Category Archives: Uncategorized

Cực trị hình học (Lớp 9)

Bài toán cực trị hình học thường xuất hiện trong các kì thi học sinh giỏi cũng như thi tuyển sinh, đây là câu hỏi gây khó khăn cho nhiều bạn học sinh vì để giải bài toán cực trị đòi hỏi các kiến thức tổng hợp: bài toán quỹ tích, sử dụng các bất đẳng thức đại số,… ngoài ra cũng phải biết và vận dụng được một số bài toán cực trị cơ bản. Bài viết này giúp các em làm quen với các bài toán cực trị trong chương trình lớp 9, từ đó giúp ôn tập tốt hơn trong kì thi tuyển sinh sắp tới.

Cực trị hình học là các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như: các biểu thức về độ dài, diện tích, chu vi,…khi giá trị của các biểu thức này thay đổi.

Ta có một số chú ý sau khi giải bài toán cực trị hình học.

Chú ý 1. Để tìm giá trị lớn nhất của biểu thức $P$. Ta thường làm theo các bước sau:

  • Chứng minh $P \leq M$ ( $M$ phải là giá trị không đổi).
  • Tìm điều kiện để xảy ra đẳng thức.
  • Kết luận.

Chú ý 2. Để chứng minh với mô hình $H$ có biểu thức $P$ đạt giá trị lớn nhất (hoặc nhỏ nhất), ta có thể chọn mô hình $H^{\prime}$ bất kì với biểu thức tương ứng là $P^{\prime}$ và ta chứng minh $P \geq P^{\prime}$ (hoặc $P \leq P^{\prime}$ ).

Chú ý 3. Để làm các bài toán cực trị hay bất đẳng thức thường có hai hướng để suy nghĩ:

  • Đưa bài toán ban đầu về các bài toán cực trị quen thuộc đã biết cách giải.
  • Sử dụng các bất đẳng thức Đại số áp dụng lên các yếu tố Hình học.

Một số bài toán cực trị quan trọng.

Tính chất 1. (Đường xiên và hình chiếu) Cho điểm $A$ và đường thẳng $d, M$ là điểm thay đổi trên $d$. Khi đó, $A M$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Tính chất 2. (Bất đẳng thức tam giác) Cho 3 điểm $A, B, C$.

  • $A B+B C \geq A C$. Đẳng thức xảy ra khi và chỉ khi $B$ nằm giữa $A$ và $C$.
  • $|A C-A B| \leq B C$. Đẳng thức xảy ra khi $A, B, C$ thẳng hàng và $A$ nằm ngoài đoạn thẳng $B C$.

Tính chất 3. Trong một tam giác vuông thì độ dài đuờng cao xuất phát tù đỉnh góc vuông không lớn hơn nủa độ dài canh huyền.
Chứng minh
Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$. Cần chứng minh $A H \leq \frac{1}{2} B C$.
Gọi $M$ là trung điểm của $B C$ ta có $A M=\frac{1}{2} B C$.
Mà $A H \leq A M$. Suy ra $A H \leq \frac{1}{2} B C$.
Đẳng thức xảy ra khi $H \equiv M$ hay tam giác $A B C$ vuông cân.

Tính chất 4. Cho đường tròn $(O)$ và dây cung $B C$ cố định. Tìm điểm $A$ thuộc cung lớn $\overparen{B C}$ sao cho
a) Chu vi tam giác ABC lớn nhất.
b) Diện tích tam giác ABC lớn nhất.
Chứng minh
a) Trên tia đối của tia $A B$ lấy điểm $D$ sao cho $A D=A C \Rightarrow A B+A C=B D$. Hơn nữa $\angle B D C=\frac{1}{2} \angle B A C$ không đổi.
Suy ra $D$ thuộc cung chứa góc $\frac{1}{2} \angle B A C$ dựng trên đoạn $B C$.
Do đó $B D$ lớn nhất khi $B D$ là đường kính, lúc này $A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.
Vậy chu vi tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa cung $B C$.
b) Vẽ đường cao $A H$, gọi $M$ là trung điểm $B C$.
Ta có $A H \leq A M \leq O A+O M$ không đổi.
Diện tích tam giác $A B C$ lớn nhất khi và chỉ khi $A H$ lớn nhất hay khi $H \equiv M$.
Lúc này $A$ là điểm chính giữa cung $B C$.
Vậy diện tích tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.

Tính chất 5. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn. Tìm $M$ thuộc (O) đề AM là lớn nhất, nhỏ nhất.
Chứng minh.
a) Ta có $A M \leq O A+O M$. Đẳng thức xảy ra khi $O$ nằm giữa $A, M$. Vậy $A M$ lớn nhất khi và chỉ khi $M$ là giao điểm của tia đối tia $O A$ và $(O)$.
b) Tương tự như trên ta có $A M \geq O A-O M$. Đẳng thức xảy ra khi $M$ nằm giữa $O$ và $A$.
Vậy $A M$ nhỏ nhất khi và chỉ khi $M$ là giao điểm của tia $O A$ và $(O)$.

Bất đẳng thức thường dùng. Cho các số $a, b, c$ không âm. Ta có các bất đẳng thức sau:

  • $a+b \geq 2 \sqrt{a b}$
  • $a^2+b^2 \geq \frac{1}{2}(a+b)^2 \geq 2 a b$.
  • $a+b+c \geq 3 \sqrt[3]{a b c}$
    $\frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b}$
  • $a+b \leqslant \sqrt{2\left(a^2+b^2\right)}$.
    Dấu bằng xảy ra khi và chỉ khi $a=b$.

Một số ví dụ

Ví dụ 1. Cho tam giác $A B C$ có $\angle B A C=60^{\circ}$. M là điểm thay đổi trên cạnh $B C$.
Gọi $D$, E lần lượt là hình chiếu của $M$ trên $A B, A C$. Tìm vị trí của $M$ đề $D E$ có độ dài nhỏ nhất.
Lời giải.
Gọi $I$ là trung điểm $A M$.
Ta có $A D M E$ nội tiếp đường tròn $(I)$. Kẻ đường kính $D F$ của đường tròn $(I)$.
Xét tam giác $D F E$ vuông tại $E$.
Ta có $\angle D F E=\angle A D E=60^{\circ}($ cùng chắn $\overparen{\mathrm{DE}}$ ) $\Rightarrow \angle F D E=30^{\circ}$.
Suy ra $D E=D F \cos \widehat{D F E}=\frac{D F}{2}=\frac{A M}{2}$.
Do đó $D E$ nhỏ nhất khi và chỉ khi $A M$ nhỏ nhất, hay $M$ là chân đường cao hạ từ $A$. Vậy $D E$ nhỏ nhất khi và chỉ khi $M$ là chân đường cao từ $A$ của tam giác $A B C$.

Ví dụ 2. Cho đuờng tròn $(O)$ và dây cung $B C$ cố định. A là điểm thay đổi trên cung lơn BC. Gọi I là tâm đường tròn nội tiếp của tam giác $A B C$.
a) Tìm vị trí của A để diện tích tam giác BIC là lớn nhất.
b) Tìm vị trí của A để AI lớn nhất.
Lời giải.
a) Ta có $\angle B A C \Rightarrow \angle B I C=90^{\circ}+\frac{1}{2} \angle A$ không đổi. Do đó $I$ thuộc cung chứa góc $\alpha=90^{\circ}+\frac{1}{2} \angle A$ dựng trên đoạn $B C$.
Khi đó diện tích tam giác $I B C$ lớn nhất khi và chỉ $I$ là điểm chính giữa cung, hay $A$ là điểm chính giữa cung $B C$.
b) $A I$ cắt $(O)$ tại $D$ khác $A, D$ là điểm chính giữa cung $B C$. Ta có $D I=D C$ không đổi.
Ta có $A I=D A-D I$, do đó $A I$ lớn nhất khi và chỉ khi $D A$ lớn nhất, hay $D A$ là đường kính, khi đó $A$ là điểm chính giữa cung $B C$.
Vậy $A I$ lớn nhất khi và chỉ khi $A$ là điểm chính giữa cung $B C$.

Ví dụ 3. Cho tam giác $A B C$ nội tiếp đường tròn w. P là một điểm thay đổi thuộc cung BC không chúa A. Gọi $H, K$ lần lượt là hình chiếu của A trên $P B, P C$. Tìm vi trí của $P$ để
a) Độ dài đoạn thẳng HK là lớn nhất.
b) Giá trị biểu thúc $A H \cdot P B+A K \cdot P C$ là lớn nhất.
Lời giải.
a) Ta có $\triangle A H B \backsim \triangle A K C \Rightarrow \triangle A H K \sim \triangle A B C$.
Suy ra $\frac{H K}{B C}=\frac{A H}{A B} \leqslant 1$. Do đó $K H \leqslant B C$.
Đẳng thức xảy ra khi $H \equiv B$ hay $A P$ là đường kính.
Vậy $K H$ lớn nhất bằng $B C$ khi $A P$ là đường kính.
b)
$$
\text { Ta có: } \begin{aligned}
A H \cdot P B+A K \cdot P C & =2 S_{A P B}+2 S_{A P C} \
& =2 S_{A B P C} \
& =2\left(S_{A B C}+S_{P B C}\right)
\end{aligned}
$$
Suy ra $A H \cdot P B+A K \cdot P C$ lớn nhất khi và chỉ khi $S_{P B C}$ lớn nhất, hay $P$ là điểm chính giữa cung $B C$.
Vậy $A H \cdot P B=A K \cdot P C$ lớn nhất khi $P$ là điểm chính giữa cung $B C$.

Ví dụ 4. (Thi vào lớp 10 Chuyên Toán trường Chuyên Lam Sơn tỉnh Thanh Hóa năm 2010) Cho đường tròn $(O)$ bán kính $R=1$ và điểm $A$ thỏa $O A=\sqrt{2}$. Từ $A$ vẽ các tiếp tuyến $A B, A C$ với $B, C$ là các tiếp điểm. Các điểm $D, E$ thay đổi trên các đoạn $A B, A C$ sao cho $\angle D O E=45^{\circ}$.
(a) Chứng minh $D E$ tiếp xúc với $(O)$.
(b) Tìm giá trị lớn nhất và nhỏ nhất của $DE$.
Hướng dẫn giải
(a) Ta chứng minh được $A B O C$ là hình vuông. Đường thẳng qua $O$ vuông góc $O D$ cắt $A C$ tại $F$, suy ra $\angle D O E=\angle F O E$.
Ta có $\triangle O B D=\triangle O C F \Rightarrow C F=B D, O F=O D$.
Khi đó $\triangle O E F=\triangle O E D \Rightarrow \angle O E F=\angle O E D$, vẽ $O H \perp D E$, suy ra $O H=O C$, do đó $D E$ là tiếp tuyến của $(O)$.
(b) Ta có $E H=C E, B D=D B$, suy ra $A E+A D+D E=A B+A C=2$.
Đặt $x=A D, y=A E$, suy ra $D E=\sqrt{x^2+y^2}$ và $x+y+\sqrt{x^2+y^2}=2$.
Ta có $\sqrt{x^2+y^2} \leq x+y \leq \sqrt{2\left(x^2+y^2\right)}$, suy ra $2 \sqrt{x^2+y^2} \leq x+y+\sqrt{x^2+y^2} \leq(1+$ $\sqrt{2}) \sqrt{x^2+y^2}$, từ đó suy ra $2-\sqrt{2} \leq \sqrt{x^2+y^2} \leq 1$ hay $2-\sqrt{2} \leq D E \leq 1$.

Từ đó $DE$ lớn nhất bằng 1 khi D trùng B, nhỏ nhất là $2 – \sqrt{2}$ khi $AD = AE$.

Ví dụ 5. Cho nửa đường tròn đường kính $BC=2a$, $A$ thay đổi trên nửa đường tròn. Đường cao $AH$.

a) Tìm giá trị lớn nhất của $BH + AH$.

b) Phân giác góc $BAH, CAH$ cắt $BC$ tại $MN$. Tìm vị giá trị lớn nhất của $MN$.

Lời giải.

a) Rõ ràng $BH + AH$ lớn nhất chỉ khi $H$ thuộc đoạn $OC$ vì nếu $H$ thuộc đoạn $BC$ ta lấy $A’$ đối xứng với $A$ qua trung trực $BC$ ta sẽ có $A’H + BH’ > AH+BH$.

Khi đó $BH + AH = BO + OH + AH$ = a + OH + AH$.

Mà $OH + AH \leq \sqrt{2(OH^2+AH^2)} = a\sqrt{2}$

Do đó $AH + BH \leq a + a\sqrt{2}$, đẳng thức xảy ra khi $AH = OH$ và $H$ là trung điểm $OC$.

Vậy giá trị lớn nhất của $BH+AH$ là $a+a\sqrt{2}$ khi $H$ là trung điểm $OC$.

b) Ta có $\angle BAN = \angle BAH + \angle HAN = \angle ACB + \angle CAN = \angle BNA$, suy ra $BN = BA$

Chứng minh tương tự thì $CM = AC$

Khi đó $MN = BN +CM – BC = AB + AC – BC \leq \sqrt{2{AB^2+AC^2}} – BC = 2a(\sqrt{2}-1)$.

Do đó $MN$ lớn nhất là $2a(\sqrt{2}-1)$ khi $AB = AC$.

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ nội tiếp đường tròn $(O), A B<A C$. Phân giác trong $\angle B A C$ cắt $(O)$ tại $D$ khác $A$. Trên tia $A B$ lấy $M$ tuỳ ý sao cho đường tròn ngoại tiếp $\triangle A D M$ cắt $A C$ tại $N$ khác $A, C$. Xác định vị trí tâm $I$ của đường tròn ngoại tiếp $\triangle A D M$ để độ dài đoạn thẳng $M N$ nhỏ nhất.

Bài 2. Cho đường tròn tâm $O$ đường kính $B C, A$ là điểm di động trên đường tròn $(O)$ ( $A$ khác $B, C)$. Kẻ $A H \perp B C$ tại $H$. Kẻ $H P \perp A B$ tại $P$. Tìm vị trí điểm $A$ sao cho bán kính đường tròn ngoại tiếp $\triangle B P C$ đạt giá trị lớn nhất.
Bài 3. Cho $\triangle A B C$ vuông tại $A$ có $A B<A C$ ngoại tiếp đường tròn $(O)$.
Gọi $D, E, F$ lần lượt là tiếp điểm của $(O)$ với các cạnh $A B, A C, B C$. $M$ là điểm di động trên đoạn $C E$. Gọi $N$ là giao điểm của $B M$ với cung nhỏ $E F$ của $(O)$. Các điểm $P, Q$ lần lượt là hình chiếu của $N$ trên các đường thẳng $D E, D F$. Xác định vị trí điểm $M$ để độ dài $P Q$ lớn nhất.

Bài 4. Cho 3 đường tròn có tâm thẳng hàng và ngoài nhau, đường tròn thứ tư tiếp xúc ngoài với cả ba đường tròn trên. Chứng minh rằng bán kính đường tròn thứ tư lớn hơn bán kính của một trong ba đường tròn kia.

Bài 5. (Đề thi Olympic 30-4 năm 2000)Trên đường tròn tâm $O$ bán kính $R$ cho năm điểm phân biệt $A, B, C, D, E$ theo thứ tự đó sao cho $A B=B C=D E=R$. Gọi $M, N$ lần lượt là trung điểm của $C D$ và $A E$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $B M N$.

CHUYÊN ĐỀ SỐ HỌC : PHÉP CHIA HẾT VÀ PHÉP CHIA CÓ DƯ

MỘT SỐ VÍ DỤ

 

Ví dụ 1

Cho $a$ là một số nguyên. Tìm UCLN $(2 a+3,3 a+4)$.

Lời giải

Gọi $d=(2 a+3,3 a+4)$, ta có $d \backslash 2 a+3$ và $d \backslash 3 a+4$.

Vì $3(2 a+3)-2(3 a+4)=1$ nên $d$ là ước của 1 hay $d=1$.

Ví dụ 2

Cho $\mathrm{a}, b$ là các số nguyên dương sao cho $a^2+b^2$ chia hết cho tích $a . b$. Hãy tính giá trị của biểu thức

$A=\frac{a^2+b^2}{a b} .$

(Thi học sinh giỏi Toán 9 – Thành phố Hà Nội, năm 2002).

Lời giải

Gọi $d=(a, b)$ thì $a=d . a_1$ và $b=d . b_1$ với $\left(a_1, b_1\right)=1$. Ta có :

$a^2+b^2=d^2\left(a_1^2+b_1^2\right) \text { và } a b=d^2 a_1 b_1 .$

  • Vì $a^2+b^2$ chia hết cho $a b$ nên $a_1^2+b_1^2$ chia hết cho $a_l b_1$. Suy ra $a_1^2+b_1^2$ chia hết cho $a_l$ và $b_l$. Suy ra $a_1^2$ chia hết cho $b_l$ và $b_1^2$ chia hết cho $a_l$.
  • Vì $\left(a_1, b_1\right)=1$ nên $\mathrm{a}_1$ chia hết cho $\mathrm{b}_1$ và $\mathrm{b}_1$ chia hết cho $\mathrm{a}_1$.

Suy ra $a_l=b_1=1$. Vậy,

$A=\frac{d^2\left(a_1^2+b_1^2\right)}{d^2 c_1 b_1}=\frac{2 d^2 a_1^2}{d^2 c_1^2}=2$

Ví dụ 3

Chứng minh rằng với mọi số nguyên dương $n$ ta đều có $n^3+5 n$ chia hết cho 6 .

(Thi vào lớp 10 chuyên, DHKHTN ĐHQGHN năm 1996).

Lời giải

Ta có $n^3+5 n=\left(n^3-n\right)+6 n$. Để chứng minh $n^3+5 n$ chia hết cho 6 ta chứng minh $n^3-n$ chia hết cho 6 .

Do $n^3-n=n(n-1)(n+1)$ là tích của ba số nguyên liên tiếp nên chia hết cho 2 và 3 .

Vì $(2,3)=1$ nên $n^3-n$ chia hết cho tích $2 \times 3=6$.

Ví dụ 4

Cho $a, b, c$ là các số nguyên. Chứng minh rằng $a^3+b^3+c^3$ chia hết cho 6 khi và chỉ khi $a+b+c$ chia hết cho 6 .

Lời giải

Xét $A=a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)$.

Theo ví dụ 3 thì $a^3-a \cdot b^3-b$ và $c^3-c$ đều chia hết cho 6 . Suy ra $A$ chia hết cho 6. Vậy. $a^3+b^3+c^3$ chia hết cho 6 khi và chỉ khi $a+b+c$ chia hết cho 6 .

Ví dụ 5

Chứng minh $S=n^2+3 n-38$ không chia hết cho 49 , với mọi số tự nhiên $n$.

Lời giải

Giả sử tồn tại $n$ sao cho $S=n^2+3 n-38$ chia hết cho $+9$. Vì

$n^2-4 n+4=n^2+3 n-38-7(n-6)$

nên $n^2-t n+4$ chia hết cho 7 hay $(n-2)^2$ chia hết cho 7 . Suy ra $n-2$ chia hết cho 7 hay $n=2+7 t$.

Thay vào $S$ ta được : $S=49\left(t^2+t\right)-28$. Suy ra $S$ không chia hết cho 49 , trái với điều giả sử.

Vậy $S$ không chia hết cho 49 với mọi số tự nhiên $n$.

Ví dụ 6

Chứng minh rằng với mọi số tự nhiên $n$ ta luôn có

$A=2005^n+60^n-1897^n-168^n \text { chia hết cho } 2004 \text {. }$

Lời giải

Ta có $2004-12 \times 167$. Vì $(12,167)=1$ nên để chứng minh $A$ chia hết cho 2004 ta chứng minh $A$ chia hết cho 12 và 167 .

Ta có: $A=\left(2005^n-1897^n\right)-\left(168^n-60^n\right)$.

Áp dụng tính chất $a^{\prime \prime}-b^n$ chia hết cho $a-b$ với mọi $n$ tự nhiên và $a-b \neq 0$. ta suy ra $2005^n-1897^n$ chia hết cho $2005-1897=108=12 \times 9$.

Suy ra $2005^n-1897^n$ chia hết cho 12 . Mặt khác, 168 và 60 đều chia hết cho 12 nên $168^n-60^n$ chia hết cho 12 . Vậy $A$ chia hết cho 12 .

Tương tự như trên, ta có

$A=\left(2005^n-168^n\right)-\left(1897^n-60^n\right) .$

Cũng lập luận tương tự như trên, ta có $2005^n-168^n$ chia hết cho $2005-168=1837$; $1897^n-60^n$ chia hết cho $1897-60=1837$ và $1837=11 \times 167$ nên $2005^n-168^n$ và $1897^n-60^n$ chia hết cho 167 . Suy ra $A$ chia hết cho 167 .

Vậy ta có điều phải chứng minh.

BÀI TẬP

1. Chứng minh $a+2 \mathrm{~b}$ chia hết cho 3 khi và chỉ khi $b+2 a$ chia hết cho 3 .

2. Giả sử $a-c$ là ước của $a b+c d$. Chứng minh rằng $a-c$ cũng là ước của $a d+b c$.

3. Cho $a, b \in \mathbb{N}$. Chứng minh $\frac{11 a+2 b}{19} \in \mathbb{Z}$ khi và chỉ khi $\frac{18 a+5 b}{19} \in \mathbb{Z}$.

4. Cho $n$ nguyên dương. Chứng minh rằng

$(n !+1,(n+1) !+1)=1 .$

5. Cho $a, b$ là các số nguyên. Chứng minh rằng

$(5 a+3 b, 13 a+8 b)=(a, b) \text {. }$

6. Cho các số nguyên $m, n, p, q$ thỏa mãn $|p \cdot m-q \cdot n|=1$. Chứng minh rằng với mọi cặp số nguyên $a, b$ ta đều có

$(m a+n b, p a+q b)=(a, b) .$

7. Giả sử $(a, n)=p$ và $(b, n)=q$. Chứng minh rằng $(a b, n)=(p q, n)$.

8. Cho $a \leq b \leq c$ và $b=a q_1+r_1, c=a \cdot q_2+r_2$. Chứng minh rằng

$(a, b, c)=\left(a, r_1, r_2\right) .$

9. Chứng minh rằng với mọi số tự nhiên $n$, các phân số sau là phân số tối giản

(a) $\frac{21 n+4}{14 n+3}$;

(b) $\frac{15 n^2+8 n+6}{30 n^2+21 n+13}$;

(c) $\frac{n^3+2 n}{n^4+3 n^2+1}$.

$(I M O-1959)$.

10. Xác định các giá trị của $n$ để các phân số sau đây là phân số tối giản

(a) $\frac{n+22}{n+3}$

(b) $\frac{3 n+2}{2 n+3}$

(c) $\frac{18 n+3}{21 n+7}$.

11. Xét phân số

$A=\frac{n^2+4}{n+5} .$

Hỏi có bao nhiêu số tự nhiên $n$ trong khoảng từ 1 đến 2005 sao cho phân số $A$ chưa tối giản?

12. Chứng minh rằng với mọi bộ ba số lẻ $a, b, c$ ta đều có

$\left(\frac{a+b}{2}, \frac{b+c}{2}, \frac{c+a}{2}\right)=(a, b, c) .$

13. Cho $\mathrm{a}, \mathrm{b}, c$ là các số nguyên dương. Chứng minh

a) $(a, b, c)=\frac{(a, b, c) a b c}{(a, b)(b, c)(c, a)}$;

b) $[a, b, c]=\frac{(a, b, c)[a, b][b, c][c, a]}{a b c \ldots}$.

14. Cho $a_1, a_2, \ldots, a_n$ là các số nguyên dương và $n>1$. Đặt

$A=a_1 a_2 \ldots a_n, A_i=\frac{A}{a_i}(i=\overline{1, n}) .$

Chứng minh các đẳng thức sau :

a) $\left(a_1, a_2, \ldots, a_n\right)\left[A_1, A_2, \ldots, A_n\right]=A$;

b) $\quad\left[a_1, a_2, \ldots, a_n \mid\left(A_1, A_2, \ldots, A_n\right): A\right.$.

15. Cho $m, n$ là hai số tự nhiên nguyên tố cùng nhau. Hãy tìm ước số chung lớn nhất của hai số $A=m+n$ và $B=m^2+n^2$.

(Thi học sinh gioi Toán toàn quốc lớp 9 năm 1979).

16. Xác định ước số chung lớn nhất của hai số sau :

a) $(7 a+1,8 a+3)$

b) $(11 a+2,18 a+5)$

trong đó $a$ là một số nguyên cho trước.

17. Cho $n$ là một số nguyên dương. Hãy tính bội số chung nhỏ nhất của các số

$n, n+1, n+2 \text {. }$

18. Chứng minh rằng với mọi số nguyên dương $n$ ta có

$[1,2, \ldots, 2 n]=[n+1, n+2, \ldots, n+n]$

19. Cho số nguyên $a$ không chia hết cho 2 và 3 . Chứng minh rằng :

$A: 4 a^2+3 a+5 \text { chia hết cho } 6 \text {. }$

20. Chứng minh rằng $\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6} \in \mathbb{Z}, \forall u \in \mathbb{Z}$.

21. Chứng minh rằng $\mathrm{A}(\mathrm{n})=\mathrm{n}^4+6 \mathrm{n}^3+11 \mathrm{n}^2+6 n$ chia hết cho 24 .

(Thi học sinh giỏi Toán toàn quốc – lớp 9 năm 1975)

22. Chứng minh rằng $n^5-n$ chia hết cho 30 , với mọi $n$.

23. Chứng minh rằng $m^3+3 m^2-m-3$ chia hết cho 48 , với mọi $m$ lẻ.

24. Chứng minh rằng $n^{12}-n^8-n^4+1$ chia hết cho 512 , với mọi $n$ lẻ.

25. Chứng minh rằng $A(n)=n^4 \cdots 14 n^3+71 n^2-154 n+120$ chia hết cho 24 , với mọi số tự nhiên $n$.

26. Chứng minh rằng $n^4-4 n^3-4 n^2+16 n$ chia hết cho 384 , với mọi số tự nhiên $n$ chẵn.

(Thi học sinh giỏi toàn quốc – lớp 9 năm 1970)

27. Tìm tất cả các số nguyên dương $n$ sao cho $n^2+9 n-2$ chia hết cho 11 .

28. Tìm tất cả các số nguyên $x$ sao cho : $\left(x^3-8 x^2+2 x\right)$ chia hết cho $x^2+1$.

(Thi vô địch Bun-ga-ri năm 1977)

29. Cho $f(x)=a x^2+b x+c$ thoả mãn : $f(x) \in \mathbb{Z}, \forall x \in \mathbb{Z}$. Hỏi $a, b, c$ có nhất thiết phải là các số nguyên hay không? Tại sao?

(Thi vào lớp 10 chuyên, $Đ H K H T N$ – ĐHQGHN năm 2001)

30. Chứng minh $n^2+n+2$ không chia hết cho 15 , với mọi $n$ thuộc $\mathbb{Z}$.

31. Chứng minh $n^2+3 n+5$ không chia hết cho 121 , với mọi $n$ thuộc $\mathbb{N}$.

32. Chứng minh $9 n^3+9 n^2+3 n-16$ không chia hết cho 343 , với mọi $n$ thuộc $\mathbb{N}$.

33. Chứng minh $4 n^3-6 n^2+3 n+37$ không chia hết cho 125 , với mọi $n$ thuộc $\mathbb{N}$.

34. Cho $a$ và $b$ thuộc $\mathbb{N}$. Chứng minh rằng $5 a^2+15 a b-b^2$ chia hết cho $49 \mathrm{khi}$ và chỉ khi $3 a+b$ chia hết cho 7 .

35. Cho $a, b \in \mathbb{N}$. Chứng minh rằng $2 a+b$ chia hết cho 7 khi và chỉ khi $3 a^2+10 a b-8 b^2$ chia hết cho 49 .

36. Cho $n \in \mathbb{N}$. Chứng minh rằng số $A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)$ chia hết cho 91 .

(Thi vào lớp 10 chuyên, ĐHSPHN năm 1998).

37. Cho $n \in \mathbb{N}$. Chứng minh $6^{2 n}+19^n-2^{n+1}$ chia hết cho 17 .

38. Chứng minh $2^{8 n} \cdot 5^{6 n}-1980^n-441^n+1$ chia hết cho 1979 , với mọi $n$ thuộc $\mathbb{N}$.

39. Chứng minh $118^n-101^n-16^n-1$ chia hết cho 234 , với mọi $n$ lẻ.

40. Chứng minh $11^{n+2}+12^{2 n+1}$ chia hết cho 133 , với mọi $n$ thuộc $\mathbb{N}$.

41. Chứng minh $5^{2 n-1} \cdot 2^{n+1}+3^{n+1} \cdot 2^{2 n-1}$ chia hết cho 38 , với mọi $n$ thuộc $\mathbb{N}^*$.

42. Chứng minh $5^{n+2}+26.5^n+8^{2 n+1}$ chia hết cho 59. với mọi $n$ thuộc $\mathbb{N}$.

43. Tìm số tự nhiên $n$ lớn nhất sao cho $: 29^n$ là ước của 2003 !.

44. Tìm số tự nhiên $k$ lớn nhất sao cho : $(1994 \text { ! })^{1995} \quad \vdots 1995^k$.

(Thi học sinh giỏi Toán toàn quốc – lớp 9. năm 199t).

45. Cho $n$ thuộc $\mathbb{N}$ và $n>3$. Chứng minh rằng nếu $2^n=10 a+b(0<b<10)$ thì tích $a \cdot b$ chia hết cho 6 .

(Thi học sinh giỏi Toán toàn quốc lớp 9 năm 1983).

46. Cho $n$ thuộc $\mathbb{N}, n \geq 1$. Chứng minh $T_n=1^5+2^5+\ldots+n^5$ chia hết cho tổng của $n$ số tự nhiên đầu tiên $S_n=1+2+\ldots+n$.

(Thi vào lớp 10 chuyên $Đ H S P H N$ năm 2001).

47. Tìm $n$ nguyên dương sao cho : $(n-1)$ ! chia hết cho $n$.

(Thi vô địch Hungari năm 1951).

48. Xác định $n$ nguyên dương $(\mathrm{n} \geq 3$ ) sao cho số $A=1.2 .3 \ldots \mathrm{n}$ (tích của $n$ số nguyên dương đầu tiên) chia hết cho $B=1+2+\ldots+n$.

(Thi vào lớp 10 chuyên ĐHKHTN – ĐHQGHN năm 1994).

49. Cho $a$ và $m$ là các số nguyên dương và $a>1$. Chứng minh rằng

$\left(\frac{a^m-1}{a-1}, a-1\right)=(m, a-1) .$

50. Cho $a, m, n$ là các số nguyên dương và $a \neq 1$. Chứng minh rằng $a^n-1 \backslash a^m-1$ khi và chỉ khi $n \backslash m$.

51. Cho $a, m, n$ là các số nguyên dương và $a>1$. Chứng minh rằng

$\left(a^m-1, a^n-1\right)=a^{(m, n)}-1 .$

52. Cho $a, b$ là hai số nguyên dương không nhỏ hơn 2 và nguyên tố cùng nhau. Chứng minh rằng nếu $m, n$ là hai số nguyên dương thỏa mãn $a^n+b^n \backslash a^m+b^m$ thì ta cũng có $n . \mid m$.

53. Cho $a, b, n$ là các số nguyên dương. Biết rằng với mọi số tự nhiên $k \neq b$ ta đều có $k^n-a$ chia hết cho $k-b$. Chứng minh $a=b^n$.

54. Chứng minh rằng tồn tại vô hạn số tự nhiên $n$ sao cho : $4 n^2+1$ chia hết cho cả 5 và 13 .

55. Giả sử $1-\frac{1}{2}+\frac{1}{3}-\ldots+\frac{1}{1319}=\frac{p}{q}$, trong đó $p, q$ là các số nguyên. Chứng minh rằng $p$ chia hết cho 1979.

56. Cho $a_1, a_2, \ldots, a_n \in{1,-1}, n \in \mathbb{N}^*$ và thoả mãn :

$a_1 a_2+a_2 a_3+\ldots+a_n a_1=0 \text {. }$

Chứng minh $n$ chia hết cho 4 .

57. Chứng minh rằng tổng bình phương của $p$ số nguyên liên tiếp ( $p$ là số nguyên tố, $p>3$ ) chia hết cho $p$.

58. Cho số nguyên $a$ không nhỏ hơn 2 . Hỏi có tồn tại hay không số tự nhiên $A$ sao cho

$a^{2001}<A<a^{2002}$

và $A$ có ít nhất 600 chữ số 0 ở tận cùng?

59. Có tồn tại hay không 4004 số nguyên dương sao cho tổng của 2003 số bất kì đều không chia hết cho 2003 .

(Balkan 2003).

60. Tìm một cặp số nguyên dương $(a, b)$ thoả mãn đồng thời các điều kiện sau :

a) $a b(a+b)$ không chia hết cho 7 .

b) $(a+b)^7-a^7-b^7$ chia hết cho $7^7$.

(IMO-198t).

61. Giả sử $a, b$ là hai số nguyên dương khác nhau. Chứng minh rằng tồn tại vô số số tự nhiên $n$ sao cho $a+n$ và $b+n$ là hai số nguyên tố cùng nhau.

 

LỜI GIẢI – HƯỚNG DẪN – ĐÁP SỐ

1. Suy ra từ đẳng thức : $(a+2 b)+(b+2 a)=3(a+b)$.

2. Suy ra từ đẳng thức : $(a b+c d)-(a d+b c)=(a-c)(b-d)$.

3. Suy ra từ đẳng thức : $5 \cdot \frac{11 a+2 b}{19}-2 \cdot \frac{18 a+5 b}{19}=a$.

4. Giả sử $d=(n !+1,(n+1) !+1)$.

Ta có $d \backslash n !+1$ và $d \backslash(n+1) !+1$ nên $d \backslash(n+1) !+1-n !-1=n ! . n\quad\quad(1)$.

Vì $d \backslash n !+1$ nên $(d, n)=(d, n !)=1$. Từ (1) suy ra $d=1$.

5. Giả sử $d=(a, b)$ và $d^{\prime}=(5 a+3 b, 13 a+8 b)$.

Vì $d \backslash a$ và $d \backslash b$ nên $d \backslash 5 a+3 b$ và $d \backslash 13 a+8 b$. Suy ra $d \backslash d\quad(1)$.

Vì $d^{\prime} \backslash 5 a+3 b$ và $d^{\prime} \backslash 13 a+8 b$ nên

$d^{\prime} \backslash 8(5 a+3 b)-3(13 a+8 b)=a$

và $\quad d^{\prime} \backslash 5(13 a+8 b)-13(5 a+3 b)=b$.

Suy ra $d^{\prime} \backslash d\quad\quad(2)$.

Từ (1) và (2) ta suy ra $d^{\prime}=d$.

6. Giải tương tự bài $1.5$.

7. Ta có $(a, n)=p$ nên $a=p \cdot a_1, n=p n_1$ với $\left(a_1, n_1\right)=1$. Suy ra

$(a b, n)=\left(p a_1 b, p n_1\right)=p \cdot\left(a_1 b, n_1\right)=p\left(b, n_1\right)=(p b, n)$

$\text { Vì }(b, n)=q \text { nên } b=q \cdot b_1 \text { và } n=q \cdot n_2 \text { với }\left(b_1, n_2\right)=1 . \text { Suy ra }$

$(p b, n)=\left(p \cdot q \cdot b_1, q \cdot n_2\right)=q\left(p b_1, n_2\right)=q\left(p, n_2\right)=(p q, n)$

8. Giải tương tự bài $1.5$.

9. a) Giả sử $(21 n+4,14 n+3)=d(d \geq 1)$.

Ta có $d \backslash 21 n+4$ và $d \backslash 14 n+3$ nên $d \backslash 3(14 n+3)-2(21 n+4)=1$.

Vậy $d=1$.

Các bạn tự giải các câu b) và c).

10. a) Ta có $\frac{n+22}{n+3}=1+\frac{19}{n+3}$. Phân số đã cho tói gian khi và chi khi $(n+3,19)=1$ hay $n \neq 19 m-3$.

b) Vì $(2 n+3,2)=1$ nên phân số đã cho tối gian khi và chi khi phân số sau tối gịản

$B=\frac{2(3 n+2)}{2 n+3}=3-\frac{5}{2 n+3} .$

Phân số $B$ tối giann khi và chi khi $(2 n+3,5)=1$.

Ta có $(2 n+3,5) \neq 1$ khi và chi khi $5 \backslash 2 n+3$ hay $2 n+3=5 a$.

Xét $2 n+3=5 a$, ta có $n=2 a+\frac{a-3}{2}$.

Vì $n$ và $a$ là các số nguyên nên $a-3=2 m$, từ đó có $n=5 m+6$.

Vậy phân số đã cho tối giản khi và chi khi $n \neq 5 m+6$.

c) Đáp số: $n \neq 7 m+1$.

11. Giả sử $A$ là phân số chưa tối giản. Đặt $d=\left(n^2+4, n+5\right)$ suy ra $d>1$. Ta có

$d \backslash(n+5)^2-\left(n^2+4\right)=10 n+21=10(n+5)-29$

nên $d \backslash 29$ suy ra $d=29$.

Ngược lại, nếu $n+5$ chia hết cho 29 thì có thể đặt

$n+5=29 . m\left(m \in \mathbb{N}^*\right)$

12. Giải tương tự bài 5 .

13. Giải tương tự bài 5 .

14. Giải tương tự bài 5 .

15. Giả sử $d=(A, B)(d \geq 1)$. Ta có $d \backslash A^2-B$ suy ra $d \backslash 2 m n\quad(1)$.

Vì $d \backslash A$ nên $d \backslash 2 n \cdot A$ hay $d \backslash 2 m n+2 n^2$. Suy ra $d \backslash 2 n^2\quad(2)$.

Tương tự ta cũng có $d \backslash 2 m^2\quad(3)$

Vì $(m, n)=1$ nên $m, n$ không cùng chẵn. Xét các trường hợp:

  • Nếu $m, n \cdot$ khác tính chã̃n lẻ thì $d$ lẻ. Từ (2) và (3) ta suy ra $d \backslash m^2$ và $d \backslash$ $n^2$. Vì $(m, n)=1$ nên $d=1$.

  • Nếu $m, n$ cùng lẻ thì $d$ chã̃n. Đặt $d=2 d$, từ (2) và (3) ta suy ra $d \backslash m^2$ và $d^n \backslash n^2$. Vì $(m, n)=1$ nên $d^n=1$. Suy ra $d=2$.

16. a) Đặt $d=(7 a+1,8 a+3)$.

Ta có $d \backslash 7(8 a+3)-8(7 a+1)=13$ nên $d=1$ hoặc $d=13$.

Để $d=13$ thì điều kiện cần và đủ là $13 \backslash 7 a+1$.

Xét phương trình: $7 a+1=13 x$.

Ta có $a=2 x-\frac{x+1}{7}$ là một số nguyên nên $7 \backslash x+1$.

Đặt $x+1=7 m$ ta được $a=13 m-2, m \in \mathbb{Z}$.

Vậy, khi $a=13 m-2, m \in \mathbb{Z}$ thì $(7 a+1,8 a+3)=13$,

$a \neq 13 m-2, m \in \mathbb{Z}$ thì $(7 a+1,8 a+3)=1$

b) Giải tương tự câu a).

Đáp Số:

  • Nếu $a=19 m-14, m \in \mathbb{Z}$ thì $(11 a+2,18 a+5)=19$

  • Nếu $a \neq 19 m-14, m \in \mathbb{Z}$ thì $(11 a+2,18 a+5)=1$.

18. Giả sử $m=[1,2, \ldots, 2 n]$ và $m^{\prime}=[n+1, \ldots, n+n](n \geq 2)$.

Để chứng minh $m=m^{\prime}$ ta chứng minh $m \backslash m^{\prime}$ và $m^{\prime} \backslash m$.

Vì $n+1, n+2, \ldots, n+n$ là ước của $m$ nên $m^{\prime} \backslash m$.

Ngược lại, xét số $a \in{1,2, \ldots, n}$ tùy ý.

Trong $a$ số nguyên liên tiếp $n+1, \ldots, n+a$ luôn có một số chia hết cho $a$ nên $a \backslash m^{\prime}$. Suy ra các số $1,2, \ldots, 2 n$ đều là ước của $m^{\prime}$ hay $m \backslash m^{\prime}$.

Vậy $m=m^{\prime}$.

19. Vì $a$ không chia hết cho 2 và 3 nên $a$ có dạng: $a=6 m \pm 1(m \in \mathbb{Z})$

  • Với $a=6 m+1$ ta có $A=4(6 m+1)^2+3(6 m+1)+5$

$=6\left(24 m^2+11 m+2\right) \vdots 6 \text {. }$

  • Với $a=6 m-1$ ta có $A=4(6 m-1)^2+3(6 m-1)+5$

$=6\left(24 m^2-5 m+1\right) \vdots 6 \text {. }$

Vậy $A$ chia hết cho 6 , với mọi $a$ không chia hết cho 2 và 3 .

20. Ta có $\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{a(a+1)(a+2)}{6}$.

Vì $a(a+1)(a+2)$ là tích của ba số nguyên liên tiếp nên chia hết cho 6 từ đó suy ra đpcm.

21. Ta có $A(n)=n(n+1)(n+2)(n+3)$.

Vì tích của ba số nguyên liên tiếp chia hết cho 3 nên $A(n)$ chia hết cho 3 . Trong bốn số nguyên liên tiếp luôn có hai số chẵn liên tiếp, một trong hai số đó chia hết cho 4 nên $A(n)$ chia hết cho 8 .

Vì $(3,8)=1$ nên $A(n)$ chia hết cho $3 \times 8=24$.

22. Ta có $30=6 \times 5$. Vì $(6,5)=1$ nên để chứng minh $n^5-n$ chia hết cho 30 ta chứng minh $n^5-n$ chia hết cho 6 và 5 .

Ta có $n^5-n=(n-1) n(n+1)\left(n^2+1\right)$. Vì $(n-1) n(n+1)$ là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3 .

Suy ra $n^5-n$ chia hết cho $2 \times 3=6$.

Mặt khác ta lại có

$n^5-n=(n-1) n(n+1)(n^2-4+5)$

$=(n-2)(n-1) n(n+1)(n+2)+5(n-1) n(n+1) .$

Vì $(n-2)(n-1) n(n+1)(n+2)$ là tích cua năm sổ nguyên liên tiếp nên chia hết cho 5 .

Suy ra $n^5-n$ chia hết cho 5 .

Vậy $n^5-n$ chia hết cho 30 .

23. Đặt $A=m^3+3 m^2-m-3$.

Ta có $A=(m+3)\left(m^2-1\right)=(m+3)(m+1)(m-1)$.

Vì $m$ lẻ nên $m=2 n+1(n \in \mathbb{Z})$, từ đó suy ra $A=8 .(n+2)(n+1) n \Rightarrow$ đpcm.

24. Đặt $A=n^{12}-n^8-n^4+1$. Ta có

$A=\left(n^4-1\right)\left(n^8-1\right)=\left[\left(n^2-1\right)\left(n^2+1\right)\right]^2\left(n^4+1\right) .$

Vì $n$ lẻ nên $n=2 m+1$, suy ra $A=64 \cdot[m(m+1)]^2\left(2 m^2+2 m+1\right)^2\left(n^4+1\right)$.

25. Ta có $24=3 \times 8$. Để chứng minh $A(n)$ chia hết cho 24 ta chứng minh $A(n)$ chia hết cho 3 và 8 .

Ta có $A(n)=(n-2)(n-3)(n-4)(n-5)$ (bạn đọc tự phân tích).

Vì $A(n)$ là tích của bốn số nguyên liên tiếp nên $A(n)$ chia hết cho 3 .

Trong bốn số nguyên liên tiếp $n-2, n-3, n-4, n-5$ luôn có hai số chã̃n liên tiếp. Một trong hai số đó chia hết cho 4 , số còn lại chia hết cho 2 nên $A(n)$ chia hết cho 8 . Vì $(3,8)=1$ nên $A(n)$ chia hết cho $3 \times 8=24$.

26. Đặt $A=n^4-4 n^3-4 n^2+16 n$. Ta có $A=n(n-4)\left(n^2-4\right)$.

Vì $n$ chẵn nên $n=2 m(m \in \mathbb{Z})$. Từ đó suy ra $A=16 .(m-2)(m-1) m(m+1)$.

Vì $(m-2)(m-1) m(m+1)$ là tích của 4 số nguyên liên tiếp nên chia hết cho 8 và 3 .

Từ đó có đpcm.

27. Đáp số: $n=11 m+6$ hoặc $n=11 m+7(m \in \mathbb{N})$.

Hướng dẫn :

$\text { Ta có } n^2+9 n-2 \vdots 11 \Leftrightarrow n^2-2 n-2 \vdots 11 \Leftrightarrow 4\left(n^2-2 n-2\right) \vdots 11$

$\Leftrightarrow 4 n^2-8 n+3 \vdots 11 \Leftrightarrow(2 n-1)(2 n-3) \vdots 11 .$

28. Đáp số: $x \in{-8,0,2}$.

Giả sử $\left(x^3-8 x^2+2 x\right) \vdots\left(x^2+1\right)$ suy ra

$x\left(x^2+1\right)-8\left(x^2+1\right)+x+8 \vdots\left(x^2+1\right) \text {. }$

hay $x+8 \vdots\left(x^2+1\right)\quad\quad( * )$

  • Nếu $x+8=0$ thì $x=-8$, thỏa mãn điều kiện đề bài.

  • Nếu $x \neq-8$ thì tù $\left(^*\right)$ ta phải có $|x+8| \geq x^2+1\quad\quad(1)$.

Bất phương trình (1) cho ta $x \in{-2,-1,0,1,2,3}$

Thử trực tiếp ta được $x=0$ và $x=2$ thỏa mãn.

Cách 2

$\text { Ta có } x+8 \vdots\left(x^2+1\right) \Rightarrow x^2+8 x \vdots\left(x^2+1\right) \Rightarrow 8 x-1 \vdots\left(x^2+1\right)$

$\Rightarrow  8(x+8)-(8 x-1) \vdots x^2+1 \Rightarrow 65 \vdots\left(x^2+1\right)$

$\Rightarrow x^2+1 \text { là ước dương của } 65$

$\Rightarrow x^2+1 \in{1,5,13,65} .$

29. Cho $x=0$ suy ra $f(0)=c \in \mathbb{Z}$. Các số $a, b$ không nhất thiết phải là các số nguyên.

Ví dụ, chọn $a=b=\frac{1}{2}$, ta có

$f(x)=\frac{x(x+1)}{2}+c \in \mathbb{Z}, \forall x \in \mathbb{Z} \text {. }$

30. Giả sử $n^2+n+2 \vdots 15$ ta có $n^2+n+2 \vdots 3\quad\quad(1)$.

Từ (1) suy ra $n$ không chia hết cho 3 .

Vậy $n$ có dạng $3 k+1$ hoặc $3 k-1(k \in \mathbb{Z})$, ta có

$n^2-1=(n-1)(n+1) \vdots 3$

$\Rightarrow n^2+n+2=\left(n^2-1\right)+n+3 \text { không chia hết cho } 3 \text {, mâu thuẫn với (1). }$

31. Giả sử $n^2+3 n+5 \vdots 121$ suy ra $n^2+3 n+5 \vdots 11$ hay $4 n^2+12 n+20 \vdots 11$ Vậy

$4 n^2+12 n+9 \vdots 11 \Rightarrow(2 n+3)^2 \vdots 11 \Rightarrow 2 n+3 \vdots 11$

Nhưng khi đó

$4\left(n^2+3 n+5\right)=(2 n+3)^2+11$ không chia hết cho 121 , mâu thuẫn với điều giả sử trên, từ đó suy ra đpcm.

32. Giải tương tự bài 31

33. Giải tương tự bài 31

34. $\Rightarrow \text { ) Giả sử } 5 a^2+15 a b-b^2 \vdots 49 \Rightarrow 5 a^2+15 a b-b^2 \vdots 7$

$\Rightarrow 9 a^2+6 a b+b^2 \vdots 7 \Rightarrow(3 a+b)^2 \vdots 7 \Rightarrow 3 a+b \vdots 7 \text {. }$

$\Leftrightarrow) \text { Giả sử } 3 a+b \vdots 7 \Rightarrow 3 a+b=7 c(c \in \mathbb{Z}) \Rightarrow b=7 c-3 a$

$\Rightarrow 5 a^2+15 a b-b^2=5 a^2+15 a(7 c-3 a)-(7 c-3 a)^2$

$=49\left(c^2+3 a c-a^2\right) \vdots 49 .$

35. Giải tương tự bài 34.

36. Ta có $91=7 \times 13$. Vì $(7,13)=1$ nên để chứng $\operatorname{minh} A \vdots 91$ ta chi cần chứng $\operatorname{minh} A \vdots 7$ và $A \vdots 13$.

  • Chứng $\operatorname{minh} A \vdots$ 7: Ta viết $A$ dưới dạng: $A=\left(25^n-18^n\right)-\left(12^n-5^n\right)$. Vì $\left(25^n-18^n\right) \vdots 25-18=7$ và $\left(12^n-5^n\right) \vdots 12-5=7$ nên $A \vdots 7$.

  • Chứng $\operatorname{minh} A \vdots$ 13: Ta viết $A$ dưới dạng: $A=\left(25^n-12^n\right)-\left(18^n-5^n\right)$ Vì $\left(25^n-12^n\right) \vdots 25-12=13$ và $\left(18^n-5^n\right) \vdots 18-5=13$ nên $A \vdots 13$. Vậy $A \vdots 91, \forall n \in \mathbb{N}$.

37. Đặt $A(n)=6^{2 n}+19^n-2^{n+1}$.

Ta có $A=36^n+19^n-2 \cdot 2^n=\left(36^n-2^n\right)+\left(19^n-2^n\right)$.

Vì $36^n-2^n \vdots 34(=36-2)$ nên $36^n-2^n \quad \vdots 17$ và $19^n-2^n \vdots 17(=19-2)$ nên $A(n) \vdots 17$.

38. Đặt $A(n)=2^{8 n} \cdot 5^{6 n}-1980^n-441^n+1$.

Ta có $A=\left(4000000^n-441^n\right)-(1980-1)^n$.

Vì $\left(4000000^n-441^n\right) \vdots 3999599(=4000000-441=2021)$ nên

$\left(4000000^n-441^n\right) \vdots 1979$

và $1980^n-1 \vdots 1979(=1980-1)$ nên $A(n) \vdots 1979$.

39. Giải tương tự bài $36$.

40. Giải tương tự bài $37$.

41. Giải tương tự bài 36.

42. Giải tương tự bài 37.

43. Các số chia hết cho 29 trong khoảng từ 1 đến 2003 là:

$29 \times 1,29 \times 2,29 \times 3, \ldots, 29 \times 69 \text {. }$

Suy ra $2003 !=29^{69} \cdot 69 ! . A$, trong đó $(A, 29)=1$.

Các số chia hết cho 29 trong khoảng từ 1 đến 69 là: $29 \times 1,29 \times 2$.

Suy ra: $69 !=29^2 \cdot 2 ! . B$, trong đó $(B, 29)=1$.

Vậy $2003 !=29^{71} \cdot 2 \cdot A \cdot B$, trong đó $(A \cdot B, 29)=1$.

Từ đó suy ra $n$ cần tìm là 71 .

44. Đáp số: $k=217455$.

$1995=3 \times 5 \times 7 \times 19 .$

Ta :cần tìm số mũ lớn nhất của 19 trong phân tích tiêu chuẩn của số $(1994 !)^{1995}$. Xem lại bài 43.

45. Ta có $2^n=10 a+b$ nên $b \vdots 2$ hay $a b \vdots 2$. Ta chứng minh $a b \vdots 3$ :

Từ đẳng thức $2^n=10 a+b$ suy ra $2^n$ có chữ số tận cùng là $b$.

Đặt $n=4 k+r(k, r \in \mathbb{N}, 0 \leq r \leq 3)$ ta có $2^n=16^k \cdot 2^r$.

Nếu $r=0$ thì $2^n=16^k$ có chữ số tận cùng là 6 suy ra $b=6$ hay $a b \vdots 6$.

Nếu $1 \leq r \leq 3$ thì $2^n-2^r=2^r\left(16^k-1\right) \vdots 10$ suy ra $2^n$ có tận cùng là $2^r$.

Vậy ta có $b=2^r$, từ đó suy ra

$10 a=2^n-2^r=2^r\left(16^k-1\right) \vdots 3 \Rightarrow a \vdots 3 \Rightarrow a b \vdots 3 .$

46. Ta có $2 S_n=n(n+1)$.

Mặt khác, sử dụng tính chất $a^n+b^n \vdots(a+b), \forall a, b \in \mathbb{N}^*$ và $n$ lẻ ta có

$2 T_n=\left(1^5+n^5\right)+\left(2^5+(n-1)^5\right)+\ldots+\left(n^5+1\right) \vdots(n+1)\quad\quad(1) .$

$2 T_n=\left(1^5+(n-1)^5\right)+\left(2^5+(n-2)^5\right)+\ldots+\left((n-1)^5+1\right)+2 n^5 \vdots n\quad\quad(2) .$

Do $(n, n+1)=1$, từ $(1)$ và $(2)$ ta suy ra

$2 T_n \vdots n(n+1)=2 S_n \Rightarrow T_n \vdots S_n .$

Tổng quát, ta có thể chứng minh được:

$1^k+2^k+\ldots+n^k$ chia hết cho $1+2+\ldots+n, \forall n, k \in \mathbb{N}, n \geq 1$ và $k$ lẻ.

47. Dễ thấy $n=1$ thỏa mãn và $n=4$ không thỏa mãn. Xét $n>1$ và $n \neq 4$ :

Từ giả thiết suy ra $n$ là hợp số, như vậy $n$ có thể viết được dưới dạng $n=p . q$, trong đó $p, q$ là các số nguyên dương thỏa mãn: $2 \leq p, q \leq\left[\frac{n}{2}\right]$.

  • Nếu $p \neq q$ thì trong tích $(n-1) !=1.2 \ldots n$ chứa cả hai số $p$ và $q$ nên $(n-1)$ ! chia hết cho $n$.

  • Nếu $p=q$ thì $p, q>2$ và trong tích $(n-1)$ ! chứa cả $p$ và $2 p$ nên $(n-1)$ ! chia hết cho $n$.

48. Xem lời giải bài 47.

49. Giả sử $d=\left(\frac{a^m-1}{a-1}, a-1\right)$ và $d^{\prime}=(m, a-1)$. Ta có

$\frac{a^m-1}{a-1}=a^{m-1}+a^{m-2}+\ldots+a+1$

$=\left(a^{m-1}-1\right)+\left(a^{m-2}-1\right)+\ldots+(a-1)+m .$

Vì $a^i-1$ chia hết cho $a-1$ và do đó chia hết cho $d$ với mọi $i \geq 1$ nên $d \backslash m$. Suy ra $d \backslash d$.

Ngược lại, vì $d^{\prime} \backslash a-1$ nên $d^{\prime} \backslash a^i-1$ với mọi $i \geq 1$. Hơn nữa, $d^{\prime} \backslash m$ nên $d^{\prime} \backslash$ $\frac{a^m-1}{a-1}$ và do đó $d^{\prime} \backslash d$.

Vậy $d=d$.

50. $\Rightarrow)$ Giả sử $a^n-1 \backslash a^m-1$. Ta chứng minh $n \backslash m$.

Đặt $m=q n+r, 0 \leq r<n$. Ta có

$a^m-1=a^{n q+r}-1=a^r\left(a^{n q}-1\right)+a^r-1$

$\text { Vì } a^n-1 \backslash a^m-1 \text { và } a^n-1 \backslash a^{n q}-1 \text { nên } a^n-1 \backslash a^r-1 .$

$\text { Mặt khác } 0 \leq a^r-1<a^n-1 \text { nên } a^r-1=0 \text { hay } r=0 .$

$\Leftarrow)$ Dễ dàng chứng minh được.

51. Giả sử $d=(m, n)$ và $d=\left(a^m-1, a^n-1\right)$. Đặt $m=d . m_1, n=d . n_1$ ta có $a^m-1=\left(a^d\right)^{m_1}-1$ chia hết cho $a^d-1$

và $\quad a^n-1=\left(a^d\right)^{n_1}-1$ chia hết cho $a^d-1$

nên d’ chia hết cho $a^d-1\quad\quad(1)$.

Mặt khác, vì $d=(m, n)$ nên tồn tại hai số nguyên dương $x, y$ sao cho $m x-n y=d$. Vì $d^n \backslash a^m-1$ và $d^{\prime} \backslash a^n-1$ nên $d^{\prime} \backslash a^{m x}-1$ và $d^n \backslash a^{n y}-1$.

Suy ra $d^n \backslash a^{m x}-a^{n y}=a^{n y}\left(a^d-1\right)$. Vì $\left(d^n, a^{n y}\right)=1$ nên $d^n \backslash a^d-1\quad\quad(2)$.

Từ (1) và (2) ta có đpcm.

52. Giả sử $m$ không chia hết cho $n$, tức là $m=q \cdot n+r$ với $0<r<n$. Ta có

$a^m+b^m=a^{m-n}\left(a^n+b^n\right)-b^n\left(a^{m-n}-b^{m-n}\right) .$

Suy ra $a^n+b^n \backslash a^{m-n}-b^{m-n}$.

Nếu $q-1>0$, lại làm tương tự như trên tai có

$a^{m-n}-b^{m-n}=a^{m-2 n}\left(a^n+b^n\right)-b^n\left(a^{m-2 n}+b^{m-2 n}\right) .$

Suy ra $a^n-b^n \backslash a^{m-2 n}+b^{m-2 n}$.

Cứ lặp lại cách làm trên ta suy ra $a^n+b^n \backslash a^{m-n \cdot k}+(-1)^k b^{m-n k}, \forall k \leq q$.

Đặc biệt với $k=q$ ta có $a^n+b^n \backslash a^r+(-1)^q b^r$. Điều này không xảy ra vì

$0<\left|a^r+(-1)^q b^r\right|<a^r+b^r<a^n+b^n \text {. }$

53. Ta có $k-b \backslash k^n-a=\left(k^n-b^n\right)+\left(b^n-a\right)$ và $k-b \backslash k^n-b^n$ nên $k-b \backslash b^n-a$. Vì điều này đúng với mọi $k$ nên chọn $k$ sao cho $k-b>\left|b^n-a\right|$. Vì $b^n-a$ chia hết cho $k-b$ nên $b^n-a=0$ hay $a=b^n$.

54. Cần tìm $n$ sao cho $4 n^2+1$ chia hết cho 65 . Đặt $n=65 k+r$, ta chọn $r$ sao cho $4 r^2+1=65$ hay $r=\pm 4$.

Khi đó, mọi số $n$ có dạng $65 k \pm 4$ đều thỏa mãn.

55. Ta có

$\text { Ta có } \frac{p}{q}=\left(1+\frac{1}{2}+\ldots+\frac{1}{1319}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{1318}\right)$

$=\left(1+\frac{1}{2}+\ldots+\frac{1}{1319}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{659}\right)$

$=\frac{1}{660}+\ldots+\frac{1}{1319}$

$\Rightarrow 2 \cdot \frac{p}{q}=\left(\frac{1}{660}+\frac{1}{1319}\right)+\left(\frac{1}{661}+\frac{1}{1318}\right)+\ldots+\left(\frac{1}{1319}+\frac{1}{660}\right)=\frac{1979 . A}{B} \text {. }$

Từ đó suy ra $p$ chia hết cho 1979 .

56. Đặt $x_1=a_1 \cdot a_2, x_2=a_2 \cdot a_3, \ldots, x_n=a_n \cdot a_1$.

Vì $a_1, a_2, \ldots, a_n \in{-1,1}$ nên $x_1, x_2, \ldots, x_n \in{-1,1}$.

Ta có $x_1+x_2+\ldots+x_n=0$ suy ra trong các số $x_1, x_2, \ldots, x_n$ số các số 1 bằng số các số $-1$.

Giả sử số các số 1 là $m\left(\mathrm{~m} \in \mathbb{N}^*\right)$ thì $n=2 m$ và

$x_1 x_2 \ldots x_n=(-1)^m \text {. }\quad\quad(1)$

Mặt khác, $x_1 x_2 \ldots x_n=\left(a_1 a_2 \ldots a_n\right)^2=1\quad\quad(2)$.

Từ (1) và (2) suy ra $m$ chã̃n và điều đó có nghĩa là $n$ chia hết cho 4 .

57. Giả sử $p$ số nguyên liên tiếp đó là: $a+1, a+2, \ldots, a+p(\mathrm{a} \in \mathbb{Z})$.

Đặt $A=(a+1)^2+(a+2)^2+\ldots+(a+p)^2$. Ta có

$\mathrm{A}=p \cdot a^2+2(1+2+\ldots+p) \cdot a+\left(1^2+2^2+\ldots+p^2\right)$

Mặt khác: $1+2+\ldots+p=\frac{p(p+1)}{2}, 1^2+2^2+\ldots+p^2=\frac{p(p+1)(2 p+1)}{6}$.

Suy ra $6 A=p\left[6 a^2+6(p+1) a+(p+1)(2 p+1)\right]$ chia hết cho $p$.

Do $p$ là số nguyên tố và $p>3$ nên $(p, 6)=1$. Vậy $A$ chia hết cho $p$.

58. Vì $a^{2001}-a^{2000}=a^{2000}(a-1) \geq 2^{2000}=1024^{200}>10^{600}$ nên giữa $a^{2000}$ và $a^{2001}$ có ít nhất $10^{600}$ số nguyên dương liên tiếp. Trong số đó, tồn tại một số chia hết cho $10^{600}$, đó chính là số $A$ cần tìm.

59. Đáp số: 

Tồn tại. Có thể chọn 2002 số chia hết cho 2003 và 2002 số chia cho 2003 dư 1 .

60. Ta có $(a+b)^7-a^7-b^7=7 a b(a+b)\left(a^2+a b+b^2\right)^2$.

Chọn $b=1$ và $a^2+a+1=7^3$ (bạn đọc tự tính $a$ ) ta có đpcm.

61. Không mất tính tổng quát, giả sử $c=a-b>0$.

Ta có $b=q c+r$, với $q \geq 0,0 \leq r<c, q$ và $r$ không đồng thời bằng 0 .

Các số $n$ có dạng $n=c+1-r+k c, k \in \mathbb{Z}$ đều thoả mãn.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi xếp lớp chuyên 9 tại Star Education – Năm học 2018 2019

Mỗi năm Star Education đều tổ chức thi xếp lớp cho các em học sinh mới. Đối với môn toán có hai đề thi, đề thứ nhất dành cho các bạn không chuyên, đề thứ hai dành cho các bạn thi vào các lớp 9TC1, 9TC2. Đề chuyên thường gồm đầy đủ các phần: Đại số, Hình học, Số học, Tổ hợp. Vì là đề xếp lớp nên đề dàn trải và khá dài, để đánh giá toàn diện các em và tư vấn vào lớp phù hợp. Sau đây xin giới thiệu đề thi xếp lớp năm 2018 – 2019 cho các bạn học sinh tham khảo.

Thời gian làm bài: 150 phút.

Bài 1. (2 điểm)
a) Phân tích đa thức thành nhân tử: $x^5+x+1$
b) Cho các số $a, b, c$ khác $0$ thỏa: $a^3+b^3+c^3=3abc$. Tính: $P = \left( {1 + \dfrac{a}{b}} \right)\left( {1 + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right)$
Bài 2. (3,0 điểm) Giải các phương trình sau:
a) $(x-1)(x-2)(x-6)(x-7)=81$;
b) $\dfrac{{12x}}{{{x^2} + 4x + 2}} + \dfrac{{3x}}{{{x^2} + 2x + 2}} = 9$;
c) $|x – 1 |^{2017} + (2 – x)^{2018} = 1$.
Bài 3. (2,0 điểm)
a)  Cho các số $x, y$ thỏa $|x| > 1, |y| >1$. Chứng minh rằng $|x| +|y| \geq |\dfrac{x+y}{1+xy}|$.
b) Cho các số $x,y$ không âm thỏa $x^3 + y^3 < x- y$. Chứng minh $y \leq x \leq 1$ và $x^2 + y^2 \leq 1$.

Bài 4. (3 điểm)
a) Tìm các số nguyên $x$ thỏa $\dfrac{2x^2-4x+1}{x-3}$ cũng là số nguyên.
b) Cho các số $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+y+z$. Chứng minh rằng $x+y+z$ chia hết cho 27.
c) Cho $n$ là số tự nhiên. Chứng minh rằng $n^3+3^n$ chia hết cho 7 khi và chỉ khi $n^33^n+1$ chia hết cho 7.

Bài 5. (5,0 điểm) Cho tam giác nhọn $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$.
a)  Chứng minh $DB \cdot DC = DH \cdot DA$ và $\angle BDF = \angle CDE$. (2 điểm)
b) Gọi $M, N$ lần lượt là trung điểm $BF, CE$. Chứng minh $\angle MDF = \angle NDC$. (1 điểm)
c) $AD$ cắt $EF$ tại $K$. Gọi $P$ là trung điểm của $AH$. Chứng minh $\dfrac{HK}{HD} = \dfrac{AK}{AD}$ và $PK \cdot PD = PH^2$. (2 điểm)

Bài 6. (2,0 điểm) Cho tam giác $ABC$ vuông tại $A$ có $BC = 2a$ cố định. $A$ thay đổi. Đường cao $AH$.
a) Tìm diện tích lớn nhất của tam giác $ABC$.
b) Phân giác các góc $\angle BAH, \angle CAH$ cắt $BC$ tại $MN$. Tìm giá trị lớn nhất của độ dài $MN$.

Bài 7. (3,0 điểm) Cho tập $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
a)Tìm tất cả các cách chia tập hợp $X$ thành 3 tập hợp rời nhau, mỗi tập có 3 phần tử và tổng các phần tử của mỗi tập bằng nhau.
b) Người ta điền các số của tập $X$ vào bảng vuông $3 \times 3$ mỗi số được xuất hiện một lần sao cho tổng các hàng, các cột và hai đường chéo là một số chia hết cho 9.
i) Chỉ ra một cách điền thỏa đề bài.
ii) Chứng minh rằng với với mọi cách điền thì ô chính giữa bảng luôn là một số chia hết cho 3.

 

HẾT

 

 

Mở đầu về lý thuyết đồ thị (P1)

Đây là phần mở đầu cho một loạt bài viết về lý thuyết đồ thị và ứng dụng trong việc giải các bài toán thuộc chương trình THPT chuyên. Các chủ đề được cấu trúc như sau:

1/ Các khái niệm cơ bản: đỉnh, cạnh, bậc, đường đi, liên thông, chu trình…

2/ Cây, đường đi Euler, đường đi Hamilton.

3/ Cực trị đồ thị. Định lý Turan.

4/ Các vấn đề về cặp ghép. Định lý Hall và biến thể.

5/ Một số vấn đề khác và bài toán bổ sung.

Phần 1,2 cần đặc biệt quan tâm, vì đó là những phần căn bản đồng thời hỗ trợ rất nhiều về suy luận; trong các bài toán khó, những định lý sẵn có tỏ ra kém tác dụng. Học sinh cần đọc kỹ lý thuyết để hiểu rõ các ý tưởng và kỹ thuật chứng minh.

I. Mở đầu

Lúc còn học cấp 2, thầy giáo dạy toán đố tôi một câu như sau:

“Trong thành phố có 3 khu dân cư và 3 nhà máy. Người ta muốn xây dựng đường từ mỗi khu đến mỗi nhà máy sao cho hai con đường bất kỳ không cắt nhau. Em vẽ hình thử xem được không ?”

Nghe thì rất dễ dàng, nhưng khi vẽ thì không cách nào thực hiện được, dù tôi đã thử “uốn lượn” những con đường (bạn hãy thử xem !) Một cảm giác vừa kỳ lạ, vừa thích thú khi không chứng minh được những gì thấy ngay trước mắt.

Có một bài toán khác về “đường đi”, nhưng nguồn gốc rõ ràng hơn, như sau: ở thế kỷ 18, tại vương quốc Phổ, thành phố Königsberg có bảy cây cầu nối giữa các phần khác nhau. Khi dẫn người ngoại quốc du lịch, người dân thấy rằng thế nào cũng phải đi qua một cây cầu nào đó ít nhất hai lần. Vậy liệu có đường đi nào để tham quan được toàn bộ thành phố, đi qua toàn bộ các cây cầu chỉ một lần duy nhất hay không ?

Cả hai vấn đề đều rất “hình học”, nhưng khó có thể giải quyết bằng hình học thông thường.  Để giải quyết, ta cần một công cụ mới: lý thuyết đồ thị.

II. Các định nghĩa cơ bản

Ta bắt đầu bằng một định nghĩa tương đối hình thức nhưng chính xác.

Định nghĩa 1: Một bộ $G=(V,E)$ gồm hai tập hợp $V, E$ được gọi là một đồ thị hữu hạn (finite graph) nếu:

  • $V$ và $E$ là hai tập hợp hữu hạn.
  • Cho mỗi phần tử $e\in E$, tồn tại hai phần tử $x,y\in V$ sao cho ta có tương ứng $e=(x,y)$ hoặc $e=\{x,y\}$. Với $e=(x,y)$ hay $e=\{x,y\}$, ta gọi $e$ là cạnh (edge) của $G$ và $x,y$ là đỉnh (vertex) của cạnh $e$. Hai tương ứng trên cho biết cạnh $e$ là có hướng (từ $x$ đến $y$) hay vô hướng.

Với định nghĩa trên, giữa hai đỉnh của một đồ thị có thể xuất hiện rất nhiều cạnh, hoặc có thể tồn tại một cạnh mà hai đầu mút cùng là một đỉnh. Hơn nữa, tuỳ vào ý muốn, ta có thể phân biệt điểm đầu – điểm cuối của một cạnh hoặc không.

Định nghĩa 2: Một đồ thị gồm tất cả các cạnh vô hướng được gọi là một đồ thị vô hướng (undirected graph). Ngược lại, nếu tất cả các cạnh đều có hướng, ta gọi là đồ thị có hướng (directed graph). Đồ thị gồm cả cạnh vô hướng và có hướng được gọi là đồ thị hỗn hợp (mixed graph).

Định nghĩa 3: Một cạnh nối một đỉnh với chính nó được gọi là khuyên (loop).

Định nghĩa 4: Một đồ thị $G$ được gọi là đồ thị đơn (simple graph) nếu như $G$ không chứa khuyên và giữa hai đỉnh bất kỳ có không quá một cạnh nối. Ngược lại, nếu $G$ chứa khuyên hoặc tồn tại hai đỉnh của $G$ mà có ít nhất hai cạnh nối giữa chúng, ta gọi $G$ là đồ thị kép (multigraph).

Để tránh việc quá trừu tượng, nhu cầu biểu diễn đồ thị một cách trực quan nảy sinh rất tự nhiên. Ta thường biểu diễn đồ thị trên mặt phẳng như sau: các đỉnh được biểu diễn bởi các điểm (thường được tô đậm cho dễ thấy), còn các cạnh được biểu diễn bởi các đoạn thẳng (hoặc tổng quát hơn là đường liên tục) giữa các điểm tô đậm. Các cạnh có hướng được định hướng bằng mũi tên.

Dưới đây là một ví dụ minh họa:

Ta sẽ nhắc đến vấn đề biểu diễn đồ thị một cách chi tiết hơn ở các phần sau.

Khi tìm hiểu về đồ thị, dĩ nhiên ta quan tâm đến cấu trúc và các mối liên hệ của đỉnh – cạnh. Một số khái niệm và mối liên hệ cơ bản về các đối tượng đó được trình bày ở phần tiếp theo như sau:

Định nghĩa 5: Với đồ thị $G$, nếu $u$ là cạnh có hai đỉnh là $x,y$, ta nói rằng cạnh $u$ kề (incident) với hai đỉnh $x,y$. Ta cũng nói rằng $x,y$ là hai đỉnh kề nhau.

Định nghĩa 6: Với đồ thị $G$, bậc (degree) của đỉnh $v$ là tổng của số cạnh kề $v$ và hai lần số khuyên có đỉnh là $v$. Ta ký hiệu bậc của $v$ trong $G$ bởi $d_G(v)$. Nếu không xảy ra nhầm lẫn, ta có thể viết là $d(v)$ hay $\deg(v)$.

Có thể hình dung trực quan qua biểu diễn đồ thị như sau: nếu xem mỗi cạnh là một sợi dây, số “đầu dây” “cắm” vào đỉnh $u$ chính là bậc của $u$. Bạn đọc hãy chứng minh các kết quả sau:

Định lý 1: Cho đồ thị $G(V,E)$. Khi đó $\sum_{v\in V}deg(v)=2|E|$. Từ đó trong một đồ thị bất kỳ, số đỉnh có bậc lẻ luôn là số chẵn.

Định lý 2: Nếu $G$ là đồ thị đơn có hướng, gọi $\deg^+(v)$ và $\deg^-(v)$ lần lượt là số cạnh xuất phát và kết thúc tại $v$. Khi đó $\deg^+(v)+\deg^-(v)=\deg(v)$.

Với đồ thị $G(V,E)$, ký hiệu bậc lớn nhất của $G$ là $\Delta(G)=\max \{\deg(v)\mid v\in V\}$ và bậc nhỏ nhất của $G$ là $\delta(G)=\min \{\deg(v)\mid v\in V\}$.

Định nghĩa 7: Một đỉnh được gọi là đỉnh cô lập (isolated vertex) nếu như có bậc bằng 0, và được gọi là đỉnh treo (pendant vertex / leaf vertex) nếu có bậc bằng $1$.

(còn tiếp phần 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hai phân thức bằng nhau

1.Định nghĩa: Hai phân thức $ \dfrac{A}{B} $ và $ \dfrac{C}{D} $ được gọi là bằng nhau nếu:

$ A\cdot D = B \cdot C. $

2.Ví dụ

Ví dụ 1:  Chứng minh:

$\dfrac{x+2}{(x+2)^2}=\dfrac{1}{x+2}$

Giải

Ta có:

$1.(x+2)^2=(x+2)^2$

$(x+2)(x+2)=(x+2)^2$

Vì $1.(x+2)^2=(x+2)(x+2)$ nên hai phân thức bằng nhau.

Ví dụ 2: Chứng minh:

$\dfrac{x}{2y}=\dfrac{2xy}{4y^2}$

Giải

Ta có:

$x(4y^2)=4xy^2$

$2y(2xy)=4xy^2$

Vì $x(4y^2)=2y(2xy)$ nên hai phân thức bằng nhau.

Ví dụ 3: Chứng minh:

$\dfrac{a-b}{a^2-b^2}=\dfrac{1}{a+b}$

Giải

Ta có:

$(a-b)(a+b)=a^2-b^2$

$1.(a^2-b^2)=a^2-b^2$

Vì $(a-b)(a+b)=1.(a^2-b^2)$ nên hai phân thức bằng nhau.

3. Bài tập

Bài 1. Hãy điền biểu thức thích hợp vào chỗ chấm:

a) $\dfrac{3y}{4}=\dfrac{…}{8x}$

b) $\dfrac{-3x^2}{2y}=\dfrac{…}{-2y}$

c) $\dfrac{3(x+2)}{2x}=\dfrac{6(x+2)}{…}$

d) $\dfrac{4(x-2)}{3(x+1)}=\dfrac{8(x-2)x}{…}$.

Bài 2. Hai phân thức sau đây có bằng nhau không? Vì sao?

$\dfrac{x+2}{x}$ và $\dfrac{x^2+3x+2}{x^2+x}$.

Bài 3. Hãy điền biểu thức thích hợp vào chỗ trống:

$\dfrac{…}{x^2-4}=\dfrac{x}{x+2}$.

Bài 4. Chứng minh các đẳng thức sau:

a) $\dfrac{2(x-y)}{3(y-x)}=\dfrac{-2}{3} (x \neq y)$

b) $\dfrac{2xy}{3a}=\dfrac{8xy^2}{12ay} (a \neq 0, y \neq 0)$

c) $\dfrac{1-x}{2-y}=\dfrac{x-1}{y-2} (y \neq 2)$

d) $\dfrac{2a}{-5b}=\dfrac{-2a}{5b} (b \neq 0)$.

Bài 5.  Với những giá trị nào của $x$ thì hai phân thức bằng nhau:

$\dfrac{x-2}{x^2-5x+6}$ và $\dfrac{1}{x-3}$.