Category Archives: Lớp 10

Phương pháp chứng minh quy nạp – Các dạng khác

Trong bài này, chúng ta tiếp tục tìm hiểu thêm và phương pháp quy nạp. Ngoài dạng quy nạp như đã biết ta còn một số dạng quy nạp khác như: Quy nạp mạnh, quy nạp bước nhảy, quy nạp lùi.

Quy nạp mạnh được phát biểu như sau: Để chứng minh mệnh đề $P(n)$ đúng với mọi số tự nhiên $n$, ta thực hiện theo hai bước sau:

  • Chứng minh $P(n)$ đúng với $n=1$.
  • Giả sử $P(n)$ đúng với $1, 2, \cdots, n$. Chứng minh $P(n+1)$ đúng.

Ví dụ 1. Cho $x$ thỏa $x+\dfrac{1}{x}$ là số nguyên. Chứng minh rằng $x^n+\dfrac{1}{x^n}$ là số nguyên với mọi $n$.

Lời giải. 

  • Ta có $x + \dfrac{1}{x}$ là số nguyên  đúng (theo giả thiết).
  • Giả sử $x^k + \dfrac{1}{x^k}$ là số nguyên với mọi $k = \overline{1,n}$. Ta cần chứng minh $x^{n+1} + \dfrac{1}{x^{n+1}}$.
    • $(x^{n+1} + \dfrac{1}{x^{n+1}} = (x+\dfrac{1}{x})(x^n + \dfrac{1}{n})  – (x^{n-1}+\dfrac{1}{x^{n-1}})$.
    • Theo giả thiết quy nạp thì $x^{n+1} + \dfrac{1}{x^{n+1}}$ là số nguyên.
  • Vậy ta có $x^n + \dfrac{1}{x^n}$ là số nguyên với mọi $n$.

 

Dạng kế tiếp là Quy nạp bước nhảy  được phát biểu như sau: Chứng minh mệnh đề $P(n)$ đúng với mọi $n$, ta làm như sau:

  • Chứng minh $P(1), P(2), \cdots, P(k)$ đúng.
  • Giả sử $P(n)$ đúng. Ta chứng minh $P(n+k)$ đúng.

Ví dụ 2. Chứng minh rằng với mọi số tự nhiên $M$ tồn tại số tự nhiên $n$ và cách chọn các dấu $+$ hoặc $-$ sao cho

$M = \pm 1^2 \pm 2^2 \cdots \pm n^2$.

Lời giải.

  • Khi $M = 1, 2, 3, 4$ ta có $1 = 1^2$, $2 = -1^2-2^2-3^2+4^2$, $3 = -1^2+2^2$ và $4 = 1^2-2^2-3^2+4^2$.
  • Giả sử đúng với $M$, tức là tồn tại $n$ thỏa $M = \pm 1^2 \pm 2^2 \cdots \pm n^2$, khi đó $M + 4 = \pm 1^2 \pm 2^2 \cdots \pm n^2 +(n+1)^2-(n+2)^2-(n+3)^2 + (n+4)^2$.

Ví dụ 3.  Chứng minh rằng với mọi số tự nhiên $n$ thì phương trình $a^2 + b^2 = c^n$ luôn có nghiệm trong tập các số nguyên dương.

Lời giải. 

  • Rõ ràng nếu $n=1, 2$ thì phương trình luông có nghiệm nguyên dương.
  • Giả sử phương trình có nghiệm nguyên dương là $a, b, c$ với $n$ nào đó, tức là $a^2 + b^2 = c^n$.
    • Khi đó với $n+2$ thì xét $(ac), (bc), c$: $(ac)^2+(bc)^2 = c^2 (a^2+b^2) = c^{n+2}$.
    • $(ac, bc, c$ là nghiệm.
  • Vậy phương trình luôn có nghiệm với mọi $n$.

Dạng kế tiếp là Quy nạp lùi được phát biểu như sau:

  • Chứng minh $P(a_i)$ đúng với dãy $(a_i)$ là dãy con tăng thực sự của tập các số tự nhiên.
  • Giả sử $P(n)$ đúng, chứng minh $P(n-1)$ đúng.

Ví dụ 4. 

a) Hãy chỉ ra cách sắp 8 số nguyên dương đầu tiên 1, 2, …, 8 thành một dãy $a_1, a_2 ,…, a_8$ sao cho 2 số $a_i, a_j$ bất kì $(i < j)$ thì mọi số trong dãy nằm giữa $a_i$ và $a_j$ đều khác $\dfrac{a_i + a_j}{2}$.
b) Chứng minh rằng với $N$ số nguyên dương đầu tiên $1, 2, …, N$ luôn tìm được cách sắp thành dãy $a_1, a_2, …, a_N$ sao cho dãy thỏa mãn điều kiện như câu a).
Lời giải.

a) Một cách xếp thỏa đề bài là 26481537.\
b)

Bước 1.Ta chứng minh bằng quy nạp với $n = 2^k$ thì luôn tồn tại một cách xếp thỏa đề bài.

  • Nếu $k = 1$, hiển nhiên đúng.
    Giả sử luôn tồn tại một cách xếp thỏa đề bài với $n = 2^k$, cách xếp đó là $a_1, a_2, …, a_n$.
    Ta chứng minh tồn tại một cách xếp với $n = 2^{k+1}$.
    Thật vậy xét hoán vị $(2a_1, 2a_2,…, 2a_n, 2a_1-1, 2a_2-1, …, 2a_n-1)$ là một hoán vị của $1, 2, …, 2^{k+1}$. Ta chứng minh hoán vị trên thỏa đề bài.

    • Ta có nếu $a_i, a_j \in \{2a_1, 2a_2, …, 2a_n\}$ theo giả thiết quy nạp không có số nào nằm giữa $a_i, a_j$ bằng $\dfrac{1}{2}(a_i+a_j)$.
    • Nếu $a_i \in \{2a_1, …, 2a_n\}, a_j \in \{2a_1-1, 2a_2-1, …, 2a_n-1\}$ thì $\dfrac{1}{2}(a_i +a_j)$ không phải số nguyên.
    • Nếu $a_i, a_j \in \{2a_1-1, 2a_2-1, …, 2a_n-1\}$ theo giả thiết quy nạp thì cũng có số nào nằm giữa $a_i, a_j$ bằng $\dfrac{1}{2}(a_i + a_j)$.

Vậy bài toán đúng với $n = 2^k$.(1)
Bước 2. Nếu bài toán đúng với $n$, ta chứng minh bài toán đúng với $n-1$.

Xét các số $a_1, a_2, …, a_n$ là một hoán vị thỏa đề bài của $1,2,…,n$.

Khi đó nếu xóa bất kì số nào trong các số $a_1, …, a_n$ thì dãy còn lại vẫn thỏa điều kiện. (2)
Từ (1) và (2) ta có điều cần chứng minh.

Quy nạp lùi cũng là một trong những cách chứng minh bất đẳng thức Cauchy tổng quát: $\dfrac{a_1+a_2 + \cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$.

Các bạn tự làm thử nhé.

Trên đây là một số dạng quy nạp thường gặp trong chứng minh toán. Tùy theo tình huống mà ta sử dụng cho phù hợp, các bạn cần làm thêm nhiều bài tập để rèn luyện.

Bài tập rèn luyện.

Bài 1. Ta gọi tổng các số tự nhiên từ 1 đến n là số tam giác. Chứng minh rằng tồn tại vô hạn các số tam giác đồng thời là số chính phương.

Bài 2. (Chọn đội tuyển PTNK 2014)Tìm số nguyên dương $n$ lớn nhất thỏa mãn các điều kiện sau:

  • $n$ không chia hết cho 3;
  • Bảng vuông $n \times n$ ô không thể được phủ kín bằng 1 quân tetramino $1 \times 4$ và các quân trimino kích thước $1 \times 3$. Trong phép phủ các quân tetramino và trimino được phép quay dọc nhưng không được phép chườm lên nhau hoặc nằm ngoài ra bảng vuông.

Bài 3. Có $n$ số tự nhiên từ 1 đến $n$ được viết thành một dòng theo một thứ tự nào đó. Mỗi bước thực hiện biến đổi như sau: nếu số đầu tiên là $k$ thì $k$ số đầu tiên sẽ được viết theo thứ tự ngược lại. Chứng minh rằng sau hữu hạn bước thì số đầu tiên của dòng là số 1.

Bài 4. Trong cuộc họp có $2n$ ($n \geq 2$) người, một số người bắt tay nhau và người ta đếm được có $n^2+1$ cái bắt tay. Chứng minh rằng có $n$ bộ ba, mà mỗi bộ ba đôi một bắt tay nhau.

Bài 5. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số nguyên $x, y, z$ phân biệt sao cho $x^2+y^2+z^2 = 14^n$.

Bài 6. Trong một giải đấu tennis có 10 người tham dự, hai đối thủ gặp nhau đúng một trận. Chứng minh rằng, sau khi kết thúc giải có thể sắp xếp các tay vợt thành một hàng mà người đứng trước thắng người đứng sau.

Phương trình tổng quát của đường thẳng

Phương trình tổng quát của đường thẳng

Véctơ pháp tuyến. Vectơ $\overrightarrow{n} \neq \overrightarrow{0}$ có giá vuông góc với đường thẳng $\Delta$ gọi là vectơ pháp tuyến của đường thẳng $\Delta$.

Chú ý. 

    • Các vectơ pháp tuyến của cùng một đường thẳng thì cùng phương.
    • Hai đường thẳng song song thì vectơ phát tuyến cùng phương.
    • Hai đường thẳng vuông góc thì vectơ pháp tuyến vuông góc.

Định lý. Trong mặt phẳng tọa độ cho điểm $I(x_\circ;y_\circ)$, vectơ $\overrightarrow{n}$. Đường thẳng qua $I$ nhận $\overrightarrow{n}=(a;b)$ là vectơ pháp tuyến có phương trình: $$a(x-x_\circ)+b(y-y_\circ) = 0$$

Định lý.Trong mặt phằng tọa, mọi đường thẳng đều có phương trình tổng quát dạng [ ax+by+c = 0] với $a^2+b^2 \neq 0$.\

Trong đó $\overrightarrow{n} = (a;b)$ là vectơ pháp tuyến của đường thẳng.

Link bài giảng Phương trình tổng quát của đường thẳng

 

Phương pháp chứng minh phản chứng (Lớp 10)

Tính chất.  $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$ hoặc $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow S$,  $S$ là mệnh đề hằng sai.

  • Phương pháp chứng minh phản chứng là một phương pháp chứng minh gián tiếp, để chứng  minh mệnh đề $A \Rightarrow B$ ta chứng minh mệnh đề tương đương với nó là $\overline{B} \Rightarrow \overline{A}$.
  • Điểm mạnh của phương pháp này là ta đã tạo thêm được giả thiết mới $\overline{B}$, để từ đó giúp ta suy luận tiếp để giải quyết được bài toán.
  • Tất nhiên việc viết lại mệnh đề $\overline{B}$ một cách chính xác là điều quan trọng, cái này chú ý một số quy tắt về mệnh đề.
  • Phương pháp này được sử dụng hầu hết trong các phân môn của toán là: đại số, số học, hình học, tổ hợp.

1. Các bài toán tổ hợp

Ví dụ 1. (Nguyên lý Dirichlet) Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải
  •  Giả sử tất cả các hộp chỉ chứa số lượng bị không vượt quá $n$ viên, khi đó tổng số viên bi không vượt quá $k \cdot n$, mâu thuẫn với số bi là $kn + 1$.
  • Vậy phải có một hộp chứa nhiều hơn $n$ viên bi.

 

Ví dụ 2. Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau:$-5, -4, -3, 3, 4, 5$.

Lời giải
  • Giả sử có một cách ghi thỏa đề bài.
  • Khi đó ta thấy rằng các số $0, 1, 2, 8, 9$ không thể đứng cạnh nhau đôi một. Hơn nữa có đúng 10 số, vậy các số còn lại sẽ đứng xen kẽ giữa các số này.
  • Khi đó xét số 7, ta thấy số 7 chỉ có thể đứng bên cạnh số 2 trong các số $\{ 0, 1, 2, 8, 9 \}$, mâu thuẫn.
    Vậy không tồn tại cách ghi thỏa đề bài.

Ví dụ 3.  Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải
  • Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra. Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$
  • Để ý rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và dó đó các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.
  • Số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$. Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.
  • Cả 50 và 60 đều không chia hết cho 11, mâu thuẫn. Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Ví dụ 4. Cho $F ={E_1, E_2, …, E_k }$ là một họ các tập con có $r$ phần tử của tập $X$. Nếu giao của $r+1$ tập bất kì của $F$ là khác rỗng, chứng minh rằng giao của tất cả các tập thuộc $F$ là khác rỗng.

Lời giải
  • Giả sử ngược lại, giao tất cả các tập thuộc $F$ bằng rỗng.
  • Xét tập $E_1 = \{x_1, \cdots, x_r\}$. Do giao tất cả các tập thuộc $F$ là rỗng, nên với $x_k$ tồn tại một tập $E_{i_k}$ mà $x \notin E_{i_k}, \forall k = \overline{1,r}$.
  • Khi đó xét giao của họ gồm $r+1$ tập $E_1, E_{i_1}, \cdot, E_{i_r}$ thì bằng rỗng, mâu thuẫn.Vậy giao của tất cả các tập thuộc $F$ là khác rỗng.

Ví dụ 5.  Cho $A$ và $B$ là các tập phân biệt và hợp của $A$ và $B$ là tập các số tự nhiên. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số  phân biệt $a,b > n$ sao cho ${a,b,a + b } \subset A$ hoặc ${a,b,a+b} \subset B$.

Lời giải
  • Nếu $A$ hoặc $B$ là tập hợp hữu hạn phần tử thì chỉ cần chọn $a, b$ lớn hơn phần tử lớn nhất của $A$ hoặc $B$ ta có điều cần chứng minh.
  • Nếu $A, B$ là tập vô hạn, giả sử tồn tại $n$ sao cho với mọi $a, b$ thì $a, b, a+b$ không cùng thuộc $A$ hoặc $B$. (1)
  • a chọn các số $x, y, z \in A$ sao cho $x < y < z$  và $z-y, y-x > n$.
  • Do (1) nên các số $y-x, z-y,z-x \in B$, suy ra $z-y+y-x = z-x \in A$ (mâu thuẫn).
    Vậy điều giả sử là sai, tức là ta có điều cần chứng minh.

Bài tập rèn luyện.

Bài 1. Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Bài 2. Cho $S$ là tập vô hạn các phần tử và $P(S)$ là họ các tập con của $S$. Chứng minh rằng không tồn tại một song ánh từ $S$ và $P(S)$.

Bài 3. Cho $A$ là tập con có 19 phần tử của tập ${1, 2, \cdots, 106}$ sao cho không có hai phần tử nào có hiệu bằng $6, 9, 12, 15, 18$. Chứng minh rằng có 2 phần tử thuộc $A$ có hiệu bằng 3.

Bài 4. Một hình vuông $n \times n$ ô được tô bởi hai màu đen trắng, sao cho trong 4 ô góc thì 3 ô được tô màu đen, 1 ô được tô màu trắng. Chứng minh rằng trong hình vuông có ô vuông $2 \times 2 $ mà có số ô màu đen là số lẻ.

Bài 5.  Tập $S$ được gọi là một tập cân nếu lấy từ $S$ ra một phần tử bất kì thì các phần tử còn lại của $S$ có thể chia ra làm hai phần có tổng bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

(còn nữa)