Phương pháp chứng minh quy nạp – P1

Phương pháp chứng minh quy nạp là một trong những phương pháp chứng minh quan trọng trong toán học. Trong bài viết nhỏ này dành cho các bạn THCS chúng tôi xin trình bày một số dạng của phương pháp này trong việc chứng minh các bài toán ở các lĩnh vực như: Đại số, số học, tổ hợp. Hy vọng các em có thể nắm bắt vận dụng phù hợp trong các tình huống cụ thể.

Để chứng minh một mệnh đề $P(n)$ là đúng với mọi số nguyên dương $n$, ta thực hiện các bước sau:

  • Bước cơ sở:      Chứng minh $P(1)$ đúng.
  • Bước quy nạp: Giả sử $P(n)$ đúng với $n$ nào đó (giả thiết quy nạp), chứng minh $P(n+1)$ đúng.

Ví dụ 1. Chứng minh rằng với mọi số nguyên dương $n$ thì $1 + 2 + \cdots + n = \dfrac{n(n+1)}{2}$.

Lời giải. 

  • Khi $n=1$ rõ ràng : $1 = \dfrac{1(1+1)}{2}$.
  • Giả sử đẳng thức đúng với $n$, ta chứng minh đẳng thức đúng với $n+1$.
    • Thật vậy áp dụng giả thiết quy nạp ta có: $1+2+\cdots+n+n+1 = \dfrac{n(n+1)}{2} + n+1 = \dfrac{(n+1)(n+2)}{2}$.
  • Vậy đẳng thức đúng với mọi $n$.

Ví dụ 2. Chứng minh $n^3+11n$ chia hết cho 6 với mọi số tự nhiên $n$.

Lời giải. 

  • Khi $n = 0$ ta có $0^3+11\cdot 0 = 0$ chia hết cho 6.
  • Giả sử $n^3+11n$ chia hết cho 6, ta chứng minh $(n+1)^3+11(n+1$ chia hết cho 6.
    • Thật vậy $(n+1)^3 + 11(n+1) = n^3 + 11n + 3n(n+1)+12$.
    • Theo giả thiết quy nạp thì $n^3+11n$ chia hết cho 6, và $3n(n+1), 12$ cũng chia hết cho 6 nên $(n+1)^3+11n$ chia hết cho 6.
  • Vậy $n^3+11n$ chia hết cho 6 với mọi $n$.

Trong một số trường hợp ta cần chứng minh $P(n)$ đúng với mọi số tự nhiên $n \geq n_o$ nào đó, ta cũng làm tương tự, chỉ thay bước cơ sở thành: Chứng minh $P(n_o)$ đúng.

Ví dụ 3. Chứng minh rằng $2^n > n^2$ với mọi $n \geq 5$.

Lời giải. 

  • Khi $n = 5$ ta có $2^5 > 5^2 $( đúng)
  • Giả sử $2^n > n^2$ với $n> 5$. Ta cần chứng minh $2^{n+1} > (n+1)^2$.
    • Thật vậy áp dụng giả thiết quy nạp ta có $2^{n+1} = 2\cdot 2^n > 2n^2$.
    • Mà $2n^2 > (n+1)^2 \Leftrightarrow  n^2-2n+1 > 0$ (đúng với $n > 5$).
    • Do đó $2^{n+1} > (n+1)^2$.
  • Vậy $2^n > n^2$ với mọi $n \geq 5$.

Bài tập rèn luyện.

Bài 1. Chứng minh các đẳng thức sau:

a) $1^2 + 2^2 + …+ n^2 = \dfrac{n(n+1)(2n+1)}{6}.$

b) $1^3 + 2^3 + …+n^3 = \dfrac{n^2(n+1)^2}{4}$.

c) $\dfrac{1}{1.2.3} + \dfrac{1}{2.3.4} + …+ \dfrac{1}{n(n+1)(n+2)} = \dfrac{n(n+3)}{4(n+1)(n+2)}$.

Bài 2.

a) Chứng minh rằng $n! > 3^n$ với mọi $n > 7$.

b) Chứng minh rằng với số thực $a > – 1$, thì với mọi số tự nhiên $n$ ta có $(1+a)^n \geq 1+ na$.

Bài 3. Chứng minh rằng với mọi số tự nhiên $n$ thì:

a) $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

b) Với $ n $ là số tự nhiên chẵn, chứng minh rằng: $$ (20^n+16^n-3^n-1)\ \vdots \ 323. $$

Định lý Viete với các biểu thức nghiệm không đối xứng

Tiếp theo các bài toán về tìm giá trị của tham số để nghiệm của phương trình thỏa một đẳng thức, trong bài này ta xét trường hợp mà biểu thức nghiệm không chỉ là bậc nhất, hoặc không thể tính theo tham số một cách dễ dàng.

Ta xét ví dụ sau:

Ví dụ 1. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Lời giải
  •  $\Delta = (m+2)^2 – 4(m+1) = m^2 \geq 0, \forall m$. Nên phương trình luôn có nghiệm,
    khi đó phương trình có nghiệm là $1$ và $m+1$.
  • $x_1 = 1, x_2 = m+1$ ta có $3x_1x_2 -4x_1 = 2 \Leftrightarrow 3(m+1) – 4 = 2 \Leftrightarrow m = 1$.
  • $x_1 = m+1, x_2 = 1$ ta có $3x_1x_2 – 4x_1 = 2 \Leftrightarrow 3(m+1) – 4(m+1) = 2 \Leftrightarrow m = -3$.
    Vậy có hai giá trị $m$ là $1$ và $-3$.

Ta thấy trong bài toán trên, $\Delta=m^2$ có dạng là $A^2$ trong đó $A$ là một số hay một biểu thức. Khi đó ta có thể tính nghiệm theo $m$ và xét trường hợp nghiệm nào là $x_1$, nghiệm nào là $x_2$ để thế vào biểu thức nghiệm.

Tiếp theo ta xem thêm một ví dụ khác.

Ví dụ 2. (PTNK 2014) Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ (1)
a) Giải phương trình (1) khi $m=-1$.
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt $x_1$, $x_2$ sao cho $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $

Lời giải

a) Khi m=-1 ta có phương trình:
$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{đk: } x \ne 3) \\
\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l}
x=-1 \,\,(n) \\\\
x=-3 \,\, (l)
\end{array} \right. $
Vậy $S=\left\{ -1 \right\} $

b)    $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ (1)

  • Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$
    $\left\{ \begin{array}{l}
    m \ne 0 \\\\
    \Delta = (m-3)^2 -4m(2m-1) >0 \\\\
    m(-3)^2+(m-3)(-3)+2m-1 \ne 0
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m \ne 0\\\\
    7m^2 +2m-9 <0 \\\\
    m \ne -1
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m\ne 0\\\\
    m \ne -1 \\\\
    -\dfrac{9}{7} < m < 1
    \end{array} \right. $
  • Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$
  • Do đó $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58$
    $\Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58$
    $\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \\ \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $
    $\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7}\\ \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $
    Vậy $m=\dfrac{7}{8}$

Ta thấy trong bài toán trên, ta phải sử dụng $x_2$ là nghiệm của phương trình nên thỏa phương trình và từ đó ta mới tính được biểu thức chứa $x_2$ trong giả thiết. Mục đích là ta đưa về những dạng dễ hơn mà ta đã biết làm.

Ví dụ 3. (PTNK 2016) Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 (1)$.
Tìm $m$ để phương trình (1) có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Lời giải
  • Điều kiện $x > 0$.
  • Phương trình (1) tương đương $x^2+mx+2m+14 = 0$ (2).
    Để (1) có 2 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0, S = -m > 0, P = 2m + 14 >0 $ (*)
  • Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.
  • Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}\\ \Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$
    • $\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9 \\\Leftrightarrow 2\sqrt{2m+14}=9+m $
    • $\Leftrightarrow 4(2m+14) = m^2+18m+81 \Leftrightarrow m^2 +10m+25 = 0 \Leftrightarrow m = -5 (n)$ vì thỏa (*).
      Kết luận $m = -5$.

Ví dụ 4: Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.

Giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.

Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.

Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1 \Leftrightarrow x_2^2+ax_2-a^2-a+2=0 \Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ $(1)$.

Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.

Lấy $(1) – (2)$ ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.

Thế vào phương trình $(1)$ ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.

Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài tập rèn luyện

Bài 1. Tìm $m$ để phương trình $(x-1+m)(x+2m-3) = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 – 4x_2 =1$.\ ($m=-3\pm \sqrt{21},m=1$)
Bài 2.  Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.\($m=1,m=-3$)
Bài 3. Cho phương trình $x^2 – (2m-1)x + 4 = 0$. Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+(2m-1)x_2 + 8-17m = 0$. ($m= 5$)
Bài 4. Cho phương trình $x^2 – (2m-1)x + m^2 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $x_1^2 + (2m-1)x_2 = 8$.($m=-1$)
Bài 5. Cho phương trình ${x^2} – \left( {3m – 2} \right)x + 2{m^2} – 3m + 1 = 0$ (m là tham số)
a)Tìm m để phương trình có hai nghiệm phân biệt dương $x_1$, $x_2$ ($m>1$)
b) Tìm m để phương trình có hai nghiệm $x_1$, $x_2$ thỏa $x_1^2 + x_2 =5$ ($m=\dfrac{3+\sqrt{89}}{8},m=\sqrt{5}$)

Bài 6. Tìm $m$ để phương trình $\dfrac{x^2-mx +(2m-1)(1-m)}{x-2} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 + 2x_2 = 13$. ($m=\dfrac{5}{2},m=-1 \pm \sqrt{5}$)
Bài 7.  Tìm $m$ để phương trình $\dfrac{x^2 – 2mx -2m-1}{\sqrt{x}} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $\sqrt{x_1^2+2mx_2} + \sqrt{x_2^2+2mx_1} =2\sqrt{5}$. ($m=\dfrac{-1+\sqrt{7}}{4}$)
Bài 8.  Cho phương trình $\dfrac{x^2-(m+1)x +m^2 – 6)}{\sqrt{x}-2} = 0$ (1).
a) Giải phương trình khi $m = 1$. ($ x= 1+\sqrt{6}$)
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [ \sqrt{x_2^2-mx_2+m^2-5}+\sqrt{x_1+1} = 2+\sqrt{2}] \ ($m=3$)

Định lý Viete và các đẳng thức về nghiệm.

Trong các bài toán liên quan  đến ứng dụng của định lý Viete, bài toán tìm giá trị tham số $m$ để các nghiệm thỏa mãn một đẳng thức là dạng toán thường gặp.

Nếu biểu thức mà vai trò hai nghiệm là như nhau, ta có thể biểu diễn theo tổng và tích. Trong bài này chúng ta xét các bài toán mà biểu thức không phải là các biểu thức đối xứng, đòi hỏi cách xử lí khó hơn một chút. Ta bắt đầu với ví dụ sau:

Ví dụ 1. Tìm $m$ để phương trình $x^2 + 4x – m = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 4x_2 =-19$

Lời giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta’ = 4 + m > 0 \Leftrightarrow m > -4$ (1).

Khi đó, theo định lý Viete ta có: $x_1 + x_2 = -4, x_1x_2=-m$.

Từ $x_1+x_2=-4$ với giả thiết $x_1+4x_2 = -19$, giải ra được $x_2=-5$.

Thế $x_2=-5$ vào phương trình ta có:$(-5)^2+4(-5)-m = 0 \Leftrightarrow m = 5$ (thỏa (1)).

Kết luận: $m=5$.

Ta thấy rằng để làm dạng toán này, có các bước giải sau:

  • Tìm điều kiện để phương trình có nghiệm (hai nghiệm phân biệt,….)
  • Áp dụng định lý Viete và giả thiết để tính nghiệm (có thể theo tham số)
  • Thay nghiệm vào phương trình và giải. (So lại điều kiện để nhận loại phù hợp). (Hoặc tính $x_1$ và thế vào biểu thức Viete).

Ví dụ 2. Cho phương trình $x^2 -x +3m-11=0$ $(1)$
a) Với giá trị nào của $m$ thì phương trình $(1)$ có nghiệm kép? Tìm nghiệm đó.
b) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ sao cho:

$2017x_1 + 2018x_2 =2019$

Lời giải

a) Phương trình $(1)$ có nghiệm kép $\Leftrightarrow \left\{ \begin{array}{l}
1\ne 0 \text{ (hiển nhiên)} \\\\
\Delta = 0
\end{array} \right. \\\\ \Leftrightarrow 1-4(3m-11) =0 \Leftrightarrow 45-12m =0 \Leftrightarrow m=\dfrac{45}{12}$

Với $m=\dfrac{45}{12}$ thì phương trình $(1)$ trở thành:
$x^2-x+\dfrac{1}{4}=0 \Leftrightarrow x=\dfrac{1}{2}$

Vậy khi $m=\dfrac{45}{12}$ thì phương trình $(1)$ có nghiệm $x=\dfrac{1}{2}$.
b) Để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ thì
$\Delta >0 \Leftrightarrow 45-12m >0 \Leftrightarrow m < \dfrac{45}{12}$

Theo định lý Viete, ta có: $\left\{ \begin{array}{l}
S=x_1+x_2 = 1 \\\\
P=x_1x_2=3m-11
\end{array} \right. $

$2017x_1+2018x_2=2019 \Leftrightarrow 2017 \left( x_1 + x_2 \right) +x_2 =2019
\Leftrightarrow 2017+x_2=2019 \Leftrightarrow x_2 = 2$

Mà $x_1+x_2 =1$ nên $x_1=-1$

Lại có $x_1x_2 = 3m-11 \Rightarrow 3m-11 = -2 \Rightarrow m=3$ (thỏa)

Vậy $m=3$ thì phương trình có hai nghiệm thỏa mãn đề bài.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$.

Lời giải

Ta có $\Delta’ = (m+1)^2 – 3m = (m-1/2)^2 + 3/4 > 0$ với mọi $m$, nên pt luôn có hai nghiệm phân biệt.

Khi đó ta có $x_1+ x_2 = 2m+2, x_1x_2 = 3m=0$.

Kết hợp $x_1-2x_2 = 1$, suy ra $x_2 = \dfrac{2m+1}{3}$.

Thế $x_2 = \dfrac{2m+1}{3}$ vào pt ta có:

$\dfrac{(2m+1)^2}{9} – 2(m+1)\dfrac{2m+1}{3} + 3m = 0$, giải ra được $m = 1, m= \dfrac{5}{8}$.

Kết luận. $m = 1$ và $m = \dfrac{5}{8}$.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx + 3m-2}{x-1} =0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 3x_2 = 8$.

Lời giải

Điều kiện $x \neq 1$. Phương trình tương đương với

$x^2-2mx + 3m-2 =0$. (2)

Pt (1) có hai nghiệm phân biệt khi và chỉ khi Pt (2) có hai nghiệm phân biệt khác 1,

$\Delta’ = m^2-3m+2 > 0, 1^2-2m(1)+3m -2 \neq 0$ (*).

Khi đó $x_1+x_2 = 2m, x_1x_2 = 3m-2$.

Từ $x_1+3x_2 = 8$ ta có $x_2 = 4-m$, thế vào (2) ta có:

$(4-m)^2 -2m(4-m) + 3m-2 = 0 \Leftrightarrow m = 2, m = \dfrac{7}{3}$.

So với (*), ta nhận $m = \dfrac{7}{3}$.

Kết luận: $m = \dfrac{7}{3}$.

Bài tập rèn luyện. 

Bài 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$

Bài 2. Tìm $m$ để phương trình $x^2 – 3x + m-27=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – x_2 = 11m$.

Bài 3. Tìm $m$ để phương trình $x^2 + 2(m-1)x + m+1=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2x_2 = -m-1$.

Bài 4. Cho phương trình $x^2-(m+2)x+m+1 = 0$. \
Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Bài 5.  Cho phương trình: $9x^2-3\left( m+2\right) x+m-7=0$. Tìm $m$ để phương trình có hai nghiệm $x_1$, $x_2$ phân biệt thỏa: $x_1+\dfrac{7}{5}x_2=2$.

Định lý Viete -Biện luận nghiệm

Cho phương trình bậc hai $ax^2+bx+c = 0$ ($a\neq 0$) (1)

Ta đã biết nếu phương trình (1) có nghiệm $x_1, x_2$ ($\Delta \geq 0$) thì:

$S = x_1 + x_2 = \dfrac{-b}{a}$ và $P = x_1x_2 = \dfrac{c}{a}$.

Đây chính là nội dung của định lý Viete trong chương trình đại số lớp 9.

Từ định lý trên ta có một số hệ quả sau:

Hệ quả 1. Phương trình (1) có hai nghiệm dương phân biệt $x_1 > x_2 > 0$ khi và chỉ khi

$\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} > 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 2. Phương trình (1) có hai nghiệm âm phân biệt $x_1 < x_2 < 0$ khi và chỉ khi:

   $\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} < 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 3. Phương trình có hai nghiệm trái dấu $x_1 < 0 < x_2$ khi và chỉ khi $ac < 0$.

Trên đây là những hệ quả cơ bản và quan trọng, sau đây ta xét một vài ví dụ áp dụng.

Ví dụ 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +m =0$ có hai nghiệm phân biệt dương.

Lời giải

$\Delta’ = (m+1)^2 – m = m^2 +m + 1 = (m + \dfrac{1}{2})^2 + \dfrac{3}{4} > 0  \forall m$.

Phương trình luôn có hai nghiệm phân biệt.

Khi đó phương trình có hai nghiệm dương khi và chỉ khi

$x_1 + x_2 = 2(m+1) >0$ và $x_1x_2 = m > 0$ $\Leftrightarrow $ $m > 0$.

Kết luận: $m > 0$.

Ví dụ 2. Tìm $m$ để phương trình $x^2 – 2(m-1)x + m^2 = 0$ có hai nghiệm phân biệt âm.

Lời giải

$\Delta’ = (m-1)^2 – m^2 = 1-2m$.

Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta’ > 0 \Leftrightarrow 1-2m > 0 \Leftrightarrow m < \dfrac{1}{2}$.

Hai nghiệm âm khi và chỉ khi:

$x_1 + x_2 =2(m-1)< 0, x_1x_2 =m^2> 0 \Leftrightarrow  m< 1, m\neq 0$.

Kết hợp các điều kiện ta có: $m < \dfrac{1}{2}, m \neq 0$.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 3mx +2m-5 = 0$

a) Có hai nghiệm trái dấu.

b) Một nghiệm bằng 0 và một nghiệm dương.

Lời giải

a) Phương trình có hai nghiệm trái dấu khi và chỉ khi $1 \cdot (2m-5) <  0 \Leftrightarrow m < \dfrac{5}{2}$.

b) Phương trình có nghiệm bằng 0, suy ra $2m-5 = 0 \Leftrightarrow m = \dfrac{5}{2}$.

Khi đó nghiệm còn lại là $\dfrac{15}{2}$.

Kết luận: $m = \dfrac{5}{2}$.

Trên đây là các ví dụ cơ bản, tiếp theo ta làm một số phương trình bậc hai có điều kiện.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx+m^2-6}{\sqrt{x}} = 0(1)$

có hai nghiệm phân biệt.

Lời giải

Điều kiện $x \geq 0$. Với điều kiện trên ta có (1) tương đương với phương trình:

$x^2-2mx +m^2-6 = 0$. (2)

Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm phân biệt dương.

$\Delta’ = m^2 – (m^2-6) = 6 > 0$, nên (2) luôn có 2 nghiệm.

Phương trình (2) có hai nghiệm dương khi và chỉ khi $S= 2m > 0, P = m^2-6 > 0$, giải ra được $m > \sqrt{6}$.

Kết luận. $m> \sqrt{6}$.

Phương trình (1) trong ví dụ 4 là kiểu phương trình bậc hai có điều kiện, việc biện luận nghiệm của phương trình dựa vào điều kiện của phương trình, khá đa dạng và rối rắm, tuy nhiên sử dụng suy luận ta có thể đưa về các dạng cơ bản, từ đó giải được bài toán. Để làm dạng toán này các em phải biết suy luận, tính toán cẩn thận.

Ta có thể làm tiếp các ví dụ sau:

Ví dụ 5. Cho phương trình $\dfrac{x^2 -2mx +m^2-3m+6}{x-3}=0$. Tìm $m$ để phương trình có:
a) Có 2 nghiệm phân biệt.

b) Có 1 nghiệm.

Lời giải

Điều kiện $x \neq 3$. Phương trình tương đương với: $x^2-2mx+m^2-3m+9=0$. (2)

a) Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi (2) có hai nghiệm phân biệt khác 3.

$\Delta’ = m^2-(m^2-3m+9) > 0, 3^2 -2m(3) +m^2-3m+9 \neq 0$

Giải ra được $m>3, m \neq 6$.

b) (1) có một nghiệm khi và chỉ khi (2)

  • Có nghiệm kép khác 3.
  • Có hai nghiệm phân biệt, trong đó có một nghiệm bằng 3.

TH1: (2) có nghiệm kép khi và chỉ khi $m = 3$, khi đó nghiệm kép bằng 3. (loại)

TH2: (2) có nghiệm bằng 3, suy ra $m=3, m=6$. Thử lại nhận $m=6$.

Kết luận. $m=6$.

Bài tập rèn luyện.

Bài 1. Cho phương trình $x^2 – 6x -m = 0$.
Bài 2.  Tìm $m$ để phương trình có hai nghiệm trái dấu.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt dương.
b) Tìm $m$ để phương trình $\dfrac{x^2-6x-m}{x-3}=0$ có 2 nghiệm phân biệt.
Bài 3. Cho phương trình $\dfrac{(3x^2-2x+m)}{\sqrt{x}}=0$.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt.
b) Tìm $m$ để phương trình có đúng 1 nghiệm.
Bài 4. Cho phương trình $(x+1)(x^2-2x-m) = 0$. Tìm $m$ để phương trình có:
a) nghiệm phân biệt.
b) 2 nghiệm phân biệt.
c) 1 nghiệm.
Bài 5. Cho phương trình $(\sqrt{x}-2)(-x^2 – 3mx+m^2) = 0$.
a) Giải phương trình khi $m=1$.
b) Chứng minh phương trình không có thể có 3 nghiệm phân biệt.
Bài 6.  Cho phương trình $\sqrt{x}(x^2-2mx +m-1) = 0$. Tìm $m$ để phương trình:
a) Giải phương trình khi $m = 2$.
b) Có 3 nghiệm phân biệt.

Phương trình nghiệm nguyên – P2

Tương tự như phân tích thành tổng, phương pháp tiếp theo là Biến đổi thành tích. Phương pháp này dựa trên tính chất: Mỗi số nguyên dương được phân tích hữu hạn lần thành tích của hai hay nhiều số khác nhau.

Ví dụ 1. Giải phương trình nghiệm nguyên $$2xy + 3x + 4y = 9$$

Lời giải
  • Ta biến đổi thành $(x+2)(2y+3) = 15$.
  • Do đó $x+2 \in \{-15, -5, -3, -1, 1, 3, 5, 15\}$.
  • Giải ra được các nghiệm $(x;y)$ là: $(-17;-2), (-7;-3), (-5;-4), (-3;-9), (-1;6), \\(1;1), (3;0), (13;-1)$.

Ví dụ 2. Tìm nghiệm tự nhiên của phương trình $(xy-7)^2 = x^2 + y^2$.

Lời giải
  • $(xy-6)^2-(x+y)^2==-13$
  • $(xy-x-y-6)(xy+x+y-6) = -13$.
  • TH1:$xy – x-y-6 = -13, xy+x+y-6 = 1$.
  • TH2:$xy-x-y-6 = -1, xy+x+y-6 = 13$.
  • Giải ra nghiệm $(x;y)$ là $(3;4), (4;3), (7;0), (0;7)$.

Ví dụ 3. Giải nghiệm nguyên dương của phương trình $$x(y^2-p) + y(x^2-p) = 5p$$ trong đó $p$ là số nguyên tố.

Lời giải
  •  Biến đổi pt thành $(x+y)(xy-p) = 5p$.
  • TH1: $x+y = 5, xy – p = p$, giải ra được $(x;y,p)$ là $(1;4;2),(4;1;2), (2;3;3), (3;2;3)$.
  • TH2: $x+y = p, xy-p=5$, ta có $xy – x-y = 5 \Leftrightarrow (x-1)(y-1) = 6$.
    $(x;y;p)$ là $(3;4;7), (4;3;7)$.
  • H3: $x+y=5p, xy-p = 1$, ta có $5xy -x-y = 5 \Leftrightarrow (5x-1)(5y-1) = 26$. (Vô nghiệm).

Ví dụ 4. Giải phương trình trong tập các số nguyên dương $$x + x^2 + x^3 = y+y^2$$.

Lời giải
  • $x^3 = (y-x)(y+x+1)$.
  • Khi đó nếu $p$ là ước nguyên tổ của $y-x, y+x+1$ thì $p = 1$(vô lí). Do đó $(y-x, y+x+1) = 1$.
  • $y-x = a^3, y+x+1 = b^3$ và $ab=x$.
  • $b^3-a^3 = 2ab+1$, vì $b \geq a+1$, suy ra $b^3-a^3 = (b-a)(a^2+b^2+1) > 2ab+1$ phương trình vô nghiệm.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập nguyên dương:
a) $ 2x^2+3xy-2y^2=7 $.
b) $ x^3-xy=6x-5y-8 $
c) $ x^3-y^3=91 $.
Bài 2. Giải phương trình nghiệm nguyên $$\dfrac{1}{x}+\dfrac{1}{y} = \dfrac{1}{2020}$$
Bài 3. Tìm các số nguyên $x$, $y$ sao cho:
a) $3^x-y^3=1$;
b) $1+x+x^2+x^3=2^y$;
c) $1+x+x^2+x^3=2003^y$.
Bài 4. Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$
Bài 5. Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Phương trình nghiệm nguyên – P1

Tiếp theo chuyên mục số học dành cho các em lớp 8, 9 thi học sinh giỏi và thi vào 10, hôm nay là bài giảng về phương trình nghiệm nguyên.

Phương trình nghiệm nguyên là một trong những phần hay và khó nhất của số học, nhiều phương trình có vẻ rất đơn giản nhưng lại rất khó để giải, đó là một trong những điều thú vị cuốn hút nhiều học sinh đam mê toán học. Trong bài này chúng tôi xin nêu ra một vài phương pháp giúp các em bước đầu tiếp cận với việc giải phương trình nghiệm nguyên.

Phương pháp biến đổi thành tổng. Phương pháp này dựa trên tính chất: Mỗi số nguyên dương đều được biểu diễn thành tổng của hai hay nhiều số nguyên dương khác trong hữu hạn các trường hợp. Vì thế ta có thể xét những trường hợp này để cho ra cách giải, ngoài ra ta có thể đánh giá để đưa về ít trường hợp để xét hơn, giúp lời giải ngắn gọn hơn.

Ví dụ 1. Giải các phương trình sau trong tập số nguyên

a) $x^2 + 3y^2 = 13$.

b) $2^x + y^4 = 85$.

c) $x^2 + y^2 + x + y – xy = 0$.

Lời giải

a) Ta biểu diễn 13 thành tổng của một số chính phương và một số khác:

$13 = 0^2 +13 = 1^2 + 12= 2^2 + 9 = 3^2 + 4$.

Trong các cách biểu diễn trên thì chỉ có $1^2 +12 = 1^2 + 3\cdot 2^2$ thỏa đề bài. Khi đó $x = \mp 1, y = \mp 2$.

Phương trình có 4 nghiệm $(-1;-2), (-1,2), (1,-2), (1,2)$.

b) Cũng có thể giải như trên, nhưng ta thêm một chút đánh giá cho lời giải gọn hơn, có thể đánh giá theo $x, y$.

Ta có $y^4 =85 – 2^x < 84 \Rightarrow |y| \leq 3$.

  • Nếu $|y| = 0, 2^x = 85$ (loại).
  • Nếu $|y|=1, 2^x = 84$ (loại).
  • Nếu $|y| = 2, 2^x = 69$ (loại).
  • Nếu $|y| = 3, 2^x = 4, x = 2$.

Từ đó phương trình có nghiệm là $(2,-3), (2,3)$.

Ví dụ 2. Giải phương trình nghiệm nguyên $x^2 – 6xy + 14y^2-10y – 16 = 0$

Lời giải

Phương trình tương đương với $$(x-3y)^2 + 5(y-1)^2=21$$
Khi đó $5(y-1)^2 \leq 21 \Rightarrow (y-1)^2 <5$.

  • Nếu $(y-1)^2 = 0 \Rightarrow y = 1, (x-3)^2 = 21$(vô lý)
  • Nếu $(y-1)^2 = 1 \Rightarrow (x-3y)^2 = 16$ giải ra được $(x;y)$ là $(4;0), (-4;0), (12;2), (2;2)$.
  • Nếu $(y-1)^2 = 4 \Rightarrow (x-3y)^2 = 1$, giải ra được $(x;y)$ là $(10;3), (8;3), (-2;-1), (-4;-1)$.
    Vậy phương trình có 8 nghiệm.

Ví dụ 3. Giải phương trình nghiệm nguyên $2x^2- 2xy + 5y^2 = 41$.

Lời giải
  •  $(x-y)^2 + x^2 + 4y^2 = 41$.
  • $4y^2 < 41$ do đó $y \in \{0, 1, 2, 3, -1, -2, -3\}$
  • $(-1;-3), (-2;-3), (1;3)$ và $(2;3)$.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập số nguyên:
a)  $19x^2+28y^2=2001$.
b) $3x^2 + y^2 – 4y = 24$.
c) $2^x + 5y^2 = 38$.
d) $x^2 – 6xy+13y^2 = 100$.
Bài 2. Giải các phương trình trong tập số nguyên:
a) $2x^2 + 6y^2 + 7xy – x- y = 25$.
b) $x^2 -xy+y^2 = x+y$

(còn nữa)

Phương pháp chứng minh phản chứng – P1

Ta dùng tương đương logic sau $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$ để thiết lập phương pháp chứng minh Phản chứng.

Để chứng minh mệnh đề $A \Rightarrow B$ đúng, ta có thể thực hiện các bước sau (Phương pháp phản chứng)

  • Giả sử mệnh đề $B$ sai.
  • Chứng minh $A$ sai, hoặc một điều vô lý.

Ví dụ 1. (Nguyên lý Dirichlet) Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải

Giả sử tất cả các hộp chỉ chứa số lượng bị không vượt quá $n$ viên, khi đó tổng số viên bi không vượt quá $k \cdot n$, mâu thuẫn với số bi là $kn + 1$.
Vậy phải có một hộp chứa nhiều hơn $n$ viên bi.

Ví dụ 2. Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^n+1$ không chia hết cho $2^m-1$ với mọi số tự nhiên $m$ sao cho $2 < m \leq n$.

Lời giải

Giả sử tồn tại $m,n$ sao cho $2^n+1$ chia hết cho $2^m-1$ với $2 < m < n$.
Ta có $2^{n-m}(2^m-1) \vdots 2^m-1$, suy ra $2^n -2^{n-m} \vdots 2^m-1$, mà $2^n+1 \vdots 2^m-1$ suy ra $2^{n-m} +1$ chia hết cho $2^m-1$.
Lý luận tương tự ta có $2^{n-km} + 1$ chia hết cho $2^m-1$.\\ Giả sử $n = km + q, 0\leq q <m$. Chọn $k$ như trên ta có $2^q +1$ chia hết cho $2^m-1$. Mà $q < m$ nên $2^q + 1 =2^m-1$,giải ra $q = 1, m=2$ (vô lý).

Ví dụ 3. Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:
a) Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?
b) Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a) Giả sử có cách ghi thỏa đề bài xét hai số đứng kề số 1, gọi là $a, b$ như sau $a1b$, khi đó $a+1 \geq 17, b+1 \geq 17$, suy ra $a = b= 16$ vô lí. Do đó không có cách ghi thỏa đề bài.
b) Giả sử có cách ghi thỏa đề bài: 3 số liên tiếp bất kì có tổng lớn hơn 24. Khi đó bỏ số 16 ra, còn lại 15 số chia làm 5 nhóm rời nhau thì tổng lớn hơn $24 \times 5 = 120$, trong khi đó $1 + 2 + \cdots + 15 = 120$ vô lí.

Ví dụ 4.  Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau:$-5, -4, -3, 3, 4, 5$.

Lời giải

Giả sử có một cách ghi thỏa đề bài. Khi đó
ta thấy rằng các số $0, 1, 2, 8, 9$ không thể đứng cạnh nhau đôi một. Hơn nữa có đúng 10 số, vậy các số còn lại sẽ đứng xen kẽ giữa các số này.
Khi đó xét số 7, ta thấy số 7 chỉ có thể đứng bên cạnh số 2 trong các số $\{0, 1, 2, 8, 9\}$, mâu thuẫn.
Vậy không tồn tại cách ghi thỏa đề bài.

Ví dụ 5.  Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải
  • Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra. Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$
  • Để ý rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và dó đó các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.
  • Số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là 2,4,6,8,…,20. Do đó một phần sẽ chứa 2+6+10+14+18=50 số, phần còn lại chứa 4+8+12+16+20=60 số. Cả 50 và 60 đều không chia hết cho 11, mâu thuẫn. Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Ví dụ 6.  Cho $F ={E_1, E_2, …, E_k }$ là một họ các tập con có $r$ phần tử của tập $X$. Nếu giao của $r+1$ tập bất kì của $F$ là khác rỗng, chứng minh rằng giao của tất cả các tập thuộc $F$ là khác rỗng.

Lời giải
  • Giả sử ngược lại, giao tất cả các tập thuộc $F$ bằng rỗng.
    Xét tập $E_1 = \{x_1, \cdots, x_r\}$.
  • Do giao tất cả các tập thuộc $F$ là rỗng, nên với $x_k$ tồn tại một tập $E_{i_k}$ mà $x \notin E_{i_k}, \forall k = \overline{1,r}$.
  • Khi đó xét giao của họ gồm $r+1$ tập $E_1, E_{i_1}, \cdot, E_{i_r}$ thì bằng rỗng, mâu thuẫn.
    Vậy giao của tất cả các tập thuộc $F$ là khác rỗng.

Ví dụ 7.  Cho $A$ và $B$ là các tập phân biệt và hợp của $A$ và $B$ là tập các số tự nhiên. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số phân biệt $a,b > n$ sao cho ${a,b,a + b } \subset A$ hoặc ${a,b,a+b} \subset B$.

Lời giải
  • Nếu $A$ hoặc $B$ là tập hợp hữu hạn phần tử thì chỉ cần chọn $a, b$ lớn hơn phần tử lớn nhất của $A$ hoặc $B$ ta có điều cần chứng minh.
  • Nếu $A, B$ là tập vô hạn, giả sử tồn tại $n$ sao cho với mọi $a, b$ thì $a, b, a+b$ không cùng thuộc $A$ hoặc $B$. (1)
  • Ta chọn các số $x, y, z \in A$ sao cho $x < y < z$ và $z-y, y-x > n$.
  • Do (1) nên các số $y-x, z-y,z-x \in B$, suy ra $z-y+y-x = z-x \in A$ (mâu thuẫn).
    Vậy điều giả sử là sai, tức là ta có điều cần chứng minh.

Ví dụ 8.  Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Lời giải
  • Giả sử tồn tại tam giác đều có các đỉnh là các điểm nguyên.
    Xét hình chữ nhật có các đỉnh là các điểm nguyên, sao cho đỉnh của tam giác đều thuộc cạnh của hình chữ nhật. Khi đó dễ dàng suy ra diện tích tam giác đều là số hữu tỷ.
  • Mặt khác diện tích tam giác đều $S = \dfrac{a^2\sqrt{3}}{4}$ là số vô tỷ, vì $a$ là số nguyên, $\sqrt{3}$ là số vô tỷ.

Ví dụ 9.  Cho $A$ là tập con có 19 phần tử của tập ${1, 2, \cdots, 106}$ sao cho không có hai phần tử nào có hiệu bằng $6, 9, 12, 15, 18$. Chứng minh rằng có 2 phần tử thuộc $A$ có hiệu bằng 3.

Lời giải
  • Xét các phần tử thuộc $A$ theo mod 3 thì có ít nhất 7 phần tử có cùng 0, 1, 2 mod 3. Xét tập B có 7 hoặc nhiều hơn phần tử có cùng số dư khi chia cho 3. Khi đó hiệu 2 số bất kì là số chia hết cho 3.
  • Giả sử không có hai số có hiệu bằng 3, khi đó hiệu hai số sẽ từ 21 trở đi. Giả sử $a_1 < a_2 < a_3 < a_4 < a_5 < a_6 < a_7 \in B$. Ta có $a_2 – a_1 \geq 21, \cdots, a_7 – a_6 \geq 21$, suy ra $a_7 \geq 1 + 21\times 6 = 127$ mâu thuẫn.
  • Vậy có 2 số có hiệu bằng 3.

Ví dụ 10. Một hình vuông $n \times n$ ô được tô bởi hai màu đen trắng, sao cho trong 4 ô góc thì 3 ô được tô màu đen, 1 ô được tô màu trắng. Chứng minh rằng trong hình vuông có ô vuông $2 \times 2 $ mà có số ô màu đen là số lẻ.

Lời giải
  • Giả sử ngược lại, không có hình vuông $2 \times 2$ nào mà số ô đen là lẻ mà đều là số chẵn.
  • Lấy tổng các ô đen của các hình vuông $2\times 2$, khi đó ta được một số chẵn các ô đen.
  • Mặt khác, mỗi ô vuông trên cạnh (khác ô góc) được tính 2 lần (vì có 2 hình vuông $2 \times 2$ chứa nó, các ô vuông bên trong được tính 4 lần, các ô góc được tính 1 lần, do đó số ô đen là một số lẻ. Mâu thuẫn.
  • Vậy có ít nhất một hình vuông $2 \times 2$ ô đen là một số lẻ.

 

Bài tập rèn luyện

Bài 1. Giải các bài toán sau bằng phương pháp phản chứng
a) Chứng minh rằng $\sqrt{2}$ là một số vô tỷ.
b) Chứng minh rằng tổng của một số hữu tỷ và một số vô tỷ là số vô tỷ.
c) Chứng minh tích của một số hữu tỷ và một số vô tỷ là số vô tỷ.
d) Tổng, tích hai số vô tỷ có luôn là số vô tỷ không? Tại sao?
e) Cho 15 số thỏa mãn tổng của 8 số bất kì lớn nhơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.
f) Từ 8 số nguyên dương không lớn hơn 20, chứng minh rằng có thể chọn ra 3 số $x, y, z$ là độ dài 3 cạnh của một tam giác.

Bài 2. Có thể chia tập $X = {1, 2, …, 17}$ thành hai tập rời nhau sao cho tích các phần tử thuộc tập này bằng tổng các phần tử thuộc tập kia?
Bài 3. Có tồn tại hay không cách chia tập hợp $X = {1, 2, …, 2017}$ thành các tập hợp sao cho trong mỗi tập đó thì phần tử lớn nhất bằng tổng các phần tử còn lại.

Bài 4. Một tập hợp có ít nhất 3 số nguyên dương phân biệt được gọi là \textbf{tập đều} nếu có ít nhất một số lẻ và khi bỏ đi một phần tử bất kì thì các số còn lại có thể chia thành hai tập hợp mà tổng các số trong hai tập hợp đó bằng nhau.
a) Chứng minh không có tập đều nào có 3 phần tử.
b) Chứng minh số phần tử của tập đều luôn là một số lẻ.
c) Có tồn tại hay không một tập đều có 5 phần tử? Tại sao?

Bài tập chứng minh chia hết – Ôn thi vào lớp 10

Các bài toán chứng minh chia hết trong chương trình ôn thi vào lớp 10, dành cho các em rèn luyện.

Bài 1. (Lâm Đồng 2018 – 2019)

Với $ n $ là số tự nhiên chẵn, chứng minh rằng: $$ (20^n+16^n-3^n-1)\ \vdots \ 323. $$
Bài 2. Chứng minh rằng với mọi số tự nhiên $n$ thì $5^{2n}+7$ chia hết cho 8.
Bài 3. (Bến Tre 2018 – 2019)
Cho $ p $ là số nguyên tố lớn hơn 3. Chứng minh rằng $ p^2-1 $ chia hết cho 24.
Bài 4.  Chứng minh rằng với mọi số tự nhiên $n$ thì $3^{3n+1} + 2^{n+2}$ chia hết cho 7.
Bài 5. Chứng minh rằng nếu $\overline{abc}$ chia hết cho 37 thì $\overline{bca}$ cũng chia hết cho 37.
Bài 6. Chứng minh rằng với mọi số tự nhiên $n$ thì $(22n+7,33n+10)=1$
Bài 7. Chứng minh rằng nếu $a, b$ là các số nguyên thỏa $a^2 + b^2$ chia hết cho 3 thì cả hai số $a, b$ đều chia hết cho 3.

Bài 8. Tìm tất cả các số tự nhiên $n$ để $3^n + 5^n$ chia hết cho $3^{n-1} + 5^{n-1}$.
Bài 9. Cho $n$ là số tự nhiên không chia hết cho 2 và 3. Chứng minh rằng với mọi số tự nhiên $k$ thì ${\left( {k + 1} \right)^n} – {k^n} – 1$ chia hết cho ${k^2} + k + 1$
Bài 10. Tìm tất cả các số nguyên dương $n$ sao cho $(n-1)!$ không chia hết cho $n$.
Bài 11. Chứng minh rằng nếu $n$ không chia hết cho 7 thì $n^3-1$ hoặc $n^3+1$ chia hết cho 7.

Bài 12. (Tuyên Quang 2018 – 2019) Cho $a$, $b$, $c$ là các số nguyên. Chứng minh rằng: nếu $ a^{2016}+b^{2017}+c^{2018} $ chia hết cho 6 thì $ a^{2018}+b^{2019}+c^{2020} $ cũng chia hết cho 6.

Bài 13. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.
Bài 14. Chứng minh rằng với mọi số nguyên $a, b, c$ thì $abc(a^3-b^3)(b^3-c^3)(c^3-a^3)$ chia hết cho 7.
Bài 15. Cho tập $A= {1,2,3,4,5,6,7}$. Gọi S là tập tất cả các số tự nhiên có 7 chữ số khác nhau lấy từ A. Chứng minh rằng không tồn tại hai số $b, c$ thuộc S sao cho $b$ chia hết cho $c$.
Bài 16.  Cho các số nguyên $x, y, z$ khác 0.\ Đặt $x^2 – yz = a, y^2- xz = b, z^2 – xy = c$. \Chứng minh rằng $ax+by + cz $ chia hết cho $a+b+c$.
Bài 17.  Chứng minh rằng trong một 100 số tự nhiên thì có một số hoặc một vài số có tổng chia hết cho 100.
Bài 18.  Chứng minh rằng trong tập mọi tập con có $n+1$ phần tử của tập ${1, 2, \cdots, 2n}$ thì luôn có hai số $a, b$ sao cho $a$ chia hết cho $b$.
Bài 19.  (PTNK 2019)
a) Tìm tất cả những số tự nhiên $n$ sao cho $2^n+1$ chia hết cho 9.
b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^n+1$ không chia hết cho $2^m-1$ với mọi số tự nhiên $m$ sao cho $2 < m \leq n$.
Bài 20. Cho hai số nguyên dương $m$, $n$ thỏa mãn $m+n+1$ là một ước nguyên tố của $2\left( m^2+n^2-1\right) $.
Chứng minh rằng $ m\cdot n $ là số chính phương.
Bài 21. Có bao nhiêu số tự nhiên $n$ không vượt quá $2019$ thỏa mãn $n^3+2019$ chia hết cho $6$.
Bài 22. (Đại học KHTN Hà Nội 2018 – 2019) Cho $x$, $y$ là các số nguyên sao cho $ x^2-2xy-y^2$; $xy-2y^{2}-x$ đều chia hết cho 5. Chứng minh $ 2x^2+y^2+2x+y$ cũng chia hết cho 5.
Bài 23. Cho $n$ số nguyên dương tùy ý, với mỗi số nguyên $k$ ta đặt $S_k=1^k+2^k+….+n^k $. Chứng minh rằng: $S_{2019}\ \vdots \ S_1 $.
Bài 24.  (Vinh 2018 – 2019) Cho số tự nhiên $ n\geq2 $ và số nguyên tố $p$ thỏa mãn $ p-1 $ chia hết cho $n$ đồng thời $ n^3-1 $ chia hết cho $p$. Chứng minh rằng $ n+p $ là một số chính phương.
Bài 25. Cho hai số $m,n$ nguyên dương lẻ nguyên tố cùng nhau và $m^2 + 2 \, \vdots \, n$ và $n^2 + 2 \, \vdots \, m$.  Chứng minh rằng $m^2 + n^2 + 2$ chia hết cho $4mn$.
Bài 26. Cho các số $m,n$ nguyên dương thỏa $5m + n$ chia hết cho $5n+m$. Chứng minh $m$ chia hết cho $n$.
Bài 27. Cho các số $x,y$ nguyên dương thỏa $x^2 + y^2 + 10$ chia hết cho $xy$.
a)  Chứng minh rằng $x,y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh rằng $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Hết

 

Phương pháp chứng minh chia hết – P4 – Nguyên lý Dirichlet

Nguyên lý Dirichlet có nhiều ứng dụng trong toán học được phát biểu một cách đơn giản như sau: Nếu có $n+1$ con thỏ cho vào $n$ cái chuồng thì có một chuồng chứa ít nhất hai con thỏ.

Nếu áp dụng vào số học ta sẽ có phát biểu tương tự: Có $n+1$ số nguyên khi chia cho $n$ thì sẽ có hai số nào đó có cùng số dư khi chia cho $n$, hay có hai số mà hiệu của chúng sẽ chia hết cho $n$.

Trong bài này chúng ta sẽ sử dụng tích chất này để giải các bài toán về chia hết.

Ví dụ 1. Chứng minh rằng trong 11 số chính phương có hai số mà hiệu của chúng chia hết cho 20.

Lời giải

Theo nguyên lý Dirichlet thì trong 11 số chính phương có hai số có hiệu chia hết cho 10. Giả sử đó là $a$ và $b$.

Ta có $a = m^2, b = n^2$ và $a-b = m^2-n^2$ chia hết cho 10. Khi đó $m, n$ cùng tính chẵn lẻ, suy ra $m^2-n^2 = (m-n)(m+n)$ chia hết cho 4.

Do đó $a-b = m^2-n^2$ chia hết cho 5, 4 nên chia hết cho 20.

Ví dụ 2. Với 4 số nguyên $a, b, c, d$.

Chứng minh rằng $(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$ chia hết cho 12

Lời giải

Đặt $A = (a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$, ta chứng minh $A$ chia hết cho 3, 4.

  • Trong bốn số $a, b, c, d$ có hai số có cùng số dư khi chia cho 3, hay có hai số có hiệu chia hết cho 3. Do đó $A$ là tích các hiệu của hai số bất kì, nên $A$ chia hết cho 3.
  • Trong 4 số nếu có 3 số chẵn, hoặc 3 số lẻ, giả sử $a, b, c$ cùng tính chẵn lẻ, khi đó $(a-b)(b-c)$ chia hết cho 4. Do đó $A$ chia hết cho 3.
    • Nếu có hai số chẵn, hoặc hai số lẻ giả sử cặp $(a, b)$ và cặp $(c,d)$ cùng tính chẵn lẻ. Khi đó $(a-b)(c-d)$ chia hết cho 4. Do đó $A$ chia hết cho 4.
  • Vậy $A$ chia hết cho 12.

Ví dụ 3. Chứng minh rằng
a) rong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.

Lời giải

a) Một số khi chia cho 3 có các số dư là 0, 1, 2.

  • Nếu 5 số khi chia cho 3 có 1 hoặc 2 số dư, khi đó sẽ có 3 số có cùng số dư khi chia cho 3, tổng 3 số này sẽ chia hết cho 3.
  • Nếu 5 số khi chia cho 3 có đủ 3 số dư 0, 1, 2 thì tổng ba số có số dư khác nhau sẽ chia hết cho 3.
  • Vậy trong 5 số thì có 3 số có tổng chia hết cho 3.

b)  Gọi 17 số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.

Theo câu a) trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho $3$, giả sử 3 số đó là $a_1, a_2, a_3$.

Đặt $b_1 = \dfrac{1}{3}(a_1+a_2+a_3)$.

Tương tự trong các số $a_4, a_5, \cdots, a_8$, có 3 số có tổng chia hết cho 3, giả sử là $a_4, a_5, a_6$.

Đặt $b_2 = \dfrac{1}{3}(a_4+a_5+a_6)$.

Tương tự ta sẽ có b_3, b_4.

Cuối cùng, còn 5 số $a_{13}, a_{14}, \cdots a_{17}$ có 3 số có tổng chia hết cho 3, giả sử là $a_{14}, a_{15}, a_{16}$.

Đặt $b_5 = \dfrac{1}{3}(a_{14} +a_{15} + a_{16})$.

Ta thấy các số $b_1, b_2, \cdots, b_5$ là các số nguyên, do đó áp dụng câu a) có 3 số có tổng chia hết cho 3, giả sử là $b_1, b_2, b_3$, tức là $b_1+b_2+b_3$ chia hết cho 3.

Từ đó ta có $a_1 + a_2 +\cdots +a_8+a_9$ chia hết cho 9.

Ví dụ 4. Chứng minh rằng trong 100 số phân biệt, luôn có một số hoặc một tổng vài số chia hết cho 100.

Lời giải

Ta xét các tổng sau

$S_1 = a_1$

$S_2 = a_2$

$S_{100} = a_1 + a_2 + \cdots +a_{100}$

Nếu trong các số $S_1, S_2, \cdots, S_{100}$ có một số chia hết 100 thì ta có điều cần chứng minh.

Nếu không có số nào chia hết cho 100 thì các số dư khi chia cho 100 là từ 1 đến 99, do đó tồn tại $i>j$ sao cho $S_i – S_j$ chia hết cho 100, hay $a_{j+1} + \cdots+a_i$ chia hết cho 100.

Do đó ta có điều cần chứng minh.

Bài tập rèn luyện

Bài 1. Chứng minh rằng tồn tại các số chỉ toàn chữ số 1 và chia hết cho 2019.

Bài 2. Chứng minh rằng mỗi tập con có $n+1$ phần tử của tập ${1, 2, \cdots, 2n}$ có hai số mà số này chia hết cho số kia.

Phương pháp chứng minh chia hết – P3

Tiếp theo là phương pháp sử dụng đồng dư để chứng minh các bài toán chia hết.

Một số tính chất về đồng dư các bạn có thể xem lại từ bài giảng đồng dư

Sau đây ta xét một vài ví dụ sau.

Ví dụ 1. Chứng minh rằng với mọi số tự nhiên $n$:
a) $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.
b) $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Lời giải

a) $5^{2n} = 25^n \equiv 6^n (\mod 19) \Rightarrow 7 \cdot 5^{2n} = 7 \cdot 6^n (\mod 19)$

Suy ra $ 7 \cdot 5^{2n} + 12 \cdot 6^n \equiv 19 \cdot 6^n \equiv 0 (\mod 19)$.

Do đó $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.

b) Ta có $5^{2n+1}= 5 \cdot 25^n \equiv 5 \cdot 2^n (\mod 23)$.

Khi đó $5^{2n+1}+2^{n+4} + 2^{n+1} \equiv 5 \cdot 2^n + 16 \cdot 2^n + 2 \cdot 2^n (\mod 23)$

$\equiv 23 \cdot 2^n (\mod 23) \equiv 0 (\mod 23)$.

Do đó $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Ví dụ 2. Tìm tất các số $n$ để
a) $2^{2n} + 2^n + 1$ chia hết cho 5.
b) $2^n+ 1$ chia hết cho 9.

Lời giải

a) Ta thấy $16\equiv 1 (\mod 5)$, suy ra $16^n \equiv 1 (\mod 5)$.

Suy ra $2^{4k+r} \equiv 2^r (\mod 5)$.

Do đó ta xét $n$ theo moldun 4.

  • Nếu $n= 4k$, ta có $2^{2n} + 2^n + 1 \equiv 3 (\mod 5)$.
  • Nếu $n = 4k+1$ ta có $2^{2n} + 2^n + 1 \equiv 7 (\mod 5)$.
  • Nếu $n=4k+2$ ta có $2^{2n} + 2^n + 1 \equiv 4 (\mod 5)$.
  • Nếu $n=4k+3$ ta có $2^{2n} + 2^n + 1 \equiv 1 (\mod 5)$.

Vậy không tồn tại số tự nhiên $n$ để $2^{2n} + 2^n + 1$ chia hết cho 5.

b) Ta có $2^6 \equiv 1 (\mod 9)$, suy ra $2^{6k+r} equiv 2^r (\mod 9)$.

Đặt $n= 6k+r (0 \leq r \leq 5)$. Khi đó $2^n+1 \equiv 2^{6k+r}+1 \equiv 2^r + 1 (\mod 9)$

Do đó $2^n + 1$ chia hết cho 9 khi và chỉ khi $2^r+1$ chia hết cho 9, tìm ra được $r = 3$.

Vậy $n=6k+3$ với $k$ là số tự nhiên.

Ví dụ 3. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Lời giải

Ta cần chứng minh $a_nb_n$ chia hết cho 5 và $a_n+ b_n$ không chia hết cho 5 với mọi $n$.

  • $a_n\cdot b_n = 2^{4n+2} + 1 \equiv 0 (\mod 5)$.
  • $a_n + b_n = 2^{2n+2} + 2 \equiv 4(-1)^n + 2  (\mod 5) \equiv 1, -2 (\mod 5)$.

Do đó $a_nb_n$ chia hết cho 5 và $a_n+b_n$ không chia hết cho 5.

Do đó có một và chỉ một trong hai số $a_n$ hoặc $b_n$ chia hết cho 5.

Ví dụ 4. (PTNK 2019) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.
a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Lời giải

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

b)

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
    Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
    Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
    $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad  (\mod 9)$
    $\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do $n$ chẵn).}$
    $ \equiv 2^n(1-2^n) \quad \mod 9) Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1  \vdots \ 9$.
    Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad (\mod 9) \Rightarrow k$ chẵn.

    • Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
    • Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
  • Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài tập rèn luyện

Bài 1. Cho $n$ là số tự nhiên. Chứng minh rằng:
a) $5^{2n+1}+2^{n+4}+2^{n+1}$ chia hết cho $23$;
b) $11^{n+2}+12^{2n+1}$ chia hết cho $133$;
c)  $5^{n+2}+26.5^n+8^{2n+1}$ chia hết cho $59$;
d)  $5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}$ chia hết cho $38$.

Bài 2. Tìm tất cả các số tự nhiên $n$ sao cho:
a) $2^{3n+4}+3^{2n+1}$ chia hết cho 19
b) $n.2^n+ 1$ chia hết cho 3
c) $2^2n+2^n+1$ chia hết cho 21
d)  $1^n+ 2^n+ 3^n+ 4^n$ chia hết cho 5

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng:
a)  $2^{2^{2n}}+10$ chia hết cho $13$;
b) $3^{2^{4n+1}}+2^{3^{4n+1}}+5$ chia hết cho $22$.

Bài 4. (PTNK) Tìm các số nguyên dương $n$ sao cho:
a) $n.2^n+3^n$ chia hết cho $5$;
b) $n.2^n+3^n$ chia hết cho $25$.