Đề ôn thi vào lớp 10 chuyên Toán năm 2022

Bài 1. (1,5 điểm)
a) Cho $a, b, c $ là các số thỏa mãn $ a^4 + b^4 + (a-b)^4 = c^4 + d^4 + (c-d)^4$. Chứng minh rằng [ a^2 + b^2 + (a-b)^2 = c^2 + d^2 + (c-d)^2 ]
b) Giải hệ phương trình $\left\{ \begin{matrix} x – \dfrac{1}{(x+1)^2}=\dfrac{y}{x+1}- \dfrac{1+y}{y} \hfill \cr \sqrt{8y+9} = (x+1)\sqrt{y} + 2 \end{matrix} \right.$
Bài 2. (1,5 điểm) Cho phương trình $2(m^2+1)x^2 – 8mx + 3m = 0$. ($m$ là tham số).
a) Tìm $m$ để phương trình có hai nghiệm phân biệt âm.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [2(x_1+x_2) – \sqrt{\dfrac{3}{x_1x_2}} = 2]
Bài 3. (1,5 điểm) Cho các số $x, y, z$ dương thỏa ${x^2} + {y^2} + {z^2} = xyz$. Chứng minh rằng:
a) $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \le 1\,\,$
b) $xy + yz + xz + 9 \ge 4\left( {x + y + z} \right)\,\,$

Bài 4. (1,5 điểm) Một số nguyên tố $p$ được gọi là số nguyên tố đẹp nếu tồn tại các số nguyên $a, b$ thỏa $a^2b+1$ chia hết cho $p$ thì $a^2+b$ cũng chia hết cho $p$.
a) Chứng minh rằng $5$ là số nguyên tố đẹp.
b) 7 có phải là số nguyên tố đẹp không? Tại sao?

Bài 5. (3 điểm) Cho đường tròn $(O)$ và dây cung BC cố định. $A$ là một điểm thay đổi trên cung lớn BC. Các đường phân giác trong góc $B, C$ cắt nhau tại $I$. Đường thẳng qua $I$ vuông góc với $IA$ cắt các cạnh AB, AC lần lượt tại $M, N$.
a) Tìm vị trí của $A$ để $BM.CN$ đạt giá trị lớn nhất.
b) Đường thẳng qua M song song IC cắt BC tại L; đường thẳng qua N song song IB cắt BC tại K. Chứng minh $MKLN$ nội tiếp. Xác định tâm ngoại tiếp của tứ giác.
c) Gọi $D$ là hình chiếu của $I$ trên $BC$. Chứng minh $\angle DPM = \angle IPN$ và $A, D, P$ thẳng hàng.
Bài 6. (1 điểm) Cho đa giác đều 26 đỉnh. Trên mỗi đỉnh ta viết các số từ tự nhiên từ 1 đến 12. Chứng minh rằng có 4 đỉnh tạo thành hình chữ nhật ABCD sao cho $a+ b= c+ d$ với $a, b, c, d$ là các số ghi trên các đỉnh $A, B, C, D$.

Đáp án dành cho các bạn đăng kí trên website -> here

 

 

 

 

 

 

Phương trình bậc nhất: $ax + b = 0$.

Giải và biện luận phương trình $ax + b = 0$. 

  • Nếu $a \neq 0$ thì phương trình có nghiệm duy nhất $x = \dfrac{-b}{a}$.
  • Nếu $a = 0, b \neq 0$ thì phương trình vô nghiệm.
  • Nếu $a = 0, b = 0$ thì mọi $x \in \mathbb{R}$ đều là nghiệm.

Ví dụ 1. Giải và biện luận phương trình $(m-1)x + 2m – 3 = 0$.

Giải
  • Khi $m -1 \neq 0 \Leftrightarrow m = 1$, phương trình có nghiệm $x = \dfrac{3-2m}{m-1}$.
  • Khi $m = 1$, ta có phương trình $0x -1 = 0$ (Vô nghiệm).

Ví dụ 2. Giải và biện luận phương trình $(m^2-3m + 2)x – m^2 +1 = 0$.

Giải
  • Khi $m^2 – 3m + 2 \neq 0 \Leftrightarrow m \neq 1, m\neq 2$ thì phương trình có nghiệm $x = \dfrac{m^2-1}{m^2-3m+2} = \dfrac{m+1}{m-2}$.
  • Khi $m^2 – 3m + 2 = 0 \Leftrightarrow m = 1$ hoặc $m = 2$.
    • Với $m = 1$ thì $ 1-m^2 = 0$ nên mọi $x \in \mathbb{R}$ đều là nghiệm.
    • Với $m = 2$ thì $1 – m^2 \neq 0$ nên phương trình vô nghiệm.

Ví dụ 3. Tìm $m$ để phương trình $\dfrac{3mx – 1}{x-m} =2 $ có nghiệm duy nhất.

Giải

Điều kiện $x \neq m$. Phương trình tương đương với $3mx – 1 = 2(x-m) \Leftrightarrow (3m-2)x = -2m+1$.

Phương trình có nghiệm duy nhất khi và chỉ khi $3m – 2 \neq 0$ và $x = \dfrac{-2m-1}{3m-2} \neq m \Leftrightarrow m \neq \pm \dfrac{1}{\sqrt{3}}$.

Kết luận: $m \neq \dfrac{2}{3}, \dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}$.

Bài tập

Bài 1. Giải và biện luận các phương trình sau:

a) $(m^2-4m+2)x=m-2$
b) $m^2(x-1)=mx-1$
c) $m(x-m+3)=m(x-2)+6$
d) $m(mx-1)=4x+2$

Bài 2. Định $m$ để các phương trình sau vô nghiệm
a) $(4m^2-2)x=1+2m-x$
b) $(m+1)^2x-2=(4m+9)x-m$
c) $\dfrac{x-2}{x-3}=\dfrac{x}{x+m}$
d) $\dfrac{x+1}{x-m+1}=\dfrac{x}{x+m+2}$

Bài 3. Định $m$ để phương trình sau có nghiệm
a) $m^2(x-1)=4x-3m+2$
b) $\dfrac{2x+m}{x-1}-\dfrac{x+m-1}{x}=1$
c) $\dfrac{x+m}{x+3}=\dfrac{x}{x+1}$

[WpProQuiz 4]

 

 

 

 

 

 

 

 

 

Phép nhân đa thức với đa thức – Phần 1

Muốn nhân đa thức với đa thức ta nhân từng đơn thức của đa thức này với đa thức kia.

Cho $A, B, C, D$ là các đơn thức. Khi đó:

$(A+B)\cdot (C+D) = A(C+D) + B(C+D)$

Ví dụ 1. Thực hiện các phép tính sau:

a) $(x-1)(x+2)$;
b) $(2-x)(3x+2)$;
c) $-4x(x-2)(x+2)$;

Giải
a)$(x-1)(x-2) = x(x-2) + (-1)(x-2)$

$= x^2 – 2x +(-x+2) = x^2-3x+2$

b)$(2-x)(3x+2) = 2(3x+2)+(-x)(3x+2)$

$= 6x+4+(-3x^2-2x) = -3x^2+4x+4$

c)$-4x(x-2)(x+2) = -4x[x(x+2)+(-2)(x+2)]$

$= -4x(x^2+2x-2x-4) = -4x(x^2-4)$

$= -4x^3+16x$

Ví dụ 2. Thực hiện các phép nhân.

a) $(2x^2-y)(y+3x)$

b)$(3xy^2+4x-3y)(x+6y)$

c)$(3x^2-2z-6y)(x+z)$

Giải
a) $(2x^2-y)(y+3x) = 2x^2(y) +(-y)(y) + (2x^2)(3x)+(-y)(3x)$

$ = 2x^2y -y^2 + 6x^3 -3xy$

b) $(3xy^2+4x-3y)(x+6y) = $

$=3xy^2(x) + 4x(x) +(-3x)(x ) +3xy^2(6y)+4x(6y) -(3y)(6y) $

$ = 3x^2y^2-3x^2+18xy^3+24xy-18y^2$

c)$(3x^2-2z-6y)(x+z) =$

$=2x^2 \cdot x +(-2z)\cdot x +(-6y)\cdot x + (3x^2)\cdot z +(-2z)\cdot z +(-6y)\cdot z$

$ = 2x^3 – 2xz -6xy + 3x^2z – 2z^2 – 6yz$

[WpProQuiz 2]

 

 

 

 

 

Nhân đơn thức với đa thức- Phần 1

Quy tắc.

Muốn nhân đơn thức với đa thức, ta lấy đơn thức nhân với từng đơn thức của đa thức và cộng các kết quả lại.

Nếu $A$ là đơn thức $B, C$ là các đơn thức thì ta có:

 

Ví dụ 1. Thực hiện các phép nhân sau:

a) $2x(3x +\dfrac{3}{2})$.

b) $3y(3- 4y)$

Gợi ý
  • $2x (3x+ \dfrac{3}{2}) $
  • $ = 2x\cdot (3x) + 2x \cdot \dfrac{3}{2}$
  • $=6x^2 + 3x$.
  • $3y(3-4y)$
  • $=3y \cdot 3 + 3y\cdot (-4y)$
  • $=9y – 12y^2$.

Ví dụ 2.Thực hiện các phép toán sau:

a) $-2x^3y(2x^2-3y+5xy)$
b) $\dfrac{2}{3}x^2y(3xy-x^2+y).$

Gợi ý

a)

  • $-2x^3y(2x^2-3y+5xy)$
  • $=-2x^3y\cdot(2x^2)+(-2x^3y)\cdot (-3y) + (-2x^3y)(5xy)$
  • $=-4x^5y +6x^3y^2-10x^4y^2$

b)

  • $\dfrac{2}{3}x^2y(3xy-x^2+y)$
  • $=\dfrac{2}{3}x^2y\cdot(3xy) +\dfrac{2}{3}x^2y\cdot(-x^2)+\dfrac{2}{3}x^2y\cdot(y)$
  • $=2x^3y^2 -\dfrac{2}{3}x^4y +\dfrac{2}{3}x^2y^2$.

Bài tập tương tự.

Bài 1. Thực hiện phép tính: a

a) $-3x(4x + 2)$.

b) $-\dfrac{1}{3}y^2(6y  – 9y^2)$.

c) $-2x^2y(4x^2 – 5xy^2 + z)$.

d) $3x^2y^2(5x – 4y^2 + 2xy)$.

Đáp số

a) $-12x^2-6x$

b) $-2y^3+3y^4$

c) $-8x^4y+10x^3y^3 -2x^2yz$.

d) $15x^3y^2-12x^2y^4+6x^3y^3$

Bài 2. Thực hiện phép tính

a) $-2x^2y(4x-5y^2+z)$

b) $-\dfrac{3}{4}xy (-8x^2y^2 + 3x^4y-12)$

c) $2z^2y(zx+3xyz – 5y^2)$

d) $\dfrac{1}{2}xy(\dfrac{4}{3}x^2 – \dfrac{9}{2}xy^2)$

Đáp số

a) $-8x^3y + 10x^2y^3 -2x^2yz$

b) $6x^3y^3 -\dfrac{9}{4}x^5y^2 +9xy$

c) $2xyz^3+6xy^2z^3 – 10y^3z^2$

d) $\dfrac{2}{3}x^3y – 9x^2y^3$