suy ra $\widehat {MHN} = 2 \widehat {MAN} = \widehat {MIN}$.

Suy ra tứ giác $MIHN$ nội tiếp. Ta có điều cần chứng minh.
b) (1 điểm) Ta có $\triangle BMP \backsim \triangle BLF$.
Suy ra $BM \cdot BF = BP \cdot BL$.

Mặt khác $\triangle BAF \backsim \triangle BEM$, suy ra $BE \cdot BA = BM \cdot BE$.

Do đó $BA \cdot BE = BP \cdot BL$.

Từ đó ta có tứ giác $AEPL$ nội tiếp.

Chứng minh tương tự thì tứ giác $AFQK$ nội tiếp.

Và $\dfrac{BP\cdot BL}{CQ\cdot CK} = \dfrac{BE\cdot BA}{CF \cdot CA} = \dfrac{AB^2}{AC^2}$.
c) (1 điểm) Giả sử $EL, FK$ cắt nhau tại $S$ thuộc $(I)$.

Khi đó $\angle ESF =90^\circ$ và $EFLK$ là hình vuông.

Vẽ $PU \bot AB, QV \bot AC$.

Ta có $\dfrac{BP}{BC} = \dfrac{BU}{BA} = \dfrac{BK}{BL}$
và $\dfrac{CQ}{BC} = \dfrac{CV}{CA} = \dfrac{CL}{CK}$

Đặt $x = EF = KL$

Ta cần chứng minh $\dfrac{BK}{BL} + \dfrac{CL}{CK} = 1$.

$ \Leftrightarrow BK \cdot CK + BL \cdot CL = BL \cdot CK$
$\Leftrightarrow BK(CL+x)+(BK+x)CL = (BK+x)(CL+x)\Leftrightarrow x^2= BK\cdot CL$.

Đúng vì tam giác $BEK$ và $CFL$ đồng dạng.

 

Bài 6. 

a) Giả sử có chữ cái $S$ sao cho $S$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_1$, $A_2$, $\ldots$, $A_6$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chữ cái chung duy nhất là $S$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

  • Nếu $N=6$ thì vô lý do $S$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \ge 7$.
  •  Với $N \ge 7$, lấy tập $A_7$, có 2 khả năng:

    + $A_7$ chứa $S$: Vì $A_7$ và những tập $A_1$, $A_2$, $\ldots$,$A_6$ có chung đúng một chữ cái $\sigma$ nên $A_7$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_1$, $A_2$, $\ldots$, $A_6$.

    Suy ra tổng số chữ cái trong 7 tập trên là: $1+ 7(5-1)=29 >26$ (vô lý)
    + $A_7$ không chứa $S$.

    Khi đó $A_7$ sẽ có chung đúng 1 phần tử với mỗi tập $A_1$, $A_2$, $\ldots$, $A_6$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_1$, $A_2$, $\ldots$, $A_6$ đã có chung $S$)

    Do đó $A_7$ có ít nhất 6 phần tử. (vô lý).
    Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b)

Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $S$ và $T$.

Khi đó dễ thấy $k \ge N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X$, $X$ không chứa $\left\{ S, T \right\} $.

  •  Nếu $X$ không chứa cả $S$ lẫn $T$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2k \le 5 \Rightarrow k \le 2$
  •  Nếu $X$ chỉ chứa $S$, không chứa $T$.
    Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $X$ có 5 phần tử nên $k \le 4$.
    Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

    Để chỉ ra một ví dụ về khả năng có $4$ tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ $1$ đến $26$. Khi đó chọn bộ $N$ tập hợp như sau:
    $$\begin{cases}
    A_1=\{1,2,3,4,5\}\\\\
    A_2=\{1,2,6,7,8\}\\\\
    A_3=\{1,2,9,10,11\}\\\\
    A_4=\{1,2,12,13,14\}\\\\
    A_5=\{1,3,6,10,13\}\\\\
    A_6=\{2,3,6,9,12\}
    \end{cases}$$
    Bộ $6$ tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

Đề thi vào lớp 10 Chuyên Toán vào trường PTNK năm 2020

ĐỀ BÀI

Bài 1.  Cho các phương trình: $x^2+ ax +3=0$ và $x^2 +bx +5=0$ với $a$, $b$ là tham số. a) Chứng minh nếu $ab\ge 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung $x_0$. Tìm $a$, $b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất. Bài 2. Cho phương trình: $3x^2-y^2=23^n$ với $n$ là số tự nhiên. a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x,y)$. b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x,y)$. Bài 3.  Cho đường tròn $(O)$, dây cung $BC$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $BC$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle ABE =\angle CAE =\angle ACF =\angle BAF =90^\circ $. a) Chứng minh rằng $AE\cdot AC =AF \cdot AB$ và điểm $O$ là trung điểm $EF$. b) Hạ $AD$ vuông góc với $EF$ $(D\in EF)$. Chứng minh các tam giác $DAB$ và $DCA$ đồng dạng và điểm $D$ thuộc một đường tròn cố định. c) Gọi $G$ là giao điểm của $AD$ với đường tròn $(O)$ $(G\ne A)$. Chứng minh $AD$ đi qua một điểm cố định và $GB\cdot AC = GC\cdot AB$. d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $AK$ đi qua một điểm cố định. Bài 4.  Cho số tự nhiên $a=3^{13}\cdot 5^7 \cdot 7^{20}$ a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105. Hỏi tập $A$ có bao nhiêu phần tử? b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương. Bài 5. Cho hệ phương trình với $k$ là tham số: $\left\{ \begin{array}{l} \dfrac{x}{\sqrt{yz}}+\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{x}{z}}=k\\ \dfrac{y}{\sqrt{zx}}+\sqrt{\dfrac{y}{z}}+\sqrt{\dfrac{y}{x}}=k\\ \dfrac{z}{\sqrt{xy}}+\sqrt{\dfrac{z}{x}}+\sqrt{\dfrac{z}{y}}=k \end{array} \right. $ a) Giải hệ với $k=1$. b) Chứng minh hệ vô nghiệm với $k\ge 2$ và $k\ne 3$.

LỜI GIẢI

Bài 1.  Xét phương trình: $x^2 +ax +3=0 \quad (1)$, ta có: $\Delta_1 = a^2-12$. Xét phương trình: $x^2 +bx +5=0 \quad (2)$, ta có: $\Delta_2 = b^2-20$ Ta có: $\Delta_1 + \Delta_2 = a^2 + b^2 -32 \ge 2ab -32 \ge 0$ Vậy trong hai số $\Delta_1$ và $\Delta_2$ có ít nhất một số không âm hay một trong hai phương trình đã cho có nghiệm. Dễ thấy $x_0 \ne 0$.
  • $(1) \Leftrightarrow -a=\dfrac{x_0^2+3}{x_0} \Leftrightarrow |a|=\dfrac{x_0^2+3}{|x_0|}$ $(2) \Leftrightarrow -b=\dfrac{x_0^2+5}{x_0} \Leftrightarrow |b|=\dfrac{x_0^2+5}{|x_0|}$
  • Suy ra $|a|+|b|= 2|x_0| + \dfrac{8}{|x_0|} \ge 2\sqrt{2|x_0| \cdot \dfrac{8}{|x_0|}} =8 $
Dấu $”=”$ xảy ra khi và chỉ khi: $x_0^2=4 \Leftrightarrow \left[ \begin{array}{l} x_0 =2 \\ x_0 = -2 \end{array} \right. $ Với $x_0=2$ hoặc $x_0=-2$, lần lượt giải được $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc \ $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Vậy giá trị nhỏ nhất của $|a|+|b|$ là 8 khi $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Bài 2. a) Ta nhận thấy 1 số chính phương $m=a^2$ khi chia cho 3 thì có số dư lần lượt là 0 hoặc 1. Nên tổng 2 số chính phương nếu chia hết cho 3 thì mỗi số đều phải chia hết cho 3. Quay lại bài toán, do $n$ chẵn nên $23^n$ và $y^2$ đều là các số chính phương mà $23^n +y^2 =3x^2\ \vdots \ 3 \Rightarrow 23^n\ \vdots \ 3$ (vô lí) Vậy $n$ chẵn thì phương trình đã cho không có nghiệm nguyên. b) Do $n$ lẻ $\Rightarrow n=2k+1$ ($k\in \mathbb{N^*}$) Xét $\left\{ \begin{array}{l} x=3\cdot 23^k\\ y=2\cdot 23^k \end{array}\right. $ $\Rightarrow 3x^2-y^2=23^{2k+1}=23^n$ Vậy phương trình có nghiệm nguyên Bài 3.
a) Ta có $\angle BAE + \angle EAF = 90^\circ$ và $\angle CAF + \angle EAF = 90^\circ$. Suy ra $\angle BAE = \angle CAF$. $\triangle ABE \backsim \triangle ACF$, suy ra $AE \cdot AC = AB \cdot AF$ Gọi $I$ là giao điểm của $BE$ và $CF$. Khi đó $AI$ là đường kính của $O$. Tứ giác $AEIF$ là hình bình hành, $O$ là trung điểm $AI$ nên là trung điểm $EF$. b) Các tứ giác $ADBE, ADFC$ nội tiếp. Khi đó $\angle ADB = \angle AEB = \angle AFC = \angle ACD$. $\angle ABD = \angle AEC = \angle IFE = \angle AFC = \angle ADC$. Suy ra $\triangle ADB \backsim \triangle ACDA$. (g.g) Ta có $\angle BDC = 2 \angle ADB = 2 \angle AEB = 2 \angle EIF = \angle BOC$. Suy ra tứ giác $BDOC$ nội tiếp. $D$ thuộc đường tròn ngoại tiếp tam giác $BOC$ cố định. c)  Gọi $S$ là giao điểm của $AD$ và $(BOC$), ta có $\angle OBS = \angle ODS = 90^\circ$. Suy ra $OS$ là đường kính của $(BOC$, do đó $S$ cố định. $AD$ qua $S$ cố định và $SB, SC$ là tiếp tuyến của $(O)$. Khi đó $\triangle SAB \backsim \triangle SGB$, suy ra $\dfrac{AB}{BG} = \dfrac{SB}{SG}$ tương tự thì $\dfrac{AC}{GC} = \dfrac{SC}{SG}$. Mà $SB = SC$, nên $\dfrac{AB}{BG} = \dfrac{AC}{CG}$, suy ra $GB \cdot AC = GC \cdot AB$. Dễ thấy $D$ là trung điểm của $AG$. d) Gọi $M$ là trung điểm của $BC$. Ta chứng minh $A, M, K$ thẳng hàng. Ta chứng minh được $\angle DAE = \angle KAF$ ($\angle 90^\circ – \angle AED$). Gọi $T$ là trung điểm $CG$. Ta có $\triangle ACD \backsim \triangle BCG$ suy ra $\triangle ABC \backsim \triangle DCG$. Từ đó ta có $\triangle ACM \backsim \triangle DCT$. Khi đó $\angle CAM = \angle CDT = \angle ACD = \angle BAD$. Mà $\angle CAM = \angle CAF + \angle FAM$ và $\angle BAD = \angle BAE + \angle EAD$. Suy ra $\angle FAM = \angle EAD = \angle FAK$. Vậy $A, M, K$ thẳng hàng. $AK$ qua trung điểm $M$ của $BC$ cố định. Bài 4.  a) $k\ \vdots \ 105 \Rightarrow k$ chia hết cho 3, 5, 7 $\Rightarrow k=3^n\cdot 5^m \cdot 7^p$ với $m$, $n$, $p$ nguyên dương $\Rightarrow $ có $13\cdot 7\cdot 20 =1820$ cách. b) Giả sử $B$ là tập hợp 9 số nguyên dương $a_i$, $i=\overline{1,9}$\ với $a_i=3^{n_i}\cdot 5^{m_i}\cdot7^{p_i}$ trong đó $0\le n_i\le 13$; $0\le m_i\le 7$ và $0\le p_i\le 20$ Do $B$ có 9 phân tử. Xét nguyên lý Dirichlet với tập các số $n_i$ thì ta có ít nhất 5 số hạng $a_i$ sao cho các số mũ $n_i$ của 3 tương ứng cùng tính chẵn lẻ. Xét tiếp nguyên lý Dirichlet 5 số này cho số mũ $m_i$ của 5 tương ứng thì ta có ít nhất 3 số mà số mũ $m_i$ cũng cùng tính chẵn lẻ. Với 3 số còn lại này ta cũng xét nguyên lý Dirichlet cho số mũ $p_i$ của 7 thì ta sẽ có ít nhất 2 số cũng tính chẵn lẻ. Do 2 số được chọn này có số mũ cùng tính chẵn lẻ với cả các số 3, 5 và 7 nên tích chúng lại sẽ là số chính phương. Bài 5.  Điều kiện $x, y, z > 0$ hoặc $x, y, z < 0$. Từ hệ ta có $x + \sqrt{xz} + \sqrt{xy} = k\sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = k\sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = k\sqrt{xy} (3)$. a) Khi $k = 1$ ta có $x + \sqrt{xz} + \sqrt{xy} = \sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = \sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = \sqrt{xy} (3)$.
  • Nếu $x, y, z > 0$ thì cộng (3) phương trình ta có vô lí.
  • Nếu $x, y, z < 0$. Cộng 3 phương trình ta có $x+y+z +\sqrt{xy}+\sqrt{xz}+\sqrt{zy} = 0 \Leftrightarrow (\sqrt{-x}-\sqrt{y})^2 +(\sqrt{-y}-\sqrt{-z})^2+(\sqrt{-x}-\sqrt{-z})^2 = 0$, do đó $x=y=z$.
  • Thử lại thấy bộ $(x,y,z)$ mà $x=y=z <0$ thỏa hệ phương trình.
b) Giả sử $k\geq 2, k = 3$ thì hệ có nghiệm $(x,y,z)$. Từ hệ ta có $x+y+z = (k-2)(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}) \geq 0, suy ra $x, y, z > 0$. Giả sử $x = \max{x,y,z}$, ta có $k = \dfrac{x+\sqrt{xy}+\sqrt{xz}}{\sqrt{yz}} \geq 3$. $k = \dfrac{z+\sqrt{xz}+\sqrt{yz}}{\sqrt{xy}} \leq 3$. Do đó $k = 3$ (vô lí). Vậy hệ vô nghiệm khi $k \geq 2 $ và $k \neq 3$.

Đề thi vào lớp 10 chuyên toán Phổ thông Năng khiếu: Năm 2016

ĐỀ BÀI

BÀI 1. 
a) Giải hệ $\left\{\begin{array}{l} (x-2y)(x+my) = m^2-2m-3 \\(y-2x)(y+mx) = m^2-2m-3
\end{array} \right.$ khi $m = -3$ và tìm $m$ để hệ co ít nhất một nghiệm $(x_o, y_o)$ thỏa $x_o > 0, y_o > 0$.
b)  Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.
BÀI 2.  Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b)  Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

BÀI 3.  Biết $x \geq y \geq z, x + y + z =0$ và $x^2 + y^2 + z^2 = 6$.

a) Tính $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2$.
b) Tìm giá trị lớn nhất của $P = |(x-y)(y-z)(z-x)|$.

BÀI 4. Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.

a) Chứng minh $\triangle ABE \sim \triangle ACF$ và tứ giác $EFQN$ nội tiếp.
b) Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c) $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

BÀI 5. Với mỗi số nguyên dương $m$ lớn hơn 1, kí hiệu $s(m)$ là ước nguyên dương lớn nhất của $m$ và khác $m$. Cho số tự nhiên $n > 1$, đặt $n_o = n$ và lần lượt tính các số $n_1 =n_o- s(n_o), n_2 = n_1 – s(n_1), …, n_{i+1} = n_i – s(n_i)$,…. Chứng minh tồn tại số nguyên dương $k$ để $n_k = 1$ và tính $k$ khi $n = 2^{16}.14^{17}$.

Hết

Lời giải. 

Bài 1: 

a) Đây là hệ đối xứng loại 2, nên phương pháp giải là lấy (1) – (2) để có thừa số $x-y$, từ đó giải tiếp.

Chú ý xét trường hợp và điều kiện $x_o > 0, y_o > 0$ để biện luận. Những dạng toán này chú ý tính toán cẩn thận và xét đầy đủ các trường hợp.

b) Là bài dạng  biểu thức nghiệm không đối xứng, có nhiều cách, có thể tính nghiệm theo $m$ từ đó suy ra $m$.

Lời giải.

a) Khi $m = -3$ ta có hệ:

$\left\{\begin{array}{l} (x-2y)(x-3y)=12 \\(y-2x)(y-3x) = 12 \end{array} \right.$

$\Leftrightarrow \left\{\begin{array}{l} x^2-5xy+6y^2=12 (1)\\y^2-5xy+6x^2 = 12(2) \end{array} \right.$

Lấy (1) – (2) ta có $5(y^2-x^2) = 0 \Leftrightarrow x = y, x = -y$.
Với $x= y$ thế vào (1) ta có $x^2 =6 \Leftrightarrow x = \sqrt{6}, y = \sqrt{6}$ hoặc $x=-\sqrt{6}, y = -\sqrt{6}$.
Với $x = -y$ thế vào (1) ta có $x^2 = 1 \Leftrightarrow x = 1, x = -1$. Với $x = 1, y = -1$, với $x=-1, y = 1$.
Vậy hệ phương trình có 4 nghiệm.
Hệ có thể viết lại $\left\{\begin{array}{l} x^2+(m-2)xy-2my^2 = m^2-2m-3 (1)\\y^2+(m-2)xy-2mx^2= m^2-2m-3(2) \end{array} \right.$

Lấy (1) – (2) ta có $(2m+1)(y^2-x^2) = 0$.
Xét $m = \dfrac{-1}{2}$ ta có hệ trở thành: $x^2 – \dfrac{5}{2}xy + y^2 + \dfrac{7}{4}=0$, có nghiệm $ (\dfrac{5+\sqrt{2}}{2},2)$ thỏa đề bài.
Xét $m \neq \dfrac{-1}{2}$ ta có $x = y$ hoặc $x = -y$.

Trường hợp $x = -y$ không thỏa đề bài.
Trường hợp $x = y$, thế vào (1) ta có:

$-(m+1)x^2 = m^2-2m-3 = (m+1)(m-3)$.
Nếu $m = -1$ ta có $(x-2y)(x-y) = 0, (y-2x)(y-x) = 0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$.
Nếu $m \neq -1$ ta có $x^2 = 3-m$ để có nghiệm $x_o = y_o > 0$ thì $m < 3$.

Khi đó phương trình có nghiệm $x_0 = \sqrt{3-m}, y_o = \sqrt{3-m}$ thỏa đề bài.

Kết luận $m = \dfrac{-1}{2}, m = -1$ và $m < 3$.

b) Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.
Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.
Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1
\Leftrightarrow x_2^2+ax_2-a^2-a+2=0
\Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ (1).
Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.
Lấy (1) – (2) ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.
Thế vào phương trình (1) ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.
Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài 2.

a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.

b) Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$, ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1: Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2: Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Bài 3. Bài này là bài bdt khó, nhưng câu a đã gợi ý để làm câu b, chú ý các bdt phụ quan trọng.

a) Ta có $(x+y+z)^2 = x^2+y^2+z^2 + 2(xy+yz+xz)$. Suy ra $xy + yz + xz = -3$.
Ta có $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2 $

$= x^2 -2xy+y^2+xy-y^2+yz-xz+y^2-2yz + z^2$

$= x^2+y^2+z^2-yx-yz-xz = 9$.

b) Ta có thể chứng minh trực tiếp không qua câu a) như sau:

$(x-y)(y-z) \leq \dfrac{1}{3}((x-y)^2+(x-y)(y-z) + (y-z)^2) = 3$. Suy ra $P \leq 3|x-z|$.
Ta có $|x-z| \leq \sqrt{2(x^2+z^2)}\leq \sqrt{2(x^2+y^2+z^2)}= \sqrt{12}$. Suy ra $P \leq 3\sqrt{12} = 6\sqrt{3}$.
Đẳng thức xảy ra khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$.

Vậy giá trị lớn nhất của P là $6\sqrt{3}$ khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$

Ngoài ra ta có thể áp dụng câu a: Đặt $a = x-y, b = y-z$ ta có $a^2+b^2+ab = 9$, cần tìm giá trị lớn nhất của $P = ab(a+b)$.

Áp dụng $ab \leq \dfrac{1}{4} (a+b)^2$ và $a^2+b^2+ab \geq \dfrac{3}{4} (a+b)^2$. Ta có điều cần chứng minh.

Bài 4. Đây là bài hình khó và dài, các em chú ý hình vẽ cụ thể là góc, vẽ hình chính xác. 

Tránh dùng các kiến thức cấp 3: phương tích trục đẳng phương,…

a) Ta có $\angle EAB + \angle BAC = 90^\circ, \angle FAC + \angle BAC = 90^\circ$. Suy ra $\angle EAB = \angle FAC$.
Mặt khác có $\angle ABE = \angle ACF = 90^\circ$. Suy ra $\triangle ABE \backsim \triangle ACF$.
Suy ra $AE\cdot AC = AF\cdot AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE\cdot AQ = AN\cdot AF$. Suy ra tứ giác $QNEF$ nội tiếp.
b) Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF|| ET, AE|| FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX || BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

b) $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$.
Suy ra $NDFK’$ nội tiếp. Chứng minh tương tự ta có $DQK’E$ nội tiếp.
Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^\circ – 2 \angle BKE = 2(90^\circ – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
Mặt khác $\angle BKA = 180^\circ – \angle AEB = 180^\circ – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
Vậy 4 điểm $D, A, K, J$ thẳng hàng.

Bài 5. Đây là bài toán lạ và khá hay, sử dụng đơn biến.

Ta có $s(n_i) < n_i$, suy ra $n_i – s(n_i) \geq 1$. Suy ra $n_{i+1} \geq 1$. Do đó $n_i \geq 1$ với mọi $i = 1, 2, …$.
Mặt khác $n_{i+1} = n_i – s(n_i) < n_i$ với mọi $i$. Suy ra $n=n_o > n_1 > n_2 > …>…$.
Nếu không tồn tại $n_k$ để $n_k = 1$ ta xây dựng được dãy vô hạn các số nguyên dương giảm và nhỏ hơn $n$ (vô lý) vì số các số nhỏ hơn $n$ là bằng $n-1$.
Vậy tồn tại $k$ sao cho $n_k = 1$.
Với $n=2^{16}.14^{17} = 2^{33}.7^{17}$, ta có $n_1 = 2^{33}7^{17} – 2^{32}.7^{17}= 2^{32}.7^{17}$.\
$n_2 = 2^{31}.7^{17}$.
Tiếp tục ta có $n_{33} = 7^{17}$.
Đặt $m_o= 7^{17}$ ta có $m_1 = 6.7^{16}$, $m_2 = 3.7^{16}, m_3 = 2.7^{16}, m_4 = 7^{16}$. Tương tự ta có $m_8 = 7^{15}$,…,$m_{68} = 7^0 = 1$.
Vậy $k = 33 + 68 = 101$.