Tag Archives: Đề thi

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011

Đề thi vào lớp 10 TPHCM Năm 2011

Bài 1. Giải các phương trình và hệ phương trình sau:

a) $3 x^{2}-2 x-1=0$

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8\end{array}\right.$

c) $x^{4}+5 x^{2}-36=0$

d) $3 x^{2}-x\sqrt{3}+\sqrt{3}-3=0$.

Giải

a) Vì phương trình $3x^2-2x-1 =0$ có $a+b+c=0$ nên

$(a) \Leftrightarrow x=1$ hoặc $x=\dfrac{-1}{3}$.

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l}11 y=11 \\ 5 x-4 y=-8\end{array} \right.$

$\quad((1)-(2))$ $\Leftrightarrow\left\{\begin{array}{l}y=1 \\ 5 x=-4\end{array} \\ \Leftrightarrow\left\{\begin{array}{l}x=-\dfrac{4}{5} \\ y=1\end{array}\right.\right.$.

c)  Đặt $\mathrm{u}=\mathrm{x}^{2} \geq 0,$ phương trình thành $: \mathrm{u}^{2}+5 \mathrm{u}-36=0$

$(*)$ có $\Delta=169,$ nên

$(*) \Leftrightarrow u=\dfrac{-5+13}{2}=4$ hay $u=\dfrac{-5-13}{2}=-9\ ($loại$)$

Do đó, phương trình có nghiệm $ \mathrm{x}=\pm 2$.

Cách khác $:(\mathrm{c}) \Leftrightarrow\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}+9\right)=0 \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}=\pm 2$.

d) $(d)$ có $: \mathrm{a}+\mathrm{b}+\mathrm{c}=0$ nên

$(\mathrm{d}) \Leftrightarrow \mathrm{x}=1$ hay $x=\dfrac{\sqrt{3}-3}{3}$.

Bài 2.

a) Vẽ đồ thị $(P)$ của hàm số $y=-x^{2}$ và đường thẳng $(\mathrm{D}): y=-2 x-3$ trên cùng một hệ trục toạ độ.

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Giải

a) Đồ thị tự vẽ.

Lưu ý: $(P)$ đi qua $\mathrm{O}(0 ; 0),(\pm 1 ;-1),(\pm 2 ;-4)$

$(D)$ đi qua $(-1 ;-1),(0 ;-3)$.

b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là

$-x^{2}=-2 x-3 \Leftrightarrow x^{2}-2 x-3=0 \Leftrightarrow x=-1$ hay $x=3($vì $a-b+c=0)$

$y(-1)=-1, y(3)=-9$.

Vậy toạ độ giao điểm của $(P)$ và $(D)$ là $(-1 ;-1),(3 ;-9)$.

Bài 3. Thu gọn các biểu thức sau:

$$A=\sqrt{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2 \sqrt{3}}} $$

$$B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16)  $$

Giải

Ta có: $A=\sqrt{\dfrac{(3 \sqrt{3}-4)(2 \sqrt{3}-1)}{11}}-\sqrt{\dfrac{(\sqrt{3}+4)(5+2 \sqrt{3})}{13}} $

$=\sqrt{\dfrac{22-11 \sqrt{3}}{11}} -\sqrt{\dfrac{26+13 \sqrt{3}}{13}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}} $

$=\dfrac{1}{\sqrt{2}}(\sqrt{4-2 \sqrt{3}}-\sqrt{4+2 \sqrt{3}})=\dfrac{1}{\sqrt{2}}\left(\sqrt{(\sqrt{3}-1)^{2}}-\sqrt{(\sqrt{3}+1)^{2}}\right) $

$=\dfrac{1}{\sqrt{2}}[\sqrt{3}-1-(\sqrt{3}+1)]=-\sqrt{2}$

 

Ta có: $B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16) $

$=\dfrac{x \sqrt{x}-2 x+28}{(\sqrt{x}+1)(\sqrt{x}-4)}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} $

$=\dfrac{x \sqrt{x}-2 x+28-(\sqrt{x}-4)^{2}-(\sqrt{x}+8)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{x \sqrt{x}-2 x+28-x+8 \sqrt{x}-16-x-9 \sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}=\dfrac{x \sqrt{x}-4 x-\sqrt{x}+4}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{(\sqrt{x}+1)(\sqrt{x}-1)(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}=\sqrt{x}-1$

Bài 4. Cho phương trình $x^{2}-2 m x-4 m-5=0$ ($x$ là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi $m$.

b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $A=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$ đạt giá trị nhỏ nhất.

Giải

a) Phương trình $(1)$ có $\Delta^{\prime}=\mathrm{m}^{2}+4 \mathrm{~m}+5=(\mathrm{m}+2)^{2}+1>0$ với mọi $m$ nên phương trình $(1)$ có $2$ nghiệm phân biệt với mọi $m$.

b) Do đó, theo Viet, với mọi $\mathrm{m},$ ta có: $\mathrm{S}=-\dfrac{b}{a}=2 m ; \mathrm{P}=\dfrac{c}{a}=-4 m-5$

$\begin{array}{l} \Rightarrow \mathrm{A}=\left(x_{1}+x_{2}\right)^{2}-3 x_{1} x_{2}=4 m^{2}+3(4 m+5)=(2 m+3)^{2}+6 \geq 6, \text { với mọi } \mathrm{m} . \\ \text { Và } \mathrm{A}=6 \text { khi } \mathrm{m}=\dfrac{-3}{2} \end{array} $

Vậy $A$ đạt giá trị nhỏ nhất là 6 khi $\mathrm{m}=\dfrac{-3}{2}$

Bài 5. Cho đường tròn $(O)$ có tâm $O$, đường kính $BC$. Lấy một điểm $A$ trên đường tròn $(O)$ sao cho $\mathrm{AB}>\mathrm{AC}$. Từ $A$, vẽ $\mathrm{AH}$ vuông góc với $\mathrm{BC}$ ($H$ thuộc $\mathrm{BC}$ ). Từ $\mathrm{H},$ vẽ $\mathrm{HE}$ vuông góc với $\mathrm{AB}$ và $\mathrm{HF}$ vuông góc với $\mathrm{AC}$ (E thuộc $\mathrm{AB}, \mathrm{F}$ thuộc $\mathrm{AC}$ ).

a) Chứng minh rằng $AEHF$ là hình chữ nhật và OA vuông góc với EF.

b) Đường thắng $EF$ cắt đường tròn $(O)$ tại $\mathrm{P}$ và $\mathrm{Q}$ ($E$ nằm giữa $\mathrm{P}$ và $\mathrm{F}$ ). Chứng minh $\mathrm{AP}^{2}=\mathrm{AE} . \mathrm{AB}$. Suy ra $APH$ là tam giác cân.

c) Gọi $D$ là giao điểm của $\mathrm{PQ}$ và $\mathrm{BC} ; \mathrm{K}$ là giao điểm cùa $AD$ và đường tròn $(O)$ ($K$ khác $A$). Chứng minh $AEFK$ là một tứ giác nội tiếp.

d) Gọi $I$ là giao điểm của $\mathrm{KF}$ và $\mathrm{BC}$. Chứng minh $\mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Giải

a) Tứ giác $AEHF$ là hình chữ nhật vì có $3$ góc vuông.

$\angle HAF = \angle EFA$ ($AEHF$ là hình chữ nhật),

$\angle OAC=\angle OCA$ ($\triangle OAC$ cân)

Do đó: $\angle OAC+\angle AFE=90^{\circ}$

$\Rightarrow$ $OA$ vuông góc với $EF$.

b) $OA$ vuông góc $\mathrm{PQ} \Rightarrow$ cung $\mathrm{PA}=$ cung $\mathrm{AQ}$

Do đó: $\triangle \mathrm{APE}\backsim \triangle \mathrm{ABP}$

$\Rightarrow \dfrac{A P}{A B}=\dfrac{A E}{A P} \Rightarrow \mathrm{AP}^{2}=\mathrm{AE} \cdot \mathrm{AB}$.

Ta có : $\mathrm{AH}^{2}=$ AE.AB (hệ thức lượng $\Delta \mathrm{HAB}$ vuông tại $\mathrm{H}$, có $\mathrm{HE}$ là chiều cao) $\Rightarrow \mathrm{AP}=\mathrm{AH} \Rightarrow \triangle \mathrm{APH}$ cân tại $\mathrm{A}$

c) $\mathrm{DE.DF}=\mathrm{DC.DB}, \mathrm{DC.DB}=\mathrm{DK.DA} \Rightarrow \mathrm{DE.DF}=\mathrm{DK.DA}$.

Do đó $\Delta \mathrm{DFK}\backsim \Delta \mathrm{DAE} \Rightarrow$ $\angle \mathrm{DKF}= \angle \mathrm{DEA} \Rightarrow$ tứ giác $AEFK$ nội tiếp.

d) $\angle ICF = \angle AEF = \angle DKF$ vậy ta có: $IC\cdot ID=IF\cdot IK$ ( $\triangle \mathrm{ICF}$ đồng dạng $\triangle \mathrm{IKD})$ và $\mathrm{IH}^{2}=IF.IK$ (từ $\triangle \mathrm{IHF}$ đồng dạng $\left.\triangle \mathrm{IKH}\right) \Rightarrow \mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2020

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2020

Bài 1. Cho $M=\dfrac{x\sqrt{x}-8}{3+\left( \sqrt{x}+1\right) ^2}$, $N=\dfrac{\left( \sqrt{x}+1\right) ^3-\left( \sqrt{x}-1\right) ^3}{\left( x-4\right) \left( 3x+1\right) }$ và $P=\dfrac{\sqrt{x}}{2+\sqrt{x}}$.

a) Tìm $x$ khi $M=x-4$.

b) Tính $Q=M\cdot N +P$

Giải

a) Điều kiện xác định: $x\ge 0$

Ta có: $M=x-4\Leftrightarrow \dfrac{x\sqrt{x}-8}{3+\left( \sqrt{x}+1\right) ^2}=x-4$

$\Leftrightarrow \dfrac{\left( \sqrt{x}-2\right) \left( x+2\sqrt{x}+4\right) }{3+x+2\sqrt{x}+1}=x-4$

$\Leftrightarrow \sqrt{x}-2=x-4$

$\Leftrightarrow x-\sqrt{x}-2=0 \Leftrightarrow \left[ \begin{array}{l} \sqrt{x}=-1 \quad (l) \\ \sqrt{x}=2 \end{array} \right. $

$\Leftrightarrow x=4$ (nhận)

Vậy $S=\left\{ 4\right\} $

b) Điều kiện xác định $x\ge 0$, $x\ne 4$.

Ta có: $M=\sqrt{x}-2$

$N=\dfrac{\left( \sqrt{x}+1\right) ^3-\left( \sqrt{x}-1\right) ^3}{\left( x-4\right) \left( 3x+1\right) }$

$=\dfrac{x\sqrt{x}+3x+3\sqrt{x}+1-x\sqrt{x}+3x-3\sqrt{x}+1}{\left( x-4\right) \left( 3x+1\right) }$

$=\dfrac{6x+2}{\left( x-4\right) \left( 3x+1\right) }=\dfrac{2}{x-4}$

Ta có: $Q=M\cdot N +P=\left( \sqrt{x}-2\right)\cdot \dfrac{2}{x-4}+\dfrac{\sqrt{x}}{2+\sqrt{x}}$

$=\dfrac{2\left( \sqrt{x}-2\right) }{\left( \sqrt{x}-2\right) \left( \sqrt{x}+2\right) }+\dfrac{\sqrt{x}}{ \sqrt{x}+2 } =\dfrac{2+\sqrt{x}}{\sqrt{x}+2}=1$

Vậy $Q=1$

Bài 2.

a) Giải phương trình: $\left( x^4+4x^2-5\right) \left( \dfrac{x-3+\sqrt{3+x}}{\sqrt{x}-1}\right) =0$.

b) Hai đường thẳng $d: y=mx+m$ và $d_1: y=x+3m+2n-mn$ cắt nhau tại điểm $I\left( 3;\, 9\right) $. Tính $mn $ và $\dfrac{m}{n}$.

c) Hình chữ nhật $ABCD$ có chu vi bằng $28$ (cm) và nội tiếp đường tròn $(C)$ có bán kính $R=5$ (cm). Tính diện tích tứ giác $ABCD$.

Giải

a) Điều kiện: $\left\{ \begin{array}{l} x \ge 0 \\ x \ne 1 \end{array} \right. $

$\left( x^4 +4x^2 -5 \right) \left( \dfrac{x-3+\sqrt{3+x}}{\sqrt{x}-1} \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} x^4 +4x^2 -5 =0 \ (1) \\ \dfrac{x-3+\sqrt{3+x}}{\sqrt{x}-1} =0 \ (2) \end{array} \right. $

  • $(1)\Leftrightarrow \left[ \begin{array}{l} x^2 =1 \\ x^2 = -5 \quad (l) \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x= 1 \hspace{0.74cm} (l) \\ x=-1 \quad (l) \end{array} \right. $
  • $(2) \Leftrightarrow \sqrt{3+x} = 3-x \quad (x \le 3) $

$\Leftrightarrow 3+x = x^2 -6x +9 $

$\Leftrightarrow x^2 -7x +6 =0 \Leftrightarrow \left[ \begin{array}{l} x=1 \quad (l) \\ x=6 \quad (l) \end{array} \right. $

Vậy phương trình vô nghiệm.

b)

  • $I(3;9) \in d: y=mx+m$ nên $9=3m+m \Leftrightarrow m= \dfrac{9}{4}$
  • $I(3;9) \in d_1: y=x+3m+2n-nm$ nên $9=3+\dfrac{27}{4} +2n – \dfrac{9}{4}n \Leftrightarrow n=3 $

Suy ra $mn= \dfrac{27}{4} $ và $\dfrac{m}{n} = \dfrac{3}{4}$

c) Gọi $a$, $b$ $(cm)$ là độ dài hai cạnh của hình chữ nhật $ABCD$. $(a \ge b >0)$

Ta có hệ phương trình:

$\left\{ \begin{array}{l} 2(a+b)=28 \\ a^2+b^2 = 10^2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a+b=14 \\ (a+b)^2 – 2ab =100 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a+b=14 \\ ab= 48 \end{array} \right. $

Vậy diện tích hình chữ nhật $ABCD$ là: $ab=6\cdot 8 = 48 \, \left( cm^2 \right) $

Bài 3. Gọi $(P)$, $(d)$ lần lượt là đồ thị của các hàm số $y=x^2$ và $y=2mx+3$.

a) Chứng minh đường thẳng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left( x_1;\, y_1\right) $, $B\left( x_2;\, y_2\right) $ và tính $y_1+y_2$ theo $m$.

b) Tìm $m$ sao cho $y_1-4y_2=x_1-4x_2+3x_1x_2$.

Giải

a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:

$x^2=2mx+3 \Leftrightarrow x^2-2mx-3=0 \quad (1)$

Xét phương trình $(1)$, ta có: $\Delta’ = m^2 +3 > 0$ với mọi $m \in \mathbb{R}$

Suy ra phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$ với mọi $m$ hay $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left( x_1;y_1 \right) $, $B\left( x_2; y_2 \right) $.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} x_1+x_2 = 2m \\ x_1x_2 = -3 \end{array} \right. $

Khi đó $y_1=2mx_1+3$, $y_2=2mx_2+3$;

$y_1 + y_2 = 2mx_1+3+2mx_2+3 = 2m\left( x_1 + x_2 \right) +6 = 4m^2 +6$

b) Ta có: $y_1 -4y_2 = x_1-4x_2 +3x_1x_2 $

$\Leftrightarrow 2mx_1+3 – 8mx_2 -12 = x_1-4x_2 -9 $

$\Leftrightarrow 2m\left( x_1 – 4x_2 \right) = x_1-4x_2 $

$\Leftrightarrow \left( x_1-4x_2 \right)(2m -1)=0 $

$\Leftrightarrow \left[ \begin{array}{l} x_1=4x_2 \\ m=\dfrac{1}{2} \quad (n) \end{array} \right. $

Với $x_1=4x_2$, lại có $x_1x_2= -3 \Rightarrow 4x_2^2 = -3$ (vô lý)

Vậy $m=\dfrac{1}{2}$

Bài 4. Một kho hàng nhập gạo (trong kho chưa có gạo) trong $4$ ngày liên tiếp và mỗi ngày (kể từ ngày thứ $2$) đều nhập một lượng gạo bằng $120\%$ lượng gạo đã nhập vào kho trong ngày trước đó. Sau đó, từ ngày thứ $5$ kho ngừng nhập và mỗi ngày kho lại xuất một lượng gạo bằng $\dfrac{1}{10}$ lượng gạo trong kho ở ngày trước đó. Hãy tính lượng gạo kho hàng nhập ngày thứ nhất trong mỗi trường hợp sau:

a) Ngày thứ $3$, sau khi nhập xong thì trong kho có $91$ tấn gạo.

b) Tổng số gạo đã xuất trong các ngày thứ $5$, thứ $6$ là $50,996$ tấn.

Giải

Gọi $x$ (tấn) là lượng gạo nhập vào kho ngày thứ nhất.($x>0$)

a) Lượng gạo nhập vào kho ngày sau bằng $120\%$ ngày trước nên tổng số gạo trong ba ngày nhập đầu tiên là:

$x+x\cdot 120\%+x\cdot (120\%)^2=91$

$ \Leftrightarrow x\cdot \dfrac{91}{25}=91 \Leftrightarrow x=25 $ (tấn)

Vậy lượng gạo kho hàng nhập ngày thứ nhất trong trường hợp này là $25$ (tấn).

b) Lượng gạo kho hàng nhập trong $4$ ngày liên tiếp là:

$x+x\cdot 120\%+x\cdot (120\%)^2+x\cdot (120\%)^3=x\cdot \dfrac{671}{125}$ (tấn)

Lượng gạo ngày thứ $5$ kho xuất: $ \dfrac{1}{10}\cdot\dfrac{671}{125}x$ (tấn)

Lượng gạo còn lại sau ngày thứ $5$: $ \dfrac{9}{10}\cdot\dfrac{671}{125}x$ (tấn)

Lượng gạo kho xuất ngày $6$ là:

$ \dfrac{1}{10}\cdot\left( \dfrac{9}{10}\cdot\dfrac{671}{125}x\right) =\dfrac{9}{100}\cdot\dfrac{671}{125}x$ (tấn)

Vậy số gạo đã xuất trong ngày thứ $5$ và thứ $6$ là:

$ \dfrac{1}{10}\cdot\dfrac{671}{125}x + \dfrac{9}{100}\cdot\dfrac{671}{125}x=50,996 \Leftrightarrow \dfrac{19}{100}\cdot\dfrac{671}{125}x=50,996 \Leftrightarrow x=50 $ (tấn)

Vậy lượng gạo kho hàng nhập ngày thứ nhất trong trường hợp này là $50$ (tấn).

Bài 5. Tam giác $ABC$ nội tiếp đường tròn $(T)$ có tâm $O$ có $AB=AC$ và $\angle BAC > 90^\circ $. Gọi $M$ là trung điểm của $AC$, tia $MO$ cắt $(T)$ tại $D$, $BC$ lần lượt cắt $AO$ và $AD$ tại $N$, $P$.

a) Chứng minh $OCMN$ là tứ giác nội tiếp và $\angle BDC =4 \angle ODC$.

b) Phân giác góc $\angle BDP$ cắt $BC$ tại $E$, $ME$ cắt $AB$ tại $F$. Chứng minh $CA=CP$ và $ME$ vuông góc với $DB$.

c) Chứng minh tam giác $MNE$ cân. Tính $\dfrac{DE}{DF}$.

Giải

a)

  • Ta có: $AB=AC$, $OB=OC$

$\Rightarrow OA$ là đường trung trực của $BC\Rightarrow OA\bot BC$ (tại $N$)

$M$ là trung điểm của $AC\Rightarrow OM\bot AC$ (tại $M$)

Xét tứ giác $ONMC$ có: $\angle ONC =\angle OMC =90^\circ \Rightarrow ONMC$ nội tiếp.

  • Ta có: $AB=AC\Rightarrow \angle BDA =\angle CDA $

$MD$ là trung trực $AC\Rightarrow \triangle DAC$ cân tại $D\Rightarrow DM$ là phân giác $\angle ADC$

$\Rightarrow \angle CDO =\dfrac{1}{2}\angle CDA =\dfrac{1}{4}\angle CDB$ hay $\angle CDB = 4\angle CDO$.

b)

  • Ta có: $\angle ACB =\angle ADB =\angle ADC$

$\triangle ADC$ cân tại $D\Rightarrow \angle DAC =\angle ACD =\angle ACB +\angle DCB$ $(1)$

Và $\angle APC =\angle ADC +\angle DCB =\angle ACB +\angle DCB$ (2)

Từ $(1)$ và $(2)$ $\Rightarrow \angle APC =\angle DAC \Rightarrow \triangle ACP$ cân tại $C\Rightarrow CA=CP$

  • Gọi $K$ là giao điểm của $ME$ với $BD$

$\angle EDP =\dfrac{1}{2}\angle BDA =\dfrac{1}{4}\angle BDC$

$\Rightarrow \angle EDM =\dfrac{1}{2}\angle BDC =\angle ACP$

$\Rightarrow DEMC$ nội tiếp $\Rightarrow \angle DEC =\angle DMC =90^\circ $

Mà $\left\{ \begin{array}{l} \angle BEK =\angle MEC =\angle CDM\\ \angle DBE =\angle DAC =\angle DCA \end{array}\right. $

$\Rightarrow \angle BEK +\angle DBE=\angle CDM +\angle DCA =90^\circ \Rightarrow \angle BKE=90^\circ $

$\Rightarrow ME$ vuông góc với $DB$.

c)

  • Ta có: $\left\{ \begin{array}{l} \angle CNM =\angle ABC =\angle ADC\\ \angle NEM =\angle CDM =\dfrac{1}{2}\angle ADC \end{array}\right. $

Mà $\angle CNM =\angle NEM +\angle NME$

$ \Rightarrow \angle NME =\angle NEM \Rightarrow \triangle NME$ cân tại $N$.

  • $\angle DEF =\angle ACD =\angle DBF $

$\Rightarrow DFBE$ nội tiếp $\Rightarrow \angle DFB=90^\circ $

$\Rightarrow \angle DFE =\angle DBE =\angle DEF \Rightarrow \triangle DFE$ cân $D \Rightarrow \dfrac{DE}{DF}=1$

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2019

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2019

Bài 1. Tìm $a$ biết

$$\dfrac{\left( \sqrt{a}+1 \right) ^2 – \left( \sqrt{a}-1 \right) ^2}{4\sqrt{a} \left( \sqrt{a}-1 \right) } – \dfrac{\left( \sqrt{2a+1} + \sqrt{a+1} \right) \left( \sqrt{2a+1} – \sqrt{a+1} \right) }{a\left( \sqrt{a}+1 \right) }=1 $$

Giải

Điều kiện: $a>0; a \ne 1$

Ta có:

$\dfrac{\left( \sqrt{a}+1 \right) ^2 – \left( \sqrt{a}-1 \right) ^2}{4\sqrt{a} \left( \sqrt{a}-1 \right) } – \dfrac{\left( \sqrt{2a+1} + \sqrt{a+1} \right) \left( \sqrt{2a+1} – \sqrt{a+1} \right) }{a\left( \sqrt{a}+1 \right) }=1 $

$\Leftrightarrow \dfrac{\left( \sqrt{a}+1 + \sqrt{a} -1 \right) \left( \sqrt{a}+ 1 – \sqrt{a}+1 \right) }{4\sqrt{a}\left( \sqrt{a}-1 \right) } – \dfrac{2a+1 – a-1}{a\left( \sqrt{a}+1 \right) }=1 $

$\Leftrightarrow \dfrac{4\sqrt{a}}{4\sqrt{a}\left( \sqrt{a}-1 \right) }- \dfrac{a}{a\left( \sqrt{a}+ 1\right) } = 1$

$\Leftrightarrow \dfrac{1}{ \sqrt{a}-1 } – \dfrac{1}{\sqrt{a}+ 1}= 1 $

$\Leftrightarrow \dfrac{\sqrt{a}+ 1 – \sqrt{a} +1 }{a-1}=1 $

$\Leftrightarrow \dfrac{2}{a-1}= 1$

$\Leftrightarrow a= 3 $

Vậy $a=3$

Bài 2.

a) Giải phương trình: $\left( \sqrt{x+2}-x \right) \left( \sqrt{2x-5} -1 \right) =0 $

b) Giải hệ phương trình: $\left\{ \begin{array}{l} \sqrt{x+y+3}= \sqrt{2x+3y+1} \\ x(y+1)-4(x+y)+54=0 \end{array} \right. $

Giải

a) Điều kiện: $x \ge \dfrac{5}{2}$

$\left( \sqrt{x+2}-x \right) \left( \sqrt{2x-5} -1 \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{x+2}= x \\ \sqrt{2x-5} = 1 \end{array} \right.$

$\Leftrightarrow \left[ \begin{array}{l} x+2 = x^2 \\ 2x-5=1 \end{array} \right. $

$\Leftrightarrow \left[ \begin{array}{l} x^2 -x -2 =0 \\ x= 3 \end{array} \right. $

$\Leftrightarrow \left[ \begin{array}{l} x=-1 \text{ (loại)} \\ x= 2 \;\;\; \text{ (loại)} \\ x=3 \;\;\text{ (nhận)} \end{array} \right. $

Vậy $S=\left\{ 3 \right\} $

b) Điều kiện: $\left\{ \begin{array}{l} x+y+3 \ge 0 \\ 2x + 3y +1 \ge 0 \end{array} \right. $

Ta có:

$\left\{ \begin{array}{l} \sqrt{x+y+3}= \sqrt{2x+3y+1} \\ x(y+1)-4(x+y)+54=0 \end{array} \right. $

$\Leftrightarrow \left\{ \begin{array}{l} x+y+3=2x+3y+1 \\ xy+x-4x-4y + 54 =0 \end{array} \right.$

$\Leftrightarrow \left\{ \begin{array}{l} x= -2y +2 \\ (-2y+2)y-3(-2y+2)-4y +54=0 \end{array} \right. $

$\Leftrightarrow \left\{ \begin{array}{l} x= -2y + 2 \\ -2y^2 + 2y + 6y-6 -4y +54=0 \end{array} \right. $

$\Leftrightarrow \left\{ \begin{array}{l} x= -2y+2 \\ -2y^2+4y+48=0 \end{array} \right.$

$\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x=-10 \\ y=6 \end{array} \right. \;\; \text{ (loại)}\\ \left\{ \begin{array}{l} x=10 \\ y=-4 \end{array} \right. \;\;\; \text{ (nhận)} \end{array} \right. $

Vậy $(x,y)=(10;-4)$

Bài 3. Cho phương trình $x^2-(2m+1)x-12=0 $ $(1)$

a) Với giá trị nào của $m$ thì phương trình (1) có hai nghiệm phân biệt $x_1$, $x_2$ sao cho

$$x_1+x_2 -2x_1x_2=25 $$

b) Tìm $m$ để phương trình $(1)$ có hai nghiệm $x_1$, $x_2$ thỏa:

$$x_1^2 -x_2^2 -7(2m+1)=0 $$

Giải

a) Ta có: $\Delta = (2m+1)^2 + 48 >0$ với mọi $m$

Suy ra phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$ với mọi $m$

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} S= x_1 + x_2 = 2m+1 \\ P = x_1 x_ 2 = -12 \end{array} \right. $

Ta có: $ x_1 + x_2 -2x_1x_2 =25 \Leftrightarrow 2m+1 +24 =25 \Leftrightarrow m = 0 $

Vậy $m=0$

b) $x_1^2 – x_2^2 – 7(2m+1) =0 $

$\Leftrightarrow \left( x_1-x_2 \right) \left( x_1 + x_2 \right) – 7(2m+1) =0 $

$\Leftrightarrow (2m+1)\left( x_1-x_2 \right) – 7(2m+1) =0 $

$\Leftrightarrow (2m+1)\left( x_1 -x_2 -7 \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} m= -\dfrac{1}{2} \\ x_1-x_2 =7 \hspace{1cm}(2) \end{array} \right. $

Ta có: $(2)\Leftrightarrow x_1 + x_2 -2 x_2 =7 $

$\Leftrightarrow 2m+1 -2 x_2 = 7\Leftrightarrow x_2 = m-3 $

Mà $x_1 + x_2 = 2m+1$ nên $x_1 = m+4$

Lại có $x_1x_2 =-12  \Rightarrow (m+4)(m-3)=-12 \Leftrightarrow m^2 + m -12 = -12 \Leftrightarrow \left[ \begin{array}{l} m= 0 \\ m=-1 \end{array} \right. $

Vậy $m \in \left\{ -1; -\dfrac{1}{2} ; 0 \right\} $

Bài 4.

a) Từ ngày $1/1/2019$ đến $20/5/2019$, giá bán lẻ xăng RON $95$ có đúng bốn lần tăng và một lần giảm. Các thời điểm thay đổi giá xăng RON $95$ trong năm $2019$ (tính đến ngày $20/5/2019$) được cho bởi bảng sau:

Từ $16$ giờ chiều $2/5/2019$ giá bán lẻ $1$ lít xăng RON $95$ tăng thêm khoảng $25\%$ so với giá $1$ lít xăng RON $95$ ngày $1/1/2019$. Nếu ông $A$ mua $100$ lít xăng RON $95$ ngày $2/1/2019$ thì cũng với số tiền đó ông $A$ sẽ mua được bao nhiêu lít xăng RON $95$ vào ngày $3/5/2019$? Cũng trong $2$ ngày đó ($2/1$ và $3/5$), ông $B$ đã mua tổng cộng $200$ lít xăng RON $95$ với tổng số tiền $3850000$ đồng, hỏi ông $B$ đã mua bao nhiêu lít xăng vào ngày $3/5/2019$?

b) Tứ giác $ABCD$ có chu vi $18 \; cm$, $AB=\dfrac{3}{4} BC$, $CD= \dfrac{5}{4}BC$ và $AD=2AB$.

Tính độ dài các cạnh của tứ giác $ABCD$. Biết $AC=CD$, tính diện tích tứ giác $ABCD$.

Giải

a)  Giá $1$ lít xăng RON $95$ vào $16$ giờ chiều $2/5/2019$ là: $$ 17600 \left( 1+ 25\% \right) = 22000 \; \text{(đồng)} $$

Số tiền ông $A$ đã dùng để mua $100$ lít xăng vào ngày $2/1/2019$ là: $$ 100 \cdot 17600 = 1760000 \; \text{(đồng)} $$

Lượng xăng ông $A$ có thể mua được vào ngày $3/5/2019$ với số tiền trên là: $$ 1760000 : 22000 = 80 \; (l)$$

Gọi $x$, $y$ (lít) lần lượt là lương xăng ông $B$ đã mua vào ngày $2/1$ và $3/5$. ($x, y >0$)

Ta có hệ sau:

$\left\{ \begin{array}{l} x+ y= 200 \\ 17600x + 22000y = 3850000 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x= 125 \\ y= 75 \end{array} \right. $

Vậy ông $B$ đã mua $75$ lít xăng RON $95$ vào ngày $3/5/2019$.

b) Ta có:

$AB+BC+CD+AD= 18 $

$\Leftrightarrow \dfrac{3}{4}BC + BC + \dfrac{5}{4}BC + 2 \cdot \dfrac{3}{4}BC = 18 $

$\Leftrightarrow \dfrac{9}{2}BC = 18 \Leftrightarrow BC= 4 \; cm $

$\Rightarrow AB = 3 \; cm; CD= 5 \; cm; AD = 6 \; cm$

Tam giác $ABC$ có $AB^2+BC^2= 3^2 + 4^2 = 25 = AC^2$ nên tam giác $ABC$ vuông tại $B$

$\Rightarrow S_{ABC}= \dfrac{1}{2} \cdot AB\cdot BC = \dfrac{1}{2} \cdot 3\cdot 4= 6 \, cm^2$

Tam giác $ACD$ có $AC=CD$ nên cân tại $C$.

Gọi $M$ là trung điểm của $AD$, suy ra $AM=MD=\dfrac{AD}{2}=3 \; cm$ và $CM \bot AD$

Tam giác $ACM$ vuông tại $M$ nên

$CM^2 + AM^2 = AC^2 \Rightarrow CM^2 = 5^2-3^2 = 16 \Rightarrow CM = 4\; cm$

$\Rightarrow S_{ACD}= \dfrac{1}{2} \cdot CM \cdot AD = \dfrac{1}{2} \cdot 4 \cdot 6 = 12 \, cm^2$

Vậy $S_{ABCD}=S_{ABC}+S_{ACD} = 6+12 =18 \; cm^2$

Bài 5. Hình chữ nhật $ABCD$ nội tiếp đường tròn $(T)$ có tâm $O$, bán kính $R=2a$. Tiếp tuyến của $(T)$ tại $C$ cắt các tia $AB$, $AD$ lần lượt tại $E$, $F$.

a) Chứng minh $AB\cdot AE = AD \cdot AF$ và $BEFD$ là tứ giác nội tiếp.

b) Đường thẳng $d$ đi qua $A$, $d$ vuông góc với $BD$ và $d$ cắt $(T)$, $EF$ theo thứ tự tại $M$, $N$ ($M \ne A$). Chứng minh $BMNE$ là tứ giác nội tiếp và $N$ là trung điểm của $EF$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $BEF$. Tính IN theo $a$

Giải

a) $ABCD$ là hình chữ nhật nội tiếp đường tròn $(O)$ nên $O$ là trung điểm của $AC, BD$.

Ta có $OC \bot EF$ (do EF là tiếp tuyến), $AD \bot CD$ do $ABCD$ là hình chữ nhật.

Tam giác $ACF$ vuông tại $C$ có $CD$ là đường cao nên $AD \cdot AF = AC^2$.

Tương tự, tam giác $ACE$ vuông tại $C$ có $CB$ là đường cao nên $AB \cdot AE = AC^2$.

Do đó $AD \cdot AF = AB \cdot AE$.

Suy ra $\dfrac{AD}{AE} = \dfrac{AB}{AF}$.

Xét tam giác $ABD$ và $AFE$ có $\angle A$ chung và $\dfrac{AD}{AE} = \dfrac{AB}{AF}$

nên $\triangle ABD \backsim \triangle AFE$, suy ra $\angle ABD = \angle AFE$, suy ra tứ giác $BDFE$ nội tiếp.

(Cách khác: $\angle ABD = \angle ACD$ mà $\angle ACD = \angle AFE$ (Cùng phụ $\angle DCF$)

Suy ra $\angle ABD = \angle AFE$).

b) Ta có $\angle AMB = \angle ACB$ (cùng chắn cung AB), mà $\angle ACB = \angle BEN$

(cùng phụ $\angle BCE$)

Suy ra $\angle AMB = \angle BEN$, suy ra $BENM$ nội tiếp.

Ta có $\angle BMA = \angle BDA$ (cùng chắn cung $AB$), mà $\angle BDA = \angle BAM$ (cùng phụ với $\angle ABD$)

Suy ra $\angle BMA = \angle BAM = \angle NAE$. Vậy $\angle NEA = \angle NAE$.

Tam giác $NAE$ có $\angle NEA = \angle NAE$ nên cân tại $N$ hay $NA = NE$.

Mà $\angle NEA + \angle NFA = 90^\circ = \angle NAE + \angle NAF$, suy ra $\angle NFA = \angle NAF$, suy ra $NA = NF$.

Vậy $NE = NA = NF$ hay $N$ là trung điểm $EF$.

c)  Ta có $N$ là trung điểm $EF$ nên $IN \bot EF$, mà $AO \bot EF$, suy ra $IN \parallel AO$;

Và $IO \bot BD, AN \bot BD$, suy ra $IO \parallel AN$;

Do đó tứ giác $ANIO$ là hình bình hành, suy ra $IN = AO = R$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2018

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2018

Bài 1. Biết $0<x\le y$ và

$$ \left( \dfrac{\left( \sqrt{x} + \sqrt{y} \right) ^2+\left( \sqrt{x}-\sqrt{y} \right) ^2 }{\left( \sqrt{x} + \sqrt{y} \right) \left( \sqrt{x} -\sqrt{y} \right) + 2\left( x+2y \right) } \right) + \left( \dfrac{y}{\sqrt{x} \left( \sqrt{x}+ \sqrt{y} \right) } + \dfrac{x}{\sqrt{y} \left( \sqrt{x}+\sqrt{y} \right) }\right) = \dfrac{5}{3} $$

Tính $\dfrac{x}{y}$

Giải

Với $0 < x \le y$, ta có:

$\left(\dfrac{(\sqrt x + \sqrt y)^2 + (\sqrt x – \sqrt y)^2}{(\sqrt x + \sqrt y)(\sqrt x – \sqrt y)+2(x+ 2y)}\right) + \dfrac{y}{\sqrt x (\sqrt x + \sqrt y)}+ \dfrac{x}{\sqrt y (\sqrt x + \sqrt y)}= \dfrac{5}{3}$

$\Leftrightarrow \left(\dfrac{2(x+y)}{x-y + 2x + 4y}\right) + \dfrac{y\sqrt y + x\sqrt x}{\sqrt {xy}(\sqrt x + \sqrt y)} = \dfrac{5}{3}$

$\Leftrightarrow \dfrac{2(x+y)}{3(x+y)} + \dfrac{ (\sqrt x + \sqrt y)(x- \sqrt{xy} + y)}{\sqrt{xy}{(\sqrt x+ \sqrt y)}} = \dfrac{5}{3}$

$\Leftrightarrow \dfrac{2}{3} + \dfrac{x – \sqrt {xy} + y}{\sqrt{xy}} = \dfrac{5}{3}$

$\Leftrightarrow \dfrac{x- \sqrt{xy} + y}{\sqrt{xy}} = 1$

$\Leftrightarrow x – \sqrt{xy} + y = \sqrt{xy}$

$\Leftrightarrow x- 2\sqrt{xy} + y = 0$

$\Leftrightarrow (\sqrt x – \sqrt y)^2 = 0$

$\Leftrightarrow \sqrt x – \sqrt y = 0$

$\Leftrightarrow \sqrt x = \sqrt y \Leftrightarrow x= y.$

Vậy $ \dfrac{x}{y} = 1. $

Bài 2.

a) Giải phương trình: $\dfrac{2x^2 (7-x)}{\sqrt{3-x}} = x(x-7)$

b) Giải hệ phương trình: $\left\{ \begin{array}{l} (x+3)(x-1)=(y-2)(x+3) \\ (x-1)\sqrt{y^2-5y+8}=(y-2)^2 \end{array} \right. $

Giải

a)  Điều kiện $ 3- x > 0 \Leftrightarrow x < 3. $

Ta có: $\dfrac{2x^2 (7-x)}{\sqrt{3-x}}= x(x-7)$

$\Leftrightarrow \dfrac{2x^2(7-x)}{\sqrt{3-x}} = \dfrac{x(x-7)\sqrt{3-x}}{\sqrt{3-x}}$

$\Rightarrow 2x^2(7-x) = x(x-7)\sqrt {3-x}$

$\Leftrightarrow x(x-7)(\sqrt{3-x} + 2x)= 0$

$\Leftrightarrow x = 0 \ (n) \text{ hoặc } x = 7 \ (l) \text{ hoặc } \sqrt{3-x} +2x = 0  \ (1)$

Giải $(1)$, ta được $ \sqrt{3-x} + 2x = 0 \Leftrightarrow \sqrt{3-x} = -2x $

$\Leftrightarrow \left\{ \begin{array}{l} x \le 0 \\ 3-x = 4x^2  \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}  x\le 0 \\  4x^2 + x – 3 = 0 \end{array}\right.$  $ \Leftrightarrow \left\{ \begin{array}{l} x\le 0 \\ x = \dfrac{3}{4} \text{ (l) } \text{ hoặc } x = -1 \text{ (n) } \end{array} \right. $

Vậy phương trình đã cho có nghiệm là $ S = \left\{ { – 1;0} \right\}$.

b) Giải hệ phương trình $\left\{ \begin{array}{l} (x+3)(x-1) = (y-2)(x+3) \ (1) \\ (x-1)\sqrt{y^2 – 5y + 8} =(y -2)^2 \ (2) \end{array} \right. $

Điều kiện: $y^2-5y+8 \ge 0 \Leftrightarrow y\in \mathbb{R}$

Giải $(1)$ Ta có $ (x+3)(x-1) = (y-2)(x+3) \Leftrightarrow (x+3)(x-1-y+2) = 0 $

$\Leftrightarrow (x+3)(x-y +1)= 0 \Leftrightarrow \left[ \begin{array}{l} x= -3\\ x = y -1 \end{array}\right.  $

Thay $ x = -3 $ vào $(2)$ ta được

$ (-3-1)\sqrt{y^2 – 5y + 8} =(y-2)^2 \Leftrightarrow -4\sqrt{y^2- 5y + 8} =(y -2)^2 \ \text{ (vô nghiệm)} . $

Vì $(y-2)^2 \ge 0 ;\ – 4\sqrt{y^2 – 5y + 8} < 0.$

Thay $ x = y -1 $ vào $(2)$ ta được

$ (y – 2)\sqrt{y^2 – 5y + 8} =(y-2)^2 \Leftrightarrow (y -2)(\sqrt{ y^2 – 5y + 8} – y + 2) = 0 $

$\Leftrightarrow \left[ \begin{array}{l}  y = 2\\  \sqrt{y^2 – 5y + 8} = y – 2 \ (3) \end{array} \right. $

Thay $ y = 2 \Rightarrow x = 1 $, ta có

$ (3) \Leftrightarrow \left\{ \begin{array}{l} y – 2\ge 0 \\  y^2 -5y + 8 =(y-2)^2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y \ge 2 \\ y = 4 \ \text{(nhận)} \end{array} \right.  $

Với $ y =4 $ thì $ x = 3. $

Vậy hệ phương trình đã cho có nghiệm là: $ S = \left\{ {(1;2), \ (3;4)} \right\} $

Bài 3. Cho phương trình $x^2 -x +3m-11=0$ $(1)$

a) Với giá trị nào của $m$ thì phương trình $(1)$ có nghiệm kép? Tìm nghiệm đó.

b) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ sao cho

$$2017x_1 + 2018x_2 =2019.$$

Giải

a) Phương trình $(1)$ có nghiệm kép $\Leftrightarrow \left\{ \begin{array}{l} 1\ne 0 \text{ (hiển nhiên)} \\ \Delta = 0 \end{array} \right. $

$\Leftrightarrow 1-4(3m-11) =0 \Leftrightarrow 45-12m =0 \Leftrightarrow m=\dfrac{45}{12} = \dfrac{15}{4}$

Với $m=\dfrac{15}{4}$ thì phương trình $(1)$ trở thành:

$x^2-x+\dfrac{1}{4}=0 \Leftrightarrow x=\dfrac{1}{2}$

Vậy khi $m=\dfrac{15}{4}$ thì phương trình $(1)$ có nghiệm $x=\dfrac{1}{2}$.

b) Để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ thì

$\Delta >0 \Leftrightarrow 45-12m >0 \Leftrightarrow m < \dfrac{15}{4}$

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} S=x_1+x_2 = 1 \\ P=x_1x_2=3m-11 \end{array} \right. $

$2017x_1+2018x_2=2019 \Leftrightarrow 2017 \left( x_1 + x_2 \right) +x_2 =2019 $

$\Leftrightarrow 2017+x_2=2019 \Leftrightarrow x_2 = 2$

Mà $x_1+x_2 =1$ nên $x_1=-1$

Lại có $x_1x_2 = 3m-11 \Rightarrow 3m-11 = -2 \Rightarrow m=3$ (thỏa)

Vậy $m=3$ thì phương trình có hai nghiệm thỏa mãn đề bài.

Bài 4.

a) Đầu tháng $5$ năm $2018$, khi đang vào thu hoạch, giá dưa hấu bất ngờ giảm mạnh. Nông dân $A$ cho biết vì sợ dưa hỏng nên phải bán $30\%$ số dưa hấu thu hoạch được với giá $1500$ đồng mỗi kilôgam ($1500đ/kg$), sau đó nhờ phong trào “giải cứu dưa hấu” nên đã may mắn bán hết số dưa còn lại với giá $3500đ/kg$; nếu trừ tiền đầu tư thì lãi được $9$ triệu đồng (không kể công chăm sóc hơn hai tháng của cả nhà). Cũng theo ông $A$, mỗi sào đầu tư (hạt giống, phân bón,…) hết $4$ triệu đồng và thu hoạch được $2$ tấn dưa hấu. Hỏi ông $A$ đã trồng bao nhiêu sào dưa hấu?

b) Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi $240$ mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được $2400$ con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Giải

a) Giả sử ông $A$ đã trồng $x$ sào dưa hấu. ($x>0$)

Tổng số tiền ông $A$ thu được từ việc bán dưa hấu là:

$30\%x \cdot 1500 \cdot 2000 + 70\% x \cdot 3500 \cdot 2000 = 5800000x$ (đồng)

Tổng chi phí của ông $A$ là: $4000000x$ (đồng)

Ta có phương trình:

$5800000x-4000000x=9000000 \Leftrightarrow x=5$

Vậy ông $A$ đã trồng $5$ sào dưa hấu.

b) Gọi $x$, $y$ ($m$) lần lượt là chiều rộng và chiều dài của mảnh đất $ABCD$ ($x<y$).

Tổng diện tích của khu đất là: $2400+\dfrac{2400}{3} = 3200$

Ta có hệ phương trình:

$\left\{ \begin{array}{l} 2(x+y)=240 \\ xy=3200 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x+y=120 \\ xy=3200 \end{array}\right. $

Do đó $x$ và $y$ là hai nghiệm của phương trình:

$t^2 -120t+3200=0 \Rightarrow \left[ \begin{array}{l} t= 80 \\ t= 40 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=40 \\ y=80 \end{array} \right. $

Suy ra $AB=40 m$, $AD=80m$, suy ra $NC=\dfrac{2400}{40}=60m$.

Vậy chu vi vườn thả là $2(40+60)=200m$.

Bài 5. Tứ giác $ABCD$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle CAD = 45^\circ $, $AC$ vuông góc với $BD$ và cắt $BD$ tại $I$, $AD>BC$. Dựng $CK$ vuông góc với $AD$ ($K\in AD$), $CK$ cắt $BD$ tại $H$ và cắt $(T)$ tại $E$ ($E \ne C$)

a) Tính số đo góc $\angle COD$. Chứng minh các điểm $C$, $I$, $K$, $D$ cùng thuộc một đường tròn và $AC=BD$.

b) Chứng minh $A$ là tâm đường tròn ngoại tiếp tam giác $BHE$. Tính $IK$ theo $R$.

c) $IK$ cắt $AB$ tại $F$. Chứng minh $O$ là trực tâm tam giác $AIK$ và $CK \cdot CB = CF \cdot CD$.

Giải

a)

  • Ta có $\widehat{COD}=2\widehat{CAD}=2\times 45^\circ=90^\circ$ (góc ở tâm bằng hai lần góc nội tiếp cùng chắn cung $CD$).

$\widehat{CID}=\widehat{CKD}=90^\circ$

Suy ra $A$, $I$, $K$, $D$ cùng thuộc đường tròn đường kính $CD$.

  • $\triangle IAD$ có $\widehat{I}=90^\circ$, $\widehat{IAD}=45^\circ$ suy ra $\widehat{IDA}=45^\circ$, do đó $\triangle IAD$ vuông cân tại $I$.

Suy ra $IA=ID$ $(1)$.

  • $\widehat{CBI}=\widehat{IAD}=45^\circ$,

$\triangle ICB$ có $\widehat{CIB}=90^\circ$, $\widehat{CBI}=45^\circ$ suy ra $\widehat{ICB}=45^\circ$, do đó $\triangle ICB$ vuông cân tại $I$.

Từ đó suy ra $IC=IB$ $(2)$.

  • Từ $(1)$ và $(2)$ suy ra $IA+IC=IB+ID$, do đó $AC=BD$.

b)

  • Tứ giác $\triangle IHK$ có $\widehat{I}+\widehat{K}=90^\circ +90^\circ =180^\circ$.

Suy ra $AIHK$ nội tiếp.

Suy ra $\widehat{CHB}=\widehat{CAD}=45^\circ=\widehat{CBH}$.

Do đó $\triangle CBH$ vuông cân tại $C$ có $CI$ là đường cao nên cũng là đường trung trực đoạn thẳng $BH$.

Suy ra $AB=AH$. $(3)$

  • Ta có $\widehat{HAD}=\widehat{HCD}$ (cùng phụ $\widehat{ADC}$),

Mà $\widehat{HCD}=\widehat{DAE}$ nên $\widehat{HAD}=\widehat{DAE}$.

Suy ra $\triangle AKH = \triangle AKE$ (g.c.g).

Suy ra $AH=AE$ $(4)$

Từ $(3)$, $(4)$ ta được $AH=AE=AB$ nên $A$ là tâm đường tròn ngoại tiếp $\triangle BHE$.

  •  $\triangle AKC\backsim \triangle AID$ suy ra $AK.AD=AI.AC$

Do đó $\dfrac{AK}{AC}=\dfrac{AI}{AD}$.

Suy ra $\triangle AIK \backsim \triangle ACD$ suy ra $\dfrac{IK}{CD}=\dfrac{AK}{AC}=\cos \widehat{CAK}= \cos 45^\circ = \dfrac{1}{\sqrt{2}}$.

Mà $CD=\sqrt{CO^2 + OD^2}=R\sqrt{2}$.

Do đó $IK=R$.

c)

  • Ta có $\left\{ \begin{array}{l} IA=ID\\ OA=OD \end{array} \right. $ suy ra $IO$ là trung trực $AD$, do đó $IO\perp AD$. $(5)$

$\left\{ \begin{array}{l} KC=KA \\ OC=OA \end{array} \right. $ suy ra $KO$ là trung trực $AC$, do đó $KO\perp AC$.  $(6)$

Từ $(5)$, $(6)$ suy ra $O$ là trực tâm $\triangle AIK$.

  • Ta có $\widehat{CAF}=\widehat{CDB}$ (cùng bằng nửa số đo cung $CB$).

$\widehat{CDB}=\widehat{CKF}$ (Tứ giác $CIKD$ nội tiếp).

Suy ra $\widehat{CAF}=\widehat{CKF}$, do đó tứ giác $CKAF$ nội tiếp.

Từ đó suy ra $\widehat{CFA}=180^\circ – \widehat{CKA}=90^\circ$.

  • Xét tam giác $\triangle CBF$ và $\triangle CKD$,

$\begin{array}{l} \widehat{CFB}=\widehat{CKD}=90^\circ\\ \widehat{CBF}=\widehat{CDK}\text{ (tứ giác $ABCD$ nội tiếp)} \end{array}$

Suy ra $\triangle CBF\backsim \triangle CDK$.

Do đó $\dfrac{CB}{CD}=\dfrac{CF}{CK}$

Suy ra $CB.CK=CD.CF$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2017

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2017

Bài 1. Biết $a$, $b$ là các số dương, $a \ne b$ và

$$\left( \dfrac{\left( a+ 2b \right) ^2 – \left( b+ 2a \right) ^2 }{a+ b} \right) : \left( \dfrac{\left( a\sqrt{a} + b\sqrt{b} \right) \left( a\sqrt{a} – b\sqrt{b } \right) }{a-b} – 3ab \right) = 3$$

Tính $S= \dfrac{1+2ab}{a^2 + b^2}$

Giải

$\left( \dfrac{\left( a+ 2b \right) ^2 – \left( b+ 2a \right) ^2 }{a+ b} \right) : \left( \dfrac{\left( a\sqrt{a} + b\sqrt{b} \right) \left( a\sqrt{a} – b\sqrt{b } \right) }{a-b} – 3ab \right) = 3$

$\Leftrightarrow \dfrac{a^2 + 4ab + 4b^2 – b^2 – 4ab – 4a^2}{a+b} : \left( \dfrac{a^3 – b^3}{a-b} – 3ab \right) =3$

$\Leftrightarrow \dfrac{3(b-a)(a+b)}{a+b}:\left( a^2 -2ab + b^2 \right) =3 $

$\Leftrightarrow \dfrac{3(b-a)}{(a-b)^2}=3 \Leftrightarrow a-b=-1 \Rightarrow a= b-1 $

Thay $a=b-1$ vào $S$, ta được:

$S= \dfrac{1+ 2ab}{a^2 + b^2} = \dfrac{1+ 2(b-1)b}{(b-1)^2 + b^2} = \dfrac{1+ 2b^2 – 2b}{2b^2 -2b +1}=1$

Bài 2.

a) Giải phương trình $\left( x^2 – 6x + 5 \right) \left( \sqrt{x-2} – x + 4 \right) =0$.

b) Giải hệ phương trình $\left\{ \begin{array}{l} \sqrt{x}\left( \sqrt{x+ 2y} -3 \right) =0 \\ x^2 – 6xy – y^2 = 6  \end{array} \right. $

Giải

a) Điều kiện: $x \ge 2$

$\left( x^2 – 6x + 5 \right) \left( \sqrt{x-2} – x + 4 \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} x^2 – 6x + 5 = 0 \;\; (1)\\ \sqrt{x-2} – x+ 4=0 \;\; (2) \end{array} \right.$

$(1) \Leftrightarrow \left[ \begin{array}{l} x=1 \;\; (l) \\ x= 5 \;\; (n) \end{array}\right. $

$(2) \Leftrightarrow \sqrt{x-2} = x-4 \;\; (x \ge 4)$

$\Leftrightarrow x-2 = x^2 – 8x + 16 $

$\Leftrightarrow x^2 – 9x + 18 = 0 \Leftrightarrow \left[ \begin{array}{l} x=3 \;\; (l)\\ x=6 \;\; (n) \end{array} \right. $

Vậy $S= \left\{5;6 \right\}$

b) Điều kiện $x \ge 0$, $x+ 2y \ge 0$

$\left\{ \begin{array}{l} \sqrt{x}\left( \sqrt{x+ 2y} -3 \right) =0 \;\; (1) \\ x^2 – 6xy – y^2 = 6 \;\; (2) \end{array} \right. $

$(1) \Leftrightarrow \left[ \begin{array}{l} x=0 \\ \sqrt{x+2y} -3=0 \end{array} \right. $

  •  Nếu $x=0$, thay vào (2) ta được: $-y^2 = 6$ (Vô nghiệm)
  •  Nếu $\sqrt{x+2y} -3 =0 $

$\Leftrightarrow x+2y = 9 \Leftrightarrow x= 9-2y$

Thay $ x= 9-2y$ vào (2), ta được:

$(9-2y)^2 – 6(9-2y)y – y^2 = 6 $

$\Leftrightarrow 4y^2 – 26y +81 – 54y + 12y^2 -y^2 = 6$

$\Leftrightarrow 15y^2 – 90 y + 75 =0 $

$\Leftrightarrow \left[ \begin{array}{l} y=1 \Rightarrow x=7 \;\; (n)\\ y=5 \Rightarrow x= -1 \;\; (l) \end{array} \right. $

Vậy cặp nghiệm của hệ phương trình $(x;y)$ là $(7;1)$

Bài 3. Cho phương trình $(x+m)^2 – 5(x+m) + 6=0$ $(1)$.

a) Chứng minh phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$ với mọi số thực $m$. Tính $S= \left( x_1 + m \right) ^2 + \left( x_2 + m \right) ^2 + 5 \left( x_1 + x_2 + 2m \right) $.

b) Biết $x_1 < x_2$, tìm $m$ sao cho $x_2 < 1$ và $x_1^2 + 2x_2 = 2(m-1)$.

Giải

a) $(x+m)^2 – 5(x+m) + 6=0$

$\Leftrightarrow (x+m)^2 – 2(x+m) – 3(x+m) +6 = 0 $

$\Leftrightarrow (x+m)(x+m-2) – 3(x+m-2)=0$

$\Leftrightarrow (x+m-2)(x+m-3)=0$

$\Leftrightarrow \left[ \begin{array}{l} x= 2-m \\ x= 3-m \end{array} \right. $

Vì $2-m \ne 3-m$ nên $x_1 \ne x_2$

Vậy phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$ với mọi số thực $m$.

$S= \left( x_1 + m \right) ^2 + \left( x_2 + m \right) ^2 + 5 \left( x_1 + x_2 + 2m \right) $

Vì $x_1$, $x_2$ có vai trò tương đương trong biểu thức $S$ nên giả sử $x_1 = 2-m$, $x_2 = 3-m$, ta có:

$S= 2^2 + 3^2 + 5(2+3) = 38$

b) $x_1 < x_2$ nên $x_1 = 2-m$, $x_2 = 3-m$.

$x_2<1 \Rightarrow 3-m <1 \Rightarrow m > 2$

$x_1^2 + 2x_2 = 2(m-1) $

$\Rightarrow (2-m)^2 + 2(3-m) = 2(m-1) $

$\Rightarrow m^2 – 4m + 4 + 6 -2m = 2m -2 $

$\Rightarrow m^2 -8m + 12 = 0 $

$\Rightarrow \left[ \begin{array}{l} m= 6 \;\; (n)\\ m=2 \;\; (l) \end{array} \right. $

Vậy $m=6$

Bài 4.

a) Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại ra sạch, các phần còn lại trồng hoa. Diện tích phần trồng ra sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

b) Lớp $9T$ có $30$ bạn, mỗi bạn dự định đóng góp mỗi tháng $70000$ đồng và sau $3$ tháng sẽ đủ tiền mua tặng cho mỗi em ở “Mái ấm tình thương $X$” ba gói quà (giá tiền các món quà đều như nhau). Khi các bạn đóng đủ số tiền như dự trù thì “Mái ấm tình thương $X$” đã nhận chăm sóc thêm $9$ em và có giá tiền của mỗi món thêm $5\%$ nên chỉ tặng mỗi em hai gói quà. Hỏi có bao nhiêu em của “Mái ấm tình thương $X$” được nhận quà ?

Giải

a) Gọi cạnh của hình vuông $AMIQ$ và $INCP$ lần lượt là $a$ và $b$. ($a<b$ vì $AM < MB$)

Diện tích đất trồng rau là: $a^2+ b^2$

Diện tích đất trồng hoa là $2ab$

Ta có: $\left\{ \begin{array}{l} a^2 + b^2 = 1300 \\ 2ab = 1200 \end{array} \right. $

$\Rightarrow \left\{ \begin{array}{l} (a-b)^2 = 100 \\ ab= 1200 \end{array} \right.$

$\Rightarrow \left\{ \begin{array}{l} a-b= -10 \\ ab= 1200 \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} a= 20 \\ b=30 \end{array} \right. $

Vậy cạnh hình vuông $AMIQ$ là $20m$.

Bình biết Nam bị nhầm vì theo Nam nói thì diện tích phần trồng rau là $1200 \; m^2$ nhỏ hơn diện tích phần trồng hoa $1300 \; m^2$. Mà diện tích phần trồng rau là $a^2+b^2$, diện tích phần trồng hoa là $2ab$.

Áp dụng bất đẳng thức Cauchy, ta có $a^2 + b^2 \ge 2ab$ nên diện tích trồng hoa không thể lớn hơn diện tích trồng rau được.

b) Giả sử lúc đầu “Mái ấm tình thương $X$” có $x$ em.

Tổng số tiền các bạn đóng góp được sau $3$ tháng là $3.70000.30 = 6300000$ (đồng)

Giá tiền $1$ món quà dự đinh là $\dfrac{6300000}{3x}= \dfrac{2100000}{x}$

Giá tiền $1$ món quà thực tế là $\dfrac{6300000}{2(x+9)}$

Ta có: $\dfrac{2100000}{x}.1,05= \dfrac{6300000}{2(x+9)} $

$\Leftrightarrow \dfrac{2205}{x} = \dfrac{6300}{2(x+9)}$

$\Leftrightarrow 4410(x+9) = 6300x $

$\Leftrightarrow x= 21$

Vậy lúc đầu “Mái ấm tình thương $X$” có $21$ em. Số em được nhận quà là $30$ em.

Bài 5. Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.

a) Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$

b) Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.

c) Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$

Giải

a) Ta có $\angle AOC = 2 \angle ABC = 90^\circ$ (góc ở tâm bằng $2$ lần góc nội tiếp cùng chắn $1$ cung).

Suy ra tam giác $OAC$ vuông tại $O$, suy ra $AC^2 = OA^2 + OC^2 = 2R^2 \Rightarrow AC = R\sqrt{2}$.

Tứ giác $BNPC$ có $\angle BNC = \angle BPC =90^\circ$ nên là tứ giác nội tiếp.

Suy ra $\angle HPN = \angle HBC = 90^\circ – \angle ACB = 75^\circ$.

Các tứ giác $ANBM$ và $BNPC$ nội tiếp nên $\angle ANM = \angle ABC = 45^\circ, \angle CNP = \angle PBC = 45^\circ$.

Suy ra $\angle MNP = \angle CNP + \angle CPN = 90^\circ$.

Và $\angle NPB = \angle ACB = \angle APM = 15^\circ$, suy ra $\angle NPM = \angle NPB + \angle APM = 30^\circ$.

Khi đó $\dfrac{MN}{MP} = \sin \angle NPM = \sin 30^\circ = \dfrac{1}{2}$. Suy ra $\dfrac{MP}{MN} = 2$.

b) Ta có $\angle AEF = 90^\circ$ (góc nội tiếp chắn nửa đường tròn).

Ta có $\angle ANH = \angle AEH = \angle APH = 90^\circ$ nên 5 điểm $A, N, H, P, E$ cùng thuộc đường tròn đường kính $AH$.

Ta có $\angle ABD = \angle ACD = 90^\circ$ (góc nội tiếp chắn nửa đường tròn),

suy ra $AB \bot BD$, suy ra $HC || BD$.

Tương tự ta có $HB \bot CN, CD \bot CN$, suy ra $HB || CD$.

Tứ giác $HBDC$ có các cặp cạnh đối song song nên là hình bình hành, suy ra $F$ là trung điểm của $BC$ và $HD$.

b) Ta có $\angle CAD = 45^\circ = \angle CNM$, suy ra $AD || MN$. Mà $MN \bot NP$, suy ra $AD \bot NP$.

Ta có $OF$ là trung trực của $BC$, suy ra $IB = IC$. $\angle BDC = 180^\circ – \angle BAC = 60^\circ$.

Xét tam giác $IOC$ có $\angle IOC = \dfrac{1}{2}\angle BOC = \angle 60^\circ$. Suy ra tam giác $IOC$ đều.

Do đó $IB =IC = IO$. $(1)$

Mặt khác tứ giác $HBOC$ có $\angle BHC + \angle BOC = 60^\circ + 120^\circ = 180^\circ$, suy ra $HBOC$ nội tiếp. $(2)$

Từ $(1)$ và $(2)$ suy ra $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$.

Tam giác $PBC$ có $\angle BPC = 90^\circ, \angle PBC = 45^\circ$ nên là tam giác vuông cân,

suy ra $PB = PC$, suy ra $P$ thuộc trung trực của BC. Do đó $P, O, I$ thẳng hàng và $PI \bot BC$, suy ra $PI||AM$.

Mặt khác ta có $\angle BIH = 2\angle HCB = 90^\circ$, suy ra $HBMI$ nội tiếp, suy ra $\angle IMC = \angle BHI = 45^\circ$.

Suy ra $\angle IMC = \angle PBC = 45^\circ$, suy ra $IM || PA$.

Tứ giác $APIM$ có 2 cặp cạnh đối song song nên là hình bình hành, suy ra $AI$ qua trung điểm của $MP$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2016

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2016

Bài 1. Biết $a$ và $b$ là các số dương, $a \neq b$ và

$$\left(\dfrac{a(a-4b)+b(b+2a) }{a+b}\right):\left[\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}} -\sqrt{ab}\right) \left( \dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}} + \sqrt{ab}\right)\right] = 2016$$

Tính $S=a+b$.

Giải

Ta có $\dfrac{a\left( a – 4b \right) + b\left( b + 2a \right)}{a + b} = \dfrac{a^2 – 2ab + b^2}{a + b} = \dfrac{\left( a – b \right)^2}{a + b}$

$\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} – \sqrt {ab} = \dfrac{{\left( {\sqrt a + \sqrt b } \right)\left( {a – \sqrt {ab} + b} \right)}}{{\sqrt a + \sqrt b }} – \sqrt {ab} = {\left( {\sqrt a – \sqrt b } \right)^2}$

$\dfrac{{a\sqrt a – b\sqrt b }}{{\sqrt a – \sqrt b }} + \sqrt {ab} = {\left( {\sqrt a + \sqrt b } \right)^2}$

Do đó $2016 = \dfrac{(a-b)^2}{a+b}:\left[(\sqrt{a}-\sqrt{b})^2(\sqrt{a}+\sqrt{b})^2\right] = \dfrac{1}{a+b}$.

Suy ra $a + b = \dfrac{1}{2016}$.

Bài 2.

a) Giải phương trình $x\sqrt{x+5}=2x^2-5x$.

b) Giải hệ phương trình $\left\{\begin{array}{l} (\sqrt{y}+x-3)(y+\sqrt{x})=0\\ x^2+y=5 \end{array}\right.$

Giải

a) Điều kiện $x \geq -5$.

Ta có $x\sqrt{x+5}=2x^2-5x \Leftrightarrow x(\sqrt{x+5}-2x+5)=0 \Leftrightarrow x= 0 (n), \sqrt{x+5}= 2x-5$.

Ta có $\sqrt{x+5}= 2x-5 \Leftrightarrow x+5 = (2x-5)^2 (x \geq \dfrac{5}{2}) \Leftrightarrow 4x^2-21x+20 = 0 \Leftrightarrow x = 4 \ (n), x = \dfrac{5}{4}\ (l)$.

Vậy $S = \{0, 4\}$.

b) Điều kiện $x \geq 0, y \geq 0$.

Ta có $(1) \Leftrightarrow y + \sqrt{x}=0, \sqrt{y}+x-3=0$.

Với $y + \sqrt{x}=0$ mà $y\geq 0$ nên $x = y = 0$ (không thỏa $(2)$).

Với $\sqrt{y}+x-3=0$. Đặt $a =\sqrt{y}$ ta có $a+x = 3 (3)$; $a^2+x^2=5 (4)$.

Từ $(3)$ ta có $a = 3-x$, thế vào $(4)$ ta có

$x^2+(3-x)^2=5 \Leftrightarrow 2x^2-6x+4=0 \Leftrightarrow x = 1,x=2$.

Với $x = 1$ ta có $y = 4$.

Với $x = 2$ ta có $y = 1$.

Vậy hệ phương trình có $2$ nghiệm $(x,y)$ là $(1,4)$ và $(2,1)$.

Bài 3. Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 \ (1)$.

a) Giải phương trình (1) khi $m = -8$.

b) Tìm $m$ để phương trình $(1)$ có $2$ nghiệm phân biệt $x_1,x_2$ sao cho:

$$\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$$

Giải

a) Điều kiện $x > 0$.

Khi $m = -8$ ta có phương trình:

$\dfrac{(x+1)(x^2-8m-2)}{\sqrt{x}} = 0 \Leftrightarrow x^2-8x – 2 = 0$ (do $x+1 > 0$)

$\Leftrightarrow x = 4+3\sqrt{2} \ (n), \ x=4-3\sqrt{2} \ (l)$.

Vậy phương trình có một nghiệm $x = 4 +3\sqrt{2}$.

b) Phương trình $(1)$ tương đương $x^2+mx+2m+14 = 0$ $(2)$.

Để $(1)$ có $2$ nghiệm phân biệt thì $(2)$ có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0, S = -m > 0, P = 2m + 14 >0 $ $(*)$

Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$

Suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.

Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1} $

$\Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3 \Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9 $

$\Leftrightarrow 2\sqrt{2m+14}=9+m \Leftrightarrow 4(2m+14) = m^2+18m+81 $

$\Leftrightarrow m^2 +10m+25 = 0 \Leftrightarrow m = -5 \ (n)$ vì thỏa $(*)$.

Kết luận $m = -5$.

Bài 4.

a) Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng $2,5$ chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3\%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5m$ và tăng chiều rộng $2m$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20m^2$. Hãy tính các cạnh của mảnh vườn.

b) Lớp $9A$ có $27$ học sinh nam và $18$ học sinh nữ. Nhân dịp sinh nhật bạn $X$ (là một thành viên của lớp), các bạn trong lớp có rất nhiều món quà tặng $X$. Ngoài ra mỗi bạn nam của lớp làm $3$ tấm thiệp và mỗi bạn nữ xếp $2$ hoặc $5$ con hạc để tặng bạn $X$. Biết số tấm thiệp và số con hạc bằng nhau, hỏi bạn $X$ là nam hay nữ?

Giải

a) Gọi chiều dài và chiều rộng của hồ là $x, y\ (m)$.

Ta có $x-5 = y + 2$ (1) và $xy – (x-5)(y+2) = 20$ $(2)$.

Từ $(1)$ suy ra $x =y + 7$, thế vào $(2)$ ta có

$y(y+7) -(y+2)^2 =20 \Leftrightarrow 3y = 24 \Leftrightarrow y = 8, x = 15$.

Suy ra diện tích hồ là 120$m^2$.

Gọi chiều rộng của mảnh vườn là $a$.

Ta có chiều dài là $2,5a$ và diện tích là $2,5a^2$.

Ta có phương trình $3\%2,5a^2=120 \Leftrightarrow a = 40$.

Vậy kích thước mảnh vườn là $40 \times 100$.

b) Gọi $x$ là số bạn nữ tặng $2$ con hạc, $y$ là số bạn nữa tặng $5$ con hạc.

  • Giả sử bạn $X$ là nam, ta có hệ phương trình $26.3 = 2x+5y, x + y = 18$.

Giải ra được $y= 14, x = 4$ (thỏa).

  • Giả sử bạn $X$ là nữ, ta có hệ $27.3 = 2x+5y, x + y = 17$

Suy ra $y = \dfrac{47}{3}$ (loại vì $y$ là số nguyên).

Vậy bạn $X$ là nam.

Bài 5. Tam giác $ABC$ đều có tâm $O$,$AB = 6a$ và các điểm $M, N$ lần lượt thuộc các cạnh $AB, AC$ mà $AM = AN = 2a$. Gọi $I, J, K$ lần lượt là trung điểm của $BC, AC$ và $MN$.

a) Chứng minh các điểm $M, N, B, C$ cùng thuộc một đường tròn T. Tính diện tích tứ giác $BMNC$ theo $a$.

b) Tính bán kính đường tròn ngoại tiếp tam giác $IJK$. Chứng minh đường tròn đường kính $NC$ tiếp xúc với $AI$.

c) $AE$ tiếp xúc với đường tròn $T$ tại $E$ ($E, B$ cùng phía đối với $AI$).Gọi $F$ là trung điểm $OE$, tính số đo $\angle AFJ$.

Giải

a) Ta có $AM = AN = 2a$,$\angle MAN = 60^\circ$ nên tam giác $AMN$ đều.

Suy ra $\angle AMN = 60^\circ = \angle ACB$. Suy ra $BMNC$ nội tiếp.

Ta có $MN ||BC$, $AK \bot MN, AI \bot BC$. Suy ra $A, K, I$ thẳng hàng.

$AI = AC \sin \angle ACB = 3a \sqrt{3}$, $AK = AN . \sin \angle ANM = a\sqrt{3}$.  Suy ra $IK = 2a\sqrt{3}$.

Do đó $S_{BMNC} = \dfrac{1}{2}IK(MN+BC) = 8a^2\sqrt{3}$.

b) Ta có $OJ \bot AC$, $NJ = AJ-AN=a, NK = \dfrac{1}{2}MN=a$.

Suy ra $\Delta OJN = \Delta OKN$, suy ra $OJ = OK$, tương tự ta có $OJ = OI$.

Tam giác $IJK$ nội tiếp đường tròn tâm $O$ bán kính $OI = a\sqrt{3}$.

Gọi $P$ là trung điểm của $CN$. Ta có $KNCI$ là hình thang, và $OP$ là đường trung bình.

Suy ra $OP = \dfrac{1}{2}(KN+CI) = 2a = PN = PC$.

Suy ra $O$ thuộc đường tròn đường kính $CN$ mà $PO||KN$ nên $PO \bot KI$.

Suy ra $KI$ là tiếp tuyến của đường tròn đường kính $CN$.

c) Ta có $\angle AEM = \angle ABE$. Suy ra $\Delta AEM \backsim \Delta ABE$, suy ra $AE^2=AM.AB = 12a^2$.

Suy ra $AE = 2a\sqrt{3}= AO$. Suy ra tam giác $AEO$ cân tại $A$.

Do đó $\angle AFO = 90^\circ$, suy ra $AFOJ$ nội tiếp. Suy ra $\angle AFJ = \angle AOJ = 60^\circ$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2015

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2015

Bài 1.

a) Giải phương trình $ \left( x^2 -9 \right) \sqrt{2-x}= x\left( x^2-9 \right) $

b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x^2 + 4y^2 \right) ^2 – 4\left( x^2 + 4y^2 \right) =5 \\ 3x^2 + 2y^2 =5 \end{array}\right. $

Giải

a) Điều kiện $2-x>0 \Leftrightarrow x \le 2$

$\left( x^2 -9\right) \sqrt{2-x}=x\left( x^2-9 \right)$

$\Leftrightarrow \left( x^2 -9 \right) \left( \sqrt{2-x}-x \right) =0$

$\Leftrightarrow \left[ \begin{array}{l} x=3 \ (l) \\ x=-3 \ (n) \\ \sqrt{2-x}=x \ (2)  \end{array}\right. $

Ta có $\sqrt{2-x}=x \Leftrightarrow \left\{ \begin{array}{l} x\ge 0 \\ 2-x=x^2 \end{array}\right. \Leftrightarrow x=1$

vậy $S=\left\{ -3;1 \right\} $

b) $\left\{ \begin{array}{l} \left( x^2 + 4y^2 \right) ^2 – 4\left( x^2 + 4y^2 \right) =5 \ (1)\\ 3x^2 + 2y^2 =5 \ (2) \end{array}\right. $

Đặt $t=x^2+4y^2$, $t\ge 0$ từ (1) ta có $t^2-4t-5=0 \Leftrightarrow \left[ \begin{array}{l} t=5 \ (n) \\ t=-1 \ (l) \end{array}\right. $

Ta có hệ $\left\{ \begin{array}{l} x^2+4y^2=5 \\ 3x^2+2y^2=5 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x^2=1 \\ y^2 =1 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x = \pm 1 \\ y= \pm 1 \end{array}\right. $

Vậy hệ phương trình có 4 nghiệm $(x;y)$ là $(1;1),(1;-1),(-1;1),(-1;-1)$

Bài 2. Cho phương trình $\dfrac{\left( x-2m \right) \left( x+m-3 \right) }{x-1}=0$ $(1)$

a) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$,$x_2$.

b) Tìm $m$ để $x_1^2+x_2^2 -5x_1x_2= 14m^2 -30m +4$

Giải

a) $\dfrac{(x-2m)(x+m-3)}{x-1}=0$ $(1)$, điều kiện $x\ne 1$.

$(1) \Leftrightarrow \left[ \begin{array}{l} x=2m \\ x=3-m \end{array}\right. $

Phương trình $(1)$ có hai nghiệm phân biệt khi và chỉ khi

$\left\{ \begin{array}{l} 2m \ne 3-m \\ 2m \ne 1 \\ 3-m \ne 1 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} m \ne 1 \\ m \ne \dfrac{1}{2} \\ m \ne 2 \end{array}\right. $

b) Theo câu a) thì điều kiện là $\left\{ \begin{array}{l} m \ne 1 \\ m \ne \dfrac{1}{2} \\ m \ne 2 \end{array}\right. $.

Giả sử $x_1 =2m, x_2=3-m$ ta có:

$x_1^2 + x_2^2 -5x_1x_2 = 14m^2 -30m +4 $

$\Leftrightarrow (2m)^2 + (3-m)^2 -5(2m)(3-m) = 14m^2 -30m +4 $

$\Leftrightarrow m^2 -6m +5 =0$ $\Leftrightarrow \left[ \begin{array}{l} m=1 \ (l) \\ m=5 \ (n) \end{array}\right. $

Bài 3.

a) Rút gọn biểu thức $Q= \left( \dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{36}{x-9} \right) : \dfrac{\sqrt{x}-5}{3\sqrt{x}-x}$ ($x>0, x\ne 9, x\neq 25$)

b) Tìm x để $Q<0$.

Giải

a) $Q= \left( \dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{36}{x-9} \right) : \dfrac{\sqrt{x}-5}{3\sqrt{x}-x} $

$= \left( \dfrac{\left( 3+\sqrt{x} \right) ^2-\left( 3-\sqrt{x} \right) ^2 +36}{\left( 3-\sqrt{x} \right) \left( 3+\sqrt{x} \right)} \right) \cdot \dfrac{\sqrt{x}\left( 3- \sqrt{x} \right) }{\sqrt{x}-5} $

$=\dfrac{12\sqrt{x}}{\sqrt{x}-5}$

b) Ta có $Q<0 \Leftrightarrow \dfrac{12\sqrt{x}}{\sqrt{x}-5}<0 \Leftrightarrow 0 < \sqrt{x} <5 \Leftrightarrow 0<x < 25 $.

So với điều kiện ta có: $\left\{ \begin{array}{l} 0<x<25 \\ x \ne 9 \end{array}\right. $

Bài 4.

a) Cho một tam giác vuông. Nếu ta tăng độ dài các cạnh góc vuông thêm $3$ cm thì diện tích tăng $33$ $cm^2$, nếu giảm độ dài một cạnh góc vuông $2$ cm và tăng độ dài cạnh góc vuông kia $1$ cm thì diện tích giảm $2$ $cm^2$. Hãy tính độ dài các cạnh của tam giác vuông.

b) Bạn An dự định trong khoảng thời gian từ ngày $1/3$ đến ngày $30/4$ mỗi ngày sẽ giải $3$ bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng $3$ (tháng $3$ có $31$ ngày) thì An bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải $16$ bài toán; sau đó, An cố gắng giải $4$ bài một ngày và đến $30/4$ thì An cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Giải

a) Gọi độ dài hai cạnh góc vuông là $x$, $y$ $(m)$. Theo đề bài ta có hệ phương trình:

$\left\{ \begin{array}{l} \dfrac{1}{2}(x+3(y+3) =\dfrac{1}{2}xy+33 \\ \dfrac{1}{2}(x-2)(y+1) =\dfrac{1}{2} xy-2 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x+y=19 \\ x-2y=-2 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} y=7 \\ x=12 \end{array}\right. $

Độ dài cạnh huyền $z=\sqrt{7^2+12^2} =\sqrt{193}$

b) Số ngày dự định làm là $61$ ngày, số bài toán dự định làm là $3.61=183$

Gọi $x$ là số ngày làm theo dự định, y là số ngày nghỉ ta có $x \le 31 $.

Số ngày làm $4$ bài/ngày là $61 – x – y – 7 = 54 – x – y$ (ngày)

Theo đề bài ta có:

$$3.x+0.y+16+ 4(54-x-y) =183 \Leftrightarrow 4y+x=49$$

Mà $x \le 31 \Rightarrow 4y \ge 18 \Rightarrow y \ge \dfrac{18}{4}$, mà $y \in \mathbb{N}$ nên giá trị nhỏ nhất của $y$ là $5$.

Bài 5. Hình bình hành $ABCD$ có $ \angle ADC =60^\circ $ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.

a) Chứng minh tam giác $BCE$ đều và $OI \bot CD$.

b) Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.

c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Giải

a) Ta có $\angle BEC = \angle ADC =60^\circ $ ($ADCE$ nội tiếp) và $\angle ABC = \angle ADC = 60^\circ  $ ($ABCD$ là hình bình hành)

Tam giác $BCE$ có $\angle EBC =\angle BEC = 60^\circ  $ nên là tam giác đều.

Ta có $\angle DCE = 180^\circ  – \angle DAE =60^\circ $, suy ra $\angle DCE = \angle ADC$ nên hình thang $AECD$ là hình thang cân

Khi đó $\angle ACD = \angle EDC$, tam giác $ICD$ cân tại $I$.

Ta có $IC = ID$, $OC = OD$ nên OI là trung trực của $CD$. Do đó $OI \bot CD$

b) Ta có $K$ là trung điểm $BD$ nên $K$ cũng là trung điểm $AC$ do $ABCD$ là hình bình hành

Khi đó $OK \bot AC$ và OK là trung trực của AC. Suy ra$MA=MC$. Suy ra $\angle MAC = \angle ACM$.

Mà $\angle ACM = \angle IDM $

Từ đó $\angle IDM = \angle MAC$. Suy ra tứ giác $AIMD$ nội tiếp.

c) Ta có $JK \bot AC$. Suy ra $I$, $K$, $O$ thẳng hàng. Do tam giác $ABC$ và tam giác $ACD$ bằng nhau nên $JK = OK$.

Mặt khác $\angle KJC = \dfrac{1}{2} \angle AJC = \angle ABC =60^\circ  $

Khi đó $\dfrac{KJ}{CK}=\cot \angle KJC = \dfrac{1}{\sqrt{3}}$

Mà $OJ=2JK$, $DE=AC$ ($AECD$ là hình thang cân), $OK=\dfrac{1}{2}AC$.

Khi đó $\dfrac{OJ}{DE} = \dfrac{2JK}{AC}=\dfrac{2JK}{2CK}=\dfrac{KJ}{CK}=\dfrac{1}{\sqrt{3}}$

Vậy $\dfrac{OJ}{DE}=\dfrac{1}{\sqrt{3}}$

 

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2014

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2014

Bài 1.

a) Giải phương trình $\left( 3-x \right) \sqrt{\left( 3+x \right) \left( 9+x^2 \right) } = 4 \sqrt{5 \left( 3-x \right) }$

b) Tính $\dfrac{x}{y}$ biết $x>1$, $y<0$ và $ \dfrac{\left( x+y \right) \left( x^3 -y^3 \right) \sqrt{\left( 1- \sqrt{4x-1} \right)^2 }}{\left( 1-\sqrt{4x-1} \right) \left( x^2y^2 + xy^3 +y^4 \right) }=-6$.

Giải

a) $(3-x) \sqrt{(3+x) \left( 9+x^2 \right) }=4\sqrt{5(3-x)}$

Điều kiện $\left\{ \begin{array}{l} 3-x \ge 0 \\ (x+3)\left( x^2 +9 \right) \ge 0 \end{array}\right. \Leftrightarrow -3\le x \le 3$

Với điều kiện trên ta có:

$(3-x) \sqrt{(3+x) \left( 9+x^2 \right) }=4\sqrt{5(3-x)} $

$\Leftrightarrow \sqrt{3-x}\left( \sqrt{3-x}\sqrt{(3+x)\left( x^2+9 \right) }-4\sqrt{5} \right) =0 $

$\Leftrightarrow \sqrt{3-x}\left( \sqrt{81-x^4} – 4\sqrt{5} \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{3-x}=0 \\ \sqrt{81-x^4}=4\sqrt{5} \end{array}\right. \Leftrightarrow \left[ \begin{array}{l} x=3 \\ x^4=1 \end{array}\right. \Leftrightarrow \left[ \begin{array}{l} x=3\\ x=-1 \\ x=1 \end{array}\right.$

Vậy $S=\left\{ 3; -1;1 \right\} $

b) Ta có $x>1 \Rightarrow \sqrt{4x-1}-1>0 \Rightarrow \sqrt{\left( 1-\sqrt{4x-1} \right) ^2 }=\sqrt{4x-1} -1 $

Do đó:

$\dfrac{(x+y)\left( x^3-y^3 \right) \sqrt{\left( 1-\sqrt{4x-1} \right) ^2}}{\left( 1-\sqrt{4x-1} \right) \left( x^2y^2+xy^3+y^4 \right) } =-6 $

$\Leftrightarrow \dfrac{(x+y)(x-y)\left( x^2 + xy+y^2 \right) }{y^2\left( x^2+xy+y^2 \right) } =6 $

$\Leftrightarrow x^2-y^2=6y^2 \Leftrightarrow \dfrac{x^2}{y^2}=7 \Rightarrow \dfrac{x}{y}=-\sqrt{7}$ (do $x>1$, $y<0$)

Bài 2.

a) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x^2 -y +2 \right) \left( \sqrt{\left( x^2 +9 \right) \left( y+7 \right)} -15 \right) =0\\ \sqrt{x^2 + 9} + \sqrt{y+7} =8 \end{array}\right. $

b) Hình thoi $ABCD$ có diện tích là $18\sqrt{3}$ (mét vuông), tam giác $ABD$ đều. Tính chu vi hình thoi và bán kính đường tròn ngoại tiếp tam giác $ABC$.

Giải

a) $\left\{ \begin{array}{l} \left( x^2-y+2 \right) \left( \sqrt{\left( x^2 +9 \right) \left( y+7 \right)}-15 \right) =0 \ (1)\\ \sqrt{x^2+9}+\sqrt{y+7}=8 \ (2) \end{array}\right. $ (điều kiện $y\ge -7$)

$(1) \Leftrightarrow \left[ \begin{array}{l} x^2=y-2 \\ \sqrt{\left( x^2+9 \right) \left( y+7 \right) } =15 \end{array}\right. $

Với $x^2=y-2$ thế vào $(2)$ ta có: $2\sqrt{y+7}=8\Leftrightarrow y=9 \Rightarrow x= \pm \sqrt{7}$

Ta có nghiệm $(x;y)$ là $\left( \sqrt{7};9 \right) $, $\left( -\sqrt{7};9 \right) $

Với $\sqrt{\left( x^2 +9 \right) \left( y+7 \right) }=15 $, đặt $u= \sqrt{x^2+9}$, $v=\sqrt{y+7}$ ($u,v \ge 0$) ta có hệ

$\left\{ \begin{array}{l} uv=15 \\ u+v=8 \end{array}\right.$ $ \Leftrightarrow \left\{ \begin{array}{l} u=3 \\ v=5 \end{array}\right.$ hoặc $\left\{ \begin{array}{l} u=5 \\ v=3 \end{array} \right. $

Với $u=3$, ta có $x=0$, $v = 5$ ta có $y = 18$. Ta có nghiệm $(0;18)$

Với $u = 5$, ta có $x = 4$ hoặc $x = – 4$, $v = 3$ ta có $y = 2$.

Vậy hệ phương trình có $5$ nghiệm $\left( \sqrt{7};9 \right) $, $\left( -\sqrt{7};9 \right) $, $(0;18)$, $(4;2)$, $(-4;2)$.

b) Gọi $O$ là giao điểm của $AC$ và $BD$. Gọi $a$ là cạnh hình thoi. Tam giác $ABD$ đều nên $BD = AB = a$, $\angle{ABD}=60^\circ $.

$AO=AB \sin \angle{ABD} =AB \sin 60^\circ  = \dfrac{a\sqrt{3}}{2} \Rightarrow AC=2AO=a\sqrt{3}$.

Ta có $S_{ABCD} =\dfrac{1}{2} AC.BD=18\sqrt{3} \Leftrightarrow \dfrac{1}{2}a\sqrt{3}\cdot a=18\sqrt{3}\Leftrightarrow a=6$ $(m)$, khi đó chu vi hình thoi là $4a=24$ $(m)$.

Hơn nữa $DA = DB = DC = a$ nên $D$ là tâm đường tròn ngoại tiếp tam giác $ABC$ và bán kính bằng $6m$.

Bài 3. Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-1$.

b) Tìm m để phương trình $(1)$ có $2$ nghiệm phân biệt $x_1$, $x_2$ sao cho

$$21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $$

Giải

a) Khi m=-1 ta có phương trình:

$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{dk: } x \ne -3) $ $\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l} x=-1 \,\,(n) \\ x=-3 \,\, (l) \end{array}\right. $

Vậy $S=\left\{ -1 \right\} $

b) $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ $(1)$

Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$

$\left\{ \begin{array}{l} m \ne 0 \\ \Delta = (m-3)^2 -4m(2m-1) >0 \\ m(-3)^2+(m-3)(-3)+2m-1 \ne 0 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} m \ne 0\\ 7m^2 +2m-9 <0 \\ m \ne -1 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} m\ne 0\\ m \ne -1 \\ -\dfrac{9}{7} < m < 1 \end{array}\right. $

Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$

Do đó  $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58 \Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58 $

$\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $

$\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7} \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $ $

Vậy $m=\dfrac{7}{8}$

Bài 4.

a) Gọi $x= \dfrac{a+b}{2}$, $y=\sqrt{ab}$ lần lượt là trung bình cộng và trung bình nhân của hai số dương $a, b$. Biết trung bình cộng của $x$ và $y$ bằng $100$. Tính $S = \sqrt{a}+\sqrt{b}$

b) Giả sử hai đại lượng $x, y$ tỉ lệ nghịch ($x, y$ luôn dương). Nếu $x$ tăng $a \% $ thì $y$ giảm $m \%$. Tính $m$ theo $a$.

Giải

a) Ta có $100=\dfrac{x+y}{2}=\dfrac{\dfrac{a+b}{2}+\sqrt{ab}}{2} = \dfrac{a+b+2\sqrt{ab}}{4} = \dfrac{\left( \sqrt{a}+\sqrt{b} \right)^2}{4} $

$\Leftrightarrow \left( \sqrt{a}+\sqrt{b} \right) ^2 =400 \Leftrightarrow \sqrt{a} +\sqrt{b}=20$

b) Khi $x$ tăng $a\% $ thì được $\left( 1+ \dfrac{a}{100} \right) x$, y giảm $m\% $ thì được $\left( 1- \dfrac{m}{100} \right) y$.

Do $x$, $y$ tỷ lệ nghịch nên ta có phương trình:

$xy= \left( 1+ \dfrac{a}{100} \right) x \left( 1- \dfrac{m}{100} \right) y $

$\Leftrightarrow 10000 = (100+a) (100-m)$

$\Leftrightarrow m= \dfrac{100a}{100+a}$

Bài 5. Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.

a) Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.

b) $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với $CD$. Tính $\dfrac{AP}{PD}$

c) $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Giải

a) Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.

Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.

Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b) Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$.

Khi đó $BP = EB + EP = AB+PD=BC+PD$.

Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.

Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.

Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.

Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$

Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c) Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^\circ =\angle{IAF}$ suy ra tứ giác $AEIF$ nội tiếp

Do đó $\angle{IEA}=\angle{IFA}=90^\circ $ và $EM$ là phân giác $\angle{CED}$

Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$

Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.

Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2013

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2013

Bài 1.

a) Giải phương trình: $\sqrt{x+1}=x-2$

b) Tìm chiều dài của một hình chữ nhật có chu vi là $a$ (mét), diện tích là $a$ (mét vuông) và đường chéo là $3\sqrt{5}$ (mét).

Giải

a) Ta có:

$\sqrt{x+1}=x-2 \Leftrightarrow \left\{ \begin{array}{l} x-2 \ge 0 \\ x+1 = \left( x-2 \right) ^2 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ x^2 -5x+3 =0 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ \left[ \begin{array}{l} x=\dfrac{5+\sqrt{13}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{13}}{2} \,\, (l) \end{array}\right. \end{array}\right. $

Vậy $S= \left\{ \dfrac{5+\sqrt{13}}{2} \right\} $

b) Gọi kích thước của hình chữ nhật là $x$, $y$ (giả sử $x > y$). Ta có hệ:

$\left\{ \begin{array}{l} 2x+2y=a \\ xy=a \\ x^2 +y^2 =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x+y=\dfrac{a}{2} \\ xy=a \\ \dfrac{a^2}{4}-2a =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} a=18 \\ x+y =9 \\ xy=18 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=3 \end{array}\right. $

Vậy chiều dài hình chữ nhật là $6$.

Bài 2. Cho phương trình $\left( \sqrt{x}-1 \right) . \left( x^2 -5x +m-1 \right) =0 $ $(1)$

a) Giải phương trình $(1)$ khi $m=-1$

b) Tìm $m$ để phương trình $(1)$ có ba nghiệm phân biệt $x_1$, $x_2$, $x_3$ thỏa

$$x_1 + x_2 + x_3 +x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_3x_1 =31$$

Giải

a) Khi $m=-1$ ta có phương trình:

$ \left( \sqrt{x}-1 \right) \left( x^2 -5x-2 \right) =0 \,\, (\text{ĐK:} x\ge 0)$

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{x}=1 \\ x^2-5x-2=0 \end{array}\right.$

$\Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=\dfrac{5+\sqrt{33}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{33}}{2} \,\, (l) \end{array}\right. $

b) Phương trình $(1)$ tương đương với $\left[ \begin{array}{l} x=1 \\ x^2 -5x +m-1=0 \,\, (2) \end{array}\right. $

Giả sử $x_1=1$ thì $x_2,x_3$ là nghiệm của $(2)$. Điều kiện phương trình $(1)$ có $3$ nghiệm phân biệt thì phương trình $(2)$ có hai nghiệm phân biệt dương khác $1$, tương đương với:

$\left\{ \begin{array}{l} \Delta = 25-4(m-1) >0 \\ S=5 >0 \\ P=m-1 >0 \\ 1-5+m-1 \ne 0 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} m<\dfrac{29}{4} \\ m>1 \\ m\ne 5 \end{array}\right. $

Khi đó $x_2 +x_3 =5$, $x_2x_3=m-1$.

Từ đó :$x_1 +x_2 +x_3 +x_1^2 +x_2^2 +x_3^2 +x_1x_2 +x_2x_3 +x_1x_3=31 $

$\Leftrightarrow 1+5+1+ \left( x_2+x_3 \right) ^2 -x_2x_3 +5=31 $

$\Leftrightarrow 1-m +37 =31 \Leftrightarrow m=7 \,\, (n) $

Bài 3.

a) Với $0<b<a$, hãy rút gọn biểu thức:

$$P=\left( \dfrac{1}{\sqrt{1+a}-\sqrt{a-b}}+ \dfrac{\sqrt{a+2+b}-\sqrt{a-b}}{b+1}-\dfrac{1}{\sqrt{1+a}+\sqrt{a-b}} \right) :\ \left( 1+ \sqrt{\dfrac{a+2+b}{a-b}} \right) $$

b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x-y \right) ^2 = \dfrac{1}{x} – \dfrac{1}{y} \\ x-y = xy-2 \end{array}\right. $

Giải

a) Ta có:

$P = \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}}{1+a-(a-b)} + \dfrac{\sqrt{a+b+2}-\sqrt{a-b}}{1+b}-\dfrac{\sqrt{1+a}-\sqrt{a-b}}{1+a-(a-b)} \right) :  \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{\sqrt{a-b}} \right) $

$= \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}+\sqrt{a+b+2}-\sqrt{a-b}-\sqrt{1+a}+\sqrt{a-b}}{1+b} \right) \cdot  \dfrac{\sqrt{a-b}}{\sqrt{a-b}+ \sqrt{a+b+2}} $

$= \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{1+b} \right) . \dfrac{\sqrt{a-b}}{\sqrt{a-b}+\sqrt{a+b+2}} $

$= \dfrac{\sqrt{a-b}}{1+b}$

b) Ta có:

$(x-y)^2 = \dfrac{1}{x} -\dfrac{1}{y} \Leftrightarrow (x-y)^2 = \dfrac{y-x}{xy}$

$\Leftrightarrow (x-y) \left( x-y+\dfrac{1}{xy} \right) =0 \Leftrightarrow \left[ \begin{array}{l} x=y \\ x-y+\dfrac{1}{xy} =0\end{array}\right. $

Với $x=y$, thế vào $(2)$ ta có $x^2=2 \Leftrightarrow \left[ \begin{array}{l} x=\sqrt{2} \Rightarrow y=\sqrt{2} \\ x=-\sqrt{2} \Rightarrow y= -\sqrt{2} \end{array}\right. $

Với $x-y+\dfrac{1}{xy}=0 \Rightarrow x-y= -\dfrac{1}{xy}$

Ta có $-\dfrac{1}{xy} =xy-2 \Leftrightarrow xy=1 \Rightarrow x-y=-1$, ta có:

$x(x+1)=1 \Leftrightarrow \left[ \begin{array}{l} x=\dfrac{-1+\sqrt{5}}{2} \Rightarrow y= \dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{-1-\sqrt{5}}{2} \Rightarrow y=\dfrac{1-\sqrt{5}}{2} \end{array}\right. $

Vậy hệ có $4$ nghiệm.

Bài 4. Có hai vòi nước $A$, $B$ cùng cung cấp cho một hồ cạn nước và vòi $C$ (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng $6$ giờ, hai vòi $A$, $B$ được mở; đến $7$ giờ vòi $C$ được mở; đến $9$ giờ thì đóng vòi $B$ và vòi $C$; đến $10$giờ $45$ phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi $B$ ngay từ đầu thì đến $13$ giờ hồ mới đầy. Biết lưu lượng vòi $B$ là trung bình cộng lưu lượng vòi $A$ và $C$, hỏi một mình vòi $C$ tháo cạn hồ nước đầy trong bao lâu?

Giải

Gọi $x$ là thời gian vòi $A$ làm đầy bể, $y$ là thời gian vòi $B$ làm đầy bể và $z$ là thời gian vòi $C$ làm cạn bể (hay đầy bể).

Ta có $\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z}$

Ta có $\dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1$ và $\dfrac{7}{x}-\dfrac{2}{z} =1$. Từ đó ta có:

$\left\{ \begin{array}{l} \dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z} \\ \dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1 \\ \dfrac{7}{x}-\dfrac{2}{z} =1 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=8 \\ z=12 \end{array}\right. $

Vậy thời gian vòi $C$  tháo cạn hồ là $12$ giờ.

Bài 5. Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.

a) Tính $BC$ và $CN$ theo $a$.

b) Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$. Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo $a$.

c) $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Giải

a) Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.

$\angle{BOC}=2\angle{BAC}=60^\circ $ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.

$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$

suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 + \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$

b) Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.

Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^\circ $ nên $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.

Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.

Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c) Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.

Do đó $\angle{KMI}=\angle{KFM}$. \hfill $(1)$

Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\angle{xMI}=\angle{IFM} $ \hfill $(2)$

Từ $(1)$ và $(2)$ suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^\circ $, mà $KF // ND$, suy ra $\angle{IND} =90^\circ $.

 

 

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2012

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2012

Bài 1. Cho phương trình $x^3 -4x\sqrt{x} +m + 1=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-33$

b) Tìm $m$ để phương trình $(1)$ có đúng hai nghiệm phân biệt $x_1$, $x_2$ thỏa $x_1^6 +x_2^6=82$.

Giải

Đặt $t=x\sqrt{x} \ge 0$.

a) Khi $m=-33$ ta có phương trình: $t^2 -4t -32=0$ có $2$ nghiệm $t=-4$, $t=8$, loại $t=-4$.

Với $t = 8$, thì $x = 4$

b) Ta có $\Delta’ =3-m >0 \Leftrightarrow m<3 $ và $\left\{ \begin{array}{l} S=t_1 + t_2 =4 \\ P=t_1t_2=m+1\end{array}\right. $

Khi đó $x_1^6 + x_2^6 = t_1^4 + t_2^4 = \left( t_1^2 + t_2^2 \right) ^2 – 2t_1^2 t_2^2 = 2m^2 -60m +194 $

$x_1^6 + x_2^6 =82 \Leftrightarrow m^2 -30m +56 =0 \Leftrightarrow \left[ \begin{array}{l} m=2 \,\, (n)\\\\ m=28 \,\, (l) \end{array} \right. $

Bài 2. Giải phương trình và hệ phương trình

a) $\sqrt{2x+7}-\sqrt{-3x-5}=1$.

b) $\left\{ \begin{array}{l} x^2 -2xy =1-2\sqrt{5}\\ xy-\dfrac{1}{10}y^2=\sqrt{5}-\dfrac{1}{2} \end{array} \right. $

Giải

a)Điều kiện: $-\dfrac{7}{2} \le x \le -\dfrac{5}{3}$

Phương trình tương đương:

$\sqrt{2x+7}=1+\sqrt{-3x-5}$

$\Leftrightarrow 5x+11 =2\sqrt{-3x-5} $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -\dfrac{11}{5} \\ 25x^2 +122x +141 =0 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -\dfrac{11}{5} \\ \left[ \begin{array}{l} x=-3 \,\, (l) \\ x=-\dfrac{47}{25} \end{array}\right. \end{array} \right. $

b) Lấy $(1) + 2 \times (2)$, ta có phương trình $y^2 = 5x^2 \Leftrightarrow \left[ \begin{array}{l} y=x\sqrt{5} \\ y=-x\sqrt{5} \end{array}\right. $

Với $y=x\sqrt{5}$, thế vào $(1)$ ta có $x^2 – 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} x=1 \Rightarrow y=\sqrt{5} \\ x=-1 \Rightarrow y=-\sqrt{5} \end{array}\right. $

Với $y=-x\sqrt{5}$, thế vào $(1)$ ta có $x^2 + 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow x^2 = \dfrac{1-2\sqrt{5}}{1+2\sqrt{5}}$ (VN)

Vậy nghiệm là: $\left( 1 ; \sqrt{5} \right)$, $\left( -1 ; -\sqrt{5} \right) $

Bài 3.

a) Rút gọn biểu thức: $$T = \left( \dfrac{2\sqrt{a}+ \sqrt{b}}{\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2}-\dfrac{2-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+\sqrt{b}+2} \right) $$ với $a,b \ge 0$ và $a \ne 1$.

Tìm giá trị lớn nhất của $T$ khi $a$ là số tự nhiên và $a \ne 1$.

b) Tìm $3$ số tự nhiên liên tiếp biết tổng $3$ tích của từng cặp số khác nhau của chúng là $1727$.

Giải

a) $MS1= \left( \sqrt{a}-1 \right) \left( \sqrt{b}+2 \right) $, $MS2= \left( \sqrt{a}+1 \right) \left( \sqrt{b}+2 \right) $

Quy đồng mẫu số chung $\left( \sqrt{a}-1 \right) \left( \sqrt{b}+2 \right) \left( \sqrt{a} +1 \right) = (a-1) \left( \sqrt{b} +2 \right) $ thì tử số bằng $(a+1)\left( \sqrt{b}+2 \right) $.

Suy ra $T= \dfrac{a+1}{a-1}$

$T= 1+ \dfrac{2}{a-1}$, $a=0 \Rightarrow T= -1$, $a>2 \Rightarrow T< 1+2 =3 =T (a=2) \Rightarrow T_{\max } =3$

b) Gọi $3$ số tự nhiên liên tiếp là $n – 1$, $n$ , $n + 1$ ($n \ge 1$), từ giả thiết ta có phương trình:

$(n-1)n+(n+1)n+(n-1)(n+1) =1727 \Leftrightarrow 3n^2 -1 = 1727 \Leftrightarrow n=24 \Rightarrow \text{ĐS}$

Bài 4. Tổng kết học kì $2$, trường trung học cơ sở $N$ có $60$ học sinh không đạt học sinh giỏi, trong đó có $6$ em từng đạt học sinh giỏi học kì $1$, số học sinh giỏi của học kì $2$ bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì $1$ và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì $1$ nhưng đạt học sinh giỏi học kì $2$. Tìm số học sinh giỏi học kì $2$ của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải

Gọi $x$ là số học sinh giỏi học kỳ $2$ của trường ($x$ nguyên dương).

Số học sinh của trường là $x + 60$ (học sinh)

Số học sinh giỏi của học kì $1$ là $\dfrac{37}{40}x$ (học sinh)

Ta có phương trình $\dfrac{8}{100}(x+60) -6= x-\dfrac{37}{40}x \Leftrightarrow x=240$.

Bài 5. Cho hình thang $ABCD$ ($AB // CD$) nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle{DAB}=105^\circ$, $\angle{ACD}=30^\circ$.

a) Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.

b) Tiếp tuyến của $(C)$ tại $B$ cắt các đường thẳng $DO$, $DA$ lần lượt tại $M$, $N$. Tính $\dfrac{MN}{MD}$.

c) Gọi $E$ là trung điểm của $AB$, tia $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Giải

a) Ta có $\angle{DAB}+ \angle{BCD}=180^\circ \Rightarrow \angle{BCD}=75^\circ $ $(1)$ $\Rightarrow \angle{ABC}= 105^\circ $

$\angle{ABD} =\angle{ACD}=30^\circ  \Rightarrow \angle{DBC} =\angle{ABC}-\angle{ABD}=105^\circ  -30^\circ  =75^\circ $ $(2)$

Từ $(1)$ và $(2)$ ta có $\angle{DBC} = \angle{DCB}$ ($=75^\circ $), nên $\triangle DCB$ cân tại $D$, suy ra $\dfrac{DB}{DC}=1$

Ta có $\angle{ACB}=75^\circ  -30^\circ  =45^\circ  \Rightarrow \angle{AOB}=2\angle{ACB} =90^\circ $, tam giác $AOB$ vuông cân tại $O$ nên $AB = AO\sqrt{2}=R\sqrt{2}$

b) Ta có $\angle{AOD}=2\angle{ACD}=60^\circ  \Rightarrow \Delta OAD$ đều $\Rightarrow \angle{ODA}=60^\circ $ hay $\angle{NDM}=60^\circ $

$\triangle DBC$ cân, nên $DO$ vừa là trung trực của $BC$ vừa là phân giác góc $\angle{BDC}$

$\angle{BOM}=180^\circ  -\angle{AOB} -\angle{AOD}=30^\circ  \Rightarrow \angle{OMB}= 60^\circ $ (do $OB \bot BM$)

Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} =1$

c) Gọi $E$ là trung điểm của $AB$, $\triangle AOB$ vuông cân tại $O$ nên $OE =AE$, $\angle{AEO}=90^\circ $

Ta có $\triangle ADE = \triangle ODE \Rightarrow \angle{AED} =\angle{OED}=45^\circ  , \angle{ADE}=\angle{ODE}=30^\circ$

$\Rightarrow DF$ là đường cao của tam giác $MDN$.

Gọi $I$ là trung điểm $BC$. Ta có $\angle{FDB}=15^\circ  =\angle{IDB}$

Khi đó $\triangle BFD = \triangle BID \Rightarrow BF =BI$ suy ra $\dfrac{BF}{BC}=\dfrac{1}{2}$