Category Archives: Uncategorized

Điểm thuộc đường cố định (Phần 1)

Đây là phần thuận của bài toán quỹ tích, một dạng toán khó và rất rộng. Trong bài viết nhỏ này tôi xin trình bày một số bước để giải bài toán và một số ví dụ minh họa.

Điểm thuộc đường cố định, thì có thể thuộc đường thẳng hoặc đường tròn, đôi khi giới hạn trong đoạn thẳng hoặc cung tròn. Do đó ta cần trang bị một số kiến thức cơ bản về quỹ tích một số đường hay gặp:

Quỹ tích là đường thẳng.

  1. Quỹ tích các đường thẳng cách đều hai điểm là đường trung trực.
  2. Quỹ tích cách đều hai cạnh của một góc là phân giác của góc đó.
  3. Quỹ tích các điểm cách một đường thẳng một khoảng cho trước là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng đã cho.
  4. Điểm thuộc đường thẳng qua hai điểm cố định, qua một điểm cố định vuông góc hoặc song song với một đường cố định…

Trong một số trường hợp ta chỉ cần chứng minh điểm thuộc đường cố định nào đó, ta lại quy về việc chứng minh ba điểm thẳng hàng.

Ta biết được điểm thuộc đường thẳng hay đường tròn thường ta phải dự đoán bằng cách cho 3 trường hợp phân biệt, trong đó có các trường hợp đặc biệt. Nếu không vẽ thêm hình thì đòi hỏi người làm toán phải có trực giác và cảm nhận hình học tốt. Sau khi dự đoán được thì ta dùng các kiến thức đã biết để tìm lời giải.

Sau đây ta xem một vài ví dụ sau.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB = 2R$. $CD$ là đường kính thay đổi, $AC, AD$ cắt tiếp tuyến tại $B$ của $(O)$ tại các điểm $P, Q$. Chứng minh rằng $CDQP$ nội tiếp và tâm đường tròn ngoại tiếp của tứ giác thuộc một đường cố định.

Gợi ý

Bước dự đoán, ta có thể vẽ hình chính xác cho $CD$ thay đổi rồi dựng điểm $I$, khi vẽ hình chích xác ta xác định được các điểm $I$ sẽ cùng thuộc một đường thẳng.

Đến lúc này, ta hãy liên hệ đường thẳng mà ta phát hiện với các yếu tố có trên hình đó là $O$, đường tròn $(O)$, $AB$ và tiếp tuyến tại $B$.

Nếu phát hiện được đường thẳng đó song song với tiếp tuyến tại $B$ thì ta hãy liên hệ với các quỹ tích hay gặp để tìm ra tính chất.

  • Ta có $\angle ACD = \angle ABD  = \angle AQP$, suy ra $BPCQ$ nội tiếp.
  • Gọi $I$ là tâm đường tròn ngoại tiếp tứ giác. Ta có $IM \bot PQ, IO \bot CD$.
  • Mặt khác, ta có $AM \bot CD, AO \bot PQ$.
  • Khi đó $IM ||AO, IO ||AM$, suy ra $AOIM$ là hình bình hành. Suy ra $IM = AO$ không đổi.
  • Hơn nữa $IM \bot PQ$ và $I, A$ khác phía đối với $PQ$ do đó $I$ thuộc đường thẳng song song với $PQ$ và cách $PQ$ một khoảng bằng bán kính và khác phía $A$ đối với $PQ$.

Ví dụ 2. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn, một cát $d$ tuyến qua $A$ cắt $(O)$ tại hai điểm $C, D$. Tiếp tuyến tại $C, D$ cắt nhau tại $P$, chứng minh $P$ luôn thuộc một đường thẳng cố định khi $d$ thay đổi và luôn qua $A$.

Gợi ý

Chỉ cần vẽ hình chính xác ta có thể xác định ngay rằng $P$ thuộc một đường thẳng vuông góc với $AO$, như nhận xét trên, để chứng minh đường thẳng này cố định ta chỉ cần chứng minh nó đi qua một điểm cố định nào đó, việc này dễ dàng khi có thể chứng minh điểm đó thuộc $OA$. Từ đó có cách giải sau:

Gọi $H$ là hình chiếu của $P$ trên $AO$. Ta chứng minh $H$ cố đinh. Gọi $I$ là giao điểm của $OP$ và $CD$.

Ta có $OI.OP = OC^2$ không đổi.

$\triangle OPH \backsim OIA$, suy ra $OH.OA = OI.OP = OC^2$ không đổi. Mà $O, A$ cố định, suy ra $H$ có định.

Do đó $P$ thuộc đường thẳng vuông góc với $OA$ tại $H$ cố định.

Ví dụ 3. (PTNK 2004) Cho đường tròn tâm $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Một đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B, C$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $OBC$ luôn thuộc một đường thẳng cố định.

Gợi ý

Đây là một bài toán khó, nhưng cách giải của nó cũng là kinh nghiệm cho những bài toán khác.

Nhận thấy rằng đường tròn ngoại tiếp tam giác $OBC$ đi qua một điểm cố định là $O$, khi đó để chứng minh tâm $I$ của đường tròn này thuộc một đường thẳng cố định, một cách suy nghĩ tự nhiên là cần chứng minh thêm nó đi qua một điểm cố định khác, khi đó sẽ nằm trên đường trung trực của đoạn thẳng nối $O$ và điểm kia.

Nếu vẽ hình chính xác, ta có thể dự đoán được đường thẳng đó vuông góc với đường $OA$ cố định, khi đó ta có thể nghĩ đến cách như ví dụ 2, vẽ $OH \bot OA$ và chứng minh $OH$ không đổi.

Nói chung tùy cách suy nghĩ ta có thể đi tìm lời giải.

  • Gọi $D$ là giao điểm của $AO$ và $(OBC)$.
  • Ta có $AD.AO = AB.AC = AH^2 = OA^2 – R^2$ không đổi, suy ra $D$ cố định.
  • Do đó tâm $I$ của $(OBC)$ thuộc đường trung trực của đoạn $OD$.

 

Ví dụ 4. Cho tam giác $ABC$, tâm ngoại tiếp là $(O)$. Một đường tròn thay đổi qua $A, O$ cắt các cạnh $AB, AC$ tại $D, E$.

a. Chứng minh rằng hình chiếu của $O$ trên $DE$ thuộc một đường thẳng cố định.

b. Chứng minh rằng trực tâm tam giác $ODE$ thuộc một đường thẳng cố định.

Gợi ý

Gọi $K$ là hình chiếu của $O$ trên $DE$. Ta thấy $ADOE$ nội tiếp và $K$ là hình chiếu $O$ trên $DE$, mô hình quen thuộc, gợi ý cho ta đến một định lý khá quen thuộc.

a.

  • Gọi $M, N$ là hình chiếu của $O$ trên $AB, AC$, ta có $M, N$ là trung điểm của $AB, AC$ nên cố định.
  • Theo định lý Simson thì $M, K, N$ thẳng hàng, hay $K$ thuộc đường thẳng $MN$ cố định.

b.

Nếu vẽ hình chính xác, ta có thể dựđoán được trực tâm $H$ của tam giác $ODE$ thuộc đường thẳng $BC$ cố định, do đó ta chỉ cần chứng minh $B, H, C$ thẳng hàng, ta lại quay về việc chứng minh 3 điểm thẳng hàng.

  • Ta có $\angle OHD = \angle OED = \angle OAD = \angle OBA$, suy ra $ODBH$ nội tiếp.
  • Tương tự ta có $OECH$ nội tiếp.
  • Khi đó $\angle OHB = \angle ODA = \angle OEC = 180^\circ – \angle OHC$. Suy ra $B, H, C$ thẳng hàng.
  • Vậy $H$ thuộc đường thẳng $BC$ cố định.

Bài tập rèn luyện.

  1. Cho đoạn thẳng $AB$ và điểm $M$ thỏa $MA^2 – MB^2 = k$ không đổi. Chứng minh rằng $M$ thuộc một đường thẳng cố định.
  2. Cho tam giác $ABC$, đường tròn thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $D, E$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $ADE$ luôn thuộc một đường thẳng cố định.
  3. Cho tam giác $ABC$ vuông tại $A$ với $B, C$ cố định. Đường cao $AH$, gọi $D, E$ là hình chiếu của $H$ trên $AB, AC$. Đường tròn đường kính $AH$ cắt đường tròn ngoại tiếp tam giác $ABC$ tại $P$. Gọi $Q$ là giao điểm của $AP$ và $DE$. Chứng minh $Q$ thuộc một đường cố định.
  4. Cho đường tròn $(O)$ cố định và điểm $A$ nằm trong đường tròn, đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B$ và $C$. Gọi $D$ là giao điểm hai tiếp tuyến tại $B$ và $C$ của $(O)$. Chứng minh rằng $D$ thuộc một đường cố định.
  5. Cho tam giác $ABC$ cân tại $A$ nội tiếp đường tròn $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $(I)$ qua $D$ và tiếp xúc với cạnh $AB$ tại $B$; đường tròn $(J)$ qua $D$ tiếp xúc với cạnh $AC$ tại $C$. Chứng minh rằng trung điểm của $IJ$ luôn thuộc một đường cố định.
  6. Cho hình chữ nhật $ABCD$. Gọi $H$ là hình chiếu vuông góc của $A$ trên $BD$. $M$ là điểm thay đổi trên đoạn $BH$. Đường tròn ngoại tiếp tam giác $ADM$ cắt $CD$ tại điểm $N$. Chứng minh rằng trung điểm của $MN$ luôn thuộc một đường thẳng cố định.

Đáp án toán PTNK 2016

Bài 1 (Toán chung) Tam giác $ABC$ đều có tâm $O$,$AB = 6a$ và các điểm $M, N$ lần lượt thuộc các cạnh $AB, AC$ mà $AM = AN = 2a$. Gọi $I, J, K$ lần lượt là trung điểm của $BC, AC$ và $MN$.
a. Chứng minh các điểm $M, N, B, C$ cùng thuộc một đường tròn T. Tính diện tích tứ giác $BMNC$ theo $a$.
b. Tính bán kính đường tròn ngoại tiếp tam giác $IJK$. Chứng minh đường tròn đường kính $NC$ tiếp xúc với $AI$.
c . $AE$ tiếp xúc với đường tròn $T$ tại $E$ ($E, B$ cùng phía đối với $AI$).Gọi $F$ là trung điểm $OE$, tính số đo $\angle AFJ$.

Gợi ý

a.

  • Ta có $AM = AN = 2a$,$\angle MAN = 60^o$ nên tam giác $AMN$ đều. Suy ra $\angle AMN = 60^o = \angle ACB$. Suy ra $BMNC$ nội tiếp.
  • Ta có $MN ||BC$, $AK \bot MN, AI \bot BC$. Suy ra$A, K, I$ thẳng hàng. $AI = AC \sin \angle ACB = 3a \sqrt{3}$, $AI = AN \sin \angle ANM = a\sqrt{3}$. Suy ra $IK = 2a\sqrt{3}$.
  • Do đó $S_{BMNC} = \dfrac{1}{2}IK(MN+BC) = 8a^2\sqrt{3}$.

b.

  • Ta có $OJ \bot AC$, $NJ = AJ-AN=a, NK = \dfrac{1}{2}MN=a$. Suy ra $\Delta OJN = \Delta OKN$, suy ra $OJ = OK$, tương tự ta có $OJ = OI$. Tam giác $IJK$ nội tiếp đường tròn tâm $O$ bán kính $OI = a\sqrt{3}$.
  • Gọi $P$ là trung điểm của $CN$. Ta có $KNCI$ là hình thang, và $OP$ là đường trung bình. Suy ra $OP = \dfrac{1}{2}(KN+CI) = 2a = PN = PC$.
  • Suy ra $O$ thuộc đường tròn đường kính $CN$ mà $PO||KN$ nên $PO \bot KI$. Suy ra $KI$ là tiếp tuyến của đường tròn đường kính $CN$.

c.

  • Ta có $\angle AEM = \angle ABE$. Suy ra $\Delta AEM \sim \Delta ABE$, suy ra $AE^2=AM.AB = 12a^2$.
  • Suy ra $AE = 2a\sqrt{3}= AO$. Suy ra tam giác $AEO$ cân tại $A$. Do đó $\angle AFO = 90^o$, suy ra $AFOJ$ nội tiếp. Suy ra $\angle AFJ = \angle AOJ = 60^o$.

Bài 2. (Toán chuyên) Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.
a. Chứng minh $\Delta ABE \sim \Delta ACF$ và tứ giác $EFQN$ nội tiếp.
b. Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c. $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

Gợi ý

a.

  • Ta có $\angle EAB + \angle BAC = 90^o, \angle FAC + \angle BAC = 90^o$. Suy ra $\angle EAB = \angle FAC$.
  • Mặt khác có $\angle ABE = \angle ACF = 90^o$. Suy ra $\Delta ABE \sim \Delta ACF$.
  • Suy ra $AE.AC = AF.AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE.AQ = AN.AF$. Suy ra tứ giác $QNEF$ nội tiếp.

b.

Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF||ET, AE||FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX ||BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

c.

  • $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$. Suy ra $NDFK’$ nội tiếp.
  • Chứng minh tương tự ta có $DQK’E$ nội tiếp. Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
  • Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^o – 2 \angle BKE = 2(90^o – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
  • Mặt khác $\angle BKA = 180^o – \angle AEB = 180^o – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
  • Vậy 4 điểm $D, A, K, J$ thẳng hàng.

 

Đáp án toán PTNK 2014

Bài 1. (Toán chung) Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.
a. Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.
b. $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với
$CD$. Tính $\dfrac{AP}{PD}$
c. $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Gợi ý

a.

  • Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.
  • Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.
  • Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b.

  • Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$. Khi đó $BP = EB + EP = AB+PD=BC+PD$.
  • Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.
  • Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.
  • Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.
  • Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$ Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c.

  • Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^0=\angle{IAF}$, suy ra tứ giác $AEIF$ nội tiếp, do đó $\angle{IEA}=\angle{IFA}=90^0$ và $EM$ là phân giác $\angle{CED}$. Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$. Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.
  • Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ vuông tại $A$ với các đường phân giác trong $BM, CN$. Chứng minh bất đẳng thức $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Gợi ý
  • Áp dụng tính chất đường phân giác ta có:
    $\dfrac{MC}{MA} = \dfrac{BC}{AB}$, suy ra $\dfrac{MC+MA}{MA} = 1 + \dfrac{BC}{AB}$.
  • $\dfrac{NB}{NA} = \dfrac{BC}{AC}$, suy ra $\dfrac{BN+NA}{NA} = 1+ \dfrac{BC}{AC}$.
  • Suy ra:\\ $\dfrac{(MC+MA)(NB+NA)}{MA.NA} = \left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right) = 1 + \dfrac{BC^2}{AB.AC}+ \dfrac{BC}{AB}+ \dfrac{BC}{AC}$.
  • Ta có $BC^2 = AB^2 + AC^2 \geq 2.AB.AC$, suy ra $\dfrac{BCC^2}{AB.AC} \geq 2$.
  • Và $\dfrac{BA}{AC} +\dfrac{BC}{AC} \geq \sqrt{\dfrac{BC.BC}{AB.AC}} \geq 2\sqrt{2}$.
  • Do đó $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Bài 3. (Toán chuyên) Cho điểm C thay đổi trên nửa đường tròn đường kính $AB = 2R$ ($C \neq A, C \neq B$). Gọi $H$ là hình chiếu vuông góc của $C$ lên $AB$; $I$ và $J$ lần lượt là tâm đường tròn nội tiếp các
tam giác $ACH$ và $BCH$. Các đường thẳng $CI, CJ$ cắt $AB$ tại $M, N$.
a. Chứng minh $AN = AC, BM = BC$.
b. Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng
$MJ, NI$ và $CH$ đồng quy.
c. Tìm giá trị lớn nhất của MN và giá trị lớn nhất của diện tích tam giác $CMN$ theo $R$.

Gợi ý

a.

  • Ta có $\angle HCB = \angle CAB$ (cùng phụ với $\angle ABC$) và $\angle HCA = \angle CBA$ (cùng phụ với $\angle BAC)$.
  • Ta có $\angle CAN =\angle NAC + \angle ABC = \angle HAN + \angle ACB = \angle CAN$. Suy ra tam giác $CAN$ cân tại $A$ hay $AN = AC$. Chứng minh tương tự ta có $BM = BC$.

b.

  • Tam giác $CAN$ cân tại $A$ có $AI$ là phân giác nên cũng là trung trực, suy ra $IC = IN$, suy ra $\angle INC = \angle ICN = \angle ICH + \angle NCH = \dfrac{1}{2} \angle ACH + \dfrac{1}{2} \angle BCH = 45^o$.
  • Tương tự thì $\angle JMC = 45^o$.
  • Tứ giác $MIJN$ có $\angle JMC = \angle INC = 45^o$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
  • Tam giác $INC$ cân có $\angle ICN = 45^o$ nên $\angle CIN = 90^o$, suy ra $CI \bot CM$.
  • Chứng minh tương tự $MJ \bot CN$.
  • Tam giác $CMN$ có $CH, MJ, NI$ là các đường cao nên đồng quy.

c.

  • Đặt $AC = b, BC = a$. Ta có $a^2 + b^2 = BC^2 = 4R^2$.
  • Ta có $AN = AC = b, BM = BC = a$. \\$AM + BN = BC + MN$, suy ra $MN = a+b-BC = a+b-2R$.
  • Ta có $(a+b)^2 \leq 2(a^2+b^2) = 8R^2$. Suy ra $a+b \leq 2 \sqrt{2}R$, suy ra $a+b-2R \leq 2R(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $a=b=R\sqrt{2}$.
  • Vậy giá trị lớn nhất của $MN$ bằng $2R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn.
    Khi đó $S_{CMN} = \dfrac{1}{2}CH.MN \leq R^2(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Đáp án toán PTNK 2013

Bài 1. (Toán chung)  Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a. Tính $BC$ và $CN$ theo $a$.
b. Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$.
Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo a.
c. $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Gợi ý

a.

  • Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.
  • $\angle{BOC}=2\angle{BAC}=60^0$ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$, suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$.

b.

  • Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.
  • Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^0$ nên 5 điểm $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.
  • Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.
  • Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c.

  • Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.
  • Do đó $\angle{KMI}=\angle{KFM}$. (1)
  • Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\angle{xMI}=\angle{IFM} $  (2)
  • Từ (1) và (2) suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^0$, mà $KF // ND$, suy ra $\angle{IND} =90^0$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.
a. Chứng minh rằng các tứ giác IFMK và IMAN nội tiếp .
b. Gọi J là trung điểm cạnh BC.Chứng minh rằng ba điểm A,K,J thẳng hàng.
c. Gọi r là bán kính của dường tròn (I) và S là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

Gợi ý

a.

  • Do $MN||BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^o$ nên tứ giác $IFMK$ nội tiếp.
  • Tam giác $AEF$ đều nên $\angle KFI = 30^o$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^o$ nên tứ giác $IMAN$ nội tiếp.

b.

  • Ta có $\angle IMN = \angle INM = 30^o$ nên tam giác $IMN$ cân tại $I$.
  • Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
  • Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.

c.

  • Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF.AF = r^2 \sqrt{3}$.
  • Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
  • Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
  • Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.