Tag Archives: Daiso

Phân số

1.Phân số là gì?

Ta gọi $\dfrac{\mathrm{a}}{\mathrm{b}}$, trong đó $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$ là phân số, a là tử số (tử) và b là mẫu số (mẫu) của phân số. Phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ đọc là a phần b.

Ví du 1: Phân số $\dfrac{7}{-8}$ có tử số là 7 , mẫu số là $-8$ và được đọc là “bảy phần âm tám”.

Chú ý: Ta có thể dùng phân số để ghi (viết, biểu diễn) kết quả phép chia một số nguyên cho một số nguyên khác $0 .$
Vi du 2: Phân số $\frac{2}{-5}$ là ghi kết quả phép chia 2 cho $-5$.

2.Hai phân số bằng nhau.

Hai phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$ được gọi là bằng nhau, viết là $\dfrac{\mathrm{a}}{\mathrm{b}}=\dfrac{\mathrm{c}}{\mathrm{d}}$, nếu $\mathrm{a} \cdot \mathrm{d}=\mathrm{b} \cdot \mathrm{c}$.
Ví dụ 3

a) $\dfrac{-12}{-15}=\dfrac{8}{10}$ vì $(-12) \cdot 10=(-15) .8$ (cùng bằng $-120$ ).

b) $\dfrac{9}{8}$ không bằng $\dfrac{5}{4}$, vì $9.4$ không bằng $8.5$. Viết: $\frac{9}{8} \neq \frac{5}{4}$.

Chú ý: Điều kiện $\mathrm{a} \cdot \mathrm{d}=\mathrm{b}$. $\mathrm{c}$ gọi là điều kiện bằng nhau của hai phân số $\dfrac{\mathrm{a}}{\mathrm{h}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$.

3. Biểu diễn số nguyên.

Mỗi số nguyên $\mathrm{n}$ có thể coi là phân số $\dfrac{\mathrm{n}}{1}$ (viết $\dfrac{\mathrm{n}}{1}=\mathrm{n}$ ). Khi đó số nguyên $\mathrm{n}$ được biểu diễn ở dang phân số $\dfrac{\mathrm{n}}{1}$.
Ví dụ 4: $\dfrac{-7}{1}=-7 ; 125=\dfrac{125}{1} .$

Bài tập sách giáo khoa

Bài 1. Vẽ lại hình vẽ bên và tô màu để phân số biểu thị phần tô màu bằng $\dfrac{5}{12}$.

Bài 2. Đọc các phân số sau.
a) $\dfrac{13}{-3}$;
b) $\dfrac{-25}{6}$;
c) $\dfrac{0}{5}$;
d) $\dfrac{-52}{5}$.

Bài 3. Một bể nước có 2 máy bơm để cấp và thoát nước. Nếu bể chưa có nước, máy bơm thứ nhất sẽ bơm đầy bể trong 3 giờ. Nếu bể đầy nước, máy bơm thứ hai sẽ hút hết nước trong bể sau 5 giờ. Dùng phân số có tử số là số âm hay số dương thích hợp để biểu thị lượng nước mỗi máy bơm bơm được sau 1 giờ so với lượng nước mà bể chứa được.

Bài 4. Tìm cặp phân số bằng nhau trong các cặp phân số sau:
a) $\dfrac{-12}{16}$ và $\dfrac{6}{-8}$;
b) $\dfrac{-17}{76}$ và $\dfrac{33}{88}$.

Bài 5. Viết các số nguyên sau ở dạng phân số.
a) 2 ;
b) $-5$;
c) $0 .$

Thứ tự của số nguyên

So sánh hai số nguyên

Khi biểu diễn hai số nguyên a, b trên trục số nằm ngang, nếu điểm a nằm bên trái điểm b thì ta nói a nhỏ hơn b hoặc b lớn hơn a và ghi là: $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{b}>\mathrm{a}$.

Nhận xét:
– Mọi số nguyên dương đều lớn hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.
– Với hai số nguyên âm, số nào có số đối lớn hơn thì số đó nhỏ hơn.

Ví dụ 1. So sánh các cặp số nguyên sau:

a) – 10 và -8

b) 3 và -14

c) 0 và – 2

Lời giải

Ví dụ 2. Cho ba số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ và biết:
$$
\mathrm{a}>2 ; \quad \mathrm{b}<-7 ;-1<\mathrm{c}<1
$$
Hỏi trong các số nói trên, số nào là số nguyên dương, số nào là số nguyên âm và số nào bẳng 0 ?

Lời giải

Thứ tự trong tập hợp số nguyên

Ví dụ 3. Sắp xếp các số nguyên theo thứ tự tăng dần: 4, – 3, -5, 2, – 17.

Lời giải

Bài tập rèn luyện.

Bài 1. So sánh các cặp số sau:
a) 6 và 5 ;
b) $-5$ và 0
c) $-6$ và 5 ;
d) $-8$ và $-6$;
e) 3 và $-10$;
$\mathrm{g}$ ) $-2$ và $-5$.

Lời giải

Bài 2. Tìm số đối của các số nguyên: $5 ;-4 ;-1 ; 0 ; 10 ;-2021$.
Sắp xếp các số nguyên sau theo thứ tự tăng dần và biểu diễn chúng trên trục số:
$2 ;-4 ; 6 ; 4 ; 8 ; 0 ;-2 ;-8 ;-6$

Lời giải

Bài 3. Hãy liệt kê các phần tử của mỗi tập hợp sau:
a) $\mathrm{A}={\mathrm{a} \in \mathbb{Z} \mid-4<\mathrm{a}<-1}$
b) $\mathrm{B}={\mathrm{b} \in \mathrm{Z} \mid-2<\mathrm{b}<3}$
c) $\mathrm{C}={\mathrm{c} \in \mathbb{Z} \mid-3<\mathrm{c}<0}$
d) $\mathrm{D}={\mathrm{d} \in \mathbb{Z} \mid-1<\mathrm{d}<6}$.

Lời giải

Bài 4. Sắp xếp theo thứ tự từ thấp đến cao nhiệt độ $\left({ }^{\circ} \mathrm{C}\right)$ mùa đông tại các địa điểm sau đây của nước Mĩ: Hawaii (Ha-oai) $12{ }^{\circ} \mathrm{C}$; Montana (Môn-ta-na) $-2^{\circ} \mathrm{C}$; Alaska (A-la-xca) $-51{ }^{\circ} \mathrm{C}$; New York (Niu Oóc) $-15^{\circ} \mathrm{C}$; Florida (Phlo-ri-đa) $8{ }^{\circ} \mathrm{C}$.

Lời giải

Tài liệu tham khảo. 

Chân trời sáng tạo, Toán 6, NXB GD, Trần Nam Dũng (Chủ biên)

Tập hợp số nguyên

Tập hợp số nguyên
Ta đã biết $\mathrm{N}={0 ; 1 ; 2 ; 3 ; \ldots}$ là tập hợp số tự nhiên.
0 $\quad$

Các số tự nhiên khác 0 còn được gọi là các số nguyên dương. Số nguyên dương có thể được viết là: $+1 ;+2 ;+3 ; \ldots$ hoặc thông thường bỏ đi dấu “+” và chỉ ghi là: $1 ; 2 ; 3 ; \ldots$
Các số $-1 ;-2 ;-3 ; \ldots$ là các số nguyên âm.Số 0 không phải là số nguyên âm và cũng không phải là số nguyên dương.
Tập hợp gồm các số nguyên âm, số 0 và các số nguyên dương được gọi là tập hợp
số nguyên.

Kí hiệu là $\mathbb{Z}$.

Ta có $\mathbb{Z} = \{\cdots;-3;-2;-1;0;1;2;3;\cdots \}$.

Biểu diễn số nguyên trên trục số.

Số đối của một số nguyên

Hai số nguyên trên trục số nằm ở hai phía của điểm 0 và cách đều điểm 0 thì được gọi là hai số đối nhau.

Ví dụ 1. Số đối của 6 là – 6; số đối của – 2021 là 2021.

Chú ý. 

  • Số đối của một số nguyên âm là số nguyên dương;
  • Số đối của một số nguyên dương là số nguyên âm.
  • Số đối của 0 là 0.

Bài tập rèn luyện.

Bài 1. Dùng số nguyên thích hợp để diễn tả các tình huống sau:
a) Thưởng 5 điểm trong một cuộc thi đấu.
b) Bớt 2 điểm vì phạm luật.
c) Tăng 1 bậc lương do làm việc hiệu quả.
d) Hạ 2 bậc xếp loại do thi đấu kém.
Bài 2. Các phát biểu sau đúng hay sai?
a) $9 \in \mathbb{N}$
b) $-6 \in \mathbb{N}$
c) $-3 \in \mathbb{Z}$
d) $0 \in \mathbb{Z}$
e) $5 \in \mathbb{Z}$
g) $20 \in \mathbb{N}$.

Bài 3. Vẽ một đoạn của trục số từ $-10$ đến $10 .$ Biểu diễn trên đó các số nguyên sau đây:
$\begin{array}{llllll}+5 ; & -4 ; & 0 ; & -7 ; & -8 ; & 2 ;\end{array}$
3; $\quad 9$;
$-9 .$

Bài 4. Hãy vẽ một trục số rồi vẽ trên đó những điểm nằm cách điểm 0 hai đơn vị. Những điểm này biểu diễn các số nguyên nào?

Bài 5. Tìm số đối của các số nguyên sau: $-5 ;-10 ; 4 ;-4 ; 0 ;-100 ; 2021 .$

Tài liệu tham khảo

Chân trời Sáng tạo, Sách giáo khoa toán 6, NBX GD, Trần Nam Dũng (Chủ biên)

Lũy thừa của một số tự nhiên

1.Lũy thừa của một số tự nhiên

Lũy thừa bậc $\mathrm{n}$ của a, kí hiệu $\mathrm{a}^{\mathrm{n}}$, là tích của $\mathrm{n}$ thừa số $\mathrm{a}$.
$$
\mathrm{a}^{\mathrm{n}}=\underbrace{\mathrm{a} \cdot \mathrm{a} \ldots \ldots \mathrm{a}}_{\mathrm{n} \text { thừa số a }} \quad(\mathrm{n} \neq 0)
$$

  • Ta đọc $\mathrm{a}^{\mathrm{n}}$ là “a $m \tilde{u} \mathrm{n}$ ” hoặc “a lũy thừa n” hoặc “lũy thừa bậc $\mathrm{n}$ của a”.
  • Số a được gọi là cơ số, n được gọi là số $m \tilde{u}$. Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên luỹ thìa.
  • Đặc biệt, $\mathrm{a}^{2}$ còn được đọc là a bình phương hay bình phương của a và a $^{3}$ còn được đọc là a lập phương hay lập phương của a.
  • Quy ước: $\mathrm{a}^{1}=\mathrm{a}$.

Ví dụ 1. $10^4 = 10 \cdot 10 \cdot 10 \cdot 10$.

2.Tính chất.

a) Khi nhân hai luỹ thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
$$
a^{m} \cdot a^{n}=a^{m+n}
$$

a) Khi chia hai luỹ thừa cùng cơ số (khác 0 ), ta giữ nguyên cơ số và trừ các số mũ.
$$
\mathrm{a}^{\mathrm{m}}: \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}(\mathrm{a} \neq 0 ; \mathrm{m} \geq \mathrm{n})
$$
Quy ước: $\mathrm{a}^{0}=1$.

Ví dụ 2. 

a) $2^{10} = 2^7 \cdot 2^3$.

b) $3^5 = 3^7 : 3^2$.

3.Các ví dụ thực hành

Ví dụ 3. a) Viết các tích sau dưới dạng luỹ thừa:
$$
3.3 .3 ; \quad 6.6 .6 .6 .
$$
b) Phát biểu hoàn thiện các câu sau:
$3^{2}$ còn gọi là “3 …” hay “… của 3”; $5^{3}$ còn gọi là “5 …” hay “… của 5”.
c) Hãy đọc các luỹ thừa sau và chỉ rõ cơ số, số mũ: $3^{10} ; 10^{5}$.

Lời giải

 

 

Ví dụ 4. Viết các tích sau dưới dạng một luỹ thừa:  3^{3} \cdot 3^{4} ; 10^{4} \cdot 10^{3} ; \mathrm{x}^{2} \cdot \mathrm{x}^{5}$.

Lời giải

 

 

Ví dụ 5. a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$11^{7}: 11^{3}$ $11^{7}: 11^{7}$
$7^{2} \cdot 7^{4}$ $7^{2} \cdot 7^{4}: 7^{3}$
b) Cho biết mỗi phép tính sau đúng hay sai.
$$
\begin{array}{ll}
9^{7}: 9^{2}=9^{5} ; & 7^{10}: 7^{2}=7^{5} ; \
2^{11}: 2^{8}=6 ; & 5^{6}: 5^{6}=5 .
\end{array}
$$

Lời giải

 

 

4.Bài tập rèn luyện

Bài 1.(SGK CTST Toán 6 Tập 1 – Trang 18) a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$$
\begin{array}{lll}
5^{7} .5^{5} ; & 9^{5}: 8^{0} ; & 2^{10}: 64.16
\end{array}
$$
b) Viết cấu tạo thập phân của các số $4983 ; 54297 ; 2023$ theo mẫu sau:
$$
4983=4.1000+9.100+8.10+3
$$
$$
=4.10^{3}+9.10^{2}+8.10+3
$$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 18)Theo Tổng cục Thống kê, tháng 10 năm 2020 dân số Việt Nam được làm tròn là 98000000 người. Em hãy viết dân số Việt Nam dưới dạng tích của một số với một luỹ thừa của $10 .$

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 18)Biết rằng khối lượng của Trái Đất khoảng $600 \ldots 00$(21  số  0) tấn, khối lượng của Mặt Trăng khoảng
$7500 \ldots 00$(18 số  0) tấn.
a) Em hãy viết khối lượng Trái Đất và khối lượng Mặt Trăng dưới dạng tích của một số với một luỹ thừa của $10 .$
b) Khối lượng Trái Đất gấp bao nhiêu lần khối lượng Mặt trăng.

Chuyên đề: Biến đổi biểu thức

RÚT GỌN BIẾN ĐỔI BIỂU THỨC CHỨA CĂN THỨC

Chuyên đề này đề cập tới các bài toán rút gọn biểu thức, chứng minh các đẳng thức, tính toán biểu thức,…Đây là chuyên đề quan trọng, rèn luyện kĩ năng biến đổi đại số cho các em, là kĩ năng ta sẽ dùng sau này.

Kiến thức là toàn bộ chương căn bậc hai, các hằng đẳng thức và kĩ năng biến đổi đã học ở lớp 8.

Các bạn có thể xem trước các bài cơ bản ở đây.

Dạng 1. Tính toán rút gọn

Ví dụ 1. Đặt $x = \sqrt{2}+\sqrt{3}$.
a) Chứng minh rằng $x^4 – 10x^2 + 1 = 0$.
b) Tìm giá trị của biểu thức $P(x) = (x^6 – 11x^4 + 11x^2 + 1)^{2019}$.

Lời giải

 

 

 

 

 

 

 

Ví dụ 2.  Cho $x$ thỏa $x \geq 2$. Rút gọn biểu thức $$A = \dfrac{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} – 2}}{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} + 2}}$$

Lời giải

Ví dụ 3.

a) Chứng minh rằng với mọi số nguyên dương n ta có: $$1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} = {\left( {1 + \dfrac{1}{n} – \dfrac{1}{{n + 1}}} \right)^2}$$
b) Tính tổng $$S = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} + \cdots + \sqrt {1 + \dfrac{1}{{{{2021}^2}}} + \dfrac{1}{{{{2022}^2}}}} $$

Lời giải

Ví dụ 4. Rút gọn biểu thức: $$A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + \cdots + \dfrac{1}{{2019\sqrt {2018} + 2018\sqrt {2019} }}$$

Lời giải

Dạng 1. Chứng minh đẳng thức

Ví dụ 5. Cho $a, b \ge 0, a^2>b$. Chứng minh $$\sqrt{a+\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$ và $$\sqrt{a-\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$

Lời giải

Ví dụ 6. Cho $a, b >0, c \neq 0$. Chứng minh rằng:
$$ \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0 \Leftrightarrow \sqrt {a + b} = \sqrt {a + c} + \sqrt {b + c} $$

Lời giải

Ví dụ 7. Cho $xy + \sqrt {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} = a > 1$. Tính $S = x\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} $.

Lời giải

Ví dụ 8. Đặt $a_n = \sqrt[4]{2} + \sqrt[n]{4}, n = 2, 3…$. Chứng minh rằng $$ \dfrac{1}{a_5}+\dfrac{1}{a_6}+\dfrac{1}{a_{12}}+\dfrac{1}{a_{20}} = \sqrt[4]{8} $$

Lời giải

Ví dụ 9.  Chứng minh rằng nếu $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{{a + b + c}}$ thì với mọi số nguyên dương lẻ n ta có $\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} = \sqrt[n]{{a + b + c}}$.

Lời giải

Dạng 3. Hữu tỉ và vô tỉ

Ví dụ 10. 

a) Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

b) Cho $n$ và số tự nhiên và $m$ là số tự nhiên thỏa $n^2 < m < (n+1)^2$. Chứng minh $\sqrt{m}$ là một số vô tỉ.

Lời giải

Ví dụ 11. Chứng minh số
$A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}$ là một số nguyên.

Lời giải

Ví dụ 12. 

a) Chứng minh rằng nếu $a, b$ là các số hữu tỉ thỏa $a+b\sqrt{2} = 0$ thì $a = b= 0$.

b) Tìm các số $a, b$ hữu tỉ thỏa $\sqrt{a} +\sqrt{b} = \sqrt{2+\sqrt{3}}$.

 

Bài tập rèn luyện.

Bài 1. Với mọi $x \ge 2$. Chứng minh rằng $$\sqrt{\sqrt{x}+\sqrt{\dfrac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\dfrac{x^2-4}{x}}}=\sqrt{\dfrac{2x+4}{\sqrt{x}}}$$

Bài 2. Rút gọn $A=\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{(x+y)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{(x^2+y^2)^2}}}$

Bài 3. Cho $x,y<0$. Chứng minh $|\sqrt{xy}-\dfrac{x+y}{2}|+|\dfrac{x+y}{2}+\sqrt{xy}|=|x|+|y|.$
Bài 4. Cho các số $x,y,z>0$ và đôi một phân biệt. Chứng minh giá trị của $P$ không phụ thuôc vào $x,y,z$ với
$$P=\dfrac{x}{(\sqrt{x}-\sqrt{y})(\sqrt{x}-\sqrt{z})}+\dfrac{y}{(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{x})}+\dfrac{z}{(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})}.$$
Bài 5.  Cho $a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1$.

a) Chứng minh: $a^4-14a^2+9=0$.
b) Cho $f(x)=x^5+2x^4-14x^3-28x^2+9x+19$. Tính $f(a).$

Bài 6.  Cho $a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[38]{38-17\sqrt{5}}$ và $f(x)=(x^3+3x+2018)^{2018}$. Tính $f(a).$
Bài 7.  Cho $x=1+\sqrt[3]{2}+\sqrt[3]{4}$. Tính $x^5-4x^4+x^3-x^2-2x+2018.$

Bài 8. Cho $f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}, n \in \mathbb{N}^*$. Tính $f(1)+f(2)+…+f(2018)$. %NTK

Bài 9.  Cho $f(n)=\dfrac{2n+1+\sqrt{n(n+1)}}{\sqrt{n}+\sqrt{n+1}}$. Tính $f(1)+f(2)+…+f(n).$ %NTK
Bài 10. Cho $x,y,z >0$ thoả $xyz=4$. Tính giá trị biểu thức $$A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}.$$

Bài 11.  Cho các số dương $x,y,z$ thoả $\begin{cases} x+y+z=2&\\\sqrt{x}+\sqrt{y}+\sqrt{z}=2 \end{cases}$. Tính $$A=\sqrt{(1+x)(1+y)(1+z)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right).$$

Bài 12.  Cho các số $abc \ne 0$ thoả $a+b+c=0$. Chứng minh $$\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\big|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\big|$$

Bài 13.  Cho $a,b,c>0$ thoả $a\sqrt{1-b^2}+b\sqrt{1-c^2}+c \sqrt{1-a^2}=\dfrac{3}{2}.$\ Chứng minh $a^2+b^2+c^2=\dfrac{3}{2}.$
Bài 14.  Tìm tất cả các số thực $a,b,c$ thoả $\sqrt[3]{a-b}+\sqrt[3]{b-c}+\sqrt[3]{c-a}=0.$ %105-38
Bài 15. Cho các số $a_1, a_2,…,a_n$ thoả $a_1=1, a_{n+1}=\dfrac{\sqrt{3}+a_n}{1-\sqrt{3}a_n}$. Tính $a_{2020}$.
Bài 16.  Chứng minh rằng nếu $\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a$ thì $$\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2} $$

Phép cộng trừ số tự nhiên

1.Tính chất của phép cộng và phép nhân

a) Giao hoán

$$a+b = b+a$$

$$a\cdot b = b\cdot a$$

b) Kết hợp

$$a+(b+c) = (a+b)+c$$

$$a\cdot (b\cdot c) = (a\cdot b) \cdot c$$

c) Tính chất phân phối của phép nhân và phép cộng

$$a \cdot (b+c) = a\cdot b + a \cdot c$$

d) Tính chất cộng với 0 và nhân với 1.

$$a + 0 = a$$

$$a \cdot 1 = a$$

2.Phép trừ 

Nếu có số tự nhiên $\mathrm{x}$ thoả mãn $\mathrm{b}+\mathrm{x}=\mathrm{a}$, ta có phép trừ $\mathrm{a}-\mathrm{b}=\mathrm{x}$ và gọi $\mathrm{x}$ là hiệu của phép trừ số $a$ cho số $\mathrm{b}$, $a$ là số bị trừ, $\mathrm{b}$ là số trừ.

Ta cũng có $$ a\cdot (b-c) = a \cdot b – a\cdot c$$

3.Phép chia 

Tương tự với $\mathrm{a}, \mathrm{b}$ là các số tự nhiên, $\mathrm{b} \neq 0$, nếu có số tự nhiên $\mathrm{x}$ thoả $\operatorname{mãn} \mathrm{bx}=\mathrm{a}$, ta có phép chia $\mathrm{a}: \mathrm{b}=\mathrm{x}$ và gọi a là số bị chia, $\mathrm{b}$ là số chia, $\mathrm{x}$ là thương của phép chia số a cho số $\mathrm{b}$.

4.Các ví dụ

Ví dụ 1. Có thể thực hiện phép tính sau như thế nào cho hợp lí?
$$
T=11 \cdot(1+3+7+9)+89 \cdot(1+3+7+9)
$$
Có thể tính nhanh tích của một số với 9 hoăc 99 như sau:
$$
\begin{aligned}
&67.9=67 \cdot(10-1)=670-67=603 \
&346.99=346 \cdot(100-1)=34600-346=34254 .
\end{aligned}
$$
Tính: 1234.9; $1234.99 .$

Giải

Ví dụ 2. Nhóm bạn Lan dự định thực hiện một kế hoạch nhỏ với số tiền cẩn có là 200000 đồng. Hiện tại các bạn đang có 80000 đổng. Các bạn thực hiện gây quỹ thêm bằng cách thu lượm và bán giấy vụn, mỗi tháng được 20000 đổng.
a) Số tiền các bạn còn thiếu là bao nhiêu?
b) Số tiền còn thiếu cần phải thực hiện gây quỹ trong mấy tháng?

Giải

Ví dụ 3. Mẹ có 30 cái bánh muốn chia đều cho 3 anh em, mỗi người có số bánh bằng nhau, hỏi mẹ có chia được không và mỗi người được bao nhiêu cái bánh.

Giải

 

5.Bài tập rèn luyện

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 15)Tính một cách hợp lí:
a) $2021+2022+2023+2024+2025+2026+2027+2028+2029$;
b) $30.40 .50 .60$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 15)Bình được mẹ mua cho 9 quyển vở, 5 cái bút bi và 2 cục tẩy. Giá mỗi quyển vở là 4900 đồng; giá mỗi cái bút bi là 2900 đồng; giá mỗi cục tẩy là 5000 đồng. Mẹ Bình đã mua hết bao nhiêu tiền?

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 15) Một chiếc đồng hồ đánh chuông theo giờ. Đúng 8 giờ, nó đánh 8 tiếng “boong”; đúng 9 giờ, nó đánh 9 tiếng “boong”, $\ldots$ Từ lúc đúng 8 giờ đến lúc đúng 12 giờ trưa cùng ngày, nó đánh bao nhiêu tiếng “boong”?

Bài 4. Nhà bạn Si có nuôi 20 con thỏ, ba Si làm được 4 cái chuồng để nuôi thỏ, và nhốt các con thỏ này vào chuồng sao cho mỗi chuồng có số thỏ bằng nhau, hỏi ba Si có làm được không và mỗi chuồng nhốt được bao nhiêu thỏ?

Bài 5*. Trong một đợt ôn tập có 15 ngày trước kì thi, ngày thứ nhất bạn Bảo Nguyên làm được 5 bài toán, ngày thứ hai làm được 6 bài toán, cứ tiếp tục như vậy đến ngày thứ 15.

a) Hỏi ngày thứ 15 bạn Bảo Nguyên làm được bao nhiêu bài?

b) Tổng số bài toán bạn Bảo Nguyên làm là bao nhiêu?

Tài liệu tham khảo.

CTST, Toán 6, NXB GD, Trần Nam Dũng (CB)

Tập hợp số tự nhiên

1.Tập hợp $N, N^*$.

Các số $0 ; 1 ; 2 ; 3 ; \ldots$ là các số tự nhiên. Người ta kí hiệu tập hợp các số tự nhiên là $\mathbb{N}$.
$$
\mathbb{N}=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; \ldots\}
$$
Tập hợp các số tự nhiên khác 0 được kí hiệu là $N^*$.

$$N^* = \{1, 2, 3, \cdots, \}$$

2.Thứ tự trong tập số tự nhiên

Trong hai số tự nhiên a và b khác nhau, có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b ta viết $\mathrm{a}<\mathrm{b}$ (a nhỏ hơn b). Ta cũng nói số b lớn hơn số a và viết $\mathrm{b}>\mathrm{a}$.

Khi biểu diễn trên tia số nằm ngang có chiều mũi tên đi từ trái sang phải, nếu $\mathrm{a}<\mathrm{b}$ thì điểm a nằm bên trái điểm b.
Ta viết $\mathrm{a} \leq \mathrm{b}$ đề chi $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{a}=\mathrm{b}, \mathrm{b} \geq \mathrm{a}$ để chỉ $\mathrm{b}>$ a hoặc $\mathrm{b}=\mathrm{a}$.
Mỗi số tự nhiên có một số liền sau cách nó một đơn vị.

Nếu b liền sau a thì a cũng được gọi là liền trước b.

Ví dụ 1.

a) Số liền sau số 4 là số 5, số liền trước số 4 là số 3.

b) Giữa hai số 2021 và 2022 thì không có số tự nhiên nào, tức là không có số tự nhiên nào vừa lớn hơn 2021 vừa nhỏ hơn 2022.

Chú ý.

a) Nếu $a < b$ và $b < c$ thì $a < c$.

b) Nếu $a < b$ thì $a \leq b -1$.

3.Cách ghi số tự nhiên

  • Kí hiệu $\overline{a b}$ chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a $(a \neq 0)$, chữ số hàng đơn vị là b. Ta có:
    $$
    \overline{a b}=a \times 10+b
    $$
    Kí hiệu abc chi số tự nhiên có ba chữ số, chữ số hàng trăm là a $(a \neq 0)$, chữ số hàng chục là b, chữ số hàng đơn vị là c. Ta có:
    $$
    \overline{\mathrm{abc}}=\mathrm{a} \times 100+\mathrm{b} \times 10+\mathrm{c}
    $$

4.Hệ số La Mã

5. Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 12) Chọn kí hiệu thuộc $(\in)$ hoặc không thuộc $(\notin)$ thay cho mỗi dấu $?$.
a) 15 ? $\mathbb{N}$;
b) 10,5 ? $\mathbb{N}^{*}$;
c) $\frac{7}{9}$ ? $\mathbb{N}$;
d) 100 ? $\mathbb{N}$.

Giải

Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 12) Trong các khẳng định sau, khẳng định nào là đúng, khẳng định nào là sai?
a) $1999>2003$;
b) 100000 là số tự nhiên lớn nhất;
c) $5 \leq 5$;
d) Số 1 là số tự nhiên nhỏ nhất.

Giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 12)  Biểu diễn các số $1983 ; 2756 ; 2023$ theo mẫu $1983=1 \times 1000+9 \times 100+8 \times 10+3$.

Giải

Bài 4. Tìm các số tự nhiên sau:

a) Số liền trước số 5

b) Số liền sau số 6

c) Số liền sau số 2018.

d) Lớn hơn 2000 và nhỏ hơn 2005.

Giải

Bài 5. Tìm số tự nhiên có hai chữ số mà tổng các chữ số bằng 17.

Giải

Bài 6. Tìm số tự nhiên có ba chữ số mà tổng các chữ số bằng 2.

Giải

6. Bài tập rèn luyện

Bài 1. Tìm các số tự nhiên sau:

a) Số liền sau 2001

b) Số liền sau 221

c) Lớn hơn 14 và nhỏ hơn 20.

Bài 2. Tìm các số tự nhiên có hai chữ số sao cho khi viết theo thứ tự ngược lại thì lớn hơn số ban đầu 72 đơn vị.

Bài 3. Tìm số tự nhiên biết rằng tổng của nó và số liền sau bằng 2021.

Tài liệu tham khảo.

Bộ sách Chân Trời Sáng Tạo, Toán lớp 6, NXBGD, Trần Nam Dũng (Chủ biên)

Rút gọn căn thức – Các biểu thức số

Trong bài này ta tổng hợp các kĩ năng thực hiện các phép tính toán, khai căn, phân tích thành tích, trục căn thức ở mẫu để làm các bài toán phức tạp hơn.

Chú ý khi làm bài. Trong các bài này ta có thể rút gọn các phân thức riêng lẻ trước nếu được bằng cách phân tích thành tích, tiếp theo thì trục căn thức và rút gọn các biểu thức trong ngoặc, không nên qui đồng vì tính toán sẽ rất phức tạp.

Ví dụ 1. Rút gọn

a) $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.

Giải

a)  $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\\
&=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\\
&=6+3\\
&=9
\end{aligned}$
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\\
&=\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{-\left(1-\sqrt{3}\right)}\\
&=-\sqrt{2}-\sqrt{2}\\
&=-2\sqrt{2}
\end{aligned}$
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\\
&=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\\
&=\sqrt{5}+\dfrac{\sqrt{5}}{2}\\
&=\dfrac{3\sqrt{5}}{2}
\end{aligned}$
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\
&=\dfrac{3\sqrt{2}\left(1-\sqrt{2}\right)}{-\left(1-\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{-\left(3-\sqrt{2}\right)}\\
&=-3\sqrt{2}-2\sqrt{2}\\
&=-5\sqrt{2}
\end{aligned}$

Ví dụ 2. Rút gọn

a) $\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.

Giải

a)$\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\\
&=\dfrac{6}{5-1}\left(\sqrt{5}+1\right)+\dfrac{7}{1-3}\left(1+\sqrt{3}\right)-\dfrac{2}{3-5}\left(\sqrt{3}+\sqrt{5}\right)\\
&=\dfrac{3}{2}\left(\sqrt{5}+1\right)-\dfrac{7}{2}\left(1+\sqrt{3}\right)+\sqrt{3}+\sqrt{5}\\
&=\dfrac{3\sqrt{5}}{2}+\dfrac{3}{2}-\dfrac{7}{2}-\dfrac{7\sqrt{3}}{2}+\sqrt{3}+\sqrt{5}\\
&=\dfrac{5\sqrt{5}}{2}-\dfrac{5\sqrt{3}}{2}-2\\
&=\dfrac{5}{2}\left(\sqrt{5}-\sqrt{3}\right)-2
\end{aligned}$
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
Ta có:
$\begin{aligned}
&\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\\
&=\dfrac{\sqrt{6}\left(\sqrt{2}-\sqrt{6}\right)}{2\left(\sqrt{2}-\sqrt{6}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{4}{1-7}\left(1+\sqrt{7}\right)\\
&=\dfrac{\sqrt{6}}{2}-\left(\sqrt{3}+1\right)-\dfrac{2}{3}\left(1+\sqrt{7}\right)\\
&=-\dfrac{2}{3}\sqrt{7}+\dfrac{\sqrt{6}}{2}-\sqrt{3}-\dfrac{5}{3}
\end{aligned}$
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\dfrac{1}{2-3}\left(\sqrt{2}+\sqrt{3}\right)-\dfrac{1}{3-5}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{7-5}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\left(\sqrt{2}+\sqrt{3}\right)+\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\sqrt{2}-\sqrt{3}+\dfrac{1}{2}\sqrt{3}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\sqrt{7}+\dfrac{1}{2}\sqrt{5}\\
&=\dfrac{1}{2}\sqrt{7}+\sqrt{5}-\dfrac{1}{2}\sqrt{3}-\sqrt{2}
\end{aligned}$
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right].\left(\sqrt{7}-\sqrt{5}\right)\\
&=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\
&=-(7-5)\\
&=-2
\end{aligned}$

Ví dụ 3. Rút gọn

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.

Giải

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})\\
&=\left[\dfrac{12}{5-1}\left(\sqrt{5}-1\right)-\dfrac{4}{5-4}\left(\sqrt{5}-2\right)+\dfrac{20}{9-5}\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\left(\sqrt{5}-1\right)-4\left(\sqrt{5}-2\right)+5\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\sqrt{5}-3-4\sqrt{5}+8+15-5\sqrt{5}\right]\left(10+3\sqrt{5}\right)\\
&=\left(-6\sqrt{5}+20\right)\left(10+3\sqrt{5}\right)\\
&=2\left(10-3\sqrt{5}\right)\left(10+3\sqrt{5}\right)\\
&=2(100-45)\\
&=110
\end{aligned}$
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})\\
&=\left[\dfrac{24}{7-1}\left(\sqrt{7}-1\right)+\dfrac{4}{9-7}\left(3-\sqrt{7}\right)-\dfrac{3}{7-4}\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left[4\left(\sqrt{7}-1\right)+2\left(3-\sqrt{7}\right)-\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left(4\sqrt{7}-4+6-2\sqrt{7}-\sqrt{7}+2\right)\left(4-\sqrt{7}\right)\\
&=\left(\sqrt{7}+4\right)\left(4-\sqrt{7}\right)\\
&=16-7
&=9
\end{aligned}$
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}\\
&=\left[\dfrac{8}{3-1}\left(\sqrt{3}+1\right)-\dfrac{4}{3-1}\left(\sqrt{3}-1\right)+\dfrac{4}{5-3}\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left[4\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)+2\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left(4\sqrt{3}+4-2\sqrt{3}+2+2\sqrt{5}-2\sqrt{3}\right):\left(3+\sqrt{5}\right)\\
&=\left(6+2\sqrt{5}\right):\left(3+\sqrt{5}\right)\\
&=2
\end{aligned}$
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}\\
&=\left[\dfrac{7}{2-1}\left(\sqrt{2}+1\right)+\dfrac{56}{2-16}\left(\sqrt{2}+4\right)+\dfrac{3}{3-2}\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left[7\left(\sqrt{2}+1\right)-4\left(\sqrt{2}+4\right)+3\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left(7\sqrt{2}+7-4\sqrt{2}-16+3\sqrt{3}-3\sqrt{2}\right):\left(3-\sqrt{3}\right)\\
&=\left(-9+3\sqrt{3}\right):\left(3-\sqrt{3}\right)\\
&=-3
\end{aligned}$

Bài tập rèn luyện

Bài 1. Rút gọn

a) $\dfrac{\sqrt{160}-\sqrt{80}}{\sqrt{8}-\sqrt{2}}-\dfrac{\sqrt{40}-\sqrt{15}}{2\sqrt{2}-\sqrt{3}}$.
b) $\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)$.
c) $\left(\dfrac{\sqrt{216}}{3}-\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\right)\dfrac{1}{\sqrt{6}}$.
d) $\left(\dfrac{\sqrt{343}}{21}-\dfrac{28+4\sqrt{7}}{\sqrt{63}+3}\right)\dfrac{\sqrt{7}}{7}$.

Bài 2. Rút gọn

a) $\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}$.
b) $\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{2}{2-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}$.
c) $\dfrac{-4}{\sqrt{7}-\sqrt{5}}+\dfrac{1}{\sqrt{3}-1}+\dfrac{4-2\sqrt{5}}{\sqrt{5}-2}$.
d) $\dfrac{5}{3-\sqrt{7}}-\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}$.

Bài 3. Rút gọn

a) $\dfrac{(\sqrt{3}-\sqrt{5})^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}$.
b) $(\sqrt{5}+2)\dfrac{(\sqrt{5}+2)^2-8\sqrt{5}}{\sqrt{5}-2}$.
c) $\dfrac{(\sqrt{2}+1)^2-4\sqrt{2}}{\sqrt{2}-1}\cdot(\sqrt{2}+1)$.
d) $\dfrac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{(\sqrt{3}+\sqrt{2})^2}\cdot(\sqrt{3}-\sqrt{2})$.

Căn bậc hai – Tính chất cơ bản phần 2

Bài 1. Khai triển các biểu thức sau

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$.

Giải

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$

$= {{(\sqrt{x}-1)}^2}+{{(\sqrt{x}+1)}^2}$

$=x-2\sqrt{x}+1+x+2\sqrt{x}+1=2x+2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$
$=(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$

$=x-\sqrt{x}-6-2x+3\sqrt{x}+5$

$=-x+2\sqrt{x}-1=-{{\left(\sqrt{x}-1\right)}^2}$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$
$={{(2\sqrt{x}-3)}^2}+3(\sqrt{x}-1)(\sqrt{x}+2)$

$=4x-12\sqrt{x}+9+3\left(x+\sqrt{x}-2\right)$

$=7x-9\sqrt{x}+3$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$

$=(3-\sqrt{x})(3+\sqrt{x})+{{(\sqrt{x}-2)}^2}$

$=9-x+x-4\sqrt{x}+4$

$=13-4\sqrt{x}$.

Bài 2. Rút gọn các biểu thức sau:
a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$. $(x \geq 0)$
b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$. ($a, b \geq 0$)

Giải

a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=x+3\sqrt{x}+10-\left(x+4\sqrt{x}+3\right)-3x-4\sqrt{x}-5$
$A=x+3\sqrt{x}+10-x-4\sqrt{x}-3-3x-4\sqrt{x}-5$
$A=-3x-5\sqrt{x}+2$

b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$
$B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{ab})(\sqrt{a}-1)$
$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-\left(2\sqrt{a}-2-a \sqrt{b}+\sqrt{ab}\right)$

$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-2\sqrt{a}+2+a \sqrt{b}-\sqrt{ab}$
$B=2a+\sqrt{b}+2+a \sqrt{b}$

Bài 3. Phân tích các đa thức sau thành nhân tử:

a) $A=x-\sqrt{x}-2$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}$.
c) $C=\sqrt{a b}+2\sqrt{a}-\sqrt{b}-2$.
d) $D=x\sqrt{x}+x-2\sqrt{x}$.

Giải

a)  $A=x-\sqrt{x}-2={{\left(\sqrt{x}\right)}^2}-1 \left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}-\sqrt{y}\right)$

$=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+3\right)$.

c)$C=\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2=\sqrt{a}.\sqrt{b}+2\sqrt{a}-\sqrt{b}-2$

$=\sqrt{b}\left(\sqrt{a}-1\right)+2\left(\sqrt{a}-1\right)$

$=\left(\sqrt{a}-1\right)\left(\sqrt{b}+2\right)$.
d)
$D=x\sqrt{x}+x-2\sqrt{x}$
$=x\sqrt{x}-\sqrt{x}+x-\sqrt{x}$
$=\sqrt{x}(x-1)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)$

Bài 4. Rút gọn các biểu thức sau:
a) $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}$.
b) $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}$.
c) $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4$.
d) $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}$.

Giải

a)Ta có $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{{{\left(\sqrt{x}-1\right)}^2}}{\left(\sqrt{x}-1\right)}=\sqrt{x}-1$.
b) Ta có $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{{{\left(\sqrt{x}-2\right)}^2}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}$.
c) Ta có $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4=\dfrac{x\sqrt{x}+8-x\sqrt{x}-2\sqrt{x}-4\sqrt{x}-8}{\sqrt{x}+2}=\dfrac{-6\sqrt{x}}{\sqrt{x}+2}$.
d) Ta có $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-5$.

Bài tập rèn luyện

Bài 1. Khai triển

a) $(\sqrt{a}+2)^2 – (\sqrt(a)-1)^2$.

b) $\sqrt{b}(\sqrt{b}+1)^2 – 2b(\sqrt{b}+3)$.

c) $(\sqrt{x}-1)(\sqrt{y}+4)- 2(2\sqrt{x}+1)(2-\sqrt{y})$.

d) $(\sqrt{x}-1)^3 – 3(\sqrt{x}+2)(\sqrt{x}-1) – 2x(\sqrt{x}-1)$.

Bài 2. Cho $x = \sqrt{3} – \sqrt{2}$.
a) Tính giá trị của biểu thức $A = x^2 -4x+1$.
b) Tính giá trị của biểu thức $B = x^4 -x^2+1$.
Bài 3. Rút gọn các biểu thức sau:
a) $\dfrac{{a\sqrt a – 1}}{{\sqrt a – 1}} – \sqrt a $
b) $\dfrac{{x\sqrt x + 8}}{{\sqrt x + 2}} – 2\sqrt x $
Bài 4. Rút gọn các biểu thức sau:

a)  $\dfrac{{a – 1}}{{\sqrt a + 1}} + \dfrac{{4 – a}}{{\sqrt a + 2}}$.
b) $\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{x-5\sqrt{x}+4}{\sqrt{x}-1}$.

 

Đa thức bất khả quy

ĐA THỨC BẤT KHẢ QUY

(Thầy Vương Trung Dũng  giáo viên trường PTNK TP Hồ Chí Minh)

1. Giới thiệu sơ lược 

Đa thức bất khả qui là một vấn đề kinh điển trong đa thức nói riêng và trong toán học nói chung. Các bài toán về đa thức bất khả qui cũng thường xuyên xuất hiện trong các kì thi Olympic về toán. Người ta quan tâm nhiều nhất về tính bất khả qui của một đa thức trên vành $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$. Có nhiều cách để kiểm tra tính bất khả qui của một đa thức loại này chẳng hạn như dùng trực tiếp định nghĩa hoặc dùng các tiêu chuẩn như tiêu chuẩn Eisenstein, tiêu chuẩn Perron, tiêu chuẩn Cohn, tiêu chuẩn Dumas… tuy nhiên bài viết này chỉ đề cập đến hai phương pháp thường được sử dụng nhất là sử dụng trực tiếp định nghĩa và tiêu chuẩn Eisenstein và các dạng mở rộng của nó cùng với đó là một kĩ thuật tối quan trọng là rút gọn theo một modulo nguyên tố $p$. Các tiêu chuẩn khác hi vọng sẽ có dịp trình bày trong một bài viết khác.

Trong tài liệu này ta qui ước $\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}$ và $\mathbb{K}$ là một trong các tập $\mathbb{Z},\ \mathbb{Q},\ \mathbb{R}, \ \mathbb{Z}_p$. Khi đó, $ \mathbb{K}[x]$ (tương ứng $ \mathbb{K}[x,y]$) là các vành đa thức một biến (tương ứng 2 biến) có hệ số trong $ \mathbb{K}$.

Định nghĩa 1.1:  Đa thức $P(x)$ trong vành $\mathbb{K}[x]$ được gọi là khả qui trên $\mathbb{K}$ nếu $P(x)=f(x).g(x)$ trong đó $f(x), g(x)$ là các đa thức không khả nghịch trong $\mathbb{K}[x]$. Đa thức $P(x)$ được gọi là bất khả qui nếu $P(x)$ không khả nghịch và không khả qui.

Nói riêng, khi $\mathbb{K}$ là một trường thì một đa thức $P(x) \in \mathbb{K}[x]$ có bậc dương được gọi là khả qui trên $\mathbb{K}$ nếu có thể phân tích được thành tích hai đa thức có bậc dương trong $\mathbb{K}[x]$, ngược lại $P(x)$ được gọi là bất khả qui trên $\mathbb{K}$.

Định lí Gauss 1.1: Các vành đa thức

  • $\mathbb{R}[x], \ \mathbb{C}[x],\ \mathbb{Q}[x], \ \mathbb{Z}_p[x]$
  •  $\mathbb{Z}[x], \ \mathbb{Z}[x,y], \ \mathbb{Q}[x,y]…$

là có sự phân tích duy nhất thành các nhân tử bất khả qui và sự phân tích này là duy nhất. Nói riêng các khái niệm về đa thức bất khả qui, ước chung lớn nhất, bội chung nhỏ nhất vẫn còn đúng trên các vành này.

Lưu ý: Trong trường hợp $1$ ở trên là các đa thức có hệ số trên trường nên trên đó thuật toán Euclid hay định lí Bezout vẫn còn đúng nhưng trường hợp $2$ thì không.

2. Tính bất khả qui trên $\mathbb{C}[x]$ và $\mathbb{R}[x]$

Định lí 2.1: Mọi đa thức có bậc lớn hơn 1 đều khả qui trên $\mathbb{C}[x]$.

Chứng minh

Giả sử $degP>1$. Ta thừa nhận định lí cơ bản của đại số “Mọi đa thức $P(x) \in \mathbb{C}[x]$ có bậc lớn hơn 1 đều có ít nhất một nghiệm trên $\mathbb{C}$”. Khi đó $P(x)$ có nghiệm $x_0 \in \mathbb{C}$ nên theo Định lí Bezout $$P(x)=(x-x_0)Q(x),$$

trong đó $deg\ge 1$ nên $P(x)$ khả qui trên $\mathbb{C}[x].$

Định lí 2.2: Mọi đa thức có hệ số thực bậc lớn hơn 2 đều khả qui trên $\mathbb{R}[x]$. Nói riêng một đa thức là bất khả qui trên $\mathbb{R}[x]$ khi và chỉ khi nó là đa thức bậc nhất hoặc bậc 2 vô nghiệm.

Chứng minh

Giả sử $P \in \mathbb{R}[x]$ và $deg P >2$.

  • Nếu $\deg P$ lẻ thì $P$ có ít nhất một nghiệm thực nên nó khả qui.
  • Nếu $\deg P$ chẵn thì $P$ có một nghiệm phức $\alpha$, khi đó $\overline{\alpha}$ cũng là nghiệm của $P$ và do đó $P(x)=(x-\alpha)(x-\overline{\alpha})Q(x)$ là khả qui.

3. Tính bất khả qui trên $\mathbb{Z}[x]$ và $ \mathbb{Q}[x]$

Qua Định lí 2.1 và Định lí 2.2 ta thấy nếu $\mathbb{K}=\mathbb{C},\ \mathbb{R}$ thì tính bất khả quy là đơn giản nên ta quan tâm đến trường hợp $\mathbb{K}=\mathbb{Z}, \ \mathbb{Q}.$ Thật may mắn là bổ đề Gauss mà ta trình bày sau đây sẽ cho ta một sự tương ứng về tính bất khả qui của một đa thức hệ số nguyên trên $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$.

Định nghĩa 3.1: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$, đa thức $P$ được gọi là nguyên bản nếu $gcd(a_n,…,a_0)=1$

Mệnh đề 3.1: Tích của hai đa thức nguyên bản là một đa thức nguyên bản.

Mệnh đề 3.2: Mọi đa thức $P \in \mathbb{Q}[x]$ đều viết được dưới dạng $P=cP_0(x)$, trong đó $P_0$ là một đa thức nguyên bản và $c_0 \in \mathbb{Q}.$

Định lí 3.1 (Bổ đề Gauss):  Một đa thức hệ số nguyên, có bậc dương bất khả qui trong $\mathbb{Q}[x]$ khi và chỉ khi nó bất khả qui trong $\mathbb{Z}[x]$.

Chứng minh

Hiển nhiên nếu $P(x)$ bất khả qui trên $\mathbb{Q}[x]$ sẽ bất khả qui trên $\mathbb{Z}[x]$.

Ngược lại giả sử $P(x)$ bất khả qui trên $\mathbb{Z}[x]$ mà

$P(x)=P_1(x)P_2(x)$, với $P_1, P_2 \in \mathbb{Q}[x]$ và $1\le deg \ P_1, degP_2 \le deg\ P$.

Khi đó ta viết lại $P_1=\dfrac{a_1}{b_1}Q_1(x), P_2=\dfrac{a_2}{b_2}Q_2(x)$, với $(a_i,b_i)=1$ và $Q_i$ nguyên bản, $i \in \{1,2\}$.

Suy ra $P(x)=\dfrac{a_1a_2}{b_1b_2}Q_1(x)Q_2(x)=\dfrac{p}{q}Q_1(x)Q_2(x),$ trong đó $p=a_1b_1, q=a_2b_2$ và $ (p,q)=1.$

Do $P\in \mathbb{Z}[x]$ nên các hệ số của $Q_1(x)Q_2(x)$ phải chia hết cho $q$ điều này trái với tính nguyên bản của $Q_1(x)Q_2(x)$.

Từ đó ta có điều phải chứng minh.

Định lí 3.2: Cho $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử $P$ có nghiệm hữu tỉ $x=\dfrac{p}{q}$ với $(p,q)=1$. Khi đó, $p$ là ước của $a_0$ còn $q$ là ước của $a_n.$ Nói riêng, mọi nghiệm hữu tỉ của một đa thức monic (đơn khởi, hệ số của bậc cao nhất bằng $\pm1$) với hệ số nguyên đều là nghiệm nguyên.

Chứng minh

Giả sử $P(x)$ có nghiệm hữu tỉ $\dfrac{p}{q},$ với $ (p,q)=1$. Khi đó $$a_n(\dfrac{p}{q})^n+…+a_1. \dfrac{p}{q}+a_0=0,$$

qui đồng mẫu số ta được $$a_np^n+…+a_0q^n=0.$$

Vì vế phải chia hết cho $p$ nên vế trái chia hết cho $p$, từ đó suy ra $a_0q^n$ chia hết cho $p$, lại có $(q^n,p)=1$ nên $a_0$ chia hết cho $p$. Lập luận tương tự ta được $a_n$ chia hết cho $q$.

Đinh lí 3.3: Cho $P \in \mathbb{Q}[x]$ có bậc 2 hoặc 3. Khi đó, $P(x)$ là bất khả qui khi và khi khi $P(x)$ không có nghiệm hữu tỉ.

Chứng minh

Hiển nhiên nếu $P$ có nghiệm hữu tỉ thì nó khả qui.

Đảo lại, nếu $P$ khả qui thì $P$ phân tích được thành tích của hai đa thức hữu tỉ.

Điều kiện bậc của $P$ bằng 2 hoặc 3 chứng tỏ một trong hai nhân tử trên phải có bậc 1.

Từ đó suy ra $f$ có nghiệm hữu tỉ.

Lưu ý: Định lí trên vẫn còn đúng nếu ta thay $\mathbb{Q}$ bởi một trường $\mathbb{K}$ bất kì. Tức là, đa thức $f \in \mathbb{K}[x]$ với bậc bằng 2 hoặc 3 là bất khả qui nếu và chỉ nếu nó không có nghiệm trong $\mathbb{K}.$

Dưới đây là một số ví dụ

Ví dụ 3.1 (Định lí Schur): Cho các số nguyên phân biệt $a_1, a_2,…,a_n$. Khi đó đa thức

a) $f(x)=(x-a_1)(x-a_2)…(x-a_n)-1$ là bất khả qui trên $\mathbb{Q}[x]$.

b) $f(x)=(x-a_1)(x-a_2)…(x-a_n)+1$ là bất khả qui trên $\mathbb{Q}[x]$ ngoại trừ các trường hợp

  • $(x-a)(x-a-2)+1=(x-a-1)^2$,
  • $(x-a)(x-a-1)(x-a-2)(x-a-3)+1=[(x-a-1)(x-a-2)+1]^2.$
Giải

a) Giả sử $(x-a_1)(x-a_2)…(x-a_n)-1=g(x)h(x)$, với $1 \le deg \ f, \deg \ g \le n-1$ và $g, h \in \mathbb{Z}[x].$

Ta có $g(a_i)h(a_i)=-1$ với mọi $i$, từ đó do $g(a_i), h(a_i)$ là các số nguyên nên $ (g+h)(a_i)=0,$ với mọi $i=1,2,…,n.$

Nhưng vì $deg \ (g+h) \le n-1$ triệt tiêu tại $n$ giá trị phân biệt nên $g \equiv – h$.

Từ đó $$(x-a_1)(x-a_2)…(x-a_n)-1=-(g(x))^2.$$

Đẳng thức trên là vô lí vì hệ số cao nhất ở hai vế trái dấu.

b) Lập luận hoàn toàn như trên, giả sử $f(x)$ là khả qui, bằng một phép đổi biến đơn giản ta hoàn toàn có thể viết lại $f$ dưới dạng $$f(x)=x(x-a_1)(x-a_2)…(x-a_{n-1})+1=g(x).h(x),$$ trong đó $0<a_1<a_2<…<a_{n-1}$ và $1 \le g, h \in \mathbb{Z}, \deg(g), \deg(h) \le n-1$.

Từ đẳng thức $g(a_i)h(a_i)=1$ ta suy ra $g(a_i)=h(a_i)= \pm 1$ với mọi $i$ và đẳng thức này xảy ra tại $n$ giá trị phân biệt. Điều đó dẫn dến $g(x)=h(x)$ và ta có $f(x)=g^2(x)$.

Nói cách khác, $\deg(f)=n$ là một số chẵn. Khi đó $f(\dfrac{1}{2})=\dfrac{1}{2}(\dfrac{1}{2}-a_1)…(\dfrac{1}{2}-a_{n-1})+1=1-\dfrac{1}{2^n}(2a_1-1) \ldots (2a_{n-1}-1) \le 1-\dfrac{1}{2^n}1.3 \ldots (2n-3) <0$ với mọi $n \ge 6$ (vô lí). Như vậy $n=2$ hoặc $n=4$.

  • Nếu $n=2$ thì $f(\dfrac{1}{2})=1-\dfrac{1}{4}(2a_1-1) \Rightarrow a_1 \le \dfrac{5}{2}$ và do đó $a_1=1, 2$. Giá trị $a_1$ cho ta $f(x)=x(x-1)+1$ là bất khả qui và $a_1=2$ cho ta $f(x)=x(x-2)+1=(x-1)^2$ là khả qui.
  • Nếu $n=4$ thì $f(\dfrac{1}{2})=1-\dfrac{1}{16}(2a_1-1)(2a_2-1)(2a_3-1) \Rightarrow 0 \le \dfrac{1}{16}(2-1)(3-1)(2a_3-1) \Rightarrow a_3 \le \dfrac{19}{6}$. Xét trường hợp $a_1=1, a_2=2, a_3=3$ ta được $$f(x)=x(x-1)(x-2)(x-3)+1=(x^2-3x+1)^2$$ là khả qui.

Bài toán được chứng minh xong.

Ví dụ 3.2: Cho $a_1, a_2,…,a_n$ là các số nguyên dương phân biệt. Chứng minh rằng đa thức $$P(x)=(x-a_1)^2(x-a_2)^2…(x-a_n)^2+1$$ là bất khả qui trên $\mathbb{Z}.$

Giải

Giả sử $P(x)$ là khả qui, tức tồn tại hai đa thức $G(x), H(x) \in \mathbb{Z}[x]$ có bậc không bé hơn 1 sao cho $P(x)=G(x).H(x)$.

Ta có $P(a_i)=G(a_i).H(a_i)$ với $i=1,2,…,n$ nên $G(a_i)=H(a_i)= \pm 1.$ Ta xét các trường hợp

  • Nếu $deg \ G= \ deg \ H$ thì $deg(G-H) \le n-1 \Rightarrow G \equiv H.$ Từ đó $P(x)=(G(x))^2 \Leftrightarrow 1= \Big(G(x)-(x-a_1)…(x-a_n) \Big)\Big(G(x)+(x-a_1)…(x-a_n) \Big)$ , vô lí vì bậc vế phải luôn không nhỏ thua 1.
  • Nếu $degH<deg G$ thì $degH<n$ mà $H(a_i)= \pm1, i=1,2,…,n$ dẫn đến $H$ là đa thức hằng, vô lí.

Vậy $P(x)$ bất khả qui.

4. Rút gọn modulo $p$ nguyên tố

Kĩ thuật rút gọn modulo $p$ nguyên tố là một kĩ thuật tối quan trọng trong việc chứng minh một đa thức là bất khả qui trên $\mathbb{Z}$. Nó đưa các hệ số từ một trường vô hạn các phần tử về một trường hữu hạn các phần từ, từ đó các tính toán của ta có thể được đơn giản hơn.

Định nghĩa 4.1: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ là số nguyên tố. Giả sử $p$ không phải là ước của $gcd(a_1,a_2,…,a_n)$. Ta kí hiệu $\overline{P}$ là đa thức nhận được từ $P$ bằng cách rút gọn các hệ số theo modulo $p$ (lúc này $P(x) \in \mathbb{Z}_p[x]$). Khi đó ta gọi $\overline{P}$ là \textit{đa thức rút gọn theo modulo} $p$ của $P.$

Từ định nghĩa trên ta có sự kiện sau là hiển nhiên $$\overline{P+Q}=\overline{P}+\overline{Q}$$

$$\overline{PQ}=\overline{P}. \ \overline{Q}$$

Định nghĩa 4.2: Nếu đa thức rút gọn modulo $p$ của P bất khả qui thì ta nói đa thức $P$ bất khả qui $mod \ p.$

Định lí 4.1: Với mỗi $P(x) \in \mathbb{Z}[x]$, tồn tại các đa thức $P_1(x), P_2(x), …, P_k(x) \in \mathbb{Z}_p[x]$ sao cho $$\overline{P}(x)=P_1(x).P_2(x)…P_k(x),$$

sự phân tích này là duy nhất theo modulo $p$.

Định lí 4.2: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ không là ước của $a_n$. Khi đó, nếu $P(x)$ là bất khả qui $mod \ p$ thì $P(x)$ là bất khả qui. Điều ngược lại của định lí nói chung không đúng.

Chứng minh

Giả sử $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$ và $p$ không là ước của $a_n$.

Giả sử $P(x)=f(x).g(x)$ với $f, g \in \mathbb{Z}[x]$ với $deg \ f, g \ge 1$.

Khi đó $\overline{P}=\overline{f}. \overline{g}$. Do $p$ không là ước của $a_n$ nên bậc của các đa thức $P, f, g$ không thay đổi sau khi rút gọn theo modulo $p$.

Điều này chứng tỏ $\overline{P}$ khả qui theo modulo $p$, vô lí. Ta có điều phải chứng minh.

Ngược lại dễ thấy đa thức $P(x)=x^4+1$ bất khả qui trên $\mathbb{Z}[x]$ nhưng khả qui modulo $p$ với mọi số nguyên tố $p$.

Ví dụ 4.1: Chứng minh đa thức $P(x)=x^5+4x^4+2x^3+5x^2-7$ là bất khả qui.

Giải
  •  Rút gọn theo modulo 2 ta được $\overline{P}(x)=x^5+x^2+1.$
  •  Giả sử $\overline{P}(x)=f(x). g(x)$, với $f, g \in \mathbb{Z}_2$.
  •  Nếu $deg \ f=1$ hoặc $deg \ g=1$ dễ thấy là vô lí vì $\overline{P}$ không có nghiệm trong $\mathbb{Z}_2$.
  •  Suy ra $\overline{P}(x)=(x^2+ax+b)(x^3+cx^2+dx+e)$, với $a,b,c,d,e \in \mathbb{Z}_2$. Đồng nhất hệ số hai vế ta được điều vô lí. Từ đó suy ra điều phải chứng minh.

Ta có thể liệt kê ra các đa thức bất khả qui modulo 2 trong một số trường hợp bậc nhỏ như sau

  • Trường hợp $n=1$ gồm các đa thức: $x, x+1$.
  •  Trường hợp $n=2$ chỉ gồm một đa thức: $1+x+x^2$.
  •  Trường hợp $n=3$ gồm các đa thức: $1+x+x^3, 1+x^2+x^3$.
  •  Trường hợp $n=4$ gồm các đa thức: $1+x+x^4, 1+x+x^2+x^3+x^4$.
  •  Trường hợp $n=5$ gồm các đa thức:

$1+x+x^2+x^4+x^5$,

$1+x+x^3+x^4+x^5$,

$1+x^2+x^3+x^4+x^5$,

$1+x+x^2+x^3+x^5$,

$1+x^3+x^5, 1+x^2+x^5.$

5. Tiêu chuẩn Eisenstein và một số dạng mở rộng

Khi kiểm tra đa tính bất khả qui của một đa thức trên $\mathbb{Z}[x]$ tiêu chuẩn Eisenstein cung cấp cho ta một công cụ hiệu quả.

Định lí 5.1 (Tiêu chuẩn Eisenstein): Cho đa thức $P(x)= \sum \limits_{i=0}^na_ix^i \in \mathbb{Z}[x], a_n \ne 0$. Khi đó nếu tồn tại số nguyên tố $p$ thỏa đồng thời các điều kiện

  • $p$ không là ước của $a_n$;
  • $p$ là ước của $a_i$ với mọi $i\in \{1,2,…,n-1\}$;
  • $p^2$ không là ước của $a_0.$

Khi đó $P(x)$ là đa thức bất khả qui trên $\mathbb{Q}[x].$

Chứng minh

Có rất nhiều cách chứng minh cho tiêu chuẩn Eisenstein, ở đây ta sẽ trình bày chứng minh bằng cách rút gọn theo một modulo $p$ nguyên tố bất kì.

Giả sử $f$ khả qui, tức $f(x)=g(x).h(x)$, với $f, g \in \mathbb{Z}[x]$ và $deg \ f, g \ge 1.$ Rút gọn theo modulo $p$ nguyên tố ta được đẳng thức trong $\mathbb{Z}_p[x]$ dưới dạng $$\overline{f}=\overline{g}. \overline{h}.$$

Từ điều kiện $p$ là ước của $a_0, …, a_{n-1}$ nhưng không là ước của $a_n$ ta suy ra $\overline{f}=\overline{a_n}x^n.$

Từ đó suy ra $\overline{g}= \overline{b_k}x^k, \overline{h}=\overline{b_m}x^m$. Điều này có nghĩa là $\overline{b_0} \equiv…\equiv \overline{b_{k-1}} \equiv \overline{c_0} \equiv… \equiv \overline{c_{m-1}} \equiv 0 \ mod(p)$. Nhưng khi đó $a_0=b_0c_0 \equiv0 \ (mod \ p^2)$ (vô lí). Từ đó ta có điều phải chứng minh. $\square$

Ví dụ 5.1: Chứng minh đa thức $P(x)=x^4-x^2+2x+1$ bất khả qui trên $\mathbb{Z}$.

Giải

Đặt $Q(x)=P(x+1)=x^4+3x^3+3x^2+3x+3$. Khi đó theo tiêu chuẩn Eisenstein với $p=3$ ta có điều phải chứng minh.

Định lí 5.2 (Dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein):

Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà

  • p không là ước của $a_k$;
  • $p$ là ước của $a_0, …, a_{k-1}$;
  • $p^2$ không là ước của $a_0$.

Thế thì $f(x)$ có một nhân tử bất khả qui bậc $ \ge k$ ( và do đó nếu không bất khả qui sẽ có một nhân tử bậc $\le n-k$)

Chứng minh: Bạn đọc có thể tự chứng minh như trong trường hợp nguyên bản của định lí.

Ví dụ 5.2: Chứng minh đa thức $f(x)=x^{101}+101x^{100}+102$ là bất khả qui.

Giải

Áp dụng tiêu chuẩn Eisenstein mở rộng cho $p=2, k=100$ ta thấy, nếu $f$ là khả qui thì nó phải có một nhân tử bậc 1 và do đó $f$ phải có nghiệm hữu tỉ. Nói riêng vì hệ số bậc cao nhất bằng 1 nên nghiệm hữu tỉ này phải là nghiệm nguyên. Dễ thấy điều này là không xảy ra. bài toán được chứng minh xong.

 

Định lí 5.3 (Dạng mở rộng thứ hai của tiêu chuẩn Eisenstein):

Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà

  • p không là ước của $a_n$;
  • $p$ là ước của $a_0, …, a_{n-1}$;
  • $p^2$ không là ước của $a_k$.

Thế thì, hoặc $f(x)$ là bất khả qui, hoặc $f$ có một nhân tử bất khả qui bậc $ \le k.$

Tương tự như trên, chứng minh được dành cho bạn đọc.

6. Các bài toán áp dụng

Bài tập 6.1 (IMO 1993): Cho số tự nhiên $n>1$. Chứng minh đa thức $f(x)=x^n+5x^{n-1}+3$ là bất khả qui trên $\mathbb{Z}[x]$.

Giải

Áp dụng dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein với $p=3, k=n-1$ ta có điều phải chứng minh.

Bài tập 6.2 (China TST 1994): Cho số tự nhiên $n \ge 3$ và hai số nguyên tố $p, q$ phân biệt. Tìm tất cả các số nguyên $a$ sao cho đa thức $P(x)=x^n+ax^{n-1}+pq$ bất khả qui trên $\mathbb{Z}.$

Giải

Nếu $p|a$ hoặc $q|a$ thì theo tiêu chuẩn Eisenstein $P(x)$ là bất khả qui. Xét trường hợp $p,q$ đều không là ước của $a$. Giả sử $P$ khả qui, áp dụng dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein ta suy ra $P(x)$ phải có nhân tử bậc 1 và do đó $P$ có một nghiệm nguyên $x_0$.

Từ đó suy ra $pq=-x_0^{n-1}(x_0+a)$. Vì $n \ge 3$ nên $pq \ \vdots \ x_0^2$ nhưng vì $p \ne q$ nên $x_0=\pm 1.$

Vì $1+a+pq=0$ và $(-1)^n+a(-1)^{n-1}+pq=0$ nên $a=-1-pq$ hoặc $a=1+(-1)^npq.$

Bài tập 6.3 (Rumani TST 1998): Chứng minh rằng đa thức $P(x)=(x^2+x)^{2^n}+1$ là bất khả qui với mọi số tự nhiên $n$.

Giải

Bằng qui nạp ta chỉ ra rút gọn modulo 2 thì đa thức đã cho trở thành $(x^2+x+1)^{2^n}$. Chú ý rằng đa thức $x^2+x+1$ là bất khả qui modulo 2.

Giả sử $P(x)$ khả qui, tức tồn tại hai đa thức $f,h$ đơn khởi với $f, g \in \mathbb{Z}[x], deg \ f,g \ge 1$ sao cho $P(x)=f(x).g(x)$. Khi đó $\overline{f}=(x^2+x+1)^k, \overline{g}=(x^2+x+1)^{2^n-k}$ và $$f(x)=(x^2+x+1)^k+2f_0(x), g(x)=(x^2+x+1)^{2^n-k}+2g_0(x),$$

với $f_0, g_0 \in \mathbb{Z}[x]$.

Gọi $j$ là một căn bậc 3 khác 1 của đơn vị. Thay $j$ vào đẳng thức $P(x)=f(x).h(x)$ ta được $$P(j)=g(j).h(j) \Leftrightarrow 2=4f_0(j)g_0(j).$$

Từ đó suy ra $f_0(j).g_0(j)=\dfrac{1}{2}$.

Do $f_0(j)g_0(j)$ luôn viết được dưới dạng $aj+b; a, b \in \mathbb{Z}$ và đẳng thức này không thể xảy ra. Ta có điều phải chứng minh.

Một số bài toán tương tự như sau:

Bài 1: Với $n \ge 1$ là số tự nhiên, chứng minh các đa thức sau là bất khả qui trên $\mathbb{Z}$

a) $P(x)=(x^3+x)^{2^n}-3$

b) $P(x)=(x^2+ax)^{2^n}+1$ với $ a \in \mathbb{Z}$

Bài 2: Cho $p$ là một số nguyên tố có dạng $4k+3$. Chứng minh rằng với mọi số nguyên dương $n$ đa thức $P(x)=(x^2+1)^n+p$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 3: Cho $p$ là một số nguyên tố và $a$ là một số nguyên không chia hết cho $p$. Chứng minh đa thức $P(x)=x^p-x+a$ bất khả qui trên $\mathbb{Z}[x].$

Bài tập 6.4 (Japan 99): Chứng minh rằng đa thức $f(x)=(x^2+1^2)(x^2+2^2)…(x^2+n^2)+1$ là bất khả qui trên $\mathbb{Z}$

Giải

Giả sử $n \ge 2$ vì trường hợp $n=1$ là tầm thường và giả sử $f(x)=g(x).h(x)$ với $ f, g \in \mathbb{Z}[x]$ và $1 \le deg \ f, g \le n-1$. Khi đó $$1=f(\pm ki)=g(\pm ki) h(\pm ki).$$

Vì $f, g \in \mathbb{Z}[x]$ nên $g(\pm ki), h(\pm ki)$ có dạng $a + bi$ . Từ đó suy ra $$1=g(ki)h(ki)=1.1=(-1).(-1)=i.(-i)=(-i).i$$

Như vậy trong tất cả $4$ trường hợp ta đều có $g(ki)=\overline{h(ki)}=h(-ki),$ với $k=1,2,…,n$. Như vậy đa thức $P(x)=g(x)-h(-x)$ có $2n$ nghiệm phân biệt nhưng có bậc nhỏ hơn $2n$ nên là đa thức 0 và do đó $g(x)=h(-x)$. Suy ra $\deg(g)=\deg(h)=n $.

Vì $f$ đơn khởi nên $g,h$ cũng đơn khởi. Khi đó $g^2-h^2$ có bậc không quá $2n-1$ nhưng lại có ít nhất $2n$ nghiệm $ki$, với $i \in \{-n, -n-1,…,-1,1,…,n\}$ nên $g^2=h^2$.

Nhưng dễ thấy $g=-h$ không xảy ra do đó $g\equiv h$. Khi đó $$f(x)=g(x)^2 \Rightarrow f(0)=(g(0))^2=(n!)^2+1,$$ vô lí. Bài toán được chứng minh xong.

Ta có bài toán tổng quát hơn là: Cho $p$ là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên $n$ đa thức $$P(x)=(x^p+1^2)(x^p+2^2)…(x^p+n^2)+1$$ bất khả qui trên $\mathbb{Z}[x].$

Bài tập 6.5: Cho $m, n, a$ là các số nguyên dương và số nguyên tố $p$ thỏa mãn $p<a-1$. Chứng minh rằng đa thức $P(x)=x^m(x-a)^n+p$ bất khả qui trên $\mathbb{Z}$.

Giải

Giả sử $P(x)$ khả qui và $P(x)=G(x).H(x)$, với $G, H \in \mathbb{Z}[x]$. Vì $P(0)=p$ nên $|G(0)|=1$ hoặc $|H(0)|=1$. Không mất tổng quát ta giả sử $G(x)=x^k+a_{k-1}x^{k-1}+…+a_0$ và $|G(0)|=1, m+n-1 \ge k \ge 1.

Gọi $x_1,…,x_k$ là nghiệm của $G(x)$. Ta viết $G(x)$ dưới dạng $G(x)=(x-x_1)…(x-x_k)$, dẫn đến $|x_1…x_k|=1$ và $P(x_i)=0 \Leftrightarrow x_i^m(x_i-a)^n=-p$.

Cho $i=\overline{1,k}$ và nhân các vế của đẳng thức lại ta được $$ |G(x)|^n=p^k \ \text{nên} \ |G(a)|^n=p^k.$$

Mặt khác $P(a)=G(a).H(a)=p$ nên ta suy ra $|G(a)|=p$. Do đó $|G(a)-G(0)|=p \pm 1$ chia hết cho $a$.

Vì thế nên $p-1 \ge a$ hoặc $p+1 \ge a$ (mâu thuẫn với giả thiết $p<a-1$).

Vậy $P(x)$ là bất khả qui.

Bài tập 6.6 (Rumani 1999): Cho số nguyên $a$ và số nguyên dương $n$ và $p$ là một số nguyên tố thoả $p>|a|+1$. Chứng minh rằng đa thức $P(x)=x^n+ax+p$ bất khả qui trên $\mathbb{Z}[x]$.

Giải

Giả sử $P(x)=g(x).h(x)$, với $g, h \in \mathbb{Z}[x]$ và $1 \le deg f, deg g \le n-1$. Vì $P(0)=p=g(0).h(0)$ nên không mất tổng quát giả sử $g(0)=\pm 1, h(0)= \pm p.$

Khi đó $g(x)=\pm x^m+T(x)\pm 1, T \in \mathbb{Z}[x], deg T \le m-1.$

Gọi $z_1, z_2,\ldots,z_m$ là nghiệm của $g(x)$. Theo định lí Viet $1=|g(0)|=|z_1z_2…z_m|$ nên $|z_i| \le 1, i=1,2,…,m.$

Lại có $0=f(z_i)=z_i^n+az_i+p$ nên $$p=-z_i^n+az_i \le |z_i|^n+|a|.|z_i| \le 1+|a|,$$

vô lí. Vậy ta có điều phải chứng minh.

Bài tập 6.7: Cho $p, q$ là hai số nguyên tố lẻ sao cho $q$ không là ước của $p-1$ và gọi $a_1, a_2,…,a_n$ là các số nguyên phân biệt sao cho $q|(a_i-a_j)$ với mọi cặp $(i,j)$. Chứng minh rằng $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-p$$ là bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2.$

Giải

Giả sử $f$ khả qui trên $\mathbb{Z}[x]$. Khi đó tồn tại $Q(x), R(x) \in \mathbb{Z}[x]$ sao cho $Q(x)R(x)=P(x)$ và $1 \le deg Q(x), \le deg R(x).$ Nói riêng $degQ(x) \le \dfrac{n}{2}$.

Ta có $Q(a_i)=R(a_i)=-p,$ với $1 \le i \le n$ từ đó suy ra $Q(a_i), R(a_i) \in \{-1,1,-p,p \}$ với mọi $1 \le i \le n$. Với mọi hằng số $c$ đa thức $Q(x)-c$ nhận nhiều nhất $degQ(x) \le \dfrac{n}{2}$ nghiệm. Do đó $Q(a_i)$ nhận ít nhất hai giá trị phân biệt (và ít nhất $3$ giá trị phân biệt nếu $degQ(x)< \dfrac{n}{2}$).

Vì $q|(a_i-a_j)$ nên $q|(Q(a_i)-Q(a_j)$. Để ý rằng $q$ là số nguyên tố lẻ nên $Q(a_i)$ không thể nhận hai giá trị $1$ và $-1$ (vì nếu ngược lại thì $q|1-(-1)=2$). Tương tự $Q$ cũng không thể nhận hai giá trị là $p -p$ vì khi đó $R(a_i)$ nhận hai giá trị là $1,-1$.

Từ giả thiết $q$ không là ước của $p-1$ suy ra $Q(a_i)$ không thể nhận hai giá trị $1$ và $p$ hoặc $-1$ và $-p$. Do đó $Q(a_i)$ chỉ có thể nhận được nhiều nhất hai giá trị là $1$ và $-p$ hoặc $-1$ và $p$. Giả sử trường hợp đầu tiên xảy ra.

Vì $Q(a_i)$ chỉ nhận hai giá trị nên $degQ(a_i)=\dfrac{n}{2}$ và $Q$ nhận mỗi giá trị $1$ và $-p$ đúng $\dfrac{n}{2}$ lần. Chia tập $(a_i)_{i=1}^n$ thành hai tập $(b_i)_{i=1}^n$ và $(c_i)_{i=1}^n$ sao cho $Q(b_i)=1$ và $Q(c_i)=-p$. Khi đó $$Q(x)=(x-b_1)(x-b_2)…(x-b_{\frac{n}{2}})+1=(x-c_1)(x-c_2)…(x-c_{\frac{n}{2}})-p.$$

Vì ta cũng có $degR(x)=\dfrac{n}{2}$ nên $R(a_i)=-p$ khi $Q(a_i)=1$. Do đó $$R(x)=(x-b_1)(x-b_2)…(x-b_{\frac{n}{2}})-p=(x-c_1)(x-c_2)…(x-c_{\frac{n}{2}})+1.$$

Nhưng khi đó để ý rằng trong đẳng thức thứ nhất cho ta $Q(x)-R(x)=1+p$ còn đẳng thức thứ 2 cho ta $Q(x)-R(x)=-p-1$ điều đó dẫn đến $p=-1$. Vô lí. Bài toán được chứng minh xong.

Bài tập 6.8: Tìm tất cả các cặp số nguyên dương $(m,n)$ sao cho đa thức $$P(x,y)=(x+y)^2(mxy+n)+1$$ khả qui trên $\mathbb{Z}[x,y]$. Khi đó hãy phân tích $f$ thành các nhân tử bất khả qui.

Giải

Đặt $S=x+y$ ta viết lại $f$ dưới dạng $$f(x,S)=S^2(mx(S-x)+n)+1=-mS^2x^2+mS^3x+(nS^2+1).$$

Ta xem $f$ là một tam thức bậc 2 theo biến $x$. Khi đó $f$ khả qui khi và chỉ khi $f$ phân tích được thành tích của hai đa thức bậc nhất. Khi đó biệt thức $$\Delta =m^2S^6+4mS^2(nS^2+1)=mS^2(mS^4+4nS^2+4)$$ là một bình phương.

Dễ thấy điều này xảy ra khi và chỉ khi $m=n^2$, lúc này $$\Delta= (nS(nS^2+2))^2$$ và $f$ có hai nghiệm là $x=\dfrac{-1}{nS}$ hoặc $x=\dfrac{nS^2+1}{nS}$.

Khi đó $$f(x)=(nSx+1)(-nSx+nS^2+1)=(nx^2+nxy+1)(ny^2+nxy+1).$$

 

7. Bài tập tự luyện

Bài 1: Với $n \ge 2$ là một số nguyên và $r=\sqrt[n]{2}$. Chứng minh rằng không tồn tại các số hữu tỷ $a_0, a_1,…,a_{n-1}$ không đồng thời bằng $0$ sao cho $$ a_0+a_1r+a_2r^2+…+a_{n-1}r^{n-1}=0 $$

Bài 2: Tìm số nguyên dương $n$ nhỏ nhất sao cho đa thức $P(x)=x^{n-4}+4n$ có thể phân tích được thành tích của 4 đa thức hệ số nguyên và không là đa thức hằng.

Bài 3: Cho $P(x), Q(x)$ là hai đa thức đơn khởi, bất khả quy trên trường số hữu tỷ. Giả sử $P, Q$ có hai nghiệm tương ứng là $\alpha, \beta$ sao cho $\alpha +\beta$ là số hữu tỷ. Chứng minh $P^2(x)-Q^2(x)$ có nghiệm hữu tỷ.

Bài 4: Chứng minh đa thức $P(x)=(1+x+x^2+…+x^n)^2-x^n$ khả qui trên $\mathbb{Z}[x].$

Bài 5: Chứng minh rằng đa thức $P(x)=x^n+4$ khả qui trên $\mathbb{Z}$ khi và chỉ khi $n$ là bội của $4.$

Bài 6 (IMO Longlist 1989): Cho $n \ge 4$ và các số nguyên phân biệt $a_1,a_2,…,a_n$. Chứng minh đa thức $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-2$$ bất khả qui trên $\mathbb{Q}[x].$

Bài 7 (VMO 2014): Cho $n$ là số nguyên dương. Chứng minh rằng đa thức $P(x)=(x^2-7x+6)^n+13$ không thể biểu diễn được thành tích của $n+1$ đa thức khác hằng với hệ số nguyên.

Bài 8: Chứng minh rằng đa thức $x^n-x-1$ bất khả qui trên $\mathbb{Q}[x]$, với mọi $n \ge 2.$

Bài 9: Cho $n>m>1$ là hai số nguyên lẻ. Chứng minh đa thức $P(x)=x^n+x^m+x+1$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 10: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $$P(x)=x^{p-1}+2x^{p-2}+…+(p-1)x+p$$ bất khả qui trên $\mathbb{Z}$.

Bài 11: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x], (a_n \ne 0, n \ge 2)$. Chứng minh rằng tồn tại vô số số nguyên tố $k$ sao cho đa thức $P(x)+k$ bất khả qui.

Bài 12: Tìm tất cả các số nguyên $n$ sao cho đa thức $P(x)=x^5-nx-n-2$ là khả qui trên $\mathbb{Z}[x]$.

Bài 13: Cho $p$ là một số nguyên tố và $n$ là một số nguyên nhỏ hơn 4. Chứng minh rằng nếu $a$ là một số nguyên không chia hết cho $p$ thì đa thức $P(x)=ax^n-px^2+px+p^2$ bất khả qui trên $\mathbb{Z}[x].$

Bài 14: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $P(x)=x^p+(p-1)!$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 15: Tồn tại hay không đa thức $f \in \mathbb{Q}[x]$ sao cho $f(1) \ne -1$ và $x^nf(x)+1$ là khả qui với mọi $n \in \mathbb{N}$.

Bài 16: Cho $a$ là một số nguyên dương và $p \ge 2 $ là một số nguyên tố thỏa mãn $(a,p)=1$. Chứng minh rằng đa thức $P(x)=x^p-mx+a$ bất khả qui trên $\mathbb{Z}[x]$ với $m \equiv \ 1 \ (mod \ p)$.

Bài 17: Cho $p$ là một số nguyên tố lẻ. Chứng minh đa thức $P(x)= \sum \limits_{i=0}^{p-2}(p-1-i)x^i$ bất khả qui trên $\mathbb{Q}[x].$

Bài 18 (Rumani TST 2003): Cho $P(x) \in \mathbb{Z}[x]$ là một đa thức monic bất khả qui trên $\mathbb{Z}[x]$ sao cho $P(0)$ không là số chính phương. Chứng minh rằng $Q(x)=P(x^2)$ cũng bất khả qui trên $\mathbb{Z}[x].$

Bài 19 (China TST 2006): Cho số nguyên $n \ge 2$. Chứng minh rằng tồn tại đa thức $P(x)=x^n+a_{n-1}x^{n-1}+…+a_1x+a_0$ thỏa mãn

a) $a_0, a_1,…,a_{n-1}$ khác 0.

b) $P(x)$ bất khả qui.

c) Với mọi số nguyên $x$ thì $|P(x)|$ không là số nguyên tố.

Bài 20: Biết $f \in \mathbb{Z}[x]$ là một đa thức bất khả qui có bậc lẻ và lớn hơn 3. Giả sử rằng các nghiệm của $P$ đều có modun lớn hơn 1 và $f(0)$ không có ước chính phương. Chứng minh rằng đa thức $g(x)=f(x^3)$ cũng là đa thức bất khả qui.

Bài 21: Cho $f \in \mathbb{Z}[x]$ là một đa thức monic với bậc lớn hơn 1. Giả sử $f(x^n)$ bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2$. Hỏi $f$ có bất khả qui trên $\mathbb{Z}[x]$ hay không?

Bài 22: Cho $1 \ne f \in \mathbb{Z}[x]$ sao cho có vô hạn số nguyên $a$ thỏa $f(x^2+ax)$ bất khả qui trên $\mathbb{Q}[x]$. Hỏi $f$ có bất khả qui trên $\mathbb{Q}[x]$ hay không?

Bài 23: Cho $f(x) \ne \pm x$ là một đa thức bất khả qui trên $\mathbb{Z}[x]$. Hỏi $f(x.y)$ có bất khả qui trên $\mathbb{Z}[x,y]$ hay không?

Tài liệu tham khảo

[1] Nguyễn Tiến Quang, NXB Giáo dục, Đại số đại cương

[2] Đoàn Duy Cường, 2015, Bài giảng bồi dưỡng giáo viên chuyên toán năm

[3] Nguyễn Chu Gia Vượng,2015,  Đa thức bất khả qui

[4] Exploration-Creativity 2012,  Irreducible polynomials

[5] Yufei Zhao, Integer polynomial 

[6] Dusan Djukic, Polynomials in one variable 

[7] Gabriel D.Carroll, Polynomials 

[8] Victor V.Prasolov, Polynomials

[9] Titu Andresscu, Gabriel Dospinescu, Problems from the book

[10] U298, Mathematical Reflections

[11] https://artofproblemsolving.com/community/c89