Sắp thi học kì 1, Star Education gửi đến các bạn “Bộ đề thi và lời giai Ôn thi học kì 1” năm học 2019 – 2020 để các bạn ôn tập tốt nhất.
Chúc các bạn ôn thi tốt. Link Download -> STAR_9_GIAI_DE_HK1_1920
Sắp thi học kì 1, Star Education gửi đến các bạn “Bộ đề thi và lời giai Ôn thi học kì 1” năm học 2019 – 2020 để các bạn ôn tập tốt nhất.
Chúc các bạn ôn thi tốt. Link Download -> STAR_9_GIAI_DE_HK1_1920
Chúc mừng trường Phổ thông Năng khiếu đã thành lập được đội tuyển toán, gồm 4 bạn lớp 12 và 6 bạn lớp 11. Tất cả các bạn vào đội tuyển đều rất xứng đáng, có một vài trường hợp hơi tiếc, hy vọng các em vẫn còn đam mê để bức phá ở thời gian sau.
Hoàng Sơn 10 Toán đã có một ngày thi thứ nhất rất xuất sắc nhưng chưa đủ giúp em vào đội tuyển, hy vọng năm sau em sẽ tỏa sáng.
Bài 1.
1) a) a) Ta có $\Delta’ = {\left( {{m^2} + m + 1} \right)^2} – \left( {{m^4} + {m^2} + 1} \right) = \left( {{m^2} + m + 1} \right)2m \ge 0$\\
Mà ${m^2} + m + 1 = {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0 \Rightarrow m \ge 0$\\
Khi đó theo định lý Viete ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = 2\left( {{m^2} + m + 1} \right) \\
{x_1}{x_2} = {m^4} + {m^2} + 1 \\
\end{array} \right.$
Suy ra:
$\begin{array}{l}
A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right) = 2\left( {{m^2} + m + 1} \right)\left( {1 + \dfrac{1}{{{m^4} + {m^2} + 1}}} \right) \\
= 2\left( {{m^2} + m + 1 + \dfrac{1}{{{m^2} – m + 1}}} \right) \\
\end{array}$.
Ta có ${m^2} – m + 1 = {\left( {m – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0$. \\
Theo bất đẳng thức Cauchy ta có ${m^2} – m + 1 + \frac{1}{{{m^2} – m + 1}} \ge 2$ và $m \ge 0$.
Do đó $A \geq 4$, đẳng thức xảy ra khi $m =0$. Vậy giá trị nhỏ nhất của A là 4 khi $m = 0$.
b) $B = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}} = \dfrac{{{{\left( {{m^2} + m + 1} \right)}^2}}}{{{m^4} + {m^2} + 1}} = \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}}$;
Ta có $0 < \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}} = 1 + \dfrac{{2m}}{{{m^2} – m + 1}} \le 3$\\
B là số tự nhiên nên $B = 1,2,3$.
Với $B = 1$ ta có $m =0$;
Với $B = 2$ (vô nghiệm) ;
Với $B = 3$ ta có $m = 1$.
Vậy các giá trị cần tìm là $m = 0$ và $m = 1$.
2) Ta có $\left\{ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right) = – 4 \\
\left( {y + x} \right)\left( {y + z} \right) = 1 \\
\left( {z + x} \right)\left( {z + y} \right) = – 1 \\
\end{array} \right.$
Nhân 3 phương trình ta có:
${\left[ {\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)} \right]^2} = 4 \Rightarrow \left[ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = – 2 \\
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = 2 \\
\end{array} \right.$;
Trường hợp 1: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = – 2 \Rightarrow \left\{ \begin{array}{l}
y + z = 1/2 \\
x + z = – 2 \\
x + y = 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ – 1}}{4} \\
y = \frac{9}{4} \\
z = \frac{{ – 7}}{4} \\
\end{array} \right.$
Trường hợp 2: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = 2 \Rightarrow \left\{ \begin{array}{l}
y + z = – 1/2 \\
x + z = 2 \\
x + y = – 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1/4 \\
y = – 9/4 \\
z = 7/4 \\
\end{array} \right.$
Vậy hệ phương trình có hai nghiệm $\left( {x,y,z} \right):\left( {\frac{{ – 1}}{4},\frac{9}{4},\frac{{ – 7}}{4}} \right),\left( {\frac{1}{4},\frac{{ – 9}}{4},\frac{7}{4}} \right)$
Bài 2. Vì $abc > 1$ nên không thể có 3 số đều nhỏ hơn 1.
Vì $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$ nên không thể cùng lớn hơn 1.
Nếu có một số bằng 1, giả sử $a = 1$ ta có $bc > 1$ và $b + c < \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{b+c}{bc}$ (vô lý).
Nên các số đều khác 1. Giả sử có hai số nhỏ hơn 1 là $a, b$ và $c > 1$.
Khi đó $ab < 1, ac \geq \dfrac{1}{b} > 1, bc \geq \dfrac{1}{a} > 1$.
Do đó: $(ab-1)(bc-1)(ac-1) < 0 \Leftrightarrow a^2b^2c^2 +ab+bc+ac -abc(a+b+c) – 1 < 0 (1)$.
Mặc khác $abc > 1, a+ b+ c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \Leftrightarrow ab+bc+ac > abc(a+b+c) (2)$
Từ (1) và (2) ta có mâu thuẫn.
Vậy chỉ có đúng một số nhỏ hơn 1.
Bài 3.
a) Các ước của 12 là: 1, 2, 3, 4, 6, 12 ta có $1.2.3.4.6.12 = 12^3$. Nên 12 là số lập phương.
Các ước của 32 là $1, 2, 4, 8, 16, 32$, ta có $1.2.4.8.16.32 = 32^3$. Nên 32 là số lập phương.
b) Dễ tìm được $n = 5$.
c) Giả sử $n$ là số lập phương.
Nếu $n = 1$ thì $n$ là số lập phương. \\
Xét $n > 1$. Thì $n$ không là số nguyên tố vì nếu $n$ là số nguyên tố thì $n$ có các ước là $1, n$, mà $1.n \neq n^3$.
Suy ra $n$ là hợp số.
Trường hợp 1. Nếu $n$ có một ước nguyên tố là $p$, tức là: $n = p^k$ với $q$ là số nguyên tố. Khi đó các ước của $n$ là $1, p, p^2, …, p^{k-1}, p^k$. Khi đó $1. p.p^2…p^{k} = n^3 = p^{3k}$, suy ra $1 + 2 + …+ k = 3k$, suy ra $k = 5$. Vậy $n = p^5$ với $p$ nguyên tố. \\
Trường hợp 2. Nếu $n$ có 2 ước nguyên tố là $p, q$. Khi đó $n = p^m.q^k$. Nếu $m, k \geq 2$ thì ta có các ước của $n$ là $1, n, p^m, q^n, p, p.q^k, q, q.p^m$. Khi đó tích các ước sẽ lớn hơn $n^3$. Do đó $m, k$ không cùng lớn hơn hoặc bằng 2.
Nếu $m = k = 1$ thì các ước của $n$ là $1, p, q, n$ khi đó tích các ước là $1.p.q.n = n^2$, cũng không thỏa.
Nếu $m = 2, k = 1$ thì các ước của $n$ là $1, p, q, p^2, qp, n$. Khi đó $1.p.q.p^2.pq.n = n^3$ thỏa đề bài. \\ Vậy $n= p^2q$ với $p, q$ là các số nguyên tố là số lập phương.
Trường hợp 3. $n$ có nhiều hơn ba ước nguyên tố, khi đó số ước của $n$ lớn hơn hoặc bằng 8. Giả sử các ước là $1, d_1, d_2, …, d_k = n$ thì $1.d_1.d_{k-1}.d_2.d_{k-2}.d_3.d_{k-3}.n > n^3$, nên không thể là số lập phương.
Vậy các số lập phương là $1, p^5, p^2.q$ với $p, q$ là các số nguyên tố.
Cách khác: Ta có thể chứng minh số lập phương có đúng 6 ước số trước, rồi suy ra $n$.
Bài 4.

a) Ta có $ADBE$ là hình chữ nhật $S_{ABDE} = AD.AB$. Ta có $AD. AB \leq \dfrac{1}{2}(AD^2+BD^2) = 2R^2$. Đẳng thức xảy ra khi và chỉ khi $AD = BD$. Khi đó $AC = AB = 2R$.
Vậy diện tích tứ giác $ADBE$ nhỏ nhất bằng $2R^2$ khi $AC = AB = 2R$.
b) Ta có $\Delta MFA \sim \Delta MAD$, suy ra $MA^2 = MF.MD$.(1)
Ta có $BF.BG = BA^2, BD.BC = BA^2$, suy ra $BF.BG = BD.BC$, suy ra tứ giác $DFGC$ nội tiếp. Khi đó $\Delta MFG \sim \Delta MCD$, suy ra $MC.MG = MF.MD$. (2)
Từ (1) và (2) ta có $MA^2 = MC.MG$.
c) Gọi $H$ là giao điểm của $AD$ và $BF$. $CH$ cắt $AB$ tại $O’$.
Ta có $\angle CDG = \angle CFG = \angle BFE = \angle DBA$, suy ra $DG || AB$.
Qua $H$ vẽ đường thẳng song song với $AB$ cắt $AG, BD$ tại $P, Q$. Ta có $\dfrac{HP}{AB} = \dfrac{GH}{GB} = \dfrac{DH}{DA} = \dfrac{QH}{AB}$, suy ra $HP = HQ$.
Ta có $\dfrac{HP}{AO’} = \dfrac{CH}{CO’} = \dfrac{QH}{BO’}$, mà $HP = HQ$, suy ra $AO’ = BO’$, hay $O’ \equiv O$. Vậy các đường thẳng $AD, BF, CO$ đồng quy.
Bài 5.

a) Đặt $r_1 = a + b+ c, r_2 = d+e+f, r_3 = g + h + i$ và $c_1 = a+ d + g, c_2 = b + e + h, c_3 = c + f + i$. Ta có $r_1 + r_2 + r_3 = c_1 + c_2 + c_3$.
Khi đó $a = |r_1 – c_1| = |(r_2 +r_3) – (c_2 + c_3)| = |(r_2-c_2) + (r_3 – c_3)| = \pm (r_2-c_2) \pm (r_3-c_3) = \pm e \pm i$.
Vì các số đều không âm nên không thể xảy ra trường hợp $a = – e- i$. Do đó $a = e +i, e- i$ hoặc $i – e$.
Tương tự cho các trường hợp khác.
b) Tồn tại, xét bảng sau: với $x > 0$.

| [WpProQuiz 13] |
Bài 1. (Toán chung) Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$
Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.
Bài 1 (Toán chung) Tam giác $ABC$ đều có tâm $O$,$AB = 6a$ và các điểm $M, N$ lần lượt thuộc các cạnh $AB, AC$ mà $AM = AN = 2a$. Gọi $I, J, K$ lần lượt là trung điểm của $BC, AC$ và $MN$.
a. Chứng minh các điểm $M, N, B, C$ cùng thuộc một đường tròn T. Tính diện tích tứ giác $BMNC$ theo $a$.
b. Tính bán kính đường tròn ngoại tiếp tam giác $IJK$. Chứng minh đường tròn đường kính $NC$ tiếp xúc với $AI$.
c . $AE$ tiếp xúc với đường tròn $T$ tại $E$ ($E, B$ cùng phía đối với $AI$).Gọi $F$ là trung điểm $OE$, tính số đo $\angle AFJ$.
Bài 2. (Toán chuyên) Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.
a. Chứng minh $\Delta ABE \sim \Delta ACF$ và tứ giác $EFQN$ nội tiếp.
b. Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c. $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.
Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.
Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.