Tag Archives: HinhHoc

Ý tưởng chuyển đổi mô hình trong các bài toán hình học phẳng

(Bài viết của Đào Sơn Trà – SV ĐHSP TPHCM)

 

Giới thiệu ý tưởng

Trong tam giác $ABC$ nhọn có $D,E,F$ là các chân đường cao và $H$ là trực tâm. Khi đó:

a) $H$ là tâm đường tròn nội tiếp tam giác $DEF$.
b) $A,B,C$ là tâm bàng tiếp của tam giác $DEF$.

Từ đây ta có thể đổi giữa hai mô hình “bàng tiếp – trực tâm” để xem cách tiếp cận nào thuận lợi hơn để xử lý bài toán. Tất nhiên trong tình huống tam giác tù hoặc vuông cũng có các kết quả tương tự nhưng để đơn giản, ta không đề cập ở đây. Trong các ví dụ, bài tập bên dưới, ta quy ước xét các tam giác nhọn, không cân:

Ví dụ 1.
Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng các đường thẳng $DH,EK,FL$ đồng quy; các đường thẳng $AH,BK,CL$ đồng quy.

Ta phát biểu lại bài toán như sau: Cho tam giác $DEF$ có $A,B,C$ lần lượt là tâm đường tròn bàng tiếp góc $D,E,F$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng $DH,EK,FL$ đồng quy và $AH,BK,CL$ cũng đồng quy.
Lời giải.

Sau khi chuyển đổi mô hình ta có thể dễ dàng chứng minh được ý a) $DH,EK,FL$ đồng quy (tại điểm Nagel của tam giác $DEF$) bằng cách kết hợp tính chất đường tròn bàng tiếp và định lý Ceva.

Với ý b) ta có: $EF$ là phân giác $\angle DEF$ nên $\angle FEA=\angle DEC$ suy ra $$90^\circ – \angle FEA = 90^\circ – \angle DEC \Rightarrow \angle HAC= \angle LCA$$

Gọi $O$ là giao điểm của $HA$ và $CL$. Khi đó: $$\angle AOC=180^\circ-2\angle HAC=2(90^\circ -\angle HAC)=2\angle BAC$$
nên $AH,CL,BK$ đồng quy tại tâm $(ABC)$.

Ví dụ 2.
Cho tam giác $ABC$ nội tiếp đường tròn $(O;R)$ có $BE,CF$ là hai phân giác cắt nhau tại $I$. $EF$ cắt đường tròn $(O)$ tại hai điểm $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $IMN$ bằng $2R$.

Ở ví dụ này không xuất hiện trực tiếp yếu tố “trực tâm” hay “tâm bàng tiếp” nhưng ta vẫn có thể vận dụng ý tưởng trên bằng cách xem tâm nội $I$ của tam giác $ABC$ là trực tâm của tam giác tạo bởi $3$ tâm đường tròn bàng tiếp. Cụ thể, ví dụ trên tương đương với bài toán sau:

Cho tam giác $ABC$ nội tiếp $(O;R)$ có đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $K,L$ lần lượt là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. $KL$ cắt đường tròn $Euler$ của tam giác $ABC$ tại $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $HMN$ bằng $R$.

Lời giải.
Do tứ giác $BDHF$ và $DCEH$ nội tiếp nên ta có:
$$\overline {LD} \cdot \overline {LF} = \overline {LH} \cdot \overline {LB} \Rightarrow P_{L/(DEF)} = P_{L/(BHC)}$$

$$\overline {KC} \cdot \overline {KH} = \overline {KD} \cdot \overline {KE} \Rightarrow P_{K/(DEF)} = P_{K/(BHC)}$$
suy ra $LK$ là trục đẳng phương của $(DEF)$ và $(BHC)$ nên $M,N$ nằm trên $(BHC)$.

Theo tính chất quen thuộc thì $(BHC)$ đối xứng với $(ABC)$ qua $BC$ nên bán kính $(HMN)$ cũng bằng $R$.

Bài tập vận dụng
Bài 1. Cho tam giác $(ABC)$ nội tiếp đường tròn $(O)$. Gọi $M,N,P$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$. Giả sử $BC$ cắt $NP$ tại $R$ và $T$ là trung điểm cung lớn $BC$ của $(O)$. Chứng minh rằng $MT \bot IR$ với $I$ là tâm đường tròn nội tiếp tam giác $ABC$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $A,B,C$ lần lượt là chân đường cao kẻ từ $M,N,P$. $BC$ cắt $NP$ tại $R$. Gọi $T$ là trung điểm cung lớn $BC$ của $(ABC)$. Chứng minh $MI \bot IR$.

Dễ thấy $(ABC)$ là đường tròn $Euler$ của tam giác $MNP$ và $T$ là trung điểm $NP$. Ta sẽ chứng minh $IR$ là trục đẳng phương của $(TM)$ và $(BC)$. \medskip

Ta có:

$$\overline {RA} \cdot \overline {RT} = \overline {RC} \cdot \overline {RB} \Rightarrow P_{R/(NP)} = P_{R/(MT)}$$
$$\overline {IA} \cdot \overline {IM} = \overline {IB} \cdot \overline {IN} \Rightarrow P_{I/(NP)} = P_{I/(MT)}$$

Vậy $IR$ là trục đẳng phương của $(MT)$ và $(NP)$ nên $IR \bot MT$

Bài 2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có phân giác $BE,CF(E \in AC, F \in AB)$. Giả sử $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $M$ là tâm đường tròn bàng tiếp góc $A$. Chứng minh $MO \bot EF$.

Lời giải
Ta phát biểu lại bài toán trên dưới mô hình trực tâm như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $MA,NB,PC$ là các đường cao. Gọi $NB$ cắt $AC$ tại $E$, $AB$ cắt $PC$ tại $F$. Gọi $O$ là tâm đường tròn $Euler$ của tam giác $MNP$. Chứng minh $MO \bot EF$.

Gọi $O_2$ là tâm ngoại tiếp tam giác $NIP$ thì dễ thấy rằng $O_2$ đối xứng với $O_1$ qua $NP$. Gọi $T$ là trung điểm $NP$ thì $MI = 2O_1T = O_1O_2$. Mà $O_1O_2 \parallel MI$ nên kéo theo tứ giác $MIO_2O_1$ là hình bình hành. Vì thế nên $MO_2$ đi qua trung điểm của $IO_1,$ cũng chính là tâm đường tròn Euler $O$ của tam giác $MNP$.

Tiếp theo, ta thấy rằng

$\overline {EA} \cdot \overline {EC} = \overline {EN} .\overline {EI}$ $\Rightarrow P_{E/(O)} = P_{E/(O_2)}$
$\overline {FA} \cdot \overline {FB} = \overline {FN} \cdot \overline {FI} \Rightarrow P_{F/(O)} =P_{F/(O_2)}$

Suy ra $EF$ là trục đẳng phương của $(O)$ và $(O_2)$ nên $EF \bot OO_2$.

Từ hai điều trên, ta có $EF$ vuông góc với $MO$.

 

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và tâm nội tiếp $I$. Đường tròn bàng tiếp $(L)$ của đỉnh $C$ của tam giác $ABC$ tiếp xúc với $AB$ tại $M$. $MI$ cắt $BC$ tại $N$. $P$ là hình chiếu của $C$ lên $LB$. Chứng minh rằng $AI$ và $NP$ cắt nhau trên $(O)$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $JKL$ có các đường cao $JA,KB,LC$. Gọi $I$ là trực tâm tam giác $JKL$. Gọi $M$ là hình chiếu của $L$ lên $AB$, $P$ là hình chiếu của $C$ lên $JL$. $MI$ cắt $BC$ tại $N$. Chứng minh rằng $NP$ cắt $JA$ trên đường tròn $Euler$ của tam giác $JKL$.

Gọi $R$ là giao điểm của $JA$ và $NP$. Dễ thấy việc chứng minh $R$ nằm trên đường tròn $Euler$ của tam giác $JKL$ tương đương với việc chứng minh $R$ là trung điểm $IJ$.

Ta có $\Delta LAB \sim \Delta CJB$ mà $LM,CP$ lần lượt là các đường cao nên $\frac{BM}{MA}=\frac{BP}{PJ}$ suy ra $MP \parallel AJ$.

Do $M,I,N$ thẳng hàng nên $P(BI,MN)=B(PI,MN)=B(JK,AC)=-1$ kết hợp với $MP \parallel AJ$ suy ra $R$ là trung điểm $IJ$. Bài toán đã được chứng minh.

Bài 4. Cho tam giác $ABC$ có đường cao $BD,CE$ cắt nhau tại $I$. Chứng minh rằng $AI$ đi qua tâm $Euler$ của tam giác $IDE$.

Lời giải
Dựa vào bổ đề ở \textbf{bài tập 2} ta có thể chuyển bài toán về mô hình sau: \medskip

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $P,Q$ là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. Lấy $K$ là trực tâm tam giác $HPQ$. Gọi $L$ là tâm $(PKQ)$. Chứng minh $L$ nằm trên $AD$.

Ta có: $$\angle LQP=\frac{180^\circ-\angle QLP}{2}=\frac{180^\circ-2\angle QKP}{2}=90^\circ-\angle QKP=\angle HPK=\angle HCA =\angle LDP$$

Suy ra $QLPD$ nội tiếp. Lại có $LP=LQ$ nên $DL$ là phân giác góc $EDF$ nên $L$ thuộc $AD$. Vậy bài toán đã được chứng minh.

Bài 5.  Chọn đội tuyển 30/4 PTNK 2016 Cho $(O)$ và dây cung $BC$ cố định, điểm $C$ di động. Gọi $I,I_a,I_b$ lần lượt là tâm nội tiếp, tâm bàng tiếp góc $A,B$ của tam giác $ABC$. Gọi $M$ là điểm đối xứng với $I$ qua $O$.

a) Chứng minh rằng $MI_a=MI_b$.
b) Gọi $H,K$ là hình chiếu của $I_b,I_a$ lên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ cắt đường thẳng qua $K$ vuông góc với $AI_b$ ở $T$, chứng minh rằng $T$ thuộc đường tròn cố định.

Lời giải
Nhận xét: Khi chuyển đổi sang mô hình trực tâm, giả sử $I_c$ là tâm bàng tiếp góc $C$ của tam giác $ABC$. Ta có $I,O$ lần lượt là trực tâm và tâm đường tròn $Euler$ tam giác $I_aI_bI_c$ nên $M$ là tâm $(I_aI_bI_c)$ từ đó $MI_a=MI_b$. Vậy ta đã giải quyết được ý a) của bài toán.

Ý b) của bài toán sau khi chuyển đổi mô hình, ta có thể dự đoán được $T$ di chuyển trên đường tròn $Euler$ của tam giác $I_aI_bI_c$. Đó là kết quả về cực trực giao của một đường thẳng đi qua tâm ngoại tiếp được phát biểu bởi bài toán sau:

Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$.

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$.\ Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$.

Bài 6. Cho tam giác $ABC$ có phân giác $BE,CF$ cắt nhau tại $I$. Gọi $XP,YQ$ là tiếp tuyến chung ngoài của $(O)$ và $(I_a)$-đường tròn bàng tiếp góc $A$ ($P,Q \in (O)$,$X,Y \in (I_a))$. Chứng minh $P,Q,E,F$ thẳng hàng.

Lời giải
Gọi $I_b,I_c$ là tâm đường tròn bàng tiếp góc $B,C$ để chuyển về mô hình trực tâm thì theo ví dụ I.2 ta cần chứng minh $I,I_c,I_b,P,Q$ cùng nằm trên một đường tròn.

Gọi $M$ là giao điểm của $I_aP$ với $(ABC)$, $K$ là hình chiếu của $O$ lên $XI_a$. \medskip

Theo hệ thức $Euler$ ta có: $$OI_a^2=R^2+2Rr_a$$
suy ra $$PX^2=OK^2=OI_a^2-KI_a^2=R^2+2Rr_a-(r_a-R)^2=4Rr_a-r_a^2$$
ta thu được $PI_a^2=4Rr_a$. Mà $I_aP\cdot I_aM=BI_a^2=OI_a^2-R^2=2Rr_a$. Suy ra $M$ là trung điểm $PI_a$.

Do $(O),I$ là đường tròn $Euler$ và trực tâm của tam giác $I_aI_bI_c$ nên theo Bài tập 2 ta có: ${V_{{I_a}}}^2:(O) \to (I{I_b}{I_c});M \to P$ mà $M \in (O)$ nên $P \in (II_bI_c)$.

Tương tự thì $Q \in (II_bI_c)$ nên ta có được điều phải chứng minh.

Bài 7. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $M,N$ là điểm chính giữa cung $BC$ và cung $BAC$ của $(O)$. $NI$ cắt $(O)$ lần thứ hai tại $P$. $MP$ cắt trung trực $AI$ tại $T$. Gọi $S$ là giao điểm tiếp tuyến tại $A$ của $(O)$ với $BC$. Chứng minh rằng $TS \parallel AI$.

Lời giải

Gọi $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm. Gọi $X$ là giao điểm của $BC$ và $I_bI_c$. $J$ là giao điểm của $(I_aBIC)$ với $(I_aI_bI_c)$ thì ta có $N,I,J$ thẳng hàng.

Tứ giác toàn phần $BCI_bI_cI_aX$ nội tiếp nên $J$ là điểm Miquel và $I_a,J,X$ thẳng hàng mà $\angle IJI_a =90^\circ$ suy ra tứ giác $AIJX$ nội tiếp.

Ta có: $$\angle MPJ =\angle I_aJI = 90^\circ$$ suy ra $MP \parallel I_aJ$. Lại có $M$ là trung điểm $JI_a$ nên $P$ là trung điểm $IJ$. Suy ra $T$ là tâm $(AIJX)$. Ta thu được $TX=TA$.

Mà $S$ là tâm $A-Apollonius$ của tam giác $ABC$ nên $SX=SA$. Vậy $ST$ là trung trực của $XA$ nên $ST \bot XA$ suy ra $ST \parallel AI$.

Bài 8. (Trích VN TST 2019) Cho tam giác $ABC$ ngoại tiếp $(O)$ và nội tiếp $(I)$. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(BI,AC),(CI,AB)$. Gọi $P,Q$ lần lượt là trung điểm cung $ABC$ và $ACB$. $PQ$ cắt $BC,EF$ tại $G$ và $H$. $EF$ cắt $BC$ ở $K$. Chứng minh rằng tiếp tuyến ứng với $G$ của tam giác $GHK$ vuông góc với $OI$.

Lời giải
Đây là một bài toán hay và khó. Nếu không có cách tiếp cận chuyển đổi mô hình thích hợp thì việc xử lý các tính chất sẽ gặp nhiều khó khăn. Vận dụng ý tưởng ở Ví dụ I.2 ta chuyển bài toán về mô hình trực tâm như sau:

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CA,AB$. Gọi $BH,CH$ cắt $FD,ED$ lần lượt tại $S,T$. $ST$ cắt $PN$ tại $Y$ và cắt $EF$ tại $Z$. Gọi $X$ là giao điểm của $PN$ và $EF$, $K$ là trung điểm $YZ$. Chứng minh rằng: $XK$ vuông góc với đường thẳng $Euler$ của tam giác $ABC$.

Ta có: $$\overline {XN} .\overline {XP} = \overline {XE} .\overline {XF} \Rightarrow P_{X/(APN)} = {{\mathscr{P}}_{X/\left(AEF \right)}} $$
suy ra $AX$ là trục đẳng phương của $(APN)$ và $(AEF)$ nên $AX \bot OH$.

Gọi $U$ là tâm $Euler$ của tam giác $ABC$ thì theo \textbf{Bài tập 2} ta có $AU \bot ST$.

 

Qua $A$ kẻ đường thẳng song song với $YZ$ cắt $EF$ tại $I$ và cắt $PN$ tại $J$ thì $AU \bot IJ$, áp dụng định lý con bướm cho tứ giác $FPEN$ nội tiếp ta thu được $AJ=AI$. Từ đó suy ra $AX$ đi qua trung điểm $YZ$ dẫn đến $A,X,K$ thẳng hàng nên $XK$ vuông góc với $OH$. Vậy ta thu được điều phải chứng minh.

Bài 9. (Trích VN TST 2016) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $B,C$ cố định, $A$ di động trên cung $BC$ của $(O)$. Các phân giác $BE,CF$ cắt nhau tại $I$. $BE,CF$ cắt đường tròn $(O)$ tại $K,L$. $AI$ cắt $KL$ tại $P$. Gọi $Q$ là một điểm trên $EF$ sao cho $QP=QI$. $J$ nằm trên $(BIC)$ sao cho $IJ \bot IQ$. Chứng minh rằng trung điểm $IJ$ di chuyển trên một đường tròn cố định.

Lời giải
Tiếp tục với ý tưởng Ví dụ I.2 Ta dựng $I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm thì ta thu được $L,K$ lần lượt là trung điểm của $II_c$ và $II_b$.

Gọi $R,S$ là giao điểm của $EF$ với $(O)$(như hình vẽ). $RI,SI$ cắt đường tròn $(O)$ lần thứ hai tại $T,W$. $TW$ cắt $BI$ tại $G$. Đường thẳng qua $I$ vuông góc với $OI$ cắt $LK,BC,SR,TW$ tại $V,U,Q’,X$.

Theo ví dụ 2,ta có $S,R \in (II_bI_c)$. Do đó: $$\angle GTR= \angle ISR=\angle II_bR$$
suy ra tứ giác $GTI_bR$ nội tiếp. Ta thu được $$IG\cdot II_b=IT \cdot IR=IB \cdot IK=\frac{1}{2}IB \cdot II_b$$
suy ra $TW$ đi qua trung điểm $IB$. Tương tự: $TW$ cũng đi qua trung điểm $IC$ nên $TW$ là đường trung bình của tam giác $IBC$.

 

Áp dụng định lý con bướm cho hai dây cung $LC,BK$ cắt nhau tại $I$, ta được $IV=IU$. Tiếp tục áp dụng định lý con bướm cho hai dây cung $SW,TR$, ta được $IX=IQ’$.

Mà $X$ là trung điểm $IU$ nên $Q’$ là trung điểm $IV$ do đó $IQ’=Q’V=Q’P$ suy ra $Q \equiv Q’$. Vậy $OI \bot IQ$. Gọi $O_1$ là trung điểm cung $BC$ không chứa $A$ thì $O_1$ là tâm $(BIC)$. Gọi $M$ là trung điểm $IJ$ khi đó ta có $\angle OMO_1 =90^\circ$ nên $M$ nằm trên $(OO_1)$, là đường tròn cố định. Ta có điều phải chứng minh.

Bài tập tự luyện

  1. Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ là trung điểm của $EF,FD,DE$ và $K$ là tâm nội tiếp tam giác $MNP.$ Gọi $x,y,z$ lần lượt là khoảng cách từ $A\to EF,B\to DF,C\to DE.$ Chứng minh rằng
    $${{x}^{2}}-K{{A}^{2}}={{y}^{2}}-K{{B}^{2}}={{z}^{2}}-K{{C}^{2}}.$$

  2. Cho tam giác $ABC$ có $T$ là trung điểm $BC$ và $X,Y$ là tâm bàng tiếp góc $B,C$ của tam giác $ABC.$ Giả sử $TX$ cắt $AB,AC$ lần lượt tại $M,N,$ còn $TY$ cắt $AB,AC$ lần lượt tại $P,Q.$ Chứng minh rằng $M,N,P,Q$ là các đỉnh của một hình thang ngoại tiếp được đường tròn.

  3. Cho tam giác $ABC$ nội tiếp $(O)$ có tâm nội tiếp $I,$ tâm bàng tiếp góc $A$ là $J.$ Trên các đường thẳng $JB,JC$ lần lượt lấy $M,N$ sao cho $MA=MJ$ và $NA=NJ.$ Đường thẳng $MN$ cắt $IB,IC$ ở $E,F.$ Chứng minh rằng trung tuyến đỉnh $I$ của tam giác $IEF$ chia đôi cung $BAC$ của $(O)$.

  4. Cho tam giác $ABC$ có trực tâm $H$. Đường tròn $(BHC)$ cắt đường tròn Euler của tam giác $ABC$ ở $M,N$. Chứng minh rằng $AM=AN.$

  5. (Bài toán về điểm Bevan) Cho tam giác $ABC$ có $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C.$ Khi đó, ký hiệu $X$ là tâm đường tròn ngoại tiếp tam giác $I_aI_bI_c,$ cũng chính là điểm Bevan của tam giác $ABC$. Gọi $O,I,G,H$ lần lượt là tâm ngoại tiếp, tâm nội tiếp, trọng tâm, trực tâm của tam giác $ABC.$ Chứng minh rằng $O$ là trung điểm của $XI$ và $G$ là trọng tâm của $HIX.$

Tỉ số lượng giác – P3

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, BC= 5$.
Tính $\sin ABC, \cos ABC, \tan ABC, \cot ABC$.
Lời giải.
Ta có $AC = \sqrt{BC^2-AB^2} = \sqrt{5^2-3^2} = 4$.
Khi đó $\sin ABC = \dfrac{AC}{BC} = \dfrac{4}{5}$
Và $\cos ABC = \dfrac{AB}{BC} = \dfrac{3}{5}$;
$\tan ABC = \dfrac{AC}{AB} = \dfrac{4}{3}$;
$\cot ABC = \dfrac{AB}{AC} = \dfrac{3}{4}$.

Bài 2. 
Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 12$.
a) Tính $\sin ABC$.
b) Vẽ đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải.
a) Gọi $M$ là trung điểm cạnh $BC$, ta có $AM \bot BC$.
$MB = \dfrac{1}{2}BC = 6$, suy ra $AM = \sqrt{AB^2-BM^2} = 8$.
$\sin ABC = \dfrac{AM}{AB} = \dfrac{8}{10} = \dfrac{4}{5}$.
b)
Vẽ đường cao $BK$.
Ta có $\triangle CKB \backsim \triangle CMA$, suy ra $\dfrac{BK}{AM} = \dfrac{CB}{AC} \Rightarrow BK = \dfrac{AM\cdot BC}{AC} = \dfrac{48}{5}$.
Khi đó $\sin BAC = \dfrac{BK}{AB} =\dfrac{48}{50} = \dfrac{24}{25}$.

Bài 3. 
Cho tam giác $ABC$ vuông tại $A$ có $AC = 2, \sin ABC = \dfrac{1}{3}$. Tính $AB$.
Lời giải.
Ta có $\sin ABC = \dfrac{AC}{BC} = \dfrac{1}{3}$, suy ra $BC = 3AC = 6$.\
Từ đó $AB = \sqrt{BC^2-AC^2} =\sqrt{6^2-2^2} =4\sqrt{2}$.
\end{multicols}

Bài 4. 
Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.

Lời giải.

Ta có $AB^2 +AC^2 = 1 +3 = 4 = BC^2$, suy tam giác $ABC$ vuông tại $A$, vậy $\angle BAC = 90^\circ$.\
Ta có $\sin ABC = \dfrac{AC}{BC}= \dfrac{\sqrt{3}}{2}$, suy ra $\angle ABC = 60^\circ$.\
Và $\angle ACB = 180^\circ – \angle BAC – \angle ABC = 30^\circ$.

Bài 5. 
Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.

a)Tính độ dài các cạnh của tam giác $ABC$.
b) Dựng đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải. 
a)  $AB .\sin ABC = AH \Leftrightarrow AB \sin 60^\circ = \sqrt{3} \Leftrightarrow AB \dfrac{\sqrt{3}}{2} = \sqrt{3}$, suy ra $AB = 2$.
Tam giác $AHC$ vuông cân, suy ra $AC = \sqrt{2}AH = \sqrt{6}$.
$BH = \sqrt{AB^2-AH^2} = 1, CH = AH = \sqrt{3}$.
Suy ra $BC = 1 + \sqrt{3}$.
b) a có $BK = BC\cdot \sin BCK = (1+\sqrt{3})\sin 45^\circ = \dfrac{1+\sqrt{3}}{\sqrt{2}} = \dfrac{\sqrt{6}+\sqrt{2}}{2}$.
Suy ra $\sin BAC = \dfrac{BK}{AB} = \dfrac{1+\sqrt{3}}{2\sqrt{2}} = \dfrac{\sqrt{2}+\sqrt{6}}{4}$.

Bài 6. Cho hình thoi $ABCD$ có cạnh $AB = 5$, biết $\cot ABD = \dfrac{3}{4}$.

a) Tính $\dfrac{{AC}}{{BD}}$;
b) Tính $AC, BD$.

Lời giải.

a) $\tan ABD=\dfrac{AO}{BO}=\dfrac{4}{3} \Rightarrow AO=\dfrac{4}{3}BO$.
Áp dụng định lí Pitago trong tam giác vuông $AOB$:$AO^2+BO^2=AB^2=5^2=25$.
Khi đó ta có hệ: $AO=\dfrac{4}{3}BO; AO^2+BO^2=25$

$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
\left( \dfrac{4}{3}BO\right)^2+BO^2=25\
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
BO^2=9
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=4\\
BO=3
\end{array} \right.$
Vậy $\dfrac{AC}{BD}=\dfrac{2AO}{2BO}=\dfrac{4}{3}$
b) $AC=2AO=2\cdot 4=8 \quad \text{và} \quad BD=2BO=2\cdot 3=6$.

Bài 7. Cho hình thang $ABCD$ cân có $AB$ là đáy nhỏ và $\angle ADC = 60^\circ$. Đặt $AD = a, AB = b$. Vẽ đường cao $AH$.

a) Tính $AH, DH$ theo $a$.
b) Tìm $a, b$ biết chu vi hình thang bằng 10 và diện tích bằng $3\sqrt 3 $.

Lời giải.

a) $\cos\angle ADH=\dfrac{DH}{AD} \Rightarrow DH=AD.\cos\angle ADH =a.\cos60^\circ=\dfrac{a}{2}$
$\sin \angle ADH=\dfrac{AH}{AD} \Rightarrow AH=AD.\sin \angle ADH=a.\sin 60^\circ=\dfrac{a\sqrt{3}}{2}$
b) Kẻ dường cao $BE$
Do $ABCD$ là hình thang cân nên $AD=BC=a$. $ABEH$ là hình chữ nhật nên $AB=EH=b$
Tính tương tự câu a) ta có $BE=\dfrac{a\sqrt{3}}{2}$ và $EC=\dfrac{a}{2}$
Khi đó $DC=DH+HE+EC=a+b$
Dựa vào chu vi và diện tích hình thang ta có hệ phương trình sau:
$\left\{ \begin{array}{l}
b+a+\left(a+b\right)+a=10\\
\dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.\left(b+a+b\right)=3\sqrt{3}
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
3a+2b=10\\
a\left( a+2b \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a\left( a+10-3a \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
-2a^2+10a-12=0
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a=2 \quad \text{hay} \quad a=3
\end{array} \right.$
Vậy $(a;b)$ là $(2;2)$ và $(3; \dfrac{1}{2})$.

 

Hệ thức lượng trong tam giác vuông – Chứng minh đẳng thức P2

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $BC = 3\sqrt{5}$, hình vuông $ADEF$ có $D$ thuộc $AB$, $E$ thuộc $BC$ và $F$ thuộc $AC$. Biết hình vuông có cạnh 2, tính độ dài các cạnh $AB, AC$ (giả sử $AB < AC$).
Lời giải. Đặt $BD = x, CF = y$, vì $AB < AC$ nên $x < y$.
Ta có $\triangle BDE \backsim \triangle EFC \Rightarrow BD \cdot CF = ED \cdot EF = 4$.
Mặt khác $AB^2 + AC^2 = BC^2 \Rightarrow (x+2)^2+(y+2)^2 = 45 \Rightarrow (x+y)^2 + 4(x+y) -45 = 0 \Rightarrow x+y = 5$.
Suy ra $x(5-x) = 4$, giải ra được $x = 1, y = 4$.
Từ đó suy ra $AB = 3, AC = 6$.

Bài 2. Cho tam giác $ABC$ nhọn trung tuyến $AM$. \begin{enumerate}
a) Chứng minh rằng $4AM^2 + BC^2=2(AB^2+AC^2)$.
b) Vẽ trung tuyến $BN$. Tìm điều kiện về độ dài các cạnh của tam giác $ABC$ để $AM \bot AN$.
Lời giải.
a) Gọi $H$ là chân đường cao kẻ từ $A$, giả sử $H$ nằm giữa $B$ và $M$. Ta có:

$AB^2 + AC^2 = 2AH^2 + BH^2 + CH^2$
$= 2AH^2 + (BM – HM)^2 + (CM + HM)^2 $
$= 2AH^2 + 2HM^2 + 2BM^2 = 2AM^2 + \dfrac{BC^2}{2}$

b) Gọi $G$ là trọng tâm tam giác: $GM=\dfrac{1}{3}AM,GB=\dfrac{2}{3}BN$. Ta có $AM\perp BN$ khi và chỉ khi:\

$GM^2 + GB^2 = BM^2$
$\Leftrightarrow \dfrac{1}{9}AM^2 + \dfrac{4}{9}BN^2 = \dfrac{1}{4}BC^2$
$\Leftrightarrow \dfrac{1}{9} \left( \dfrac{AB^2 + AC^2}{2} – \dfrac{BC^2}{4} \right) + \dfrac{4}{9}\left(\dfrac{AB^2 + BC^2}{2} – \dfrac{AC^2}{4}\right) = \dfrac{BC^2}{4}$
$\Leftrightarrow 5AB^2 = AC^2 + BC^2$

Bài 3. Cho tam giác $ABC$, hai đường phân giác $BD$ và $CE$ cắt nhau tại $I$ thỏa mãn $BD\cdot CE = 2\cdot BI\cdot CI$. Tam giác $ABC$ là tam giác gì? vì sao?
Lời giải.

Đặt $ BC = a, CA = b, AB = c $. Ta có, $ AI $ là phân giác trong $ \triangle ABD $\
Suy ra:
$ \dfrac{BI}{c} = \dfrac{DI}{AD} = \dfrac{BD}{c + AD} \Rightarrow \dfrac{BI}{BD} = \dfrac{c}{c+ AD} $
Chứng minh tương tự
$ \dfrac{CD}{CE} = \dfrac{b}{b + AE} $
Như vậy điều cần chứng minh tương đương với

$\dfrac{BI}{BD} \cdot \dfrac{CI}{CE} = \dfrac{1}{2} \Leftrightarrow \dfrac{bc}{(c + AD)(b + AE)} = \dfrac{1}{2}$
$\Leftrightarrow bc = AD\cdot b + AE\cdot c + AD\cdot AE \qquad (*)$

Mặt khác, trong tam giác $ ABC $ ta có
$ BD $ là phân giác $ \angle ABC$ ta có $\dfrac{AD}{c} = \dfrac{CD}{a} = \dfrac{b}{a + c} \Rightarrow AD = \dfrac{bc}{a + c}$
$ CD $ là phân giác $ \angle ACB$ ta có \dfrac{AE}{b} = \dfrac{BE}{a} = \dfrac{c}{a + b} \Rightarrow AE = \dfrac{bc}{a + b}$
Do đó (*) tương đương với

$bc = \dfrac{b^2c}{a + c} + \dfrac{bc^2}{a + b} + \dfrac{b^2c^2}{(a+b)(a+c)}$
$\Leftrightarrow a^2 = b^2 + c^2$

Vậy tam giác $ ABC$ vuông tại $ A $.

Bài 4. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm thay đổi bên trong tam giác. Gọi $D, E, F$ lần lượt là hình chiếu vuông góc của $M$ trên các cạnh $BC, AC, AB$. Tìm giá trị nhỏ nhất của biểu thức: $P = AF^2 + BD^2 + CE^2$.
Lời giải.
Ta có $AM^2 = AF^2 + MF^2 = AE^2 + ME^2$. Suy ra $AF^2 – AE^2 = ME^2 – MF^2$.
Tương tự $BD^2 – BF^2 = MF^2 – MD^2, CE^2 – CD^2 = MD^2 -MD^2$.
Khi đó $AF^2 -AE^2 + BD^2 – BF^2 + CE^2-CE^2 = 0 \Leftrightarrow AF^2 +DB^2 + CE^2 = AE^2+BF^2+CE^2$.
Mặt khác $AF^2 + BF^2 \geq \dfrac{(AF+BF)^2}{2} = \dfrac{a^2}{4}$.
Tương tự thì $BD^2 +CD^2 \geq \dfrac{a^2}{2}$ và $CE^2+AE^2 \geq \dfrac{a^2}{2}$.
Do đó $P =AF^2 + BD^2 + CE^2 \geq \dfrac{3a^2}{4}$.
Đẳng thức xảy ra khi $D, E, F$ lần là trung điểm của $BC, AC, AB$.
Vậy $P_{min} = \dfrac{3a^2}{4}$.

Bài 5. Cho hình vuông $ABCD$ cạnh $a$. Các điểm $M, N$ lần lượt thay đổi trên cạnh $BC, CD$ sao cho $\angle MAN = 45^\circ$. Chứng minh chu vi tam giác $CMN$ không đổi và tìm giá trị lớn nhất của diện tích tam giác $CMN$.

Trên tia đối của tia $DC$ lấy điểm $K$ sao cho $\angle KAN = \angle MAN = 45^\circ$.
Do $\angle KAD+\angle DAN =45^\circ \quad \text{và} \quad \angle DAN+\angle MAB =45^\circ \quad \text{nên} \quad \angle KAD =\angle MAB$
$\Rightarrow \triangle KAD =\triangle MBA$(ch-cgv) $\Rightarrow AK=AM \quad \text{và} \quad KD=BM$
Khi đó $\triangle KAN=\triangle MAN$(c-g-c) $\Rightarrow MN=KN$
Ta có:
$P_{\triangle CMN}=MN+MC+NC=KN+MC+NC
=KD+DN+NC+MC=BM+MC+NC+ND=DC+CB=2a$.
Vậy chu vi của $\triangle CMN$ luôn không đổi và bằng $2a$
Đặt $MC=x,NC=y$
$P_{\triangle CMN}=MN+MC+NC=x+y+\sqrt{x^2+y^2}=2a$
Áp dụng bất đẳng thức Cauchy:
$2a=x+y+\sqrt{x^2+y^2}\ge 2\sqrt{xy}+ \sqrt{2xy}=\left(\sqrt{2}+2\right)\sqrt{xy} \Rightarrow xy\le \dfrac{4a^2}{(\sqrt{2}+2)^2}$
$S_{\triangle CMN}=\dfrac{1}{2}xy\le \dfrac{1}{2}.\dfrac{4a^2}{6+4\sqrt{2}}=\dfrac{a^2}{\sqrt{2}+3}$

Bài 6. Cho $\triangle A B C$ vuông ờ $A, A H \perp B C, H \in B C . H E \perp A C$,
$H F \perp A B$
\begin{enumerate}
a) Chứng minh rằng $H A^{3}=B F \cdot C E \cdot B C$.
b) Chứng minh rằng $\sqrt[3]{B F^{2}}+\sqrt[3]{C E^{2}}=\sqrt[3]{B C^{2}}$.
c) Gọi $M, N$ là hình chiếu của $E, F$ lên $B C$.
Chứng minh rằng $\sqrt{M C}+\sqrt{N B}=\sqrt{B C}$.
d) Chứng minh rằng $\sqrt[3]{N B \cdot N F}+\sqrt[3]{M C \cdot M E}=\sqrt[3]{A B \cdot A C}$.

Bài 7. Cho tam giác $ABC$ vuông tại $A$, $M$ là điểm thuộc cạnh $BC$ thỏa $MA^2 = MB \cdot MC$. Chứng minh rằng $M$ là trung điểm của $BC$ hoặc $M$ là chân đường cao từ $A$ đến $BC$.

Hệ thức lượng trong tam giác – Chứng minh đẳng thức

Dạng 2. Chứng minh đẳng thức hình học

Ví dụ 1. Cho hình thoi $ABCD$ có $\angle A = 120^\circ$. Tia $Ax$ tạo với $AB$ một góc $\angle BAx = 15^\circ$ và cắt cạnh $BC$ tại $M$, cắt đường thẳng $CD$ tại $N$.
Chứng minh rằng $$\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$$
Lời giải.

Vẽ tia $Ay$ vuông góc với $AM$,$Ay$ cắt cạnh $CD$ tại $P$. Suy ra $\angle PAD= 15^\circ$.
Ta có $\triangle ADP=\triangle ABM$(g-c-g), suy ra $AP=AM$.
Vẽ đường cao $AH$ của tam giác $PAN$. Áp dụng hệ thức lượng trong tam giác vuông $PAN$:
$$\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$$
Khi đó $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$. (1)
Mặt khác trong tam giác vuông $ADH$:\
$\dfrac{AH}{AD}=\sin D\Rightarrow AH=AD\cdot \sin D=AB\cdot \sin60^\circ=\dfrac{\sqrt{3}}{2}AB.$ (2)
Từ (1) và (2) ta có được $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$.

Ví dụ 2. Qua điểm $D$ trên cạnh huyền $BC$ của tam giác vuông $ABC$ ta kẻ các đường vuông góc $DH$ và $DK$ lần lượt xuống các cạnh $AB$ và $AC$.\ Chứng minh hệ thức: $DB\cdot DC = HA\cdot HB + KA\cdot KC$.

Lời giải.

Ta có $AHDK$ là hình chữ nhật nên $AH = DK, AK = DH$.
Ta có $BC^2 = AB^2 + AC^2 \Leftrightarrow (DB + DC)^2 = (AH+BH)^2 + (AK + CK)^2 \Leftrightarrow DB^2 + DC^2 + 2DC \cdot DB = AH^2 + BH^2 + 2 AH \cdot BH + AK^2 + CK^2 + 2AK \cdot CK$. (1)
Mà $DB^2 = BH^2 + HD^2 = BH^2 + AK^2$ và $DC^2 = DK^2 + CK^2 = AH^2 + CK^2$. (2)
Từ (1) và (2) ta có $DB \cdot DC = AH \cdot HB + AK \cdot KC$.

Ví dụ 3. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $E, F$ lần lượt là hình chiếu vuông góc của $H$ trên $AB, AC$. Chứng minh rằng:

a) $AH^3 = BC\cdot BE\cdot CF$.
b) $\sqrt[3]{BE^2} + \sqrt[3]{CF^2} = \sqrt[3]{BC^2}$.
Lời giải.


a) Áp dụng hệ thức lượng trong tam giác vuông $BHA$ và $AHC$:
$$BH^2=BE\cdot AB \quad \text{và} \quad HC^2=CF\cdot AC$$
Nhân hai vế đẳng thức với nhau ta được:
$BH^2\cdot HC^2=BE\cdot CF\cdot AB\cdot AC
\Rightarrow \left(HB\cdot HC\right)^2=BE\cdot CF\cdot AB\cdot AC \quad (1)$.
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$HB\cdot HC=AH^2 \quad \text{và} \quad AB\cdot AC=AH\cdot BC$.
Khi đó (1) trở thành:$AH^4=BE\cdot CF\cdot AH\cdot BC$ hay $AH^3=BE\cdot CF\cdot BC$(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông $ABH$ ta có $BE\cdot AB=HB^2$ hay $BE=\dfrac{BH^2}{AB}$, do đó:
$$\dfrac{BE^2}{BC^2}=\dfrac{BH^4}{AB^2\cdot BC^2}=\dfrac{BH^4}{\left(BH\cdot BC\right)\cdot BC^2}=\left(\frac{BH}{BC}\right)^3$$
Lấy căn bậc ba hai vế ta được $\sqrt[3]{\dfrac{BE^2}{BC^2}}=\dfrac{BH}{BC}\quad (1)$
Chứng minh tương tự ta được $\sqrt[3]{\dfrac{CF^2}{BC^2}}=\dfrac{CH}{BC}\quad (2)$
Lấy (1)+(2) ta được đpcm.\

Ví dụ 4. Cho tam giác $ABC$ nhọn và $H$ là trực tâm. Chứng minh rằng

$$AB^2 + CH^2 = AC^2 + BH^2 = AH^2 + BC^2$$

Lời giải.

Gọi $D$ là chân đường cao hạ từ $A$.
Ta có $AB^2 = BD^2 + AD^2$ và $CH^2 = CD^2 + DH^2$, suy ra $AB^2 +CH^2 = BD^2+AD^2+CD^2+DH^2$. (1)
tương tự thì $AC^2 = AD^2 + CD^2$, $BH^2 = BD^2+DH^2$, suy ra $AC^2+BH^2=AD^2+CD^2+BD^2+DH^2$. (2)
Từ (1) và (2) ta có $AB^2 + CH^2 = AC^2+BH^2$.
Chứng minh tương tự cho đẳng thức còn lại.

Ví dụ 5. Cho tam giác $ABC$ vuông tại $A$ có đường cao $AH$, đường trung tuyến $BM$, đường phân giác $CD$ đồng quy tại $O$.

a) Chứng minh rằng $BH = AC$.
b) Cho biết $BC = x$ . Tính độ dài $AB, AC$ theo $x$.
Lời giải. 


a) Gọi $E$ là điểm đối xứng của $O$ qua $M$. Khi đó tứ giác $AECO$ là hình bình hành nên $CE\parallel AO$.
Áp dụng định lí Ta-lét trong tam giác $BEC$ có $OH\parallel EC$:
$$\dfrac{BH}{BC}=\dfrac{OH}{CE}$$
$CO$ là đường phân giác của $\triangle ACH$ nên:
$$\dfrac{OH}{OA}=\dfrac{CH}{CA}$$
Từ hai đẳng thức trên và $CE=OA$(AECO là hình bình hành) ta có:
$$\dfrac{BH}{BC}=\dfrac{CH}{AC} \Leftrightarrow BH\cdot AC=CH\cdot BC$$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$ ta được $AC^2=CH\cdot CB$
Từ đó suy ra $BH=AC$(đpcm)
b) Ta có $AC^2=CH\cdot CB=\left(CB-BH\right)\cdot CB=\left(x-AC\right)x$. Suy ra:
$$AC^2+2AC\cdot \dfrac{x}{2}+\dfrac{x^2}{4}=\dfrac{5x^2}{4} \Leftrightarrow \left(AC+\dfrac{x}{2}\right)^2=\left(\dfrac{x\sqrt{5}}{2}\right)^2$$
Vậy $ AC = \left(\dfrac{\sqrt{5} – 1}{2}\right)x $, $ AB = \sqrt{x^2 – AC^2} = x\sqrt{\dfrac{\sqrt{5} – 1}{2}}$

Ví dụ 6. Cho tam giác $ABC$ vuông cân tại $A$, đường trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc của $C$ trên $BM$, $H$ là hình chiếu vuông góc của $D$ trên $AC$. Chứng minh rằng $AH = 3HD$.

Lời giải.

Cách 1. Đặt $AM=x$, tính được $MC = AM = x$, $AC = 2x = AB$.
Áp dụng định lý Pythagoras trong tam giác vuông $BAM$:
$BM=\sqrt{AB^2+AM^2}=\sqrt{\left(2x\right)^2+\left(x\right)^2}=x\sqrt{5}$
$\triangle BAM \backsim \triangle CDM $(g-g) $\Rightarrow \dfrac{AB}{DC}=\dfrac{MA}{MD}=\dfrac{BM}{CM}=\dfrac{\sqrt{5}x}{x}=\sqrt{5}$
$\Rightarrow MD=\dfrac{AM}{\sqrt{5}}=\dfrac{x}{\sqrt{5}}$
Áp dụng hệ thức lượng trong tam giác vuông $MDC$:
$MD^2=MH\cdot MC \Rightarrow MH=\dfrac{MD^2}{MC}=\dfrac{\dfrac{x^2}{5}}{x}=\dfrac{x}{5}$.
Áp dụng định lí Pythagoras trong tam giác vuông $MHD$:
$HD=\sqrt{MD^2-MH^2}=\sqrt{\left(\dfrac{x}{\sqrt{5}}\right)^2-\left(\dfrac{x}{5}\right)^2}=\dfrac{2}{5}x$.
Mà $AH=AM+MH=x+\dfrac{x}{5}=\dfrac{6}{5}x$
Vậy $AH=3HD$(đpcm)
Cách 2. Gọi $I$ là trung điểm $BC$, $AI$ cắt $BM$ tại $G$ thì $G$ là trọng tâm tam giác $ABC$, suy ra $AI = 3GI = IB = IC$.
Ta có $\triangle MAB \backsim MDC$, suy $MA \cdot MC = MB \cdot MD$, suy ra $\triangle MAD \backsim \triangle MBC$, suy ra $\angle MAD = \angle MBC = \angle GBI$.
Khi đó $\triangle DAH \backsim \triangle GBI$, suy ra $\dfrac{AH}{DH} = \dfrac{IB}{GI} = 3$ hay $AH = 3DH$.

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, $BM$ và $CN$ là các đường phân giác góc $B$ và $C$.

a)Cho $AB = 3, AC = 4$. Tính độ dài $BN, CM$ và $MN$.
b) Đặt $AB = c, AC = b$. Tính $CM, BN$ theo $b$ và $c$.
c) Chứng minh rằng $\dfrac{{AC}}{{MA}}\cdot \dfrac{{AB}}{{NA}} \ge 3 + 2\sqrt 2 $

Lời giải.

a) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{4}{5}$. Kết hợp với $NA+NB=3$ ta sẽ tính được $NA=\dfrac{4}{3}$ và $BN=\dfrac{5}{3}$
Tính tương tự ta được $AM=\dfrac{3}{2},MC=\dfrac{5}{2}$
Áp dụng định lí Pythagoras trong tam giác vuông $AMN$:
$$MN=\sqrt{AM^2+AN^2}=\sqrt{\left(\dfrac{4}{3}\right)^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{\sqrt{145}}{6}$$
b) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{c^2+b^2}$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{b}{\sqrt{b^2+c^2}}$. Kết hợp với $NA+NB=c$ ta sẽ tính được $BN=\dfrac{c\sqrt{b^2+c^2}}{b+\sqrt{b^2+c^2}}$
Tính tương tự ta được $MC=\dfrac{b\sqrt{b^2+c^2}}{c+\sqrt{b^2+c^2}}$
c) Do $BM$ là tia phân giác của $\angle ABC$ nên $\dfrac{MC}{MA}=\dfrac{BC}{AB}$
Do $CN$ là tia phân giác của $\angle ACB$ nên $\dfrac{NB}{NA}=\dfrac{BC}{AC}$
$\dfrac{AC}{MA}.\dfrac{AB}{NA}=\left(1+\dfrac{MC}{MA}\right)\left(1+\dfrac{NB}{NA}\right)$
$=\left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right)$
$=1+\dfrac{BC}{AC}+\dfrac{BC}{AB}+\dfrac{BC^2}{AB.AC} $
$\ge 1+2\sqrt{\dfrac{BC^2}{AB.AC}}+\dfrac{BC^2}{AB.AC}$

$=\left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2$
Ta có $AB.AC\le \dfrac{AB^2+AC^2}{2}=\dfrac{BC^2}{2}$

$\Rightarrow \dfrac{BC^2}{AB.AC}\ge 2$
Vậy $\dfrac{AC}{MA}.\dfrac{AB}{NA}\geq \left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2 \ge \left(\sqrt{2}+1\right)^2=3+2\sqrt{2}$

Bài tập rèn luyện

Bài 1. Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, AB = AD = a, CD = 2a$.

a) Chứng minh $BC = a\sqrt{2}$.
b) Vẽ $DH$ vuông góc với $AC$. Chứng minh $AH \cdot AC = a^2$.
c) $BH$ cắt $CD$ tại $K$. Chứng minh $BK \cdot BH =2a^2$.

Bài 2. Cho tam giác $ABC$ khác tam giác tù. Gọi $G$ là trọng tâm tam giác. Chứng minh rằng nếu $$AG^2 = \dfrac{1}{9}(AB^2+AC^2) $$
thì tam giác $ABC$ vuông.

Bài 3. Cho tam giác $ABC$ có các đường cao $AD, BE, CF$. Chứng minh rằng nếu

$$ \dfrac{1}{AD^2} = \dfrac{1}{BE^2} + \dfrac{1}{CF^2}$$

thì tam giác $ABC$ vuông tại $A$.

Bài 4. Cho tam giác $\triangle A B C, \angle A=90$, đường phân giác $AD$. Chưmg minh rằng
$$
\dfrac{\sqrt{2}}{A D}=\dfrac{1}{A B}+\dfrac{1}{A C}
$$

Bài 5. Cho tam giác $ABC$ có $M$ là trung điểm $BC$.

a) Chứng minh rằng $BC^2 +4AM^2 = 2(AB^2 +AC^2)$.

b) Gọi $N$ là trung điểm $AC$. Chứng minh $AM$ vuông góc $BN$ khi và chỉ khi $AC^2+BC^2 = 5AB^2$.

Hệ thức lượng trong tam giác – Tính toán độ dài

Dạng 1. Tính toán

Áp dụng đầu tiên của các hệ thức lượng trong tam giác vuông đó là tính toán độ dài khi biết một số yếu tố cho trước, việc tính toán này xem ra là bài toán dễ tuy vậy đòi hỏi tính chính xác và áp dụng định lí một cách thành thục.

  • Phương pháp chủ yếu là áp dụng định lí thiết lập mối quan hệ giữa yếu tố đã cho và yếu tố chưa biết, từ đó tính được đối tượng cần tính.
  • Với các bài toán khó hơn phải thiết lập các phương trình hoặc hệ phương trình để giải.
  • Ta cũng hay vẽ thêm các đường vuông góc để tao ra tam giác vuông hay đường cao, từ đó mới có thể áp dụng được hệ thức lượng.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 6cm, BC = 10cm$, đường cao $AH$ ($H$ thuộc $BC$).

a)Tính độ dài cạnh $AC,AH$.
b) Tính $BH, CH$.
Lời giải.
a) Áp dụng định lý Pitago cho tam giác $ABC$ ta có:\
$AB^2 + AC^2 = BC^2$ $\Leftrightarrow 6^2 + AC^2 = 10^2$ \
$\Rightarrow AC = \sqrt{10^2-6^2} =8(cm)$.\
Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có:\
$AH \cdot BC = AB \cdot AC \Rightarrow
AH = \dfrac{AB \cdot AC}{BC} = \dfrac{6\cdot 8}{10} = \dfrac{24}{5} (cm)$.
b) Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có: \
$BH \cdot BC = AB^2 \Rightarrow BH = \dfrac{AB^2}{BC} =\dfrac{18}{5} (cm)$ \
và $CH = BC – BH = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$. \

Ví dụ 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Cho $BH = 4, CH = 9$. Tính
a) Tính $AH, AB, AC$.
b)Vẽ $HD \bot AB$ và $HE \bot AC$( với $D$ thuộc $AB$ và $E$ thuộc $AC$). Tính $AD$ và $AE$.
Lời giải

Ta có $BC = BH + CH = 4 + 9 = 13$.
a) Tam giác $ABC$ vuông tại $A$ có đường cao $AH$ nên:
$AH^2 = BH \cdot CH = 36 \Rightarrow AH = 6$;
$AB^2 = BH \cdot BC = 4\cdot 13\Rightarrow AB = 2\sqrt{13}$;
$AC^2 = CH \cdot BC = 9 \cdot 13 \Rightarrow CH = 3\sqrt{13}$.
b)
Tam giác $ABH$ vuông tại $H$ có đường cao $HD$ nên:\
$AD\cdot AB = AH^2 \Rightarrow AD = \dfrac{AH^2}{AB} = \dfrac{36}{2\sqrt{13}} = \dfrac{18\sqrt{13}}{13}$;
Tương tự ta có $AE\cdot AC = AH^2 \Rightarrow AE = \dfrac{AH^2}{AC} = \dfrac{36}{3\sqrt{13}} = \dfrac{12\sqrt{13}}{13}$.

Ví dụ 3. Cho hình chữ nhật $ABCD$ có $AB = 2AD$ và $AC = 4\sqrt{5}$.

a)Tính độ dài cạnh của hình chữ nhật.
b) Vẽ $AH \bot BD$. Tính $AH, CH$.

Lời giải

a) Ta có $BD = AC = 4\sqrt{5}$.
Đặt $AD = x$, suy ra $AB = 2x$.
Ta có $BD^2 = AB^2 + CD^2\
\Leftrightarrow 80 = 5x^2 \Rightarrow x = 4$.
Do đó $AB = 8, AD = 4$.
b) Tam giác $ABD$ vuông có đường cao $AH$ nên
$AH \cdot BD = AB \cdot AD
\Rightarrow AH = \dfrac{AB \cdot AD}{BD} = \dfrac{8}{\sqrt{5}}$.
Vẽ $HK \bot CD$.
Ta có $\triangle DHK \backsim ADH$, suy ra $$\dfrac{HK}{DH} = \dfrac{DK}{AH} = \dfrac{DH}{AD} = \dfrac{1}{\sqrt{5}}$$
Suy ra $DK = \dfrac{8}{5}, KH = \dfrac{4}{5}$.
Khi đó $CK = CD – DK = 8-\dfrac{8}{5} = \dfrac{32}{5}$.
Và $CH = \sqrt{CK^2+HK^2}= \sqrt{\dfrac{32^2}{5^2}+\dfrac{4^2}{5^2}} = \dfrac{4\sqrt{65}}{5}$.

Ví dụ 4. Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 16$. Gọi $M$ là trung điểm $BC$.

a)Tính độ dài $AM$.
b) Vẽ $MD$ vuông góc $AB$. Tính $AM$.
Lời giải

Tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ cũng là đường cao, suy ra $AM \bot BC$. \
$AM^2 + MB^2 = AB^2 \Rightarrow AM = \sqrt{AB^2-MB^2}=\sqrt{10^2-8^2}=6$.
\item Tam giác $ABM$ vuông tại $M$ có $MD$ là đường cao:\ $AD\cdot AB = AM^2 \Rightarrow AD = \dfrac{AM^2}{AB} = \dfrac{36}{10} = \dfrac{18}{5}$.\

Ví dụ 5. Cho hình thang cân $ABCD$ có đáy nhỏ $AB = 3$, đáy lớn $CD = 7$, cạnh bên $AD = 5$. Tính diện tích hình thang $ABCD$.}

Lời giải

Vẽ đường cao $AH, BK$ của hình thang $ABCD$.
Ta có $\triangle AHD = \triangle BKC$ (ch.gn), suy ra $HD = CK$.
Hơn nữa $ABKH$ là hình chữ nhật nên $HK = AB =3$.
Suy ra $DH = CK = 2$.
Tam giác $ADH$ vuông tại $H$, suy ra $AD^2 = DH^2 + AH^2$

$\Rightarrow AH = \sqrt{AD^2-DH^2}=\sqrt{25-4}=\sqrt{21}$
Khi đó $S_{ABCD} = \dfrac{1}{2}AH \cdot (AB+CD) = 5\sqrt{21}$.

Bài tập rèn luyện

Bài 1. Cho tam giác vuông $A B C$, đặt $A B=c, A C=b, B C=a$, đường cao $A H=h, B H=c^{\prime}$, $C H=b^{\prime}$. Tính độ dài các đoạn thẳng còn lại khi biết:
(a) $a=13, b=12$.
(b) $b^{\prime}=3, c^{\prime}=12$.
(c) $b=5, h=4$.
(d) $h=3, a=10$.
Bài 2. Cho hình thang vuông $A B C D$ có $\angle A=\angle D=90^{\circ}$. Cho $A D=h, A B=a, C D=b, B C=$ c. Tính các độ dài chưa biết khi cho:
(a) $a=3, b=7, h=3$.
(b) $a=5, c=13, b=10$.
Bài 3. Cho tam giác $A B C$ vuông tại $A$ có $A B=9 cm, B C=15 cm, A H$ là đường cao $(H$ thuộc cạnh $B C$ ). Tính độ dài các đoạn thẳng $B H, C H, A C$ và $A H$.
Bài  4. Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$.
Biết $B H=\frac{9}{5} ; C H=\frac{16}{5}$.
(a) Tính $A H, A B, A C$.
(b) Gọi $D, E$ là hình chiếu vuông góc vuông góc của $H$ trên $A B, A C$.
Chứng minh $ A D \cdot A B=A E \cdot A C$.
(c) Đường thẳng $D E$ cắt đường thẳng $B C$ tại $F$. Chứng minh $F B \cdot F C=F D \cdot F E$.
Bài 5. Cho tam giác $A B C$ vuông tại $A$. Biết tỉ số hai cạnh góc vuông là $\frac{3}{4}$, độ dài cạnh góc vuông nhỏ bằng $6 \mathrm{~cm}$. Tính độ dài cạnh huyền, độ dài hình chiếu vuông góc của các cạnh góc vuông lên cạnh huyền.

Bài 6. Tam giác $A B C$ nhọn có đường cao $A H$, biết rằng $A B=26 cm, A C=25 cm$, đường cao $A H=24 ~cm$. Tính độ dài cạnh $B C$.
Bài 7. Cho tam giác $A B C$ vuông tại $A$ có $B C=\sqrt{13} cm$.
Tính $A B, A C$, cho biết $A B=\frac{2}{3} A C$.
Bài 8. Cho tam giác $A B C$ vuông tại $A$ có $A H$ là đường cao. $B H=1 cm, C H=4 cm$. Tính $B C$, $A H, A B$ và $A C$.

Tài liệu tham khảo

Nguyễn Tăng Vũ, Bài tập hình học 9 cơ bản và nâng cao, Star Education

Chuyên đề hình học: Bổ đề Eriq và ứng dụng

BỔ ĐỀ ERIQ VÀ ỨNG DỤNG (Trích tập san Star số 3)

Trương Tuấn Nghĩa – Lớp 12 Trường ĐHKHTN ĐHQG HN

Giới thiệu.

Bổ đề $ERIQ$ được đặt tên bởi tác giả Kostas Vittas trên diễn đàn AoPS với nick name vittasko. (là các chữ viết tắt của cụm từ $Equal$ $Ratios$ $In$ $Quadrilateral$). Nội dung bổ đề:

Cho tứ giác $ABCD$, lấy các điểm $M,N$ nằm trên cạnh $AD,BC$ sao cho
$\dfrac{MA}{MD}=\dfrac{NB}{NC}.$
Khi đó, trung điểm của $AB,MN,CD$ thẳng hàng.

Chứng minh.
Gọi $X,Y,Z$ là trung điểm của $AB,MN,CD$. Lấy $P,Q$ nằm trên $XM,XN$ sao cho $DP,CQ\parallel AB.$

Khi đó, theo định lý Thales, ta có $\frac{MA}{MD}=\frac{AX}{DP}=\frac{MX}{MP};\text{ }\frac{NB}{NC}=\frac{AY}{CQ}=\frac{NX}{NQ}.$ Suy ra
$DP=CQ;$ $\frac{MX}{MP}=\frac{NX}{NQ}$ hay $MN\parallel PQ$.
Do $DP=CQ;DP\parallel CQ$ nên $PCQD$ là hình bình hành hay $Z$ là trung điểm $PQ$. \

Kết hợp với $Y$ là trung điểm của $MN$, ta có $X,Y,Z$ thẳng hàng.

Nhận xét. Ta có thể chứng minh $X,Y,Z$ là các điểm chia cùng tỉ lệ trên $AB,MN,CD$ thẳng hàng bằng cách tương tự. Tiếp theo, ta sẽ đến với một số các mở rộng và ứng dụng của bổ đề trên.

Ứng dụng

Bài 1.  Cho tứ giác $ABCD$, lấy $M,N$ nằm trên cạnh $AD,BC$ sao cho $\frac{MA}{MD}=\frac{NB}{NC}.$ Lấy các điểm $X,Y,Z$ sao cho các tam giác $XAB,YMN,ZCD$ đồng dạng và $X,Y,Z$ lần lượt nằm trên các nửa mặt phẳng bờ $AB$ không chứa $C$, $MN$ không chứa $D$ và $CD$ chứa $A$. Chứng minh rằng $X,Y,Z$ thẳng hàng.
Lời giải.
Lấy $P,Q\in XM,XN$ sao cho $DP\parallel XA,CQ\parallel XB$.

Theo định lý Thales, $DP=XA.\frac{MD}{MA},CQ=XB.\frac{NB}{NC}$ mà $\frac{MA}{MD}=\frac{NB}{NC}$ nên $DP=CQ$
Mặt khác vì $\angle AXB=\angle CZD$ nên $\angle ZDP=\angle ZCQ.$
Do đó, $\vartriangle ZDP=\vartriangle ZCQ(c.g.c)$ dẫn tới $\angle PZD=\angle QZC$ hay $\angle CZD=\angle PZQ.$
Vì $DP\parallel XA,CQ\parallel XB$ nên $\frac{XM}{MP}=\frac{XN}{NQ}(=\frac{MA}{MD})$ nên $MN\parallel PQ$.
Lấy $Y’\in XZ$ sao cho $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}.$
Theo định lý Thales, $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}$ nên $$\begin{aligned}
& Y’M\parallel ZP,Y’N\parallel ZQ \
& Y’M=Y’N(=ZP.\frac{XY’}{XZ}=ZQ.\frac{XY’}{XZ}) \
\end{aligned}$$
Hay $\angle MY’N=\angle MYN,Y’M=Y’N.$
Do đó, $Y’\equiv Y$ hay $X,Y,Z$ thẳng hàng.

Bài 2. Cho tứ giác $ABCD$ có phân giác trong của các góc $\angle A,\angle B,\angle C,\angle D$ đồng quy tại $I$. $AD$ cắt $BC$ tại $E$, $AB$ cắt $CD$ tại $F$. Gọi $M,N$ là trung điểm $AC,EF.$ Chứng minh rằng $M,N,I$ thẳng hàng.
Lời giải.

Gọi $P,Q$ là giao điểm của đường thẳng qua $I,$ vuông góc với $IB$ với $BA,AC.$
Đầu tiên, dễ thấy $I$ là giao 3 phân giác $\vartriangle ABE$.
Do $BI$ là phân giác $\angle ABC$ nên $\vartriangle BPQ$ cân tại $B$ hay $I$ là trung điểm $PQ.$


Ta có $\angle BPQ=90{}^\circ -\frac{\angle ABE}{2}=\frac{\angle AEB}{2}+\frac{\angle BAE}{2},\angle IAB=\frac{\angle BAE}{2}$ nên $\angle PIA=\frac{\angle AEB}{2}.$
Tương tự thì $\angle EIQ=\frac{\angle BAE}{2}.$
Do đó, $\vartriangle PIA\sim \vartriangle QEA(g.g)$ nên $PA.QE=PI.QI.$
Hoàn toàn tương tự, $PF.QC=PI.QI.$
Vậy ta có $\frac{PA}{FA}=\frac{QC}{QE}$ nên theo bổ đề $ERIQ$, $M,I,N$ lần lượt là trung điểm của $PQ,AC,EF$ thẳng hàng.

Bài 3. Cho tứ giác $ABCD$ nội tiếp, không là hình thang. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(AB,CD);(AD,BC).$ Giả sử phân giác của góc $\angle AEC,\angle AFB$ cắt nhau tại $I$. Gọi $M,N$ lần lượt là trung điểm của $AC,BD$. Chứng minh rằng $I\in MN.$

Lời giải.
Giả sử các điểm có vị trí như hình vẽ, các trường hợp khác tương tự.


Gọi $P,Q$ lần lượt là giao điểm của $FI$ với $AB,CD$.
Do $\angle ABC+\angle CDA=180^\circ $ nên $\angle FAB=\angle FCD$ nên $\triangle FAB \backsim \triangle FCD(g.g)$ () và $\angle EPQ=\angle FAB+\angle AFI=\angle FCD+\angle BFI=\angle EQP$
hay tam giác $EPQ$ cân tại $E$.
Mà $EI$ là phân giác $\angle AED$ nên $I$ là trung điểm $PQ$.
Mặt khác theo (
), $\frac{FA}{FB}=\frac{FC}{FD}$ nên theo tính chất đường phân giác, $\frac{AP}{PB}=\frac{CQ}{QD}.$
Do đó theo bổ đề $ERIQ$, trung điểm $AC,BD,PQ$ thằng hàng hay $I\in MN$. (đpcm)

Bài 4. (AOPS). Cho $\vartriangle ABC$, trực tâm $H$,$P$ bất kỳ trên $BC$, $X$ bất kỳ trên $HP$. Gọi $E,F\ne A$ là giao điểm của đường tròn đường kính $AX$ với $CA,AB$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Đường thẳng qua $P$ vuông góc $BC$ cắt $CA,AB$ tại $Z,Y$. Gọi $L$ là trung điểm $ZY$. Chứng minh rằng $LT$ chia đôi $BC.$

Lời giải.
Trước hết, ta phát biểu và chứng minh hai bổ đề sau:
Bổ đề 1. Cho $\vartriangle ABC$, đường cao $BE,CF$. Gọi $M$ là trung điểm của $BC.$ Khi đó, $ME,MF$ là tiếp tuyến của $(AEF)$.
Bổ đề trên có thể chứng minh dễ dàng qua các phép cộng góc.
Bổ đề 2.Cho tứ giác $ABCD$, $AB$ cắt $CD$ tại $E$. Gọi $H,K$ là trực tâm của $\vartriangle EAD,\vartriangle EBC$. Khi đó, $HK$ là trục đẳng phương của 2 đường tròn đường kính $BD,AC$.
Chứng minh bổ đề
Gọi $M,N$ là hình chiếu của $B,C$ lên $EC,EB$. Khi đó, $MNBC$ là tứ giác nội tiếp nên $KN.KC=KM.KB.$

Mặt khác, $M,N$ lần lượt nằm trên đường tròn đường kính $BD,AC$ mà $KN.KC=KM.KB$ nên $K$ nằm trên trục đẳng phương của 2 đường tròn trên. Chứng minh tương tự, $HK$ là trục đẳng phương của đường tròn đường kính $BD$ và đường tròn đường kính $AC$.

Trở lại bài toán,


Gọi $M,N$ là giao điểm của $XF,XE$ với $CA,AB.$ Khi đó, theo bổ đề 1 dễ có $T$ là trung điểm của $MN$ nên theo bổ đề $ERIQ$, ta chỉ cần chứng minh $\frac{BN}{BZ}=\frac{CM}{CY}.$
Gọi $U,V$ là hình chiếu của $N,M$ lên $BC.$ Theo bổ đề 2 thì $HX$ là trục đẳng phương của đường tròn đường kính $MB,NC.$ Dễ thấy $U,V$ lần lượt nằm trên đường tròn đường kính $CN,BM$ nên và $P$ nằm trên $HX,BC$ nên ta có $PU.PC=PV.PB$ hay $\frac{PB}{PU}=\frac{PC}{PV}$, và theo định lý Thales thì
$\frac{BN}{BZ}=\frac{CM}{CY}$ .
Vậy ta thu được $LT$ chia đôi $BC.$

Bài 5. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC$, $J$ là trung điểm của $AP$. Gọi $E,F$ là giao điểm của $(J,JA)$ với $CA,AB.$ Gọi $L$ là tâm đường tròn ngoại tiếp $\vartriangle JEF$. Chứng minh rằng khi $P$ di chuyển trên $BC$ thì $L$ chuyển động trên đường thẳng cố định.

Lời giải
Trước hết ta chứng minh bổ đề sau:
Cho $\vartriangle ABC$, lấy điểm $M$ cố định trên $BC,P$ bất kỳ trên $BC.$ Gọi $E,F$ là hình chiếu của $P$ lên $CA,AB$, $K,L$ là hình chiếu của $M$ lên $CA,AB$. Khi đó, tỉ số $\frac{EK}{FL}$ không phụ thuộc vào vị trí của $P$ trên $BC.$

Chứng minh.
Gọi $X,Y$ là hình chiếu của $M,P$ lên $PF,MK$. Khi đó,
$$\begin{aligned}
& MX=LF=MP.\cos \angle XMP=MP.cos\angle ABC; \
& YP=KE=MP.\cos \angle YPM=MP.\cos \angle ACB. \
\end{aligned}$$
Do đó, $\frac{EK}{FL}=\frac{\cos \angle ACB}{\cos \angle ABC}.$

Trở lại bài toán,


Lấy $M,N$ cố định trên $BC.$ $X,Z$ là hình chiếu của $M$ lên $AB,AC;$ $Y,T$ là hình chiếu của $N$ lên $AB,AC.$ Khi đó, theo bổ đề 1 thì dễ có được $\frac{YF}{YX}=\frac{TE}{TZ}.$ (1)
Do $J$ là tâm đường tròn ngoại tiếp $\vartriangle AEF$ nên $\angle FJE=2.\angle BAC.$ Mà $L$ là tâm đường tròn ngoại tiếp của $\vartriangle JEF$ nên $\angle FLE=360{}^\circ -4.\angle BAC.$
Theo (1) và bổ đề $ERIQ$ thì các đỉnh của tam giác cân có đáy $FE,YT,XZ$ và có góc ở đỉnh là $360{}^\circ -4.\angle BAC$ thì thẳng hàng mà $M,N$ cố định nên $L$ nằm trên đường thẳng cố định. (đpcm)

Bài 6.  (Nguyễn Văn Linh) Cho $\vartriangle ABC$, đường cao $AD$, $K\in AD.$ Gọi $E,F$ lần lượt là giao điểm của $BK,CK$ với $CA,AB.$ Giả sử $DE,DF$ cắt lại đường tròn ngoại tiếp $\vartriangle ABD;\vartriangle ACD$ tại $M,N$. Gọi $T$ là trung điểm của $MN.$ Chứng minh rằng $AT$ chia đôi đoạn thẳng $EF.$

Lời giải
Gọi $BP,CQ$ là đường cao của $\vartriangle ABC$, đường thẳng qua $A$ song song $BC$ cắt $DE,DF$ tại $K,L.$ Theo kết quả quen thuộc $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD.$ Nên $A$ là trung điểm của $KL.$


Khi đó, theo bổ đề $ERIQ,$ ta chỉ cần chứng minh $\frac{NL}{NF}=\frac{MK}{ME}.$
Ta có, $A,M,P,D,Q$ nằm trên đường tròn và $A,N,Q,D,C$ nằm trên đường tròn. (1) \
Do đó, $\angle NAQ=\angle NDQ,\angle MAP=\angle MDP.$ Do $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD,$nên $\angle QDF=\angle PDE.$
Từ (1), ta cũng có
$\angle AQN=\angle ADN=\angle ADM=\angle APM.$
Do đó, $\vartriangle ANQ\sim \vartriangle AMP.$ (2) \
Mặt khác, $\frac{FL}{AL}=\frac{\sin LFA}{\sin LAF};\frac{KA}{KE}=\frac{\sin KAE}{\sin KEA}.$ Vì $AK=AL;\angle FAL=\angle ABC;\angle EAK=\angle ACB,$ nên
$$\begin{aligned}
\frac{FL}{AL}.\frac{KA}{KE} &=\frac{\sin LFA}{\sin FAL}.\frac{\sin KAE}{\sin KEA}=\frac{FL}{KE} \
& =\frac{\sin LFA}{\sin KEA}.\frac{\sin KAE}{\sin FAL}=\frac{\sin ACB}{\sin ABC}.\frac{\sin LFA}{\sin KEA}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}. \
\end{aligned}$$
Ta lại có
$$\frac{\sin LFA}{\sin KEA}=\frac{\sin NFA}{\sin NAF}.\frac{\sin MAP}{\sin MEA}=\frac{AN}{FN}.\frac{ME}{MA}=\frac{AN}{AM}.\frac{ME}{FN}=\frac{AQ}{AP}.\frac{ME}{FN}=\frac{AC}{AB}.\frac{ME}{FN}.$$ (do (2)). Vậy nên $$\frac{FL}{KE}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}=\frac{AB.AC}{AC.AB}.\frac{ME}{NF}=\frac{ME}{NF}.$$

Bài 7. (Chọn đội tuyển PTNK TPHCM) Cho $\vartriangle ABC$, trực tâm $H.$ Lấy điểm $M$ bất kỳ trên cung $BHC$ của $(BHC)$. Trên $BM,CM$ lấy các điểm $E,F$ sao cho $\angle ECA=\angle FBA=90{}^\circ .$ Chứng minh rằng khi $M$ chuyển động thì trung điểm $EF$ luôn nằm trên đường thẳng cố định.

Lời giải. Ở bài toán này, ta có hai hướng tiếp cận như sau:
Cách 1.
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $P$ đối xứng với $N$ qua $BC$, $BP,CP$ lần lượt cắt $CE,BF$ tại $X,Y.$ Dễ dàng chứng minh $B,H,M,P,C$ nằm trên đường tròn.


Ta sẽ chứng minh $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC.$
Do $\angle BMC=\angle BNC=180{}^\circ -\angle BAC$ nên $\angle CME=\angle CNF$ hay 4 điểm $M,N,E,F$ nằm trên đường tròn nên $\angle CFY=\angle BEX.$ (1)
Mặt khác, do $B,H,M,P,C$nằm trên đường tròn nên $\angle YCF=\angle MCP=\angle XBE.$ (2)
Từ (1) và (2) suy ra $\vartriangle CYF\sim \vartriangle BXE(g.g)$. Do đó, $\frac{XE}{YF}=\frac{BX}{CY}$ không đổi.
Vậy $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC$ nên theo bổ đề $ERIQ$, trung điểm của $EF$ luôn nằm trên đường thẳng cố định. \medskip

Cách 2. Trước hết ta phát biểu và chứng minh bổ đề sau: \textbf{(IMO2009 Shortlist G4)} Cho tứ giác $ABCD$ nội tiếp đường tròn $(O).$ $AC$ cắt $BD$ ở $E,$ $AD$ cắt $BC$ tại $F.$ Gọi $M,N$ lần lượt là trung điểm của $AB,CD$. Khi đó, $EF$ tiếp xúc với đường tròn ngoại tiếp của $\vartriangle EMN.$
Chứng minh.
Gọi $I$ là trung điểm của $EF.$ Xét tứ giác toàn phần $AEBF.CD$ có $I,M,N$ lần lượt là trung điểm của các đường chéo $EF,AB,CD$ nên $I,M,N$ thẳng hàng.


Ta sẽ chứng minh $\overline{IM}.\overline{IN}=I{{E}^{2}}.$
Gọi $L,P,T$ lần lượt là giao điểm của $AB$ với $CD$, $EF$ với $AB,CD$. Khi đó,
$(LP,AB)=(LT,CD)=-1$
nên áp dụng hệ thức $Maclaurin$ và $ABCD$ là tứ giác nội tiếp, ta thu được
$\overline{LM}.\overline{LP}=\overline{LA}.\overline{LB}=\overline{LC}.\overline{LD}=\overline{LT}.\overline{LN}$
nên 4 điểm $M,P,N,T$ nằm trên đường tròn.
Do đó, $\overline{IM}.\overline{IN}=\overline{IP}.\overline{IT}.$
Mặt khác, ta lại có $(EF,PT)=-1$ nên theo $I{{E}^{2}}=\overline{IT}.\overline{IP}$.
Vậy $\overline{IM}.\overline{IN}=I{{E}^{2}}.$ Do đó, $EF$ là tiếp tuyến của đường tròn ngoại tiếp $\vartriangle EMN.$ (đpcm)

Trở lại bài toán,
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $I,P,Q$ lần lượt là trung điểm của $BC,EF,MN.$

Theo lời giải thứ nhất, ta có 4 điểm $M,N,E,F$ nằm trên đường tròn nên theo bổ đề 4 thì $BC$ là tiếp tuyến của $(QCP)$ hay $I{{C}^{2}}=\overline{IQ}.\overline{IP}.$

Do đó, $I_I^{IC^2}:P\leftrightarrow Q.$ (1)
Mặt khác $V_{N}^{2}:Q\mapsto M$ mà $M$ chuyển động trên cung $BHC$ nên $Q$ chuyển động trên đường tròn $(\omega )$ cố định. (2)

Từ (1) và (2), ta thu được $P$ chuyển động trên đường thẳng ảnh của $(\omega )$ qua ${I}_{I}^{IC^2}:P\leftrightarrow Q.$

Nhận xét. Qua các bài toán trên, ta có thể thấy được ứng dụng của bổ đề $ERIQ$ trong các bài toán hình học. Sau đây sẽ là một số các bài toán luyện tập.

Bài tập tự giải.

  1. Cho $\vartriangle ABC$ nội tiếp $(O)$. Tiếp tuyến của $(O)$ tại $A$ cắt tiếp tuyến của $(O)$ tại $B,C$ lần lượt tại $E,F$. Gọi $M,N$ là trung điểm của $BF,CE$. Đường thẳng qua $O$ và vuông góc với $OA$ cắt $BC$ tại $S$. Chứng minh rằng $MN$ chia đôi $SO$.

  2. Cho $\vartriangle ABC,$ trực tâm $H$, trung tuyến $AM.$ $P$ bất kỳ trên $HM$. Đường tròn đường kính $AP$ cắt $CA,AB$ tại $E,F$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Chứng minh rằng $TB=TC.$

  3. Cho $\vartriangle ABC$, đường tròn $(K)$ đi qua $B,C$ cắt $CA,AB$ tại $E,F$. Gọi $H$ là giao điểm của $BE,CF.$ Lấy $P$ bất kỳ trên $BC$. Đường thẳng qua $P$ và song song với $AH$ cắt $CA,AB$ tại $X,Y.$Lấy $Q$ bất kỳ trên $HP.$ Đường thẳng qua $Q$ song song với $BE,CF$ cắt $CA,AB$ tại $X,Y,Z,T.$ \
    a) Chứng minh rằng 4 điểm $X,Y,Z,T$ nằm trên đường tròn $(L)$. \
    b) $KL$ cắt trung trực $PQ$ tại $Z$. Chứng minh rằng $\vartriangle ZPQ\sim \vartriangle KBC.$

  4. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC.$ Đường thẳng qua $P$ song song với $CA,AB$ cắt trung trực $BA,AC$ tại $M,N$. Chứng minh rằng khi $P$ chuyển động trên $BC$, tâm đường tròn ngoại tiếp của $\vartriangle MNP$ luôn nằm trên một đường thẳng cố định.

  5. (Việt Nam TST 2008) Cho $\triangle ABC$ nhọn không cân nội tiếp $(O).$ Với $k\in {{\mathbb{R}}^{+}},$ trên các đoạn phân giác $AD,BE,CF,$ lấy $M,N,P$ sao cho $\frac{AM}{AD}=\frac{BN}{BE}=\frac{CP}{CF}=k.$

Vẽ đường tròn $({{O}_{1}})$ đi qua $A,M$ và tiếp xúc với $OA;$

Vẽ đường tròn $({{O}_{2}})$ đi qua $B,N$ và tiếp xúc với $OB;$

vẽ đường tròn $({{O}_{3}})$ đi qua $C,P$ và tiếp xúc với $OC.$

Tìm tất cả các giá trị $k$ sao cho $(O_1),(O_2),(O_3)$ có đúng hai điểm chung.

  1. Cho tam giác $ABC$ nhọn không cân có điểm $D$ thay đổi trong tam giác sao cho $\angle ABD=\angle ACD,$ lấy $E\in AB,F\in AC$ sao cho $D$ là trực tâm tam giác $AEF.$ Chứng minh rằng:
    a) Trung tuyến đỉnh $D$ của tam giác $DEF$ luôn đi qua điểm cố định.
    b) Trung trực $EF$ luôn đi qua điểm cố định.
    c) Tâm đường tròn ngoại tiếp tam giác $(DEF)$ luôn thuộc đường cố định.
    d) Trục đẳng phương của $(BDE),(CDF)$ luôn đi qua một điểm cố định.

Tài liệu tham khảo.

  1. Nguyễn Văn Linh, Về bài 3 đề VMO 2016.
  2. Nguyễn Văn Linh, 2015, Định lý ERIQ, \url{https://nguyenvanlinh.wordpress.com
  3. Diễn đàn \url{artofproblemsolving.com/community
  4. Trần Quang Hùng, Các bài giảng đội tuyển.

Bài tập hình học ôn thi vào 10 – P1

Bài 1. Cho đường tròn tâm $O$ đường kính $AB$. Tiếp tuyến tại $A$ là $d$, tiếp tuyến tại $B$ là $d’$. $C$ là một điểm thuộc đường tròn, tiếp tuyến tại $C$ cắt $d$ và $d’$ lần lượt tại $D$ và $E$, $BC$ cắt $d$ tại $F$.
a) Chứng minh $D$ là trung điểm của $AF$.
b) Gọi $I$ là giao điểm của $BD$ và $CE$. $CI$ cắt $AB$ tại $G$. Chứng minh $CG^2 = GA.GB$.
c) Đường thẳng qua $A$ song song $EG$ cắt đường thẳng qua $B$ song song với $DG$ tại $H$. Chứng minh $D, H, E$ thẳng hàng.

Lời giải

a) Theo tích chất hai tiếp tuyến cắt nhau thì: $DA = DC$,

tam giác $DAC$ cân tại $D$ nên $\angle DCA = \angle DAC$, mà $\angle DAC + \angle DCF = \angle DAC + \angle DFC= 90^0$.

Do đó $\angle DCF = \angle DFC$, suy ra $DC = DF$. \Vậy $DF = DA$, hay $D$ là trung điểm của AF.

b) Ta có $AD||BE$ nên $\dfrac{ID}{IB} = \dfrac{AD}{BE}$, mà $AD = CD, BE = CE$, suy ra $\dfrac{ID}{IB} = \dfrac{CD}{CE}$. Từ đó ta có $CI || BE$, suy ra $IC \bot AB$.

Tam giác ACB vuông tại C, có CG là đường cao nên: $CG^2 = GA.GB$.

c) Ta có $\dfrac{GA}{GB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$, suy ra $\triangle ADG \backsim \triangle BEG$, do đó: $\angle AGD = \angle BGC$.
$GJ$ cắt $AD$ tại $J$. Ta có $\angle AGD =\angle BDE = \angle AGJ$.
Suy ra $GEJ$ cân tại $G$ và $A$ là trung điểm của $DJ$.
Gọi $H’$ là trung điểm của $DE$. Suy ra $AH’ || GE$.
Tương tự thì $H’B || GD$. Do đó $H’ \equiv H$.
Vậy $H, D, E$ thẳng hàng.

Bài 2. Cho tam giác $ABC (AB <AC)$ có 3 góc nhọn nội tiếp đường tròn tâm $O$. Vẽ 2 đường cao $AD$ và $CE$ của tam giác $ABC$ . Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $M$ . Từ $M$ kẻ tiếp tuyến thứ hai đến $(O)$ ($N$ là tiếp điểm ). Vẽ $CK$ vuông góc với $AN$ tại $K$. Chứng minh $DK$ đi qua trung điểm của đoạn thẳng $BE$.

Lời giải 

Gọi $Q$ là trung điểm đoạn $BC$.
Ta có $\angle AKD = \angle ACB = \angle ANB$, suy ra $DK || BN$, suy ra $\angle ATK = \angle ABN$.

Ta có 5 điểm $A, M, N, O, Q$ cùng thuộc đường tròn. Suy ra $\angle AQM = \dfrac{1}{2}\angle AON = \angle ACN$.

Suy ra $\angle ABN = 180^\circ- \angle ACN = 180^\circ – \angle AQM =\angle AQC$.

Suy ra $\angle ATK = \angle AQC$. Suy ra $ATDQ$ nội tiếp. Suy ra $AT \bot TQ$. Suy ra $T$ là trung điểm BE.

Bài 3. Cho đường tròn $(O)$ ngoại tiếp tam giác $ABC (AB < AC)$. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $M$ là trung điểm cạnh $BC$. Gọi $Q$ là điểm đối xứng của $I$ qua $M$, tia $OM$ cắt $(O)$ tại $D$ và $QD$ cắt $(O)$ tại $T$ ($T$ thuộc cung $BD$ không chứa $A$).
a) Chứng minh rằng $DI = DB = DC$.
b) Đường thẳng qua $I$ song song $QD$ cắt $DO$ tại $K$. Chứng minh $DK.DO = DB^2$.
c) Chứng minh $\angle ACT = \angle DOI$.

Lời giải

b) Vẽ đường kính $DE$. Ta có $DB^2 = DM\cdot  DE $

$IKQD$ là hình bình hành, suy ra $DK = 2DM$.

Mặt khác $DO = \dfrac{1}{2}DE$

Nên $BD^2 = DK\cdot DO$

c)Vì $DB = DI$ nên ta có $DI^2 = DK\cdot DO$, suy ra $\triangle DIK \backsim \triangle DOI$.

Suy ra $\angle DOI = \angle DIK$ ,

mà $\angle DIK = \angle ADT = \angle ACT$.

Bài tập luyện tập

Bài 1. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A vẽ đến (O) các tiếp tuyến AB và AC với B, C là các tiếp điểm. Trên tia đối của BA lấy điểm D, đường tròn ngoại tiếp ACD cắt (O) tai điểm thứ hai là E. DE cắt (O) tại F khác E. Gọi I là hình chiếu của B trên CD, H là giao điểm của OB và CD.
a) Chứng minh $CF||AC$.
b) Chứng minh tứ giác $IHEF$ nội tiếp.
c) Chứng minh $\angle IED = 2\angle ADC$.

Bài 2. Cho hình vuông ABCD cạnh a. E, F là các điểm thay đổi trên các cạnh CD và BC sao cho $\angle EAF = 45^0$. Gọi G, H lần lượt là giao điểm của AE, AF với BD.
a) Chứng minh rằng 5 điểm C,E, G, H, F cùng thuộc một đường tròn.
b) Chứng minh EF tiếp xúc với một đường tròn cố định.
c) Chứng minh $GH^2 = DG^2 + BH^2$.
d) Chứng minh chu vi tam giác CEF không đổi. Tìm giá trị lớn nhất diện tích của tam giác CEF.

Bài 3. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi D là hình chiếu của A trên BC và E là điểm đối xứng của A qua O. Gọi F là điểm chính giữa cung BC không chứa A.
a) Chứng minh rằng AF là phân giác góc $\angle DAE$.
b) Chứng minh $AD.AE = AB.AC$ và $S_{ABC} = \dfrac{AB.AC.BC}{4R}$.
c) Vẽ đường kính FG, đường tròn ngoại tiếp tam giác OAG cắt AB và AC tại M, N. Chứng minh BM = CN.

Góc trong đường tròn (tt)

 

 

 

 

 

 

 

 

Ví dụ 1.
Tính số đo góc $\angle BAC$ và $\angle BDC$ như hình vẽ.

Giải
  •  Ta có $\angle BAC = \dfrac{1}{2} \angle BOC = 60^\circ$.
  • Và $\angle BDC 180^\circ – \angle BAC = 180^\circ – 60^\circ = 120^\circ$.

Ví dụ 2.
Trên đường tròn $(O;R)$ lấy các điểm $A, B$ sao cho $\text{sđ} \arc{AB} = 120^\circ$ và $C$ thuộc cung nhỏ cung ${AB}$ và $\text{sđ} \text{cung}{AC} = 30^\circ$.
a) Tính số đo cung $BC$.
b) Tính độ dài $AB, BC$ theo $R$.

Giải
  • Nếu $C$ thuộc cung nhỏ $AB$ thì $\text{sđ} \arc{AB} = \text{sđ} \arc{AC}+\text{sđ} \arc{CB}$, suy ra $\text{sđ} \arc{BC} = 120^\circ – 30^\circ = 90^\circ$.
    Gọi $\arc{AmB}$ là cung lớn $AB$. Suy ra $\text{sđ} \arc{AmB} = 240^\circ$.
  • Gọi $M$ là trung điểm $AB$ ta có $OM \bot AB$ và $OM$ là phân giác $\angle AOB$.\\
    $\angle AOB = \text{sđ} \arc{AOB} = 120^\circ$, suy ra $\angle AOM = 60^\circ$. Suy ra $AM = OA.\sin AOM = \dfrac{R\sqrt{3}}{2}$. Do đó $AB = 2AM = R\sqrt{3}$.
  • Tam giác $OBC$ vuông cân tại O nên $BC=\sqrt{OB^2+OC^2} = R\sqrt{2}$.

Ví dụ 3. Cho tam giác ABC nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Chứng minh $DB = DC$ và $OD \bot BC$.

Giải


Ta có $\text{sđ} \text{cung} {DB} = 2\angle DAB$, $\text{sđ} \text{cung} {DC} = 2\angle DAC$. Mà $\angle DAB = \angle DAC$(gt) nên $\text{sđ} {DB}= \text{sđ} {CD}$, suy ra $DB = DC$. \\
Ta có $OB = OC, DB = DC$ nên $OD$ là trung trực của $BC$, do đó $OD \bot BC$.

Ví dụ 4. Cho đường tròn tâm $O$ đường kính $AB$. Hai điểm $C, D$ khác phía đối với $AB$ sao cho $\angle CAB = 60^\circ, \angle DAB = 45^\circ$.
a) Tính $\angle ACB, \angle ADB$.
b) Tính $\angle DCB$ và $\angle CDB$.
c) Tính $\angle COD$.

Giải

a) Ta có $\angle ACB = 90^\circ$ (góc nội tiếp nửa đường tròn)\\
$\angle ADB = 90^\circ$ (góc nội tiếp nửa đường tròn).
b) Ta có $\angle DCB = \angle DAB$ (góc nội tiếp cùng chắn cung DB), mà $\angle DAB = 60^\circ$ nên $\angle DCB = 60^\circ$.\\
Ta có $\angle ADC = \angle ABC$(góc nội tiếp cùng chắc cung AC).\\
Mà $\angle ABC = 90^\circ – \angle CAB = 45^\circ$, nên $\angle ADC =45^\circ$.
b) Ta có $\angle ABD = 90^\circ – \angle DAB = 30^\circ$, suy ra $\angle CBD = \angle ABC + \angle ABD = 75^\circ$.\\
Khi đó $\angle COD = 2\angle CBD = 150^\circ$.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $\angle A = 60^\circ, \angle B = 75^\circ$. Tiếp tuyến tại $A$ cắt $BC$ tại $D$.
a) Tính $\angle DAB$.
b) Phân giác góc $BAC$ cắt $BC$ tại $E$. Chứng minh tam giác $DAE$ cân.
c) Chứng minh $DA^2 = DB\cdot DC$.

Giải

a) Ta có $\angle ACB = 180^\circ – \angle ABC – \angle BAC = 45^\circ$. \\
Suy ra $\angle DAB = \angle ACB$ (góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung đó). Suy ra $\angle DAB = 45^\circ$.
b) Ta có $\angle DEA = \angle ACB + \angle EAC = 45^\circ + 30^\circ = 75^\circ$.\\
Và $\angle DAE = \angle DAB + \angle BAE = 75^\circ$.\\
Do đó $\angle DAE = \angle DEA$, suy ra tam giác $DAE$ cân tại $D$.
c)  Xét tam giác $DAB$ và tam giác $DCA$ có $\angle DAB$ chung và $\angle DAB = \angle DCA$, suy ra $\triangle DAB \backsim \triangle DCA \Rightarrow \dfrac{DA}{DC} = \dfrac{DB}{DA} \Rightarrow DB\cdot DC = DA^2$.

Bài tập rèn luyện

Bài 1. Hai tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $M$. Biết $\angle AMB = 60^\circ$.
a) Tính số đo góc ở tâm tạo bởi hai bán kính $OA, OB$.
b) Tính số đo mỗi cung $AB$ (cung lớn và cung nhỏ).

Bài 2. Cho tứ giác $ABCE$ nội tiếp đường tròn $(O)$. $BE$ và $AC$ cắt nhau tại $I$. Cho $\angle ABE = 40^\circ, \angle BAE = 100^o$.

a)Tính $\angle AOE$ và $\angle OAE$.
b)Tính $\angle ACE$.
c) Tính $\angle BCE$.
d) Chứng minh $IA\cdot IC = IB\cdot IE$.

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$, thỏa $\widehat {BAC} = {75^0},\widehat {ACB} = {45^0}$.
a) Tính $\widehat {AOB}$ và $AB$.
b) Tính $AC$.
c) Tính diện tích tam giác $ABC$.

Bài 4. Cho tam giác $ABC$ có $\angle BAC = 60^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Vẽ đường kính $BD$.
a) Tính các góc của tam giác $BCD$.
b) Tính $BC$ theo $R$.
c) Gọi $H$ là trực tâm tam giác $ABC$. Chứng minh $AH = R$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $D$ là điểm
chính giữa cung $AC$ không chứa $B$. Ta kẻ dây $DE$ song
song với cạnh $AB$, cắt $BC$ tại $I$. Chứng tỏ các tam giác
$ICE$ và $IBD$ cân.