Tag Archives: DapAn

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$

Đề và lời giải thi chọn đội dự tuyển năm học 2018-2019

Bài 1. Tìm tất cả các hàm số $f:\mathbb R\rightarrow \mathbb R$ thoả mãn:
i) $f(-x)=-f(x)\ \forall x\in \mathbb R$.
ii) $f(f(x)-y)=2x+f(f(y+x))\ \forall x,y\in \mathbb R$.

Bài 2. Tìm tất cả các bộ số tự nhiên $(a,b,c)$ để $a^2+2b+c,b^2+2c+a,c^2+2a+b$ đều là các số chính phương.

Bài 3. Cho tập hợp $X={1,2,\ldots,396}$. Gọi $S_1,S_2,\ldots,S_k$ là $k$ tập con khác nhau của $X$ thoả mãn đồng thời hai điều kiện sau:

i)$|S_1|=|S_2|=\ldots=|S_k|=198$.
ii) $|S_i\cap S_j|\le 99\ \forall i,j\in \mathbb N^*, 1\le i<j\le k$.

Chứng minh rằng $k\le 6^{50}$.

Bài 4. Cho tam giác $ABC$ nhọn. Đường tròn thay đổi qua $B,C$ cắt các cạnh $AB,AC$ lần lượt tại $D,E$.

a) Gọi $H,K$ lần lượt là hình chiếu của $B$ trên $CD$ và $DE$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.
b) Gọi $Q$ là hình chiếu của $C$ trên $DE$. Đường tròn ngoại tiếp tam giác $BDK$ cắt $BC$ tại $M$, đường tròn ngoại tiếp tam giác $CEQ$ cắt $BC$ tại $N$. $KM,QN$ cắt nhau tại $X$. Chứng minh rằng $X$ thuộc một đường thẳng cố định.

Lời giải

Bài 1.

Trong điều kiện $(ii),$ thay $x$ bởi $-x,$ ta được
$$
f(f(-x)-y)=-2x+f(f(y)-x)),
$$
hay
$$-f(f(x)+y)=-2x+f(f(y)-x),\text{ với mọi } x,y\in\mathbb{R}. (*) $$

Thay vai trò của $x$ và $y$ trong $(ii)$, ta có
$
f(f(y)-x)=2y+f(f(x)+y),\text{ với mọi }x,y\in\mathbb{R}.
$
Thay vào $(*)$, ta có
$$
-f(f(x)+y)=-2x+2y+f(f(x)+y),
$$
hay
$$
f(f(x)+y)=x-y,\text{ với mọi }x,y\in\mathbb{R}.
$$
Thay $y$ bởi $f(y),$ ta có
$$
f(f(x)+f(y))=x-f(y),\text{ với mọi }x,y\in\mathbb{R}.
$$
Đổi vai trò của $x,y$, ta thu được
$$
x-f(y)=y-f(x), \text{ tức là } f(x)=-x+c,\text{ với mọi }x\in\mathbb{R}.
$$
Thay vào đề bài, ta suy ra $c=0.$ Vậy hàm số cần tìm là $f(x)=-x.$

Bài 2.

Không mất tính tổng quát, ta giả sử $a=\min (a,b,c).$ Nếu $a=0$ thì ta có $2b+c,b^2+2c,c^2+b$ đều là các số chính phương.
Nếu như $b \le c$ thì $c^2 \le c^2+b \le c^2+c <(c+1)^2$ là số chính phương, kéo theo $c^2+b=c^2$ nên $b=0$. Từ đây dễ dàng có $c=0$. Tương tự nếu $c \le b$ cũng có $b=c=0$. \medskip

Do đó, trong trường hợp này, ta có bộ nghiệm $(a,b,c)=(0,0,0)$.
Ta xét các trường hợp sau ứng với $a>0.$

  • Nếu $a\le b\le c.$ Khi đó $c^2< c^2+2a+b\le c^2+3c<(c+2)^2$. Do đó $c^2+2a+b=(c+1)^2,$ hay $2a+b=2c+1.$ Ta cũng có
    $$
    b^2 < b^2+2c+a = b^2+2a+b-1+a \leq b^2+4b – 1 < (b+2)^2,
    $$
    tức là
    $$
    b^2+2c+a=(b+1)^2,\ 2c+a=2b+1.
    $$
    Đẳng thức xảy ra khi $a=1,b=c$, từ đây dễ dàng tìm được $a=b=c=1$. Thử lại ta thấy bộ số này thỏa mãn.
  • Nếu $a \leq c \leq b$. Khi đó $b^2 < b^2+2c+a \leq b^2 + 3b < (b+2)^2$, tức $b^2+2c+a=(b+1)^2$ và $2c+a=2b+1$. Ta suy ra
    $$4a+2b = 4a+2c+a-1 \leq 7c – 1 < 8c+8.
    $$
    Do đó $2a+b < 4c+4$ và $c^2 < c^2+2a+b < (c+2)^2$. Do đó $2a+b=2c+1$. Kết hợp với $2c+a=2b+1$, ta suy ra
    $$
    (a,b,c)=(a,3a-2,\frac{5a-3}{2}).
    $$
    Do đó $a$ lẻ và trường hợp $a=1$ đã xét nên ở đây ta đặt $a=2t+1$, với $t \geq 1$. Khi đó $(a,b,c)=(2t+1,6t+1,5t+1)$. Vì $b^2+2c+a$ và $c^2+2a+b$ là các số chính phương nên ta xét điều kiện để $a^2+2b+c=4t^2+21t+4$ là số chính phương. Với $t \geq 3$, ta có
    $$
    (2t+4)^2 < 4t^2+21t+4<(2t+6)^2
    $$

Do đó $4t^2+21t+4 = (2t+5)^2$ và $t=21$. Như vậy $t \in {1,2,21}$. Thử trực tiếp, ta thấy chỉ có $t=21$ là thỏa mãn ứng với $(a,b,c)=(43,127,106)$.

Vậy tất cả bộ ba số thỏa mãn đề bài là $$(a,b,c)=(0,0,0),(1,1,1),(43,127,106).$$

Bài 3.

Vì $|S_i\cap S_j|\le 99$ với mọi $1\le i<j\le k$ nên mỗi bộ $100$ phần tử chỉ có thể được chứa tối đa trong $1$ tập hợp. Ta đếm các bộ $\{x_1,x_2,\ldots,x_{100},M \}$, trong đó $x_i\in X$ với mọi $i$ và $M$ là một trong các tập $S_i$, $M$ chứa $x_1,x_2,\ldots,x_{100}$.

  • Số cách chọn tập $M$ là $k$. Số cách chọn $100$ phần tử trong $M$ là $C^{100}_{198}.$
  • Số cách chọn $x_1,x_2,\ldots,x_{100}$ từ $X$ là $C^{100}_{396}.$ Với mỗi bộ $100$ phần tử như vậy, có tối đa $1$ tập $S_i$ thỏa mãn $S_i$ chứa $x_1,x_2,\ldots,x_{100}.$

Do đó ta có bất đẳng thức
$ kC^{100}{198} \le C^{100}{396} $
hay

$k \le \dfrac{C^{100}{396}}{C^{100}{198}}$

$=\dfrac{396!100!98!}{100!296!198!}$

$=\dfrac{396!98!}{198!296!} $

$=\dfrac{297\cdot 298 \ldots 396}{99\cdot 100\ldots 198}$
$=\dfrac{297\cdot 299\ldots 395}{99\cdot 100\ldots 148}\cdot\dfrac{298}{149}\cdot \dfrac{300}{150}\ldots \dfrac{396}{198}$
$\le 3^{50}\cdot 2^{50}=6^{50}.$

Ta có đpcm.

Bài 4.

(a) Gọi $F$ là giao điểm của $KH$ và $AC.$ Ta chứng minh $F$ cố định. Ta có tứ giác $BDEC$ nội tiếp nên $\angle BDC=\angle BEC.$ Tứ giác $KDHB$ cũng nội tiếp nên ta suy ra $\angle BDC=\angle BKF.$ \medskip

Do đó $\angle BEC=\angle BKF,$ tức là tứ giác $KEFB$ nội tiếp. Khi đó ta có $$\angle EFB=180^{\circ}-\angle BKE =90^{\circ}.$$ Do đó $BF\perp AC,$ tức là điểm $F$ cố định.

(b) Tứ giác $DKMB$ nội tiếp nên $\angle BMK=\angle KDB$. Ta suy ra
$$\angle NMX=\angle EDA.$$
Ta có $EQCN$ nội tiếp nên $$\angle QNC=\angle QEC, \text{ hay } \angle MNX=\angle AED.$$
Từ đó, ta suy ra $\triangle MNX\sim \triangle DEA.$ Gọi $G$ là chân đường cao từ $A$ đến $BC$ và $AG$ cắt $DE$ tại $P$. Khi đó $BC\perp AG$. Mà $BC\perp DM$ và $BC\perp EN$ nên
$$
AC \parallel DM \parallel EN.
$$

Do đó $\dfrac{DP}{PE}=\dfrac{MG}{GN}$. Mà $\triangle ADE\sim \triangle XMN$ nên $\angle XMN=\angle EPA.$ Mà $$\angle EPA=180^{\circ}-\angle PAC-\angle PEA$$ nên ta có
$$
\angle EPA=180^{\circ}-(90^{\circ}-\angle C)-B={\rm const}.
$$
Do đó $\angle XGN$ không đổi. Mà $G$ là điểm cố định nên $GX$ cố định. Như vậy $X$ di chuyển trên đường cố định.

 

Đáp án kì thi chọn đội dự tuyển PTNK năm học 2019 – 2020

Đề bài

Bài 1. Tìm giá trị nhỏ nhất của biểu thức
$$ P=\dfrac{a^4+b^4+2}{\left(a^2-a+1\right)\left(b^2-b+1\right)}, \text{ với } a,b \in \mathbb{R}. $$

Bài 2. Cho $\mathbb{Q^+}$ là tập hợp số hữu tỉ dương. Tìm tất cả các hàm $f:\mathbb{Q^+} \to \mathbb{Q^+}$ thỏa mãn
$$ f\left( {{x^2}f{{\left( y \right)}^2}} \right) = f{\left( x \right)^2}f\left( y \right), \text{ với mọi } x,y \in \mathbb{Q^+}. $$

Bài 3. Cho $x_1$, $x_2$, $x_3$, \dots là dãy số nguyên thỏa mãn đồng thời hai điều kiện
$$ 1=x_1<x_2<x_3 \dots \text{ và } x_{n+1}\leq 2n \text{ với } n=1,2,3 \dots $$
Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. Cho tam giác $ABC$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}.$ Đường tròn tâm $M$ bán kính $MB$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $AD$ cắt $AC$ tại $N$. Chứng minh rằng $\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}$.

Giải

Lời giải của nhóm các bạn NGUYỄN TĂNG VU, LÊ PHÚC LỮ, NGUYỄN TIẾN HOÀNG

Bài 1. 

Với mọi $x \in \mathbb{R}$, ta có
\[{x^4} + 1 – \frac{2}{9}{\left( {{x^2} – x + 1} \right)^2} = \frac{1}{9}{\left( {x + 1} \right)^2}\left( {7{x^2} – 10x + 7} \right) \geq 0. \] Vì thế nên ta có
\[ P \ge \frac{2}{9}\frac{{{{\left( {{a^2} – a + 1} \right)}^2} + {{\left( {{b^2} – b + 1} \right)}^2}}}{{\left( {{a^2} – a + 1} \right)\left( {{b^2} – b + 1} \right)}} = \frac{2}{9}\left( {\frac{{{a^2} – a + 1}}{{{b^2} – b + 1}} + \frac{{{b^2} – b + 1}}{{{a^2} – a + 1}}} \right) \ge \frac{4}{9}. \] Suy ra giá trị nhỏ nhất của $P$ là $\dfrac{4}{9}$, đạt được khi $a=b=-1.$

Bài 2.

Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán.
Đặt $f(1)=a>0$, trong phương trình đề cho, thay $x=y=1$ ta có $f(a^2)=a^3$. \medskip

Từ đó, tiếp tục lần lượt thay $x$ bởi $a^2$, $y$ bởi $1$ và $x$ bởi $1$, $y$ bởi $c^2$ vào phương trình ấy, ta thu được
\[ a^7 = f(a^6) = a^5. \] Chú ý $a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi $1$ vào phương trình đề cho, ta có
\[ f\left( {f{{\left( y \right)}^2}} \right) = f\left( y \right), \text{ với mọi } y \in \mathbb{Q^+}. \] Lại thay $y$ bởi $1$ vào phương trình đề cho, ta có
\[ f{\left( x \right)^2} = f\left( {{x^2}} \right), \text{ với mọi } x \in \mathbb{Q^+}. \] Suy ra
\[ f\left( x \right) = f\left( {f{{\left( x \right)}^2}} \right) = f{\left( {f\left( x \right)} \right)^2} = \ldots = {f^{n + 1}}{\left( x \right)^{{2^n}}}, \text{ với mọi } x \in \mathbb{Q^+}, \] trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q^+}$ sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_p(f(q)) \ne 0$ thì ta có
\[ {v_p}\left( {f\left( q \right)} \right) = {v_p}\left( {{f^{n + 1}}{{\left( q \right)}^{{2^n}}}} \right) = {2^n}{v_p}\left( {{f^{n + 1}}\left( q \right)} \right) \ne 0. \] Trong đẳng thức trên, cho $n \to + \infty$ ta thấy điều vô lý. Suy ra $v_p(f(q)) = 0$ với mọi $q \in \mathbb{Q^+}$, $p \in \mathbb{P}$, hay $f(x) \equiv 1.$ \medskip

Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
\end{giai}

Bài 3. 

Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_1$, $x_2$, \dots, $x_{k+1}$. Ta có $x_1=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_q \leq k$ thì ta có $q<k+1$ và
\[ 1 \leq x_1 < x_1 < \dots < x_q \leq k < x_{q+1}<\dots<x_{k+1}<2k. \]

Nếu tồn tại $1 \leq j < i \leq k+1 $ sao cho $x_i – x_j = k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số $$x_1+k,x_2+k, \dots x_q+k, x_{q+1}, \dots, x_{k+1}$$ là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2k$, vô lí! \medskip

Từ đó suy ra với mọi $k$ nguyên dương,luôn tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. 

Ta có $OB=OD$, $MB=MD$ nên dễ thấy $OM$ là phân giác ngoài của góc $AMD$, mà $OA=OD$ nên suy ra $O \in \left(AMD\right).$

Gọi $N’$ là giao điểm khác $A$ của $\left(AMD\right)$ và $AC$. Ta chứng minh $N$ trùng $N’$. \medskip

Thật vậy, ta có $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}$ nên $\angle{AMO}$ tù, do đó nếu $N’$ nằm ngoài tia $AC$ thì $N’$ nằm khác phía $O$ so với $AM$ nên $$\angle{AMO}=\angle{AN’O}=\angle{CAO}-\angle{AON’}<\angle{CAO}<90^\circ,$$ vô lý. Suy ra $N’$ nằm trên tia $AC$, kéo theo $AO$ là phân giác trong góc $MAN’$ nên $OM=ON’$, mà $OA=OD$ nên $MN’$ song song $AD$, suy ra $N$ trùng $N’$. \medskip

Từ đó, dễ thấy $AMND$ là hình thang cân nên $AN=MD=MB$, hơn nữa $N$ nằm trên tia $AC$ nên ta thu được $$\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.$$ Ta có điều cần chứng minh.

 

Đề thi HK1 môn toán lớp 10 (không chuyên) trường Phổ Thông Năng Khiếu năm học 2020-2021

Bài 1. (2 điểm). Giải các phương trình:

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$

b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$

Bài 2 (1 điểm). Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.

Bài 3 (1 điểm). Chứng minh $\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] = \dfrac{1}{{1 + \cos x}}$

Bài 4 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} mx – \left( {m + 1} \right)y = 1\\ \left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m \end{array} \right.$ ($m$ là tham số).

a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.

b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$

Bài 5 (1 điểm). Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là $4$. Tìm $m$ và tọa độ đỉnh của $(P)$.

Bài 6 (2 điểm). Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.

a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $

b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.

Bài 7 (2 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.

a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $

b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Giải

Bài 1.

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $

Điều kiện: $x>2$

$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l} x=1 \quad (l) \\ x=-1 \quad (l) \\ x=3 \quad (n) \\ x=-3 \quad (l) \end{array} \right. $

Vậy $S=\left\{ 3 \right\} $

b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ \sqrt{x^2 -x +3 } = x-6 \ (*) \end{array}\right. $

$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\ x^2 -x +3 = (x-6)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l}  x\ge 6\\ x=3\end{array}\right. $

$\Leftrightarrow x\in \emptyset$

Vậy $S=\left\{ 0\right\} $

Bài 2. ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l} m+2\ne 0\\\\ \dfrac{1}{m+2}\ne 0\\\\ \dfrac{1}{m+2}\ne 1 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne -2\\ m\ne -1 \end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$

Bài 3.

$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$

Bài 4.

a) Ta có: $D=\left| \begin{array}{*{20}{c}} {m}&{-(m+1)}\\ {2-m}&{m-3} \end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}} {1} & {-(m+1)}\\ {3-2m} & {m-3} \end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}} {m} & {1}\\ {2-m} & {3-2m} \end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$

b) Ta có: $\left\{ \begin{array}{l} x_0 = \dfrac{D_x}{D} = m\\\\ y_0= \dfrac{D_y}{D} = m-1 \end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$

Bài 5. Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$

Tọa độ đỉnh $I( -1;3)$

 

Bài 6.

a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$

b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$

 

Bài 7.

a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$

$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$

$\Leftrightarrow \left\{ \begin{array}{l} x-6 = -5\\ y-1=1 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x=1\\ y=2 \end{array}\right. $

Vậy $M(1;2)$

b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l} IA = IB\\ IA = IC \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} 5x_I -y_I =12\\ (5-y_I)^2 = (1-y_I)^2 \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} x_I=3\\ y_I=3 \end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l} y_E =1\\ y_E =5 \end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2018-2019

Bài 1. Giải các phương trình và hệ phương trình sau
a) $1-\sqrt{5-3 x+x^{2}}=2 x$
b) $\sqrt{3 x-5}+\sqrt{x+1}=4+4 x^{2}-x^{3}-3 x$
c) $\left\{\begin{array}{l}x+y+x y=5 \\ x^{2}+y^{2}=5\end{array}\right.$
Bài 2. Tìm giá trị tham số $\mathrm{m}$ sao cho
a) Phương trình $\mathrm{m}^{2} \mathrm{x}=4 \mathrm{x}-2 \mathrm{~m}+\mathrm{m}^{2}$ có nghiệm tùy $\dot{\mathrm{y}}$.
b) Phương trình $\mathrm{x}^{2}+2 \mathrm{mx}+4=0$ có hai nghiệm $x_1, x_2$ thỏa $|x_1-x_2| = 2\sqrt{2}$.
Bài 3.Tìm giá trị lớn nhất của hàm số $\mathrm{y}=\mathrm{x} \sqrt{1-\mathrm{x}^{2}}$ với $0<\mathrm{x}<1$.

Bài 4. Cho tam giác $ABC$ có $K$ là trung điểm $AB$. Gọi $I,J$ là các điểm thỏa
$\overrightarrow{\mathrm{AI}}=\frac{1}{3} \cdot \overrightarrow{\mathrm{AC}} ; 2 \sqrt{\mathrm{JB}}=\overline{\mathrm{JC}}$
a) Chứng minh rằng $\mathrm{K},$ I , J thẳng hàng.
b) Tìm tập hợp các điểm $\mathrm{M}$ sao cho $|2 \overrightarrow{\mathrm{MA}}-3 \overrightarrow{\mathrm{MB}}-2 \overrightarrow{\mathrm{MC}}|=|\overrightarrow{\mathrm{MB}}-\overrightarrow{\mathrm{MC}}|$
Bài 5.Trong mặt phẳng tọa độ Oxy cho $\mathrm{A}(-2 ; 2), \mathrm{B}(1 ; 0), \mathrm{C}(3 ;-3)$
a) Tính tọa độ trực tâm $\mathrm{H}$ của $\Delta \mathrm{ABC}$.
b) Tính tọa độ điểm D thuộc trục Oy sao cho $\mathrm{ABCD}$ là hình thang có cạnh đáy lớn
$\mathrm{BC}$.

Đáp án thang điểm

Đề thi học kì 1 môn toán 10 năm học 2017-2018 trường Lê Quý Đôn – TPHCM

BÀI 1. Xét tính chẵn – lẻ của hàm số: $f(x)=\dfrac{2 x^{2}+3}{|x+2|-|x-2|}$.

BÀI 2. Xác định parabol $(\mathrm{P}): f(x)=\alpha x^{2}+b x+2$ biết $(\mathrm{P})$ đi qua điểm $\mathrm{B}(-1 ; 6)$ và có tung độ đỉnh là $-\frac{1}{4}$.

BÀI 3. Giải các phương trình:
a) $\sqrt{2 x^{2}+7 x+5}=x+1$
b) $2 x-\left|x^{2}-4 x+5\right|=5$

BÀI 4. Cho $\forall x>1 ; y>1$. Chứng minh: $\dfrac{x y}{\sqrt{(y-1)(x-1)}} \geq 4$

BÀI 5. Cho tam giác $\mathrm{ABC}$ có $\mathrm{AB}=9, \mathrm{AC}=12, \widehat{\mathrm{BAC}}=120^{\circ}$. Tính diện tích tam giác $\mathrm{ABC}$, độ dài cạnh BC; độ dài trung tuyến AM và bán kính đường tròn nội tiếp tam giác ABC.

BÀI 6. Trong mặt phằng $0 \mathrm{xy}$ cho tam giác $\mathrm{ABC}$ với $\mathrm{A}(1 ; 3), \mathrm{B}(-3 ; 0), \mathrm{C}(0 ;-2)$
a) Tìm tọa độ điểm $\mathrm{M}$ sao cho $\mathrm{ABCM}$ là hình bình hành.
b) Tìm tọa độ điểm D thuộc trục $y^{\prime}$ Oy sao cho $|\overrightarrow{A D}+\overrightarrow{B D}-\overrightarrow{C D}|=2 \sqrt{5}$.

BÀI 7. Xác định tất cả các giá trị của m để phương trình $\dfrac{x-m}{x+1}=m+1$ có nghiệm.

Đáp án thang điểm

 

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi HK1 lớp 11 trường PTNK năm học 2017 – 2018

Bài 1. Giải các phương trình sau:
a)  $ 2\cos ^2 \dfrac{x}{2}+\sqrt{3}\sin x=1+2\sin 3x $
b) $ 3 \tan^2 x+4\tan x+4\cot x+3\cot^2 x+2=0 $

Bài 2. Gọi S là tập tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các số 1;2;3;4;5;6;7. Lấy ngẫu nhiên một số từ S. Tính xác suất để lấy được số có mặt chữ số 6.

Bài 3. Trong khai triển của $ \left(2x^3-\dfrac{3}{x^2}\right)^n $ với $ n $ là số nguyên dương thỏa $ 2C_{n+6}^{5}=7A_{n+4}^3, $ tìm số hạng không chứa $ x? $

Bài 4. Tìm số hạng đầu và công sai của cấp số cộng $ (u_{n}) $ biết rằng công sai của $ (u_{n}) $ là số nguyên dương và
$u_{1}+u_{3}+u_{5}=15, \dfrac{1}{u_{1}}+\dfrac{1}{u_{3}}+\dfrac{1}{u_{5}}=\dfrac{59}{45} $.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho điểm $ I(2;-5) $ và đường thẳng $ d:3x-2y+3=0. $ Viết phương trình đường thẳng $ d’ $ là ảnh của $ d $ qua phép đối xứng tâm $ I. $

Bài 6. Cho hình chóp $ S.ABCD $ có đáy $ ABCD $ là hình thang có $ AD $ là đáy lớn, $ AD=2BC. $ Gọi $ O $ là giao điểm của $ AC $ và $ BD. $ Gọi $ G_{1},G_{2} $ lần lượt là trọng tâm $ \Delta SCD, \Delta SAB, \ E $ là trung điểm $ SD. $
a)  Mặt phẳng $ (BCE) $ cắt $ SA $ tại $ F. $ Chứng minh: $ F $ là trung điểm $ SA. $
b) Chứng minh $ G_{1}G_{2} \parallel (SAD) $
c) Chứng minh $ (OG_{1}G_{2}) \parallel (SBC) $
d) Gọi $ M $ là điểm trên cạnh $ AB $ sao cho $ AB=4AM. $ Mặt phẳng $ (P) $ qua $ M $ và song song với $ BC, SD. $ Xác định thiết diện của hình chóp với mặt phẳng $ (P). $ Thiết diện là hình gì?

Hết

Đáp án

[userview]

Bài 1.

a) Phương trình tương đương với
$$
\begin{aligned}
& \cos x+\sqrt{3} \sin x=2 \sin 3 x \\
\Leftrightarrow & \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\sin 3 x \\
\Leftrightarrow & \sin \left(x+\frac{\pi}{6}\right)=\sin 3 x \\
\Leftrightarrow x+\frac{\pi}{6}=3 x+k 2 \pi \text { hoặc } x+\frac{\pi}{6}=\pi-3 x+k 2 \pi \\
\Leftrightarrow x=\frac{\pi}{12}+k \pi \text { hoặc } x=\frac{5 \pi}{24}+\frac{k \pi}{2}, k \in \mathbb{Z}
\end{aligned}
$$

Bài 2. Gọi $\overline{a b c d}(a \neq 0)$ là số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7 .
$\overline{a b c d}:$ Có $A_{7}^{4}=840$ số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7
$\Longrightarrow|\Omega|=840$Gọi A là biên có sao cho số dược lậy là một số có mặt chữ số $6 .$
$$
|A|=4 . A_{6}^{3}=480 \Longrightarrow P(A)=\frac{|A|}{|\Omega|}=\frac{4}{7}
$$

Bài 3. 

\begin{aligned}
&2 C_{n+6}^{5}=7 A_{n+4}^{3} \Longleftrightarrow 2 \cdot \frac{(n+6) !}{5 !(n+1) !}=7 \cdot \frac{(n+4) !}{(n+1) !} \Longleftrightarrow \frac{(n+6) !}{(n+4) !}=420 \Longleftrightarrow(n+6)(n+5)=\\
&420 \Longleftrightarrow n^{2}+11 n-390=0 \Longleftrightarrow\left[\begin{array}{l}
n=15 \\
n=-26
\end{array} \Longleftrightarrow n=15(\text { vì n là số tự nhiên })\right.\\
&\text { Công thức } \mathrm{SHTQ}: T_{k+1}=C_{15}^{k} \cdot\left(2 x^{3}\right)^{15-k} \cdot\left(-\frac{3}{x^{2}}\right)^{k}=C_{15}^{k} \cdot 2^{15-k} \cdot(-3)^{k} \cdot x^{45-5 k}\\
&\text { Để số hạng không chứa } x \Longleftrightarrow 45-5 k=0 \Longleftrightarrow k=9 \text { . }\\
&\text { Vậy số hạng không chứa } \mathrm{x}: T_{10}=C_{15}^{9} .2^{6} \cdot(-3)^{9}=-6304858560 \text { . }
\end{aligned}

Bài 4. $\left\{\begin{array}{l}
u_{1}+u_{3}+u_{5}=15(1) \\
\frac{1}{u_{1}}+\frac{1}{u_{3}}+\frac{1}{u_{5}}=\frac{59}{45}(2) \end{array} \right.$
$(1) \Longleftrightarrow 3 u_{3}=15 \Longleftrightarrow u_{3}=5 $
$(2) \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{5}+\frac{1}{u_{5}}=\frac{59}{45} \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{u_{5}}=\frac{10}{9} $

$\Longleftrightarrow 9\left(u_{1}+u_{5}\right)=10 u_{1} u_{5} $

$\Longleftrightarrow 9.2 u_{3}= 10\left(u_{3}-2 d\right)\left(u_{3}+2 d\right)$

$\Longleftrightarrow 90=10\left(u_{3}^{2}-4 d^{2}\right)=25-4 d^{2}=9 $

$\Longleftrightarrow d^{2}=4$

$\Longleftrightarrow d=2(\text{vì} d>0) $
$u_{3}=5 \Longleftrightarrow u_{1}+2 d=5 \Longleftrightarrow u_{1}=5-2 d=1$.
và $u_{1}=1,d=2$

Bài 5. 

Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $\mathrm{M}$ qua phép đối xứng tâm $\mathrm{I} \Longleftrightarrow \mathrm{I}$ là trung điểm của $\mathrm{MM}^{\prime} \Longleftrightarrow$
$$
\left\{\begin{array}{l}
x_{I}=\frac{x_{M}+x_{M^{\prime}}}{2} \\
y_{I}=\frac{y_{M}+y_{M^{\prime}}}{2}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
4=x+x^{\prime} \\
-10=y+y^{\prime}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
x=4-x^{\prime} \\
y=-10-y^{\prime}
\end{array}\right.\right.\right.
$$
Ta có: $3 x-2 y+3=0 \Longleftrightarrow 3\left(4-x^{\prime}\right)-2\left(-10-y^{\prime}\right)+3=0 \Longleftrightarrow 12-3 x^{\prime}+20+2 y^{\prime}+3=0 \Longleftrightarrow$
$3 x^{\prime}-2 y^{\prime}-35=0$
Vậy M’ thuộc dường thẳng d’:3x-2y-35=0.
Vậy ảnh của đường thẳng d qua phép đối xứng tâm I là đường thẳng $\mathrm{d}^{\prime}: 3 \mathrm{x}-2 \mathrm{y}-35=0 .$

Bài 6. 

a) Ta có: $C \in(S A C) \cap(B C E)(1)$.
Trong $(S B D)$ gọi $\mathrm{K}$ là giao diểm của $\mathrm{SO}$ và $\mathrm{BE}$ mà $S O \subset(S A C), B E \subset(B C E)=K \in$
$(S A C) \cap(B C E)(2)$
$(1)(2) \Longrightarrow C K=(S A C) \cap(B C E)$
Trong $(S A C)$ gọi $\mathrm{F}$ là giao điểm của $\mathrm{SA}$ và $\mathrm{CK}$ mà $\mathrm{CK} \subset(B C E)=F=\operatorname{SAn}(B C E) .$ $\mathrm{Vi} A D \| B C=\frac{O C}{O A}=\frac{O B}{O D}=\frac{B C}{A D}=\frac{1}{2} \Longleftrightarrow \frac{C O}{C A}=\frac{B O}{B D}=\frac{1}{3}$
Xét $\triangle S O D$ : Áp dụng định lý Menelaus với 3 điểm $\mathrm{B}, \mathrm{K}, \mathrm{E}$ thẩng hàng ta có:
$\frac{C O}{C A} \cdot \frac{K S}{K O} \cdot \frac{F A}{F S}=1 \Longleftrightarrow \frac{F A}{F S}=1 \Longleftrightarrow \mathrm{F}$ là trung điẻm $\mathrm{SA}$
b) Trong (SAB), goi P là giao điểm của $S G_{1}$ và AB. Vì $G_{1}$ là trọng tâm của $\triangle S A B=P$
là trung điểm của AB.

Trong (SCD), gọi P là giao điểm của $S G_{2}$ và CD. Vì $G_{2}$ là trọng tàm của $\triangle S C D=\mathrm{Q}$
là trung điểm của CD. Xét $\triangle S P Q$ ta có: $\frac{S G_{1}}{S P}=\frac{2}{3}=\frac{S G_{2}}{S Q}=G_{1} G_{2} \| P Q(3)$

Xét hình thang ABCD ta có: PQ là đường trung bình của hình thang ABCD (do P,Q làn
lượt là trung điểm của $\mathrm{AB}, \mathrm{CD} \Longrightarrow P Q \| A D(4)$
$$
\text { Tì }(3)(4)=G_{1} G_{2}\left\|A D, \operatorname{mà} \mathrm{AD} \subset(\mathrm{SAD})=G_{1} G_{2}\right\|(S A D)
$$
c) Ta có: $G_{1} G_{2} \| A D$ mà $A D\left\|B C=G_{1} G_{2}\right\| B C=G_{1} G_{2} \|(S B C)(5)$
Trong (SAB), gọi H là giao điểm của $A G_{1}$ và $\mathrm{SB}$. Vì $G_{1}$ là trọng tần của $\triangle S A B=\mathrm{H}$
là trung điểm của $\mathrm{SB}$. Xét $\triangle H A C$ ta có: $\frac{A O}{A C}=\frac{2}{3}=\frac{A G_{1}}{A H}=O G_{1}\left\|C H \operatorname{mà} C H \subset(S B C)=O G_{1}\right\|(S B C)(6)$
Tì $(5)(6)=\left(O G_{1} G_{2}\right) \|(S B C)$
d) Ta có: $M \in(P) \cap(A B C D) \operatorname{mà}(P)\left\|B C=(P) \cap(A B C D)=x M x^{\prime}\right\| B C$.
Trong (ABCD), gọi N là giao diểm của xMx’ và CD.
Ta có: $N \in(P) \cap(S C D) \operatorname{mà}(P)\left\|S D=(P) \cap(S C D)=y N y^{\prime}\right\| S D$
Trong (SCD) gọi I là giao diểm của yNy’ và SC.
Ta có: $I \in(P) \cap(S B C) \operatorname{mà}(P)\left\|B C \Longrightarrow(P) \cap(S B C)=t I t^{\prime}\right\| B C .$
Trong (SBC), gọi J là giao điểm của tIt’ và SB. $((P) \cap(A B C D)=M N$
$\Longrightarrow$ thiệt diê
Ta có: $M N\|I J\| A D=M N I J$ là hình thang.

[/userview]

Đáp án đề thi học kì 1 môn Toán 11 trường Phổ thông Năng khiếu

ĐỀ THI VÀ ĐÁP ÁN HK1 TOÁN LỚP 11 TRƯỜNG PTNK

Bài 1. Giải các phương trình
a) $\dfrac{\sin x + \sin 3x – 1}{2\cos x – 1} = 1$.
b) $\dfrac{1}{\sin x} + \dfrac{1}{\cos x} = 4\sqrt{2}\cos 2x$.

Bài 2.
a) Một bình chứa các quả cầu có kích thước khác nhau gồm 6 quả cầu đỏ, 10 quả cầu xanh và 14 quả cầu vàng. Chọn ngẫu nhiên 5 quả cầu. Tính xác suất để 5 quả cầu chọn được có đủ 3 màu, trong đó số quả cầu màu vàng và màu xanh bằng nhau.
b) Từ các số 0, 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 6 chữ số phân biệt sao cho số đó chia hết cho 3.

Bài 3.
a) Tìm hệ số của $x^3$ trong khai triển thu gọn biểu thức $(2\sqrt{x} – \dfrac{3}{x})^{15}$\
b) Tìm số nguyên dương $x$ thỏa mãn đẳng thức $C_{x+2}^{x-1} + C_{x+2}^x = \dfrac{10}{3}A_x^2$.

Bài 4. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $(d): x – y – 1 = 0$ và vectơ $\vec{u} = (-2;1)$. Tìm ảnh $(d’)$ của đường thẳng $(d)$ qua phép tịnh tiến theo $\vec{u}$.

Bài 5. Cho hình chóp $S.ABCD$ có đáy là hình thang, $AD // BC$ và $AD = 2BC$. Gọi $O$ là giao điểm của $AC$ và $BD$ và $M$ là trung điểm $SD$.
a) Tìm giao tuyến của mặt phẳng $(SAB)$ và $(SCD)$; $(SAD)$ và $(SBC)$.
b) Chứng minh $CM // (SAB)$. Tìm giao tuyến của $(SAB)$ và $(AMC)$.
c) Tìm giao điểm $I$ của $SC$ và $(ABM)$. Chứng minh $OI // (SAD)$.

Hết 

Đáp án  ĐỀ-THI-HỌC-KÌ-I-2015-2016-ĐÁP-ÁN

 

Đề thi và đáp án vào lớp 10 TPHCM 2017

I. ĐỀ

Câu 1.
a) Giải các phương trình: $x^2=(x-1)(3x-2)$.
b) Một miếng đất hình chữ nhật có chu vi $100m$. Tính chiều dài và chiều rộng của miếng đất biết rằng 5 lần chiều rộng hơn 2 lần chiều dài $40m$.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Vẽ đồ thị $(P)$ của hàm số $y=\dfrac{1}{4}x^2$.
b) Cho đường thẳng $(D):y=\dfrac{3}{2}x+m$ đi qua điểm $C(6;7)$. Tìm tọa độ giao điểm $(D)$ và $(P)$.
Câu 3.
a) Thu gọn biểu thức $A=(\sqrt{3}+1)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}$.
b) Lúc 6 giờ sáng , bạn An đi xe đạp từ nhà (điểm $A$) đến trường (điểm $B$) phải leo lên và xuống một con dốc (như hình bên dưới). Cho biết đoạn thằng $AB$ dài $762m$, góc $A=6^\circ$, góc $B=4^\circ$.

  1. Tính chiều cao $h$ của con dốc.
  2. Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là $4km/h$ và tốc độ trung bình xuống dốc là $19km/h$.

Câu 4. Cho phương trình: $x^2-(2m-1)x+m^2-1=0\,(1)$ ($x$ là ẩn số).

a) Tìm điều kiện của $m$ để phương trình $(1)$ có 2 nghiệm phân biệt.
b) Định $m$ để hai nghiệm $x_1$, $x_2$ của phương trình $(1)$ thỏa mãn:
$$(x_1-x_2)^2=x_1-3x_2$$
Câu 5. Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) Chứng minh tứ giác $ACDH$ nội tiếp và $\angle{CHD}=\angle{ABC}$.
b) Chứng minh hai tam giác $OHB$ và $OBC$ đồng dạng và $HM$ là tia phân giác của góc $BHD$.
c) Gọi $K$ là trung điểm $BD$. Chứng minh $MD.BC=MB.CD$ và $MB\cdot MD=MK\cdot MC$.
d) Gọi $E$ là giao điểm của $AM$ và $OK$; $J$ là giao điểm của $IM$ và $(O)$ ($J$ khác $I$). Chứng minh hai đường thẳng $OC$ và $EJ$ cắt nhau tại một điểm nằm trên $(O)$.

II. ĐÁP ÁN

Câu 1.
a) $x^2 = (x-1)(3x-2) $
$\Leftrightarrow x^2= 3x^2 – 5x + 2 $
$\Leftrightarrow 2x^2 – 5x+2=0 $
$\Leftrightarrow 2x^2 – 4x -x +2 =0 $
$\Leftrightarrow 2x(x-2)-(x-2) =0 $
$\Leftrightarrow (x-2)\left( 2x-1 \right) =0 $

$\Leftrightarrow  x=2$ hoặc $x=\dfrac{1}{2} $
b) Gọi $a$, $b$ (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật. ($a,b >0$)
Ta có hệ phương trình:
$2(a+b) = 100$ và  $5b-2a=40$
$\Leftrightarrow a=30$ và $b= 20$
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 20m.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Đồ thị:

Đồ thị $(P)$ đi qua điểm $(2; 1)$, $(-2;1)$ và $O(0;0)$
b) Đường thẳng $(D)$ đi qua điểm $C(6;7)$ nên
$7=\dfrac{3}{2}.6+m \Rightarrow m= -2$
Do đó phương trình đường thẳng $(D)$ là $(D):y=\dfrac{3}{2}x-2$.
Phương trình hoành độ giao điểm của $(D)$ và $(P)$ là:

$\dfrac{3}{2}x-2= \dfrac{1}{4}x^2 $
$\Leftrightarrow x^2 – 6x+8 =0 $
$\Leftrightarrow x= 4 \Rightarrow y= 4 $ hoặc $x=2 \Rightarrow y= 1$
Vậy các giao điểm của $(D)$ và $(P)$ có tọa độ là $(4;4)$ và $(2,1)$
Câu 3.
a) $\left( \sqrt{3}+1 \right) \sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\dfrac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}} $
$= \left( \sqrt{3}+1 \right) \sqrt{\dfrac{\left( 4-2\sqrt{3}\right) \left( 5+ \sqrt{3} \right) }{5 + \sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\left( \sqrt{3}-1 \right) ^2} $
$= \left( \sqrt{3}+ 1 \right) \left( \sqrt{3}-1 \right) =3-1 =2$
b)

  1. Ta có:
    $AH = h.cotg \angle CAH= h.cotg \; 6^\circ $
    $BH = h.cotg \angle CBH= h.cotg \; 4^\circ$
    Mà $AH + BH = AB$ nên
    $h.cotg \; 6^\circ + h.cotg \; 4^\circ = 762 $
    $\Leftrightarrow h= \dfrac{762}{cotg \; 6^\circ + cotg \; 4^\circ } $ $\Leftrightarrow h \approx 32$
    Vậy chiều cao của con dốc là $h \approx 32m$
  2.  $AC= \dfrac{h}{\sin \angle CAH} \approx \dfrac{32}{\sin 6^\circ }$
    Vận tốc An lên dốc là $4\; km/h = 4000 \; m /h$
    Thời gian An lên dốc là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000}$ (giờ)
    $BC= \dfrac{h}{\sin \angle CBH} \approx \dfrac{32}{\sin 4^\circ }$
    Vận tốc An xuống dốc là $19 \; km/h = 19000 \; m/h$
    Thời gian An xuống dốc là $\dfrac{\dfrac{32}{\sin 4^\circ }}{19000}$ (giờ)
    Thời gian để An đến trường là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000} + \dfrac{\dfrac{32}{\sin 4^\circ }}{19000} \approx 0.1$ (giờ) $\approx 6$ (phút)
    Vậy An đến trường lúc 6 giờ 6 phút.

Câu 4. $x^2 – (2m-1)x + m^2 -1 =0$ (1)

a) Để phương trình (1) có hai nghiệm phân biệt thì
$a=1 \ne 0$ và $\Delta >0 $
$\Leftrightarrow (2m-1)^2 – 4 \left( m^2 -1 \right) >0$
$\Leftrightarrow 4m^2 – 4m +1 – 4m^2 + 4 >0 \Leftrightarrow m < \dfrac{5}{4}$
b) Để phương trình có hai nghiệm $x_1$, $x_2$ thì $a=1 \ne 0$ và $\Delta \ge 0 $ $\Rightarrow m \le \dfrac{5}{4}$
Theo Viet, ta có: $S= 2m-1 $, $P= m^2 -1$
$\left( x_1 -x_2 \right) ^2 = x_1 – 3x_2 $
$\Leftrightarrow \left( x_1 + x_2 \right) ^2 = x_1 + x_2 + 4x_1x_2 -4x_2 $
$\Leftrightarrow (2m-1)^2 = 2m-1 + 4m^2 – 4 – 4x_2 $
$\Leftrightarrow 4m^2 -4m +1 = 2m -1 + 4m^2 -4 – 4x_2 $
$\Leftrightarrow 4x_2 = 6m-6 \Leftrightarrow x_2 = \dfrac{3}{2}m – \dfrac{3}{2}$
$S= x_1 + x_2 = 2m -1 \Rightarrow x_1 = \dfrac{1}{2}m+ \dfrac{1}{2}$
$P = x_1x_2 = m^2 -1 $
$\Rightarrow \left( \dfrac{1}{2}m + \dfrac{1}{2} \right) \left( \dfrac{3}{2}m – \dfrac{3}{2} \right) = m^2 -1 \Leftrightarrow m^2 -1 =0 \Leftrightarrow
m =1 (n)$ hay
m= -1 (n)
Vậy $m=1$ hoặc $m=-1$

Câu 5.

Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) $\angle ADB = 90^\circ $ (góc nội tiếp chắn nửa đường tròn)
$\Rightarrow \angle AHC = \angle ADC = 90^\circ \Rightarrow ACDH$ là tứ giác nội tiếp.
$\Rightarrow \angle CAD= \angle CHD$.
Mà $\angle CAD= \angle ABC$ (cùng phụ với $\angle ACB$) nên $\angle CHD = \angle ABC$.
b) Theo câu a), ta có: $\angle CHD = \angle ABC \Rightarrow OBDH$ là tứ giác nội tiếp.
$\Rightarrow \angle OHB = \angle ODB$.
Mà $\angle ODB = \angle OBD$ nên $\angle OHB = \angle OBD \Rightarrow \triangle OHB \backsim \triangle OBC$
$\angle OHB = \angle OBD = \angle CHD \Rightarrow 90^\circ – \angle OHB = 90^\circ – \angle CHD \Rightarrow \angle BHM = \angle DHM$.
Do đó $HM$ là tia phân giác của $\angle BHD$
c) $HM$ là phân giác $\angle BHD$ mà $HM \bot HC$ nên $HC$ là phân giác ngoài của $\angle BHD$.
Do đó ta có $\dfrac{MB}{MD}= \dfrac{HB}{HD}= \dfrac{CB}{CD} \Rightarrow MD.BC= MB.CD$
Tiếp tuyến tại $B$ của $(O)$ cắt $AM$ tại $E$.
$\Rightarrow \angle OBE =90 ^\circ \Rightarrow OBEH$ là tứ giác nội tiếp. $\Rightarrow \angle BOE = \angle BHE$, mà $\angle BHE = \angle DHE$ nên $\angle BOE = \angle DHE$ (1)
Lại có $OBDH$ nội tiếp (cmt) nên 5 điểm $O$, $B$, $E$, $D$, $H$ cùng nằm trên một đường tròn.
$\Rightarrow OHDE$ nội tiếp $\Rightarrow \angle DHE = \angle DOE$ (2)
Từ (1) và (2) suy ra $\angle BOE = \angle DOE \Rightarrow OE$ là phân giác $\angle BOD$.
Do đó $O$, $K$, $E$ thẳng hàng.
$\Rightarrow EK \bot BC $
$\angle EKC = \angle EHC =90^\circ \Rightarrow EKHC$ nội tiếp $\Rightarrow MK.MC = MH.ME$.
$BHDE$ nội tiếp nên $MB.MD = MH.ME$.
Vậy $MB.MD = MK.MC$
d) Gọi $F$ là giao điểm của $EJ$ và $OC$.
Ta có $MH.ME = MB.MD$, $MB.MD = MI.MJ$ nên $MH.ME= MI.MJ \ \Rightarrow \triangle MJE \backsim \triangle MHI \Rightarrow \angle MJE = \angle MHI = 90^\circ \Rightarrow \angle IJF = 90^\circ
\Rightarrow \angle IJF$ là góc nội tiếp chắn nửa đường tròn $(O)$.
Do đó $F$ nằm trên đường tròn $(O)$.
Vậy $EJ$ và $OC$ cắt nhau tại điểm $F$ nằm trên đường tròn.