Tag Archives: Hephuongtrinh

Sử dụng đánh giá bất đẳng thức để giải hệ phương trình

Một trong các phương pháp khác đặc biệt để giải các hệ phương trình là sử dụng bất đẳng thức, kiểu $A \geq 0$, khi đó $A = 0$ chỉ tại các dấu $=$ xảy ra, hoặc $x \geq y \geq z \geq x$, do đó hệ có nghiệm chỉ khi các dấu $=$ đồng thời xảy ra.

Ta cùng tìm hiểu phương pháp này thông qua một số ví dụ, từ đó rút ra kinh nghiệm giải các hệ phương trình khác.

Ví dụ 1. Giải hệ phương trình

$\left\{\begin{array}{l}
x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}=x^2+y \\\\
y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}}=y^2+x
\end{array}\right.$

Lời giải.

$$
\left\{\begin{array}{l}
x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}=x^2+y(1) \\\\
y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}}=y^2+x(2)
\end{array}\right.
$$
Ta có: $x^2-2 x+9 \geq 8 \Rightarrow \sqrt[3]{x^2-2 x+9} \geq 2 \Rightarrow \frac{2 x y}{\sqrt[3]{x^2-2 x+9}} \leq x y$ Tương tự: $\frac{2 x y}{\sqrt[3]{y^2-2 y+9}} \leq x y$
Do đó: $x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}+y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}} \leq x+y+2 x y \leq x+y+x^2+y^2$
(Dấu “=” xảy ra khi và chỉ khi $x=y$ Từ $(1),(2)$ và $(3)$ suy ra $x=y$ Thay $x=y$ vào (1) ta được:
(4) $\Leftrightarrow \sqrt[3]{x^2-2 x+9}=2 \Leftrightarrow x^2-2 x+9=8 \Leftrightarrow(x-1)^2=0 \Leftrightarrow x=1 \Rightarrow$ $y=1$
Vậy nghiệm của hệ phương trình là $(x, y) \in{(0,0) ;(1,1)}$.

Ví dụ 2. (Hệ hoán vị vòng quanh) Giải hệ phương trình

$$\left\{\begin{array}{l}
x^3+3 x^2+2 x-5=y \\\\
y^3+3 y^2+2 y-5=z \\\\
z^3+3 z^2+2 z-5=x
\end{array}\right.$$

Lời giải. Do vai trò bình đẳng trong hoán vị vòng quanh của $x, y, z$ trong hệ trên, ta có thể giả sử
$$
\begin{aligned}
& x=\max {x ; y ; z} \text {. } \\\\
& \text { Vì } y \leq x \text { nên } x^3+3 x^2+2 x-5 \leq x \\\\
& \Leftrightarrow x^3+3 x^2+x-5 \leq 0 \\\\
& \Leftrightarrow(x-1)\left(x^2+4 x+5\right) \leq 0 \text {. } \\\\
& \text { Vì } x^2+4 x+5=(x+2)^2+1>0 \text { nên } x \leq 1 \text {. } \\\\
& \text { Mà } z \leq x \text { nên } z \leq 1 \text {. } \\\\
& \text { Lập luận ngược lại quá trình trên ta được } \\\\
& (z-1)\left(z^2+4 z+5\right) \leq 0 \\\\
& \Leftrightarrow z^3+3 z^2+2 z-5 \leq z \Leftrightarrow x \leq z \text {. } \\\\
& \text { Do đó } x=z \text {. } \\\\
& \text { Suy ra } x=y=z \text {. } \\\\
& \text { Từ đó ta được phương trình } \\\\
& \quad x^3+3 x^2+2 x-5=x \\\\
& \Leftrightarrow(x-1)\left(x^2+4 x+5\right)=0 \Leftrightarrow x=1 \text {. }
\end{aligned}
$$

Ví dụ 3 (Chuyên Toán PTNK 1997) Tìm tất cả các số dương $x, y, z$ thỏa : $\left\{\begin{array}{l}
\frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3 \\\\
x+y+z \leq 12
\end{array}\right.$

Lời giải.

\begin{aligned}
& \text { Ta có }(x+y+z)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right) \leq 36 \Leftrightarrow \frac{y}{x}+\frac{4 x}{y}+\frac{z}{x}+\frac{9 x}{z}+\frac{4 z}{y}+\frac{9 y}{z}-22 \leq 0 \Leftrightarrow \\\\
& \frac{(y-2 x)^2}{x y}+\frac{(z-3 x)^2}{x z}+\frac{(3 y-2 z)^2}{y z} \leq 0 \Leftrightarrow y=2 x, z=2 x, 3 y=2 z \text { Từ đó ta } \\\\
& \text { có } x=2, y=4, z=6
\end{aligned}

Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l}
3 x^2+2 y+1=2 z(x+2) \\\\
3 y^2+2 z+1=2 x(y+2) \\\\
3 z^2+2 x+1=2 y(z+2)
\end{array}\right.$

Lời giải. Cộng ba phương trình lại ta có:
$3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $

$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $
$\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $
$\Leftrightarrow\left\{\begin{array}{l}
x=1 \\\\
y=1 \\\\
z=1
\end{array}\right.
$
Thử lại thấy $(1,1,1)$ là nghiệm của hệ.

Bài tập rèn luyện

Bài 1. Giải hệ phương trình

$\left\{\begin{array}{l}
x+\dfrac{2 x y}{\sqrt{x^2-2 x+5}}=x^2+y \\\\
y+\dfrac{2 x y}{\sqrt{y^2-2 y+5}}=y^2+x
\end{array}\right.$

Bài 2. Giải hệ phương trình $\left\{\begin{array}{l}
y^{3}-6 x^{2}+12 x-8=0 \\\\
z^{3}-6 y^{2}+12 y-8=0 \\\\
x^{3}-6 z^{2}+12 z-8=0
\end{array}\right.$

Bài 3. Tìm các số không âm $x, y, z$ thỏa
$$
\left\{\begin{aligned}
x y z & =1 \\\\
x^3+y^3+z^3 & =x+y+z
\end{aligned}\right.
$$

Hệ phương trình ba ẩn

Trong các bài trước mình đã làm quen với các hệ phương trình hai ẩn, phương pháp chủ yếu cũng là thế, cộng đại số, đặt ẩn phụ. Trong bài này chúng ta tiếp tục với các hệ phương trình nhiều ẩn hơn, chủ yếu là các hệ phương trình ba ẩn, trong các hệ phương trình này có hai dạng ta quan tâm và xuất hiện nhiều là hệ đối xứng và hệ hoán vị vòng quanh.

Hệ ba ẩn đối xứng

Hệ đối xứng ba biến là hệ có dạng

$\left\{\begin{array}{l}
f(x,y,z)=0 \\\\
g(x,y,z)=0 \\\\
h(x,y,z)=0
\end{array}\right.$

trong đó $f, g, h$ là các biểu thức đối xứng với $x, y, z$ tức là khi ta hoán vị $x, y, z$ thì $f, g, h$ vẫn không đổi.

Các biểu thức đối xứng 3 biến cơ bản nhất là $x+y+z, xy+yz+xz, xyz$.

Từ đó ta xét ví dụ sau

Ví dụ 1. Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=6 (1)\\\\
xy+yz+xz=11 (2)\\\\
xyz=6 (3)
\end{array}\right.$

Lời giải

Từ (1) ta có $y +z = 6-z$, từ (2), $ yz = 11-x(y+z) = 11 – x(6-x) = x^2-6x+11$.

Thế vào (3) ta có $x(x^2-6x+11) = 6$ $\Leftrightarrow x^3 -6x^2+ 11x – 6 = 0$

Giải ra được $x = 1, x = 2, x= 3$.

Với $x = 1$ ta có $y+z = 5, yz = 6$ giải ra được $y = 2, z= 3$ và $y=3, z=2$.

Các trường hợp khác tương tự, hệ phương trình có nghiệm $(1, 2, 3)$ và các hoán vị.

Do đó nếu hệ phương trình ba ẩn đối xứng, có một cách giải là ta tìm được giá trị của các biểu thức đối xứng cơ bản như bài trên.

Ví dụ 2. (PTNK Chuyên toán 2010) Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=3 \\\\
x y+y z+x z=-1 \\\\
x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)
\end{array}\right.$

Lời giải

Ta chỉ cần tính được $xyz$ thì có thể đưa về ví dụ 1.

Từ (1) và (2) ta tính được $x^2+y^2+z^2 = (x+y+z)^2 – 2(xy+yz+xz) = 11$

Suy ra $x^3+y^3+z^3 = 27$

Mà $x^3+y^3+z^3 – 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz) \Rightarrow xyz = -3$

do đó ta có $x+y+z = 3, xy+yz+xz = -1, xyz = -3$ tương tự ví dụ 1, ta giải được nghiệm là $(1,-1,3)$ và các hoán vị.

Ngoài cách trên ta có thể giải như sau

$x^3+y^3+z^3 = (x+y+z)^3 – 3(x+y)(y+z)(x+z)$, khi đó $(x+y)(y+z)(z+x) = 0$, tổng hai số bằng 0, ta suy ra số còn lại bằng 3, tiếp tục ta cũng có kết quả như trên.

Hệ hoán vị vòng quanh

Các hệ phương trình nhiều ẩn thường gặp là hệ hoán vị vòng quanh có dạng sau:

Phương pháp thường dùng là cộng đại số,phân tích thành tích, sử dụng đánh giá bất đẳng thức để chứng minh $x=y=z$.

Ta xét một số ví dụ sau:

Ví dụ 3. Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^2=2 z-z^2(1) \\\\(y-z)^2=2 x-x^2(2)\\\\ (z-x)^2=2 y-y^2(3)\end{array}\right.$

Lời giải Lấy (1) trừ (2) ta có:

$(x-2 y+z)(x-z)=x^2-z^2-2(x-z)=(x-z)(x+z-2) \Leftrightarrow 2(x-z)(y-1)= 0$

$\Leftrightarrow x=z$ hoặc $y=1$
– $y=1$ ta có $(3) \Leftrightarrow(x-z)^2=1 \Leftrightarrow z=x+1, z=x-1$
+ $z=x+1$ giải được $ x=0, z=1$ và $x=1, z=2 $Khi đó ta có nghiệm $(0,1,1),(1,1,2)$
+ $z=x-1 $ giải ra được $x=1, z=0 $ và $ x=2, z=1 $Ta có nghiệm $(1,1,0)$ và $(2,1,1)$
Với $x=z$ từ (3) ta có $ y^2-2 y=0 \Leftrightarrow y=0, y=2$

Với $y=0$ ta có $\left\{\begin{array}{l}x^2=2 z-z^2 \\\\ z^2=2 x-x^2\end{array} \Leftrightarrow \left\{\begin{array}{l}2 z^2=2 z \\\\ x-z\end{array}\right.\right.$.

Giải được nghiệm $(0,0,0)$ và $(1,0,1)$.

+Với $y=2$, giải ra được nghiệm $(1,2,1)$ và $(2,2,2)$. Vậy hệ phương trình có 8 nghiệm.

Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l}
3 x^2+2 y+1=2 z(x+2) \\\\
3 y^2+2 z+1=2 x(y+2) \\\\
3 z^2+2 x+1=2 y(z+2)
\end{array}\right.$

Lời giải Cộng ba phương trình lại ta có:
$3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $

$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $
$\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $
$\Leftrightarrow\left\{\begin{array}{l}
x=1 \\\\
y=1 \\\\
z=1
\end{array}\right.
$
Thử lại thấy $(1,1,1)$ là nghiệm của hệ.

Ví dụ 5. Giải hệ phương trình $\left\{\begin{array}{l}
2 x=y^2-z^2 \\\\
2 y=z^2-x^2 \\\\
2 z=x^2-y^2
\end{array}\right.$

Lời giải

Lấy (1) $+(2)$ ta có $(x+y)(x-y+2)=0 \Leftrightarrow x+y=0$ hoặc $x=2-y$.
Với $x+y=0$, từ (3) ta có $z=0$, từ (1) ta có $x=0$ hoặc $x=2$. Ta có nghiệm $(x, y, z)$ là $(0,0,0)$ và $(2,-2,0)$.
Với $x=y-2$, từ (3) ta có $2 z=(y-2)^2-y^2=4-4 y \Leftrightarrow z=2-2 y$. Thế vào (1) ta có: $2(y-2)=y^2-(2-2 y)^2 \Leftrightarrow y^2-2 y=0 \Leftrightarrow y=0, y=2$. Từ đó ta có nghiệm $(-2,0,2)$ và $(2,-2,0)$. Vậy hệ có 4 nghiệm.

Hệ nhiều ẩn không mẫu mực

Một số hệ không mẫu mực thì không có cách giải chung, do đó ta phải để đặc điểm của các hệ phương trình này để có cách giải phù hợp, chủ yếu cũng là giảm được ẩn, phân tích nhân tử, . ..

Ví dụ 6. Giải hệ phương trình sau: $\left\{\begin{array}{l}
(x-2 y)(x-4 z)=55 \\\\
(y-2 z)(y-4 x)=-39 \\\\
(z-2 x)(z-4 y)=-16
\end{array}\right.$

Lời giải

$\left\{\begin{array}{l}(x-2 y)(x-4 z)=55 \\\\ (y-2 z)(y-4 x)=-39 \\\\ (z-2 x)(z-4 y)=-16\end{array} \Leftrightarrow\left\{\begin{array}{l}x^2-2 x y-4 x z+8 y z=55(1) \\\\ y^2-2 y z-4 x y+8 x z=-39(2) \\\\ z^2-2 x z-4 y z+8 x y=-16(3)\end{array}\right.\right.$

Cộng (1),(2),(3) ta có $(x+y+z)^2=0 \Leftrightarrow x+y+z=0 \Leftrightarrow z=-x-y$
Thế vào (1),(2) ta có $\left\{\begin{array}{l}(x-2 y)(5 x+4 y)=55 \\\\ (3 y+2 x)(y-4 x)=-39\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}5 x^2-6 x y-8 y^2=55 \\\\ 3 y^2-10 x y-8 x^2=-39\end{array}\right.$
Nhận thấy $y=0$ không thỏa hpt:
Đặt $x=k y$, ta có hệ

$\left\{\begin{array}{l}
y^2\left(5 k^2-6 k-8\right)=55 \\\\
y^2\left(-8 k^2-10 k+3\right)=-39
\end{array}\right. $
$\Rightarrow-39\left(5 k^2-6 k-8\right)=55\left(-8 k^2-10 k+3\right) $
$\Leftrightarrow 245 k^2+784 k+147=0$
$ \Leftrightarrow\left[\begin{array}{l}
k=-3 \\\\
k=\frac{-1}{5}
\end{array}\right.
$
Với $k=-3$, ta có $y=1$, hoặc $y=-1$. Từ đó ta có nghiệm là $(-3,1,2),(3,-1,-2)$
Với $k=-\frac{1}{5}$ (vô nghiệm)

Chìa khóa trong lời giải này chính là đặc điểm của các hệ số tự do bên phải của các phương trình.

Qua một số ví dụ , hi vọng các em rút ra kinh nghiệm trong việc giải một số hệ phương trình nhiều ẩn, cùng rèn luyện các bài toán sau nhé.

Bài tập rèn luyện

Bài 1. Giải các hệ phương trình sau

1)$\begin{cases} x^2(y+z)^2=(3x^2+x+1)y^2z^2&\\\\y^2(z+x)^2=(4y^2+y+1)z^2x^2&\\\\z^2(x+y)^2=(5z^2+z+1)=x^2y^2 \end{cases}$ 2)$\left\{ \begin{array}{l}xy = x + 3y\\\\yz = 2\left( {y + z} \right)\\\\xz = 3\left( {3z + 2x} \right)\end{array} \right.$ 3) $\left\{ \begin{array}{l}
{\left( {x + y + z} \right)^3} = 12t\\\\
{\left( {y + z + t} \right)^3} = 12x\\\\
{\left( {z + t + z} \right)^3} = 12y\\\\
{\left( {t + x + y} \right)^3} = 12z
\end{array} \right.$

Bài 2. Giải hệ phương trình sau:

1)$\left\{\begin{array}{l}
x^{3}+x^{2}+x-2=y \\\\
y^{3}+y^{2}+y-2=z \\\\
z^{3}+z^{2}+z-2=x
\end{array}\right.$
2) $\left\{\begin{array}{l}
y^{3}-6 x^{2}+12 x-8=0 \\\\
z^{3}-6 y^{2}+12 y-8=0 \\\\
x^{3}-6 z^{2}+12 z-8=0
\end{array}\right.$
Bài 3. Giải hệ phương trình $\begin{cases}ab+c+d=3&\\\\bc+d+a=5&\\\\cd+a+b=2&\\\\da+b+c=6 \end{cases}$

Bài 4.

Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\\\
x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\
…&\\\\
x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1
\end{cases}$

Hệ phương trình – Phương pháp đặt ẩn phụ – Hệ đối xứng loại một

1. Hệ phương trình đối xứng loại một

Mục đích của đặt ẩn phụ là ta đưa hệ phương trình đã cho về một hệ phương trình đơn giản hơn đã biết cách giải, giải được hệ mới từ đó ta giải được hệ đã cho.

Trong phương pháp này, ứng dụng đầu tiên là áp dụng cho giải các hệ đối xứng loại một.

Hệ đối xứng loại một là hệ có dạng $\left\{\begin{array}{l} f(x,y)=0 (1) \\ g(x,y)=0 (2) \end{array} \right.$ trong đó $f(y, x) = f(y,x)$ và $g(x,y) = g(y,x)$, hay nói cách khác các biểu thức $f(x,y), g(x,y)$ là các biểu thức đối xứng theo hai biến $x, y$. Để giải hệ, ta thường đặt $s = x+y, p= xy$, từ đó đưa hệ về theo ẩn $s, p$. Giải $s,p$ ta sẽ giải được $x,y$. Sau đây là một số ví dụ, các bạn theo dõi nhé.

Ví dụ 1: Giải hệ phương trình $\begin{cases} x+y+xy=1 &\\ x^2+y^2+3xy=3. \end{cases} $

Giải

Đặt $S=x+y, P=xy$. Điều kiện $S^2 \ge 4P$.

Khi đó hệ trở thành $\begin{cases} S+P=1 &\\ S^2+P=3 \end{cases} \Leftrightarrow \begin{cases} P=1-S &\\ S^2-S-2=0.\end{cases}.$

Ta có $S^2-S-2=0 \Leftrightarrow S=-1$ hoặc $S=2.$

Nếu $S=-1$ thì $P=2$ (loại).

Nếu $S=2$ thì $P=-1$.

Khi đó $x,y $ là nghiệm của phương trình: $X^2-2X-1=0 \Leftrightarrow X=1\pm \sqrt{2}$.

Suy ra $(x,y)=(1+\sqrt{2};1-\sqrt{2})$ hoặc $(x,y)=(1-\sqrt{2}; 1+\sqrt{2}).$

Vậy hệ đã cho có nghiệm $(x,y)=(1+\sqrt{2};1-\sqrt{2})$ hoặc $(x,y)=(1-\sqrt{2}; 1+\sqrt{2}).$

Ví dụ 2: Giải hệ phương trình $\begin{cases}x-y+xy=1&\\ x^2+y^2=2 \end{cases}$

Giải

Đặt $u=x-y, v=xy$. Ta được hệ

$\begin{cases} u+v=1&\\ u^2+2v=2. \end{cases} $

$\Leftrightarrow \begin{cases} v=1-u&\\ u^2+2(1-u)=2 \end{cases}$

$\Leftrightarrow \begin{cases}v=1-u&\\ u^2-2u=0 \end{cases}$

$\Leftrightarrow \begin{cases} u=0&\\ v=1 \end{cases}$ hoặc  $\begin{cases} u=2&\\ v=-1. \end{cases}$

Trường hợp $\begin{cases} u=0&\\ v=1 \end{cases} \Leftrightarrow \begin{cases} x-y=0&\\ xy=1 \end{cases} \Leftrightarrow \begin{cases} x=1&\\ y=1 \end{cases}$  hoặc $\begin{cases} x=1&\\ y=-1. \end{cases}$.

Vậy hệ có nghiệm $(x,y)$ là  $(1,1), (-1,-1)$ hoặc $(1,-1)$.

Ví dụ 3: Giải hệ phương trình $\begin{cases} 2(x+y)=3(\sqrt[3]{x^2y}+\sqrt[3]{xy^2})&\\ \sqrt[3]{x}+\sqrt[3]{y}=6 \end{cases} $

Giải

Đặt $S=\sqrt[3]{x} + \sqrt[3]{y}$, $P=\sqrt[3]{xy}$ điều kiện $S^2\ge 4P$

Ta có: $S^3 = x+y + 3\sqrt[3]{xy}\left( \sqrt[3]{x} + \sqrt[3]{y}\right) \Rightarrow x+y = S^3 – 3SP$

Khi đó hệ phương trình trở thành

$\begin{cases} 2(S^3-3SP)=3SP&\\ S=6 \end{cases} \Leftrightarrow \begin{cases} S=6&\\ P=8 \end{cases}$

Với $\begin{cases} S=6&\\ P=8\end{cases} \Leftrightarrow  \begin{cases} \sqrt[3]{x} + \sqrt[3]{y} =6&\\ \sqrt[3]{xy} =8 \end{cases} \Leftrightarrow  \begin{cases} x=64&\\ y=8 \end{cases}$ hoặc $\begin{cases} x=8&\\ y=64 \end{cases}$

Vậy $(x;y) \in \left\{ (64;8); (8;64)\right\} $

Ví dụ 4: Giải hệ phương trình $\begin{cases} \dfrac{x}{y}+\dfrac{y}{x}=\dfrac{26}{5}&\\ x^2-y^2=24 \end{cases}$ $(*)$

Giải

Điều kiện $xy \ne 0$.

$(*) \Leftrightarrow \begin{cases} x^2+y^2=\dfrac{26}{5}xy&\\ (x-y)(x+y)=24\end{cases}\\ \Rightarrow \begin{cases} (x+y)^2-2xy=\dfrac{26}{5}xy&\\ [(x+y)^2-4xy](x+y)^2=24^2. \end{cases}$.

Đặt $u=(x+y)^2, v=xy$ ta được $\begin{cases} u=\dfrac{36}{v}&\\ u^2-4uv=24^2 \end{cases}\Leftrightarrow \begin{cases} u=36&\\ v=5. \end{cases}$

Từ đó ta được hệ phương trình $\begin{cases} (x+y)^2=36&\\ xy=5. \end{cases}$.

Trường hợp $\begin{cases} x+y=6&\\ xy=5 \end{cases} \Leftrightarrow \begin{cases} x=1&\\ y=5 \end{cases}$ hoặc $\begin{cases} x=5&\\ y=1. \end{cases}$

Trường hợp $\begin{cases}x+y=-6&\\ xy=5 \end{cases} \Leftrightarrow \begin{cases} x=-1&\\ y=-5 \end{cases}$ hoặc $\begin{cases} x=-5&\\ y=-1. \end{cases}$

Ví dụ 5: Giải hệ phương trình $\begin{cases} \dfrac{x^2}{(y+1)^2}+\dfrac{y^2}{(x+1)^2}=\dfrac{1}{2}&\\ 3xy=x+y+1. \end{cases}$

Giải

Điều kiện $(x+1)(y+1) \ne 0$.

Hệ $\Leftrightarrow \begin{cases} \left( \dfrac{x}{y+1}\right) ^2+\left( \dfrac{y}{x+1}\right) ^2=\dfrac{1}{2}&\\ \dfrac{xy}{(x+1)(y+1)}=\dfrac{1}{4} \end{cases}$.

Đặt $u=\dfrac{x}{y+1}, v=\dfrac{y}{x+1}$ ta được $\begin{cases}uv=\dfrac{1}{4}&\\ u^2+v^2=\dfrac{1}{2} \end{cases} \Leftrightarrow \begin{cases} u+v=1&\\ uv=\dfrac{1}{4} \end{cases}$ hoặc $\begin{cases} u+v=-1&\\ uv=-\dfrac{1}{4}. \end{cases}$

Trường hợp $\begin{cases}u+v=1&\\ uv=\dfrac{1}{4} \end{cases} \Leftrightarrow \begin{cases} \dfrac{x}{y+1}=\dfrac{1}{2}&\\  \dfrac{y}{x+1}=\dfrac{1}{2} \end{cases} \Leftrightarrow \begin{cases} 2x-y=1&\\ 2y-x=1 \end{cases} \Leftrightarrow x=y=1.$

Trường hợp $\begin{cases}u+v=-1&\\ uv=\dfrac{1}{4} \end{cases}$ giải tương tự ta được $x=y=-\dfrac{1}{3}.$

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( -\dfrac{1}{3}; -\dfrac{1}{3}\right) , (1;1)\right\} .$

2. Bài tập

Bài 1:  Giải các hệ phương trình sau:

a) $\begin{cases} x^2+xy+y^2=4&\\ x+xy+y=2 \end{cases}$

b) $\begin{cases} x+y+xy=3&\\ x^2y+xy^2=2 \end{cases}$

c) $\begin{cases} x^2+y^2+x+y=8&\\ xy+x+y=5 \end{cases}$

d) $\begin{cases} x^2+y^2=1&\\ x^3+y^3=1 \end{cases}$

e) $\begin{cases} x^2+y^2=1&\\ x^8+y^8=x^{10}+y^{10} \end{cases}$

f) $\begin{cases} 3xy-x^2-y^2=5&\\ 7x^2y^2-x^4-y^4=155 \end{cases}$

g) $\begin{cases} \dfrac{1}{x}+\frac{1}{y}+xy=\dfrac{7}{2}&\\ x+y=\dfrac{3}{2}xy \end{cases}$

h) $\begin{cases} (x-y)(x^2-y^2)=3&\\ (x+y)(x^2+y^2)=15 \end{cases}$

i) $\begin{cases} (x^2+y^2)xy=78&\\ x^4+y^4=97 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} x^2+xy+y^2=1&\\ x-y-xy=3 \end{cases}$

b) $\begin{cases} x-y+xy=1&\\ x^2+y^2=2 \end{cases}$

c) $\begin{cases} x^3y^3+1=2y^3&\\ \dfrac{x^2}{y}+\dfrac{x}{y^2}=2. \end{cases}$

d) $\begin{cases} x^2+y^2+x^2y^2=1+2xy&\\ (x-y)(1+xy)=1-xy \end{cases}$

e) $\begin{cases} \dfrac{y}{x}+\dfrac{x}{y}=\dfrac{26}{5}&\\ x^2-y^2=24 \end{cases}$

f) $\begin{cases} x^2+y^2+xy=3&\\ xy^3+x^3y=2 \end{cases}$

g) $\begin{cases} x+y+\dfrac{x}{y}=4&\\ x^2+xy-y=0 \end{cases}$

h) $\begin{cases} x-2y+\dfrac{x}{y}=6&\\ x^2-2xy-6y=0 \end{cases}$

i)  $\begin{cases} \dfrac{y}{x}+\dfrac{x}{y}=2&\\ \dfrac{1}{x}+\dfrac{1}{y}+x+y=4 \end{cases}$

j) $\begin{cases} x+y+\dfrac{x}{y}+\dfrac{y}{x}=4&\\ x+y+\dfrac{x^2}{y}+\dfrac{y^2}{x}=4 \end{cases}$

k) $\begin{cases} x+y+x^2y^2=3xy&\\ \dfrac{1}{x}+\dfrac{1}{y}-xy=1 \end{cases}$

l) $\begin{cases} x(x+1)+\dfrac{1}{y}\left( \dfrac{1}{y}+1\right) =4&\\ x^3y^3+xy+x^2y^2+1=4y^3 \end{cases}$

m) $\begin{cases} (x^2+y^2)\left( 1+\dfrac{1}{x^2y^2}\right) =49&\\ (x+y)\left( 1+\dfrac{1}{xy}\right) =5 \end{cases}$

3. Phương pháp đặt ẩn phụ

Ví dụ 6: Giải hệ phương trình $\begin{cases} x^2+y^2=xy+x+y&\\ x^2-y^2=3. \end{cases}$

Giải

Đặt $u=x+y, v=x-y$ khi đó hệ trở thành

$ \begin{cases} \dfrac{u^2+v^2}{2}=\dfrac{u^2-v^2}{4}+u&\\ uv=3 \end{cases} $

$\Leftrightarrow \begin{cases} u^2+3v^2-4u=0&\\ uv=3 \end{cases} $

$\Leftrightarrow \begin{cases} u^2+\dfrac{27}{u^2}-4u=0&\\ v=\dfrac{3}{u} \end{cases}$

$\Leftrightarrow \begin{cases} u^4-4u^3+27=0 &\\ v=\dfrac{3}{u} \end{cases}$

$\Leftrightarrow \begin{cases} (u-3)^2(u^2+2u+3)=0&\\ v=\dfrac{3}{u} \end{cases} $

$\Leftrightarrow \begin{cases} u=3&\\ v=1 \end{cases} $

$\Leftrightarrow \begin{cases} x+y=3&\\ x-y=1 \end{cases} \Leftrightarrow \begin{cases} x=2&\\ y=1. \end{cases}$

Vậy hệ có nghiệm $(x,y)=(2;1).$

Ví dụ 7: Giải hệ phương trình $\begin{cases} y(x^2+1)=2x(y^2+1)&\\ (x^2+y^2)\left( 1+\dfrac{1}{x^2y^2}\right) =24 \end{cases}$

Giải

Điều kiện $xy \ne 0$.

Đặt $u=x+\dfrac{1}{x}, v=y+\dfrac{1}{y}$ ta được hệ

$\begin{cases} \dfrac{u}{v}=2 &\\ u^2+v^2=20 \end{cases} \Leftrightarrow \begin{cases} u=2v&\\ 5v^2=20 \end{cases} \Leftrightarrow \begin{cases} u=\pm4 &\\ v=\pm 2. \end{cases}$.

Trường hợp $\begin{cases} u=4&\\ v=2 \end{cases}$ ta được

$\begin{cases} x+\dfrac{1}{x}=4&\\ y+\dfrac{1}{y}=2 \end{cases} \Leftrightarrow \begin{cases} x^2-4x+1=0&\\ y^2-2x+1=0 \end{cases} \Leftrightarrow \begin{cases} x=2 \pm \sqrt{3}&\\ y=1. \end{cases}$

Trường hợp $ \begin{cases} u=-4&\\ v=-2 \end{cases}$ ta được

$\begin{cases} x+\dfrac{1}{x}=-4&\\ y+\dfrac{1}{y}=-2 \end{cases} \Leftrightarrow \begin{cases} x^2+4x+1=0&\\ y^2+2y+1=0 \end{cases} \Leftrightarrow \begin{cases}x= -2 \pm \sqrt{3}&\\ y=-1. \end{cases}$

Vậy hệ có nghiệm $(x,y)\in \left\{ (2 \pm \sqrt{3};1); (-2 \pm \sqrt{3};-1)\right\} $.

Ví dụ 8: Giải hệ phương trình $\begin{cases} (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=9&\\ (x^3+y^3)\left( 1+\dfrac{1}{xy}\right) ^3=27. \end{cases}$

Giải

Điều kiện $xy \ne 0.$

Đặt $u=x+\dfrac{1}{y}, v=y+\dfrac{1}{x}.$ Ta được hệ

$\begin{cases} u^2+v^2=9&\\ u^3+v^3=27 \end{cases} \Leftrightarrow \begin{cases} (\dfrac{u}{3})^2+(\dfrac{v}{3})^2=1&\\ (\dfrac{u}{3})^3+(\dfrac{v}{3})^3=1 \end{cases}$

$\Leftrightarrow \begin{cases} \dfrac{u}{3} =1 &\\ v=0 \end{cases} \ \text{hoặc} \ \begin{cases} v=0&\\ \dfrac{v}{3} =1. \end{cases}$

Trường hợp $\begin{cases} u=3&\\ v=0 \end{cases} \Leftrightarrow \begin{cases} x+\dfrac{1}{y}=3&\\ y+\dfrac{1}{x}=0 \end{cases} \Leftrightarrow $ hệ vô nghiệm.

Trường hợp còn lại tương tự.

Vậy hệ đã cho vô nghiệm.

 

Ví dụ 9: Giải hệ phương trình $\begin{cases} 2x-y=1+\sqrt{x(1+y)}&\\ x^3-y^2=7. \end{cases}$

Giải

Điều kiện $x(y+1) \ge 0.$

Dễ dàng kiểm tra $(0,y)$ và $(x,-1)$ không là nghiệm của hệ. Xét $x \ne 0$ và $y \ne -1.$

Từ phương trình thứ nhất của hệ ta được

$2x=1+y+\sqrt{x(y+1)}  \Leftrightarrow 2\sqrt{\dfrac{x}{y+1}}=\sqrt{\dfrac{y+1}{x}}+1.$

Đặt $t=\sqrt{\dfrac{y+1}{x}}>0$ ta được

$ t^2+t-2=0 \Leftrightarrow t=1 \ \text{hoặc} \ t=-2 \text{(loại)}.$

Trường hợp $t=1 \Leftrightarrow y=x-1$ thay vào phương trình thứ hai của hệ ta được

$ x^3-x^2+2x-8=0 \Leftrightarrow (x-2)(x^2+x+4)=0 \Leftrightarrow x=2.$

Với $x=2$ thì $y=x-1=1$.

Vậy hệ có nghiệm $(x,y)=(2,1)$.

Ví dụ 10: Giải hệ phương trình $\begin{cases} (2x-y+2)(2x+y)+6x-3y=-6&\\ \sqrt{2x+1}+\sqrt{y-1}=4. \end{cases}$

Giải

Điều kiện $x \ge -\dfrac{1}{2}, y \ge 1$.

Đặt $\begin{cases} u=\sqrt{2x+1}&\\ v=\sqrt{y-1}\end{cases}$. Hệ trở thành

$\begin{cases} (u^2-v^2)(u^2+v^2)+3(u^2-v^2-2)=-6&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} 4(u-v)(u^2+v^2+3)=0&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} u=v&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} u=2&\\ v=2 \end{cases}$

$\Leftrightarrow \begin{cases} x=\dfrac{3}{2}&\\ y=5. \end{cases}$

Vậy hệ có nghiệm duy nhất $\begin{cases} x=\dfrac{3}{2}&\\ y=5. \end{cases}$

Ví dụ 11: Giải hệ phương trình $\begin{cases} x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}&\\ x^4+y^2+xy(1+2x)=-\dfrac{5}{4} \end{cases}$

Giải

Hệ $\Leftrightarrow \begin{cases} x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}&\\ (x^2+y)^2+xy=-\dfrac{5}{4.} \end{cases}$

Đặt $\begin{cases} u=x^2+y&\\ v=xy \end{cases}$. Hệ trở thành $\begin{cases} u+v+uv=-\dfrac{5}{4}&\\ u^2+v=-\dfrac{5}{4}. \end{cases}$

Trừ vế theo vế hai phương trình trên ta được

$u^2-uv-u=0  \Leftrightarrow u(u-v-1)=0 \Leftrightarrow u=0 \ \text{hoặc} \ u=1+v.$

Với $u=0 \Rightarrow v=-\dfrac{5}{4}$.

Với $u=v+1$ thay vào phương trình thứ hai của hệ trên ta được

$4u^2+4u+1=0 \Leftrightarrow u=-\dfrac{1}{2} \Rightarrow v=-\dfrac{3}{2}.$

Trường hợp $\begin{cases} u=0&\\ v=-\dfrac{5}{4} \end{cases}$

$\Leftrightarrow \begin{cases} y=-x^2&\\ x^3=\dfrac{5}{4} \end{cases}$

$\Leftrightarrow \begin{cases} x=\sqrt[3]{\dfrac{5}{4}}&\\ y=-\sqrt[3]{\dfrac{25}{16}} \end{cases}$

Trường hợp  $\begin{cases} u=-\dfrac{1}{2}&\\ v=-\dfrac{3}{2} \end{cases}$

$\Leftrightarrow \begin{cases} x^2+y=-\dfrac{1}{2}&\\ xy=-\dfrac{3}{2} \end{cases}$

$\Leftrightarrow \begin{cases} x^2-\dfrac{3}{2x}=-\dfrac{1}{2}&\\ xy=-\dfrac{3}{2} \end{cases} $

$\Leftrightarrow \begin{cases} x=1&\\ y=-\dfrac{3}{2}. \end{cases}.$

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( 1; -\dfrac{3}{2}\right) ; \left( \sqrt[3]{\dfrac{5}{4}};-\sqrt[3]{\dfrac{25}{16}}\right) \right\} .$

4. Bài tập

Bài 1: Giải các hệ phương trình

a) $\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5&\\ \sqrt{2x+y}+x-y=2. \end{cases}$

b) $\begin{cases} x^2+y^2=\dfrac{1}{2}&\\ 2x^3+6y^2x=1. \end{cases}$

c) $\begin{cases} x^3+3xy^2=-49&\\ x^2-8xy+y^2=8y-17 \end{cases}$

d) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =4&\\ xy+\dfrac{1}{xy}+\dfrac{x^2+y^2}{xy}=4. \end{cases}$

e) $\begin{cases} (x+y)(1+xy)=18xy&\\ (x^2+y^2)(1+x^2y^2)=208x^2y^2 \end{cases}$

f) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =5&\\ xy+\dfrac{1}{xy}=4 \end{cases}$

g) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =6&\\ (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=18 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $ \begin{cases}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3} &\\ (x+y)\left( 1+\dfrac{1}{xy}\right) =6 \end{cases}$

b) $\begin{cases} xy(2x+y-6) +y+2x=0&\\ (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=8 \end{cases}$

c) $\begin{cases}2x^2y+y^2x+2y+x=6xy&\\ xy+\dfrac{1}{xy} +\dfrac{y}{x}+\dfrac{x}{y}=4 \end{cases}$

d) $\begin{cases} x^2y^2+y^4+1=3y^2&\\ xy^2+x=2y \end{cases}$

e) $\begin{cases} 2x+y+\dfrac{1}{x}=4&\\ x^2+xy+\dfrac{1}{x}=3. \end{cases}$

f) $\begin{cases} x^2y+y=2&\\ x^2+\dfrac{1}{x^2}+x^2y^2=3. \end{cases}$

g) $\begin{cases} x^2+y^2+x+y=4xy&\\ \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{y}{x^2}+\dfrac{x}{y^2}=4 \end{cases}$

h) $\begin{cases} x^4+4x^2+y^2-4y=2&\\ x^2y+2x^2+6y=23 \end{cases}$

i) $\begin{cases} \dfrac{1}{x}+\dfrac{1}{y}=9&\\ \left( \dfrac{1}{\sqrt[3]{x}}+\dfrac{1}{\sqrt[3]{y}}\right) \left( 1+\dfrac{1}{\sqrt[3]{x}}\right) \left( 1+\dfrac{1}{\sqrt[3]{y}}\right) =18 \end{cases}$

j) $\begin{cases} x^2(y+z)^2=(3x^2+x+1)y^2z^2&\\ y^2(z+x)^2=(4y^2+y+1)z^2x^2&\\ z^2(x+y)^2=(5z^2+z+1)=x^2y^2 \end{cases}$

Hệ phương trình – Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

 1. Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

Từ một hệ phương trình gồm có hai hay nhiều phương trình, ví dụ $\left\{\begin{array}{l} f(x,y)=0 (1) \\ g(x,y)=0 (2) \end{array} \right.$, ta tạo ra một hệ mới tương đương với hệ đã cho, bằng cách tạo thêm một phương trình dạng $af(x,y) + bg(x,y) = 0$, việc chọn lựa các hệ số $a, b$ đòi hỏi nhiều kinh nghiệm vì phương trình mới tạo ra phải đơn giản hơn, hoặc có ý để giúp giải được hệ.

Hệ đối xứng loại hai là hệ có dạng $\left\{\begin{array}{l} f(x,y)=0\ \ (1) \\ g(x,y)=0 \ \ (2) \end{array} \right.$ trong đó $f(y, x) = g(x,y)$ và $g(y,x) = f(x,y)$. Để giải hệ này ta lấy $(1)$ trừ $(2)$, sau đó xử lý tiếp.

Ví dụ 1:  Giải hệ phương trình $\begin{cases}x+3y=2x^2&\\ y+3x=2y^2 \end{cases}$ $(*)$

Giải

Ta có $(*) \Leftrightarrow \begin{cases} x+3y=2x^2&\\ -2(x-y)=2(x^2-y^2) \end{cases} \Leftrightarrow \begin{cases}x+3y=2x^2 \ \ (1)&\\ 2(x-y)(x+y+1)=0 \ \ (2) \end{cases}$.

Từ (2) suy ra $y=-x-1$ hoặc $x=y$.

Trường hợp $y=-x-1$ thay vào (1) ta được $x+3(-x-1) =2x^2 $ (vô nghiệm).

Trường hợp $x=y $ thay vào (1) ta được $4x=2x^2 \Leftrightarrow 2x(x-2)=0 \Leftrightarrow x=2$ hoặc $x=0$.

Vậy $(x,y)=(2;2)$ hoặc $(x,y)=(0;0)$.

Ví dụ 2: Giải hệ phương trình $\begin{cases} x^3+1=2y&\\ y^3+1=2x. \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^3+1=2y&\\(x-y)(x^2+xy+y^2)=-2(x-y) \end{cases}$

$\Leftrightarrow \begin{cases} x^3+1=2y \ \ (1)&\\ (x-y)(x^2+xy+y^2+2)=0 \ \ (2) \end{cases}$

$(2) \Leftrightarrow x=y$ hoặc $x^2+xy+y^2+2=0$.

Trường hợp $x=y $ thay vào (1) ta được $x^3-2x+1=0 \Leftrightarrow (x-1)(x^2+x-1)=0.$

Suy ra $ x=1$ hoặc $x=\dfrac{-1 \pm \sqrt{5}}{2}.$

Trường hợp $x^2+xy+y^2+2=0 \Leftrightarrow (x-\dfrac{y}{2})^2+\dfrac{3y^2}{4}+2=0$ (vô nghiệm)

Vậy hệ có nghiệm $(x,y)=(1,1)$ hoặc $(x,y)=(\dfrac{-1 \pm \sqrt{5}}{2}, \dfrac{-1 \pm \sqrt{5}}{2}).$

Ví dụ 3: Giải hệ phương trình $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases} $ $(*)$

Giải

Điều kiện $xy \ne 0$.

$(*) \Leftrightarrow \begin{cases} 3x^2y=y^2+2&\\ 3xy^2=x^2+2 \end{cases} $

$\Leftrightarrow \begin{cases} 3yx^2=y^2+2 \ \ (1) &\\ 3xy(x-y)=-(x-y)(x+y) \ \ (2) \end{cases} $

$(2) \Leftrightarrow (x-y)(x+y+3xy)=0$.

Trường hợp $x=y$, thay vào (1) ta được $3x^3-x^2-2=0\\ \Leftrightarrow (x-1)(3x^2+2x+2)=0$

$\Leftrightarrow x=1$ hoặc $3x^2+2x+2=0$ (vô nghiệm).

Vậy $(x,y)=(1,1)$.

Trường hợp $x+y+3xy=0$ không xảy ra. Thật vậy, để ý rằng từ hệ phương trình đã cho nếu có nghiệm $(x,y)$ thì $x,y>0$ do đó $x+y+3xy>0$.

Vậy hệ có nghiệm $(x,y)=(1,1).$

Trên đây là các hệ phương trình đối xứng loại hai, sau đây ta xét các ví dụ về một số hệ không mẫu mực khác, sử dụng phương pháp cộng đại số. Chú ý, tạo ra phương trình mới thì phương trình mới có thể xuất hiện hằng đẳng thức, phân tích thành nhân tử được…

Ví dụ 4: Giải hệ phương trình $\begin{cases} x^2+6y=6x&\\ y^2+9=2xy \end{cases}$

Giải

Lấy phương trình $(1)$ cộng phương trình $(2)$ ta có $x^2 + y^2 -2xy + 6(y-x) + 9 = 0 \Leftrightarrow (y-x+3)^2 = 0 \Leftrightarrow y = x -3$.

Thế vào $(1)$ ta có: $x^2 + 6(x-3) = 6x \Leftrightarrow x = 3\sqrt{2}, x=-3\sqrt{2}$.

Với $x = 3\sqrt{2} \Rightarrow y = 3\sqrt{2}-3$.

Với $x = -3\sqrt{2} \Rightarrow y = -3\sqrt{2}-3$.

Vậy hệ có hai nghiệm $(x;y)$ là $(3\sqrt{2};3\sqrt{2}-3); (-3\sqrt{2};-3\sqrt{2}-3)$.

Ví dụ 5: Giải hệ phương trình $\begin{cases}x^2+y^2+xy=3&\\ x^2+2xy=7x+5y-9. \end{cases}$

Giải

Cộng vế theo theo vế hai phương trình ta được

$ 2x^2+y^2+3xy-7x-5y+6=0 $

$\Leftrightarrow y^2+(3x-5)y+2x^2-7x+6=0$

$\Leftrightarrow y^2+(3x-5)y+(2x-3)(x-2)=0$

$\Leftrightarrow (y+2x-3)(y+x-2)=0$

$\Leftrightarrow y+2x-3=0 \ \text{hoặc } \ y+x-2=0.$

Trường hợp $\begin{cases} y+2x-3=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases} y=3-2x&\\ 3x^2-9x+6=0. \end{cases}$.

Ta được $\begin{cases} x=1&\\ y=1 \end{cases}$ hoặc $\begin{cases} x=2&\\ y=-1. \end{cases}$

Trường hợp $\begin{cases} y+x-2=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases}y=2-x&\\ x^2-2x+1=0 \end{cases} \Leftrightarrow \begin{cases}x=1&\\ y=1. \end{cases}$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); (2;-1)\right\} .$

Ví dụ 6: Giải hệ phương trình $\begin{cases} x^2+y^2+4xy=6&\\ 2x^2+8=3y+7x \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^2+y^2+4xy=6&\\ 4x^2+16=6y+14x. \end{cases}$

Cộng vế theo vế của hai phương trình ta được

$5x^2+y^2+4xy-6y-14x+10=0$

$\Leftrightarrow (x-1)^2+(2x+y-3)^2=0 $

$\Leftrightarrow \begin{cases}x=1&\\ 2x+y=3 \end{cases}$

$\Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Ví dụ 7: Giải hệ phương trình $\begin{cases} x^2y+2x+3y=6&\\ 3xy+x+y=5 \end{cases}$.

Giải

Trừ vế theo vế hai phương trình ta được $x^2y-3xy+x+2y-1=0.$

Dễ thấy với $y=0$ thì $(x,0)$ không thể là nghiệm của hệ nên ta chỉ xét $y \ne 0$.

Chia hai vế của phương trình trên cho $y$ ta được

$ x^2-3x+\dfrac{x}{y}+2-\dfrac{1}{y}=0$

$\Leftrightarrow x^2 -(3-\dfrac{1}{y})x+(2-\dfrac{1}{y})=0$

$\Leftrightarrow (x-1)(x+\dfrac{1}{y}-2)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x+ \dfrac{1}{y}-2=0.$

Trường hợp $\begin{cases}x=1&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Trường hợp $\begin{cases}x+\dfrac{1}{y}-2=0&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x+\dfrac{1}{y}=2&\\3x+\dfrac{x}{y}+1=\dfrac{5}{y}. \end{cases}$

Suy ra $\dfrac{1}{y}=2-x$ và $3x+x(2-x)+1=5(2-x) \Leftrightarrow x^2-10x+9=0 \Leftrightarrow x=1 \ \text{hoặc} \ x=9.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); \left( 9, -\dfrac{1}{7}\right) \right\} $.

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+2xy+2y^2+3x=0&\\ xy+y^2+3y+1=0. \end{cases}$

Giải

Lấy phương trình thứ nhất cộng hai lần phương trình thứ hai ta được

$(x+2y)^2+3(x+2y)+2=0$

$\Leftrightarrow (x+2y+1)(x+2y+2)=0.$

Trường hợp $x+2y+1=0 \Leftrightarrow x=-2y-1$ thay vào phương trình thứ hai của hệ ta được

$ y^2-2y-1=0 \Leftrightarrow y=1 \pm \sqrt{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Trường hợp $x+2y+2=0 \Leftrightarrow x=-2y-2$ thay vào phương trình thứ hai của hệ ta được

$y^2-y+1=0 \Leftrightarrow y=\dfrac{1 \pm \sqrt{5}}{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( -3-2\sqrt{2}; 1+\sqrt{2}\right) ; \left( -3+2\sqrt{2}; 1-\sqrt{2}\right) ; \left( -3+\sqrt{5}; \dfrac{1-\sqrt{5}}{2}\right) ;  \left( -3-\sqrt{5}; \dfrac{1+\sqrt{5}}{2}\right) \right\} $.

Ví dụ 9: Giải hệ phương trình $\begin{cases} x^3(2+3y)=1&\\ x(y^3-2)=3. \end{cases}$

Giải

Dễ thấy $x \ne 0.$

Khi đó hệ tương đương $\begin{cases} 2+3y=\dfrac{1}{x^3}&\\ y^3-2=\dfrac{3}{x} \end{cases}$

Cộng vế theo vế của hệ phương trình ta được

$y^3+3y=\dfrac{1}{x^3}+\dfrac{3}{x}$

$\Leftrightarrow y^3-\dfrac{1}{x^3}+3\left( y-\dfrac{1}{x}\right) =0 $

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left( y^2+\dfrac{1}{x^2}+\dfrac{y}{x}+3\right) =0$

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left[ \left( y+\dfrac{1}{2x}\right) ^2+\dfrac{3}{4x^2}+3\right] =0$

$\Leftrightarrow y=\dfrac{1}{x}.$

Thay vào phương trình thứ hai của hệ ta được

$\dfrac{1}{x^3}-2=\dfrac{3}{x} \Leftrightarrow 2x^3+3x^2-1=0 \Leftrightarrow x=-1 \ \text{hoặc} \ x=\dfrac{1}{2}.$

Với $x=-1$ ta được $y=-1$, với $x=\dfrac{1}{2}$ ta được $y=2$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-1;-1); \left( \dfrac{1}{2};2\right)\right\}  $.

2. Bài tập rèn luyện

Bài 1: Giải các hệ phương trình sau:

a) $\begin{cases} x^2-2x-y-1=0&\\ y^2-2y-x-1=0 \end{cases}$

b) $\begin{cases} x^3+3x=8y&\\ y^3+3y=8x \end{cases}$

c)  $\begin{cases} x^3=5x+y&\\ y^3=5y+x  \end{cases}$

d) $\begin{cases} x-3y=4\dfrac{y}{x}&\\ y-3x=4\dfrac{x}{y}  \end{cases}$

e) $\begin{cases} xy+x^2=1+y&\\ xy+y^2=1+x \end{cases}$

f) $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases}$

g) $\begin{cases} 3x^3=x^2+2y^2&\\ 3y^3=y^2+2x^2 \end{cases}$

h) $\begin{cases} 3x^2y-y^2-2=0&\\ 3y^2x-x^2-2=0 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} x+\sqrt{y+3} =3&\\ y+\sqrt{x+3}=3 \end{cases}$.

b) $\begin{cases} \sqrt{x+5}+\sqrt{y-2}=7&\\ \sqrt{y+5}+\sqrt{x-2}=7 \end{cases}$

c) $\begin{cases} \sqrt{x}+\sqrt{2-x}=\sqrt{2}&\\ \sqrt{y}+\sqrt{2-x}=\sqrt{2} \end{cases}$

d) $\begin{cases} x \sqrt{1+y^2}+y \sqrt{1+x^2}=2&\\ x \sqrt{1+x^2}+y\sqrt{1+y^2}=2 \end{cases}$

e) $\begin{cases} \sqrt{x^2+3}+2\sqrt{x}=3\sqrt{y}&\\ \sqrt{y^2+3}+2\sqrt{y}=3\sqrt{x} \end{cases}$

f) $\begin{cases} x+\dfrac{2}{y}=\dfrac{3}{x}&\\ y+\dfrac{2}{x}=\dfrac{3}{y} \end{cases}$

g) $\begin{cases} 2x+3\sqrt{5-y}=8&\\ 2y+3\sqrt{5-x}=8 \end{cases}$

h) $\begin{cases} \sqrt[3]{3x+5}=y+1&\\ \sqrt[3]{3y+5}=x+1 \end{cases}$

i) $\begin{cases} x+1=\sqrt{2+\sqrt{y+3}}&\\ y+1=\sqrt{2+\sqrt{x+3}} \end{cases}$

Bài 3: Giải các hệ phương trình sau

a) $\begin{cases} x^2(1-2y)=y^2(4x+2y)&\\ 2x^2+xy-y^2=x \end{cases}$

b) $\begin{cases} x^2(y^2+1)=2&\\ x^2y^2+xy+1=3x^2 \end{cases}$

c) $\begin{cases} x^2+2=x(y-1)&\\ y^2-7=y(x-1) \end{cases}$

d) $\begin{cases} 4x^2+y^4-4xy^3=1&\\ 2x^2+y^2-2xy=1 \end{cases}$

Bài 4: Giải các hệ phương trình sau:

a) $\begin{cases} x^2+2xy+y=4&\\ x^2+xy+2y+x=5 \end{cases}$

b) $\begin{cases} 2x^2+2xy+y=5&\\ y^2+xy+5x=7 \end{cases}$

c) $\begin{cases} x^2+y^2+xy=3&\\ y^2-xy+5x+4y=9 \end{cases}$

d) $\begin{cases} x^2+y^2=2&\\ 4(x+y)-x^2y^2=7 \end{cases}$

e) $\begin{cases} x^2+y^2+x+y=4&\\ x^2+2xy+9=7x+5 \end{cases}$

Bài 5: Giải hệ phương trình $\begin{cases} x^2+7=5y-6z&\\ y^2+7=10z+3x&\\ z^2+7=-x+3y \end{cases}$

Bài 6: Giải hệ phương trình $\begin{cases} x^3+3xy^2+3xz^2-6xyz=1&\\ y^2+3yx^2+3yz^2-6xyz=1&\\ z^3+3zy^2+3zx^2-6xyz=1. \end{cases}$

Bài 7: Giải hệ phương trình $\begin{cases} (x-2y)(x-4z)=3&\\ (y-2z)(y-4x)=5&\\ (z-2x)(z-4y)=-8. \end{cases}$

Bài 8: Giải hệ phương trình $\begin{cases} x(yz-1)=3&\\ y(zx-1)=4&\\ z(xy-1)=5. \end{cases}$

Bài 9: Giải hệ phương trình $\begin{cases}ab+c+d=3&\\ bc+d+a=5&\\ cd+a+b=2&\\ da+b+c=6 \end{cases}$

Bài 10: Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\  x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\\ …&\\ x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1 \end{cases}$

Hệ phương trình – Phương pháp thế

Trong chương này đề cập đến một số phương pháp giải hệ phương trình cơ bản nhất: Phương pháp thế, phương pháp cộng đại số, phương pháp ẩn phụ, và phương pháp đánh giá. Qua các phương pháp chúng ta cũng đi qua một số dạng phương trình mẫu mực như: hệ phương trình đối xứng loại một, loại hai, hệ đẳng cấp, hệ hoán vị vòng quanh,…Ngoài ra là các hệ không mẫu mực ở mức độ vừa phải, không quá xấu về mặt hình thức, phù hợp với các bạn THCS.

1. Phương pháp thế

Nội dung phương pháp: Từ một trong các phương trình, tính được một hoặc nhiều biến theo một hoặc nhiều biến khác, sau đó thế hết vào các phương trình còn lại để số biến sẽ giảm lại.

Trong các phương pháp giải hệ phương trình thì Phương pháp thế là phương pháp quan trọng và được sử dụng nhiều nhất. Mục tiêu của việc thế là đưa hệ nhiều ẩn thành hệ ít ẩn hơn, hoặc đưa về phương trình một ẩn, từ đó có thể giải được bài toán.

Ví dụ 1: Giải hệ phương trình $ \left\{\begin{array}{l} x + 2y = 3\\ x^2-3y^2 + 4xy=2 \end{array} \right. $

Giải

$\left\{\begin{array}{l} x + 2y = 3 (1) \\x^2-3y^2 + 4xy=2 (2) \end{array} \right.$

Từ (1) ta có $x = 3-2y$, thế vào (2) ta có:

$(3-2y)^2-3y^2 + 4(3-2y)y = 2 \Leftrightarrow y^2 = 1 \Leftrightarrow \left[\begin{array}{l} y = 1\\ y=-1 \end{array} \right.$

Với $y = 1 \Rightarrow x = 1$.

Với $y = -1 \Rightarrow x = 5$.

Vậy hệ có 2 nghiệm $(x;y)$ là $(1;1), (5;-1)$.

Ví dụ 2: Giải hệ phương trình $\left\{ \begin{array}{l} 2x^2+x+y^2=7\\ xy-x+y=3 \end{array} \right.$

Giải

Nếu $x=-1$ thì phương trình thứ hai vô nghiệm.

Xét $x \ne -1.$ Từ phương trình thứ hai ta được

$xy-x+y=3 \Leftrightarrow y=\dfrac{x+3}{x+1}$.

Thay vào phương trình đầu của hệ ta được

$2x^2+x+\left( \dfrac{x+3}{x+1}\right) ^2=7$

$\Leftrightarrow (2x^2+x-6)+\left[ \left( \dfrac{x+3}{x+1}\right)^2 -1\right] =0$

$\Leftrightarrow (x+2)(2x-3)+\dfrac{4}{(x+1)^2}(x+2)=0$

$\Leftrightarrow x=-2 \ \text{hoặc} \ 2x^3+x^2-4x+1=0.$

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-1$.

Trường hợp $2x^3+x^2-4x+1=0  \Leftrightarrow (x-1)(2x^2+3x-1)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x=\dfrac{-3 \pm \sqrt{17}}{4}.$

Với $x=1$ thay vào phương trình thứ hai ta được $y=2.$

Với $x=\dfrac{-3 \pm \sqrt{17}}{4}$ thay vào phương trình thứ hai của hệ ta được $y=\dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-2;-1), (1;2), \left(\dfrac{-3\pm \sqrt{17}}{4}; \dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}\right)\right\} .$

Ví dụ 3: Giải hệ phương trình $\left\{\begin{array}{l} 2x^2y+3xy=4x^2+9y\\ 7y+6=2x^2+9x. \end{array} \right.$

Giải

Từ phương trình thứ hai suy ra $y=\dfrac{2x^2+9x-6}{7}$.

Thay vào phương trình thứ nhất ta được

$2x^2 \left( \dfrac{2x^2+9x-6}{7} \right) +3x \left(  \dfrac{2x^2+9x-6}{7} \right) =\dfrac{7.4x^2}{7}+9 \left( \dfrac{2x^2+9x-6}{7} \right) $

$\Leftrightarrow (2x^2+9x-6)(2x^2+3x-9)=28x^2$

$\Leftrightarrow 4x^4+24x^3-31x^2-99x+54=0$

$\Leftrightarrow \left( x-\dfrac{1}{2}\right) (x+2)(4x^2+18x-54)=0$

$\Leftrightarrow x=\dfrac{1}{2} \ \text{hoặc} \ x=2 \ \text{hoặc} \ x=\dfrac{-9 \pm \sqrt{33}}{4}.$

Trường hợp $x=\dfrac{1}{2}$ thay vào phương trình thứ hai ta được $y=-\dfrac{1}{7}$.

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-\dfrac{16}{7}$.

Trường hợp $x=\dfrac{-9 \pm \sqrt{33}}{4}$ thay vào phương trình thứ hai ta được $y=3$.

Vậy hệ có nghiệm $(x,y) \in \left\{ \left( \dfrac{1}{2}; – \dfrac{1}{7} \right) ;  \left( -2; -\dfrac{16}{7}\right) ;  \left( \dfrac{-9 \pm \sqrt{33}}{4}; 3\right) \right\} $.

Ví dụ 4: Giải hệ phương trình $\left\{\begin{array}{l} 1+x^3y^3=19x^3\\ y+xy^2=-6x^2. \end{array} \right.$

Giải

Nếu $x=0$ thì hệ vô nghiệm.

Xét $x \ne 0$. Nhân hai vế của phương trình thứ hai cho $x$ ta được $xy+x^2y^2=-6x^3.$

Thay vào phương trình thứ nhất ta được

$-6(1+x^3y^3)=19(xy+x^2y^2)$

$\Leftrightarrow xy=-\dfrac{2}{3} \ \text{hoặc} \ xy=-\dfrac{3}{2} \ \text{hoặc} \ xy=-1.$

Trường hợp $xy=-\dfrac{2}{3}$ thay vào phương trình thứ nhất ta được $\begin{cases} x=\dfrac{1}{3}&\\ y=-2 \end{cases}$.

Trường hợp $xy=-\dfrac{3}{2}$ ta được $\begin{cases}x=-\dfrac{1}{2}&\\y=3. \end{cases}$

Trường hợp $xy=-1$ ta được $x=0$ (loại).

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( \dfrac{1}{3}; -2\right) , \left( \dfrac{-1}{2};3\right) \right\} $.

Một số hệ phương trình nhiều khi phải biến đổi một vài bước thì mới xuất hiện phép thế.

Ví dụ 5:  Giải hệ phương trình $\begin{cases} xy+x+y=x^2-2y^2 &\\ x\sqrt{2y}-y\sqrt{x-1}=2(x-y). \end{cases}$

Giải

Điều kiện $x \ge1, y \ge 0.$

Phương trình thứ nhất tương đương

$(x+y)^2-(x+y)-3y^2-3xy=0$

$\Leftrightarrow (x+y)(x-2y-1)=0$

$\Leftrightarrow x=-y \ \text{hoặc} \ x=2y+1.$

Do $x \ge 1, y \ge 0$ nên trường hợp $x=-y$ không thể xảy ra.

Xét $x=2y+1$ thay vào phương trình thứ hai ta được

$(2y+1)\sqrt{2y}-y\sqrt{2y}=2y+2$

$\Leftrightarrow (y+1)(\sqrt{2y}-2)=0$

$\Leftrightarrow y=2 \ (\text{do} \ y \ge 0)$

Suy ra $x=5$.

Vậy hệ có nghiệm $(x,y)=(5,2).$

Trong ví dụ trên thì từ một phương trình ta phân tích thành thừa số, từ đó có những phương trình đơn giản hơn và sử dụng phương pháp thế.Ta xét tiếp ví dụ sau:

Ví dụ 6: Giải hệ phương trình $\begin{cases} xy+x-2=0&\\ 2x^3-x^2y+x^2+y^2-2xy-y=0. \end{cases}$

Giải

$2x^3-x^2y+x^2+y^2-2xy-y=0$

$\Leftrightarrow (x^2-y)(2x-y+1)=0$

$\Leftrightarrow y=x^2 \ \text{hoặc} \ y=2x+1.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1,1), \left( \dfrac{-1 \pm \sqrt{5}}{2}, \pm \sqrt{5}\right) \right\} $.

Ví dụ 7:  Giải hệ phương trình $\begin{cases} y^2=(5x+4)(4-x)&\\ y^2-5x^2-4xy+16x-8y+16=0 \end{cases}$

Giải

Viết lại phương trình thứ hai của hệ dưới dạng $ y^2-(4x+8)y-5x^2+16x+16=0.$

Coi đây là phương trình bậc hai theo $y$ ta được $\Delta=(4x+8)^2-4(-5x^2+16x+16)=36x^2.$

Suy ra $y=\dfrac{4x+8+6x}{2}=5x+4$ hoặc $y=\dfrac{4x+8-6x}{2}=4-x.$

Trường hợp $y=5x+4$ thay vào phương trình đầu của hệ ta được $x(5x+4)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=-\dfrac{4}{5}.$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), \left( -\dfrac{4}{5},0\right) \right\} $.

Trường hợp $y=4-x$ thay vào phương trình thứ nhất của hệ ta được $$x(4-x)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=4.$$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0)\right\} $.

Vậy hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0), \left( -\dfrac{4}{5},0\right) \right\} $.

Ngoài cách phân tích thành nhân tử, ta còn có một số biến đổi khác phức tạp hơn, ta xét các ví dụ sau:

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+y^2=x-y&\\ y^3-x^3=y-x^2 \end{cases}$.

Giải

Ta có $\begin{cases} x^2+y^2=x-y\\ y^3-x^3=y-x^2 \end{cases} $

$\Leftrightarrow \begin{cases} x(x-1)=-y(y+1)&\\ y(y-1)(y+1)=x^2(x-1). \end{cases}$

Thay phương trình thứ hai vào phương trình thứ nhất ta được

$ -x(x-1)(y-1)=x^2(x-1)$

$\Leftrightarrow x(x-1)(x+y-1)=0$

$\Leftrightarrow x=0 \ \text{hoặc} \ x=1 \ \text{hoặc} \   x=1-y.$

Trường hợp $x=0$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1-y$ thay vào phương trình thứ nhất ta được $y=0.$

Ví dụ 9: Giải phương trình $\begin{cases} (x-y)^4=13x-4&\\ \sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}. \end{cases}$

Giải

Điều kiện $\begin{cases} x+y \ge 0&\\ 3x-y \ge 0. \end{cases}$

Khi đó $\sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}$

$\Leftrightarrow x+y+3x-y+2\sqrt{(x+y)(3x-y)}=2$

$\Leftrightarrow 1-2x=\sqrt{(x+y)(3x-y)}$

$\Leftrightarrow \begin{cases} 4x^2-4x+1=3x^2+2xy-y^2&\\ x \le \dfrac{1}{2} \end{cases}$

$\Leftrightarrow \begin{cases} (x-y)^2=4x-1&\\ \dfrac{1}{4} \le x \le \dfrac{1}{2}. \end{cases}$

Thay vào phương trình đầu của hệ ta được

$(4x-1)^2=13x-4$

$\Leftrightarrow 16x^2-21x+5=0$

$\Leftrightarrow x=\dfrac{5}{16} \ \text{hoặc} \ x=1 \ \text{(loại)}.$

Với $x=\dfrac{5}{16}$ thì $y=-\dfrac{3}{16}$.

Vậy hệ có nghiệm $(x;y)$ là $\left(\dfrac{5}{16}; -\dfrac{3}{16}\right).$

2. Bài tập 

Bài 1: Giải các hệ phương trình sau

a) $\begin{cases} \sqrt{x+y}+\sqrt{2x-4}=5&\\ 2x+y=14 \end{cases}$

b) $\begin{cases} x+y=-1&\\ x^3-3x=y^3-3y& \end{cases}$

c) $\begin{cases} x^2y+2(x^2+y)=8&\\ xy+x+y=5 \end{cases}$

d) $\begin{cases} x^2+5x+y=9&\\ 3x^3+x^2y+2xy+6x^2=18 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} y^2-xy+1=0&\\ x^2+y^2+2x+2y+1=0& \end{cases}$

b) $\begin{cases} x^3-2xy+5y=7&\\ 3x^2-2x+y=3& \end{cases}$

c) $\begin{cases} x-\sqrt{y+1}=\dfrac{5}{2}&\\ y+2(x-3)\sqrt{x+1}=-\dfrac{3}{4}& \end{cases}$

d) $\begin{cases} x^4+2x^3y+x^2y^2=2x+9&\\ x^2+2xy=6x+6& \end{cases}$

e) $\begin{cases} x^2+1+y(y+x)=4y&\\ (x^2+1)(y+x-2)=y& \end{cases}$

f) $\begin{cases} x(x+y+1)-3=0&\\ (x+y)^2-\dfrac{5}{x^2}+1=0& \end{cases}$

Bài 3: Giải các hệ phương trình sau:

a) $\begin{cases}x-2y-\sqrt{xy}=0&\\ \sqrt{x-1}+\sqrt{4y-1}=2 \end{cases}$

b) $\begin{cases} \sqrt{2x-3}=(y^2+2018)(5-y)+\sqrt{y}&\\ y(y-x+2)=3x+3 \end{cases}$

c) $\begin{cases} 2x^2+4xy+2y^2+3x+3y-2=0&\\ x^2+y^2+4xy+2y=0 \end{cases} $

d) $\begin{cases} 2x^2+xy-y^2-5x+y+2=0&\\ x^2+y^2+x+y-4=0 \end{cases}$

e) $\begin{cases} 2x^2-5xy+3y^2=0&\\ x^2-2xy=-1& \end{cases}$

f) $\begin{cases} x^3+3x^2y+3xy^2+2y^3=0&\\ 4x^2+y^2=5& \end{cases}$

Bài 4: Giải các hệ phương trình sau

a) $\begin{cases} x+\dfrac{1}{x}=y+\dfrac{1}{y}&\\ x+2y=3& \end{cases}$

b) $\begin{cases} x^3-4y^3=6x^2y-9xy^2&\\ \sqrt{x+y}+\sqrt{x-y}=2& \end{cases}$

c) $\begin{cases} -x^2y+2xy^2+3y^3-4(x+y)=0&\\ xy(x^2+y^2) -1=3xy-(x+y)^2 \end{cases}$

d) $\begin{cases} \sqrt{x-1}+\sqrt{x}(3\sqrt{x}-y)+x\sqrt{x}=3y+\sqrt{y-1}&\\ 3xy^2+4=4x^2+2y+x \end{cases}$

e) $\begin{cases} x^2+y^2+\dfrac{2xy}{x+y}=1&\\ \sqrt{x+y}=x^2-y \end{cases}$

f) $\begin{cases} y^2-x\sqrt{\dfrac{y^2+2}{x}}=2x-2&\\ \sqrt{y^2+1}+\sqrt[3]{2x-1}=1 \end{cases}$

Bài 5: Giải các hệ phương trình sau:

a) $\begin{cases} 2x^2+y^2-3xy+3x-2y+1=0&\\ 4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}& \end{cases}$

b) $\begin{cases} 6\dfrac{x}{y}-2=\sqrt{3x-y}+3y&\\ 2\sqrt{3x+\sqrt{3x-y}}=6x+3y-4. \end{cases}$