Tag Archives: PTNK

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2015

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2015

Bài 1.

a) Giải phương trình $ \left( x^2 -9 \right) \sqrt{2-x}= x\left( x^2-9 \right) $

b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x^2 + 4y^2 \right) ^2 – 4\left( x^2 + 4y^2 \right) =5 \\ 3x^2 + 2y^2 =5 \end{array}\right. $

Giải

a) Điều kiện $2-x>0 \Leftrightarrow x \le 2$

$\left( x^2 -9\right) \sqrt{2-x}=x\left( x^2-9 \right)$

$\Leftrightarrow \left( x^2 -9 \right) \left( \sqrt{2-x}-x \right) =0$

$\Leftrightarrow \left[ \begin{array}{l} x=3 \ (l) \\ x=-3 \ (n) \\ \sqrt{2-x}=x \ (2)  \end{array}\right. $

Ta có $\sqrt{2-x}=x \Leftrightarrow \left\{ \begin{array}{l} x\ge 0 \\ 2-x=x^2 \end{array}\right. \Leftrightarrow x=1$

vậy $S=\left\{ -3;1 \right\} $

b) $\left\{ \begin{array}{l} \left( x^2 + 4y^2 \right) ^2 – 4\left( x^2 + 4y^2 \right) =5 \ (1)\\ 3x^2 + 2y^2 =5 \ (2) \end{array}\right. $

Đặt $t=x^2+4y^2$, $t\ge 0$ từ (1) ta có $t^2-4t-5=0 \Leftrightarrow \left[ \begin{array}{l} t=5 \ (n) \\ t=-1 \ (l) \end{array}\right. $

Ta có hệ $\left\{ \begin{array}{l} x^2+4y^2=5 \\ 3x^2+2y^2=5 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x^2=1 \\ y^2 =1 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x = \pm 1 \\ y= \pm 1 \end{array}\right. $

Vậy hệ phương trình có 4 nghiệm $(x;y)$ là $(1;1),(1;-1),(-1;1),(-1;-1)$

Bài 2. Cho phương trình $\dfrac{\left( x-2m \right) \left( x+m-3 \right) }{x-1}=0$ $(1)$

a) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$,$x_2$.

b) Tìm $m$ để $x_1^2+x_2^2 -5x_1x_2= 14m^2 -30m +4$

Giải

a) $\dfrac{(x-2m)(x+m-3)}{x-1}=0$ $(1)$, điều kiện $x\ne 1$.

$(1) \Leftrightarrow \left[ \begin{array}{l} x=2m \\ x=3-m \end{array}\right. $

Phương trình $(1)$ có hai nghiệm phân biệt khi và chỉ khi

$\left\{ \begin{array}{l} 2m \ne 3-m \\ 2m \ne 1 \\ 3-m \ne 1 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} m \ne 1 \\ m \ne \dfrac{1}{2} \\ m \ne 2 \end{array}\right. $

b) Theo câu a) thì điều kiện là $\left\{ \begin{array}{l} m \ne 1 \\ m \ne \dfrac{1}{2} \\ m \ne 2 \end{array}\right. $.

Giả sử $x_1 =2m, x_2=3-m$ ta có:

$x_1^2 + x_2^2 -5x_1x_2 = 14m^2 -30m +4 $

$\Leftrightarrow (2m)^2 + (3-m)^2 -5(2m)(3-m) = 14m^2 -30m +4 $

$\Leftrightarrow m^2 -6m +5 =0$ $\Leftrightarrow \left[ \begin{array}{l} m=1 \ (l) \\ m=5 \ (n) \end{array}\right. $

Bài 3.

a) Rút gọn biểu thức $Q= \left( \dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{36}{x-9} \right) : \dfrac{\sqrt{x}-5}{3\sqrt{x}-x}$ ($x>0, x\ne 9, x\neq 25$)

b) Tìm x để $Q<0$.

Giải

a) $Q= \left( \dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{36}{x-9} \right) : \dfrac{\sqrt{x}-5}{3\sqrt{x}-x} $

$= \left( \dfrac{\left( 3+\sqrt{x} \right) ^2-\left( 3-\sqrt{x} \right) ^2 +36}{\left( 3-\sqrt{x} \right) \left( 3+\sqrt{x} \right)} \right) \cdot \dfrac{\sqrt{x}\left( 3- \sqrt{x} \right) }{\sqrt{x}-5} $

$=\dfrac{12\sqrt{x}}{\sqrt{x}-5}$

b) Ta có $Q<0 \Leftrightarrow \dfrac{12\sqrt{x}}{\sqrt{x}-5}<0 \Leftrightarrow 0 < \sqrt{x} <5 \Leftrightarrow 0<x < 25 $.

So với điều kiện ta có: $\left\{ \begin{array}{l} 0<x<25 \\ x \ne 9 \end{array}\right. $

Bài 4.

a) Cho một tam giác vuông. Nếu ta tăng độ dài các cạnh góc vuông thêm $3$ cm thì diện tích tăng $33$ $cm^2$, nếu giảm độ dài một cạnh góc vuông $2$ cm và tăng độ dài cạnh góc vuông kia $1$ cm thì diện tích giảm $2$ $cm^2$. Hãy tính độ dài các cạnh của tam giác vuông.

b) Bạn An dự định trong khoảng thời gian từ ngày $1/3$ đến ngày $30/4$ mỗi ngày sẽ giải $3$ bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng $3$ (tháng $3$ có $31$ ngày) thì An bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải $16$ bài toán; sau đó, An cố gắng giải $4$ bài một ngày và đến $30/4$ thì An cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Giải

a) Gọi độ dài hai cạnh góc vuông là $x$, $y$ $(m)$. Theo đề bài ta có hệ phương trình:

$\left\{ \begin{array}{l} \dfrac{1}{2}(x+3(y+3) =\dfrac{1}{2}xy+33 \\ \dfrac{1}{2}(x-2)(y+1) =\dfrac{1}{2} xy-2 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} x+y=19 \\ x-2y=-2 \end{array}\right. \Leftrightarrow \left\{ \begin{array}{l} y=7 \\ x=12 \end{array}\right. $

Độ dài cạnh huyền $z=\sqrt{7^2+12^2} =\sqrt{193}$

b) Số ngày dự định làm là $61$ ngày, số bài toán dự định làm là $3.61=183$

Gọi $x$ là số ngày làm theo dự định, y là số ngày nghỉ ta có $x \le 31 $.

Số ngày làm $4$ bài/ngày là $61 – x – y – 7 = 54 – x – y$ (ngày)

Theo đề bài ta có:

$$3.x+0.y+16+ 4(54-x-y) =183 \Leftrightarrow 4y+x=49$$

Mà $x \le 31 \Rightarrow 4y \ge 18 \Rightarrow y \ge \dfrac{18}{4}$, mà $y \in \mathbb{N}$ nên giá trị nhỏ nhất của $y$ là $5$.

Bài 5. Hình bình hành $ABCD$ có $ \angle ADC =60^\circ $ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.

a) Chứng minh tam giác $BCE$ đều và $OI \bot CD$.

b) Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.

c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Giải

a) Ta có $\angle BEC = \angle ADC =60^\circ $ ($ADCE$ nội tiếp) và $\angle ABC = \angle ADC = 60^\circ  $ ($ABCD$ là hình bình hành)

Tam giác $BCE$ có $\angle EBC =\angle BEC = 60^\circ  $ nên là tam giác đều.

Ta có $\angle DCE = 180^\circ  – \angle DAE =60^\circ $, suy ra $\angle DCE = \angle ADC$ nên hình thang $AECD$ là hình thang cân

Khi đó $\angle ACD = \angle EDC$, tam giác $ICD$ cân tại $I$.

Ta có $IC = ID$, $OC = OD$ nên OI là trung trực của $CD$. Do đó $OI \bot CD$

b) Ta có $K$ là trung điểm $BD$ nên $K$ cũng là trung điểm $AC$ do $ABCD$ là hình bình hành

Khi đó $OK \bot AC$ và OK là trung trực của AC. Suy ra$MA=MC$. Suy ra $\angle MAC = \angle ACM$.

Mà $\angle ACM = \angle IDM $

Từ đó $\angle IDM = \angle MAC$. Suy ra tứ giác $AIMD$ nội tiếp.

c) Ta có $JK \bot AC$. Suy ra $I$, $K$, $O$ thẳng hàng. Do tam giác $ABC$ và tam giác $ACD$ bằng nhau nên $JK = OK$.

Mặt khác $\angle KJC = \dfrac{1}{2} \angle AJC = \angle ABC =60^\circ  $

Khi đó $\dfrac{KJ}{CK}=\cot \angle KJC = \dfrac{1}{\sqrt{3}}$

Mà $OJ=2JK$, $DE=AC$ ($AECD$ là hình thang cân), $OK=\dfrac{1}{2}AC$.

Khi đó $\dfrac{OJ}{DE} = \dfrac{2JK}{AC}=\dfrac{2JK}{2CK}=\dfrac{KJ}{CK}=\dfrac{1}{\sqrt{3}}$

Vậy $\dfrac{OJ}{DE}=\dfrac{1}{\sqrt{3}}$

 

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2014

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2014

Bài 1.

a) Giải phương trình $\left( 3-x \right) \sqrt{\left( 3+x \right) \left( 9+x^2 \right) } = 4 \sqrt{5 \left( 3-x \right) }$

b) Tính $\dfrac{x}{y}$ biết $x>1$, $y<0$ và $ \dfrac{\left( x+y \right) \left( x^3 -y^3 \right) \sqrt{\left( 1- \sqrt{4x-1} \right)^2 }}{\left( 1-\sqrt{4x-1} \right) \left( x^2y^2 + xy^3 +y^4 \right) }=-6$.

Giải

a) $(3-x) \sqrt{(3+x) \left( 9+x^2 \right) }=4\sqrt{5(3-x)}$

Điều kiện $\left\{ \begin{array}{l} 3-x \ge 0 \\ (x+3)\left( x^2 +9 \right) \ge 0 \end{array}\right. \Leftrightarrow -3\le x \le 3$

Với điều kiện trên ta có:

$(3-x) \sqrt{(3+x) \left( 9+x^2 \right) }=4\sqrt{5(3-x)} $

$\Leftrightarrow \sqrt{3-x}\left( \sqrt{3-x}\sqrt{(3+x)\left( x^2+9 \right) }-4\sqrt{5} \right) =0 $

$\Leftrightarrow \sqrt{3-x}\left( \sqrt{81-x^4} – 4\sqrt{5} \right) =0 $

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{3-x}=0 \\ \sqrt{81-x^4}=4\sqrt{5} \end{array}\right. \Leftrightarrow \left[ \begin{array}{l} x=3 \\ x^4=1 \end{array}\right. \Leftrightarrow \left[ \begin{array}{l} x=3\\ x=-1 \\ x=1 \end{array}\right.$

Vậy $S=\left\{ 3; -1;1 \right\} $

b) Ta có $x>1 \Rightarrow \sqrt{4x-1}-1>0 \Rightarrow \sqrt{\left( 1-\sqrt{4x-1} \right) ^2 }=\sqrt{4x-1} -1 $

Do đó:

$\dfrac{(x+y)\left( x^3-y^3 \right) \sqrt{\left( 1-\sqrt{4x-1} \right) ^2}}{\left( 1-\sqrt{4x-1} \right) \left( x^2y^2+xy^3+y^4 \right) } =-6 $

$\Leftrightarrow \dfrac{(x+y)(x-y)\left( x^2 + xy+y^2 \right) }{y^2\left( x^2+xy+y^2 \right) } =6 $

$\Leftrightarrow x^2-y^2=6y^2 \Leftrightarrow \dfrac{x^2}{y^2}=7 \Rightarrow \dfrac{x}{y}=-\sqrt{7}$ (do $x>1$, $y<0$)

Bài 2.

a) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x^2 -y +2 \right) \left( \sqrt{\left( x^2 +9 \right) \left( y+7 \right)} -15 \right) =0\\ \sqrt{x^2 + 9} + \sqrt{y+7} =8 \end{array}\right. $

b) Hình thoi $ABCD$ có diện tích là $18\sqrt{3}$ (mét vuông), tam giác $ABD$ đều. Tính chu vi hình thoi và bán kính đường tròn ngoại tiếp tam giác $ABC$.

Giải

a) $\left\{ \begin{array}{l} \left( x^2-y+2 \right) \left( \sqrt{\left( x^2 +9 \right) \left( y+7 \right)}-15 \right) =0 \ (1)\\ \sqrt{x^2+9}+\sqrt{y+7}=8 \ (2) \end{array}\right. $ (điều kiện $y\ge -7$)

$(1) \Leftrightarrow \left[ \begin{array}{l} x^2=y-2 \\ \sqrt{\left( x^2+9 \right) \left( y+7 \right) } =15 \end{array}\right. $

Với $x^2=y-2$ thế vào $(2)$ ta có: $2\sqrt{y+7}=8\Leftrightarrow y=9 \Rightarrow x= \pm \sqrt{7}$

Ta có nghiệm $(x;y)$ là $\left( \sqrt{7};9 \right) $, $\left( -\sqrt{7};9 \right) $

Với $\sqrt{\left( x^2 +9 \right) \left( y+7 \right) }=15 $, đặt $u= \sqrt{x^2+9}$, $v=\sqrt{y+7}$ ($u,v \ge 0$) ta có hệ

$\left\{ \begin{array}{l} uv=15 \\ u+v=8 \end{array}\right.$ $ \Leftrightarrow \left\{ \begin{array}{l} u=3 \\ v=5 \end{array}\right.$ hoặc $\left\{ \begin{array}{l} u=5 \\ v=3 \end{array} \right. $

Với $u=3$, ta có $x=0$, $v = 5$ ta có $y = 18$. Ta có nghiệm $(0;18)$

Với $u = 5$, ta có $x = 4$ hoặc $x = – 4$, $v = 3$ ta có $y = 2$.

Vậy hệ phương trình có $5$ nghiệm $\left( \sqrt{7};9 \right) $, $\left( -\sqrt{7};9 \right) $, $(0;18)$, $(4;2)$, $(-4;2)$.

b) Gọi $O$ là giao điểm của $AC$ và $BD$. Gọi $a$ là cạnh hình thoi. Tam giác $ABD$ đều nên $BD = AB = a$, $\angle{ABD}=60^\circ $.

$AO=AB \sin \angle{ABD} =AB \sin 60^\circ  = \dfrac{a\sqrt{3}}{2} \Rightarrow AC=2AO=a\sqrt{3}$.

Ta có $S_{ABCD} =\dfrac{1}{2} AC.BD=18\sqrt{3} \Leftrightarrow \dfrac{1}{2}a\sqrt{3}\cdot a=18\sqrt{3}\Leftrightarrow a=6$ $(m)$, khi đó chu vi hình thoi là $4a=24$ $(m)$.

Hơn nữa $DA = DB = DC = a$ nên $D$ là tâm đường tròn ngoại tiếp tam giác $ABC$ và bán kính bằng $6m$.

Bài 3. Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-1$.

b) Tìm m để phương trình $(1)$ có $2$ nghiệm phân biệt $x_1$, $x_2$ sao cho

$$21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $$

Giải

a) Khi m=-1 ta có phương trình:

$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{dk: } x \ne -3) $ $\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l} x=-1 \,\,(n) \\ x=-3 \,\, (l) \end{array}\right. $

Vậy $S=\left\{ -1 \right\} $

b) $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ $(1)$

Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$

$\left\{ \begin{array}{l} m \ne 0 \\ \Delta = (m-3)^2 -4m(2m-1) >0 \\ m(-3)^2+(m-3)(-3)+2m-1 \ne 0 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} m \ne 0\\ 7m^2 +2m-9 <0 \\ m \ne -1 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} m\ne 0\\ m \ne -1 \\ -\dfrac{9}{7} < m < 1 \end{array}\right. $

Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$

Do đó  $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58 \Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58 $

$\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $

$\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7} \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $ $

Vậy $m=\dfrac{7}{8}$

Bài 4.

a) Gọi $x= \dfrac{a+b}{2}$, $y=\sqrt{ab}$ lần lượt là trung bình cộng và trung bình nhân của hai số dương $a, b$. Biết trung bình cộng của $x$ và $y$ bằng $100$. Tính $S = \sqrt{a}+\sqrt{b}$

b) Giả sử hai đại lượng $x, y$ tỉ lệ nghịch ($x, y$ luôn dương). Nếu $x$ tăng $a \% $ thì $y$ giảm $m \%$. Tính $m$ theo $a$.

Giải

a) Ta có $100=\dfrac{x+y}{2}=\dfrac{\dfrac{a+b}{2}+\sqrt{ab}}{2} = \dfrac{a+b+2\sqrt{ab}}{4} = \dfrac{\left( \sqrt{a}+\sqrt{b} \right)^2}{4} $

$\Leftrightarrow \left( \sqrt{a}+\sqrt{b} \right) ^2 =400 \Leftrightarrow \sqrt{a} +\sqrt{b}=20$

b) Khi $x$ tăng $a\% $ thì được $\left( 1+ \dfrac{a}{100} \right) x$, y giảm $m\% $ thì được $\left( 1- \dfrac{m}{100} \right) y$.

Do $x$, $y$ tỷ lệ nghịch nên ta có phương trình:

$xy= \left( 1+ \dfrac{a}{100} \right) x \left( 1- \dfrac{m}{100} \right) y $

$\Leftrightarrow 10000 = (100+a) (100-m)$

$\Leftrightarrow m= \dfrac{100a}{100+a}$

Bài 5. Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.

a) Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.

b) $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với $CD$. Tính $\dfrac{AP}{PD}$

c) $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Giải

a) Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.

Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.

Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b) Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$.

Khi đó $BP = EB + EP = AB+PD=BC+PD$.

Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.

Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.

Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.

Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$

Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c) Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^\circ =\angle{IAF}$ suy ra tứ giác $AEIF$ nội tiếp

Do đó $\angle{IEA}=\angle{IFA}=90^\circ $ và $EM$ là phân giác $\angle{CED}$

Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$

Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.

Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2013

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2013

Bài 1.

a) Giải phương trình: $\sqrt{x+1}=x-2$

b) Tìm chiều dài của một hình chữ nhật có chu vi là $a$ (mét), diện tích là $a$ (mét vuông) và đường chéo là $3\sqrt{5}$ (mét).

Giải

a) Ta có:

$\sqrt{x+1}=x-2 \Leftrightarrow \left\{ \begin{array}{l} x-2 \ge 0 \\ x+1 = \left( x-2 \right) ^2 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ x^2 -5x+3 =0 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ \left[ \begin{array}{l} x=\dfrac{5+\sqrt{13}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{13}}{2} \,\, (l) \end{array}\right. \end{array}\right. $

Vậy $S= \left\{ \dfrac{5+\sqrt{13}}{2} \right\} $

b) Gọi kích thước của hình chữ nhật là $x$, $y$ (giả sử $x > y$). Ta có hệ:

$\left\{ \begin{array}{l} 2x+2y=a \\ xy=a \\ x^2 +y^2 =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x+y=\dfrac{a}{2} \\ xy=a \\ \dfrac{a^2}{4}-2a =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} a=18 \\ x+y =9 \\ xy=18 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=3 \end{array}\right. $

Vậy chiều dài hình chữ nhật là $6$.

Bài 2. Cho phương trình $\left( \sqrt{x}-1 \right) . \left( x^2 -5x +m-1 \right) =0 $ $(1)$

a) Giải phương trình $(1)$ khi $m=-1$

b) Tìm $m$ để phương trình $(1)$ có ba nghiệm phân biệt $x_1$, $x_2$, $x_3$ thỏa

$$x_1 + x_2 + x_3 +x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_3x_1 =31$$

Giải

a) Khi $m=-1$ ta có phương trình:

$ \left( \sqrt{x}-1 \right) \left( x^2 -5x-2 \right) =0 \,\, (\text{ĐK:} x\ge 0)$

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{x}=1 \\ x^2-5x-2=0 \end{array}\right.$

$\Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=\dfrac{5+\sqrt{33}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{33}}{2} \,\, (l) \end{array}\right. $

b) Phương trình $(1)$ tương đương với $\left[ \begin{array}{l} x=1 \\ x^2 -5x +m-1=0 \,\, (2) \end{array}\right. $

Giả sử $x_1=1$ thì $x_2,x_3$ là nghiệm của $(2)$. Điều kiện phương trình $(1)$ có $3$ nghiệm phân biệt thì phương trình $(2)$ có hai nghiệm phân biệt dương khác $1$, tương đương với:

$\left\{ \begin{array}{l} \Delta = 25-4(m-1) >0 \\ S=5 >0 \\ P=m-1 >0 \\ 1-5+m-1 \ne 0 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} m<\dfrac{29}{4} \\ m>1 \\ m\ne 5 \end{array}\right. $

Khi đó $x_2 +x_3 =5$, $x_2x_3=m-1$.

Từ đó :$x_1 +x_2 +x_3 +x_1^2 +x_2^2 +x_3^2 +x_1x_2 +x_2x_3 +x_1x_3=31 $

$\Leftrightarrow 1+5+1+ \left( x_2+x_3 \right) ^2 -x_2x_3 +5=31 $

$\Leftrightarrow 1-m +37 =31 \Leftrightarrow m=7 \,\, (n) $

Bài 3.

a) Với $0<b<a$, hãy rút gọn biểu thức:

$$P=\left( \dfrac{1}{\sqrt{1+a}-\sqrt{a-b}}+ \dfrac{\sqrt{a+2+b}-\sqrt{a-b}}{b+1}-\dfrac{1}{\sqrt{1+a}+\sqrt{a-b}} \right) :\ \left( 1+ \sqrt{\dfrac{a+2+b}{a-b}} \right) $$

b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x-y \right) ^2 = \dfrac{1}{x} – \dfrac{1}{y} \\ x-y = xy-2 \end{array}\right. $

Giải

a) Ta có:

$P = \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}}{1+a-(a-b)} + \dfrac{\sqrt{a+b+2}-\sqrt{a-b}}{1+b}-\dfrac{\sqrt{1+a}-\sqrt{a-b}}{1+a-(a-b)} \right) :  \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{\sqrt{a-b}} \right) $

$= \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}+\sqrt{a+b+2}-\sqrt{a-b}-\sqrt{1+a}+\sqrt{a-b}}{1+b} \right) \cdot  \dfrac{\sqrt{a-b}}{\sqrt{a-b}+ \sqrt{a+b+2}} $

$= \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{1+b} \right) . \dfrac{\sqrt{a-b}}{\sqrt{a-b}+\sqrt{a+b+2}} $

$= \dfrac{\sqrt{a-b}}{1+b}$

b) Ta có:

$(x-y)^2 = \dfrac{1}{x} -\dfrac{1}{y} \Leftrightarrow (x-y)^2 = \dfrac{y-x}{xy}$

$\Leftrightarrow (x-y) \left( x-y+\dfrac{1}{xy} \right) =0 \Leftrightarrow \left[ \begin{array}{l} x=y \\ x-y+\dfrac{1}{xy} =0\end{array}\right. $

Với $x=y$, thế vào $(2)$ ta có $x^2=2 \Leftrightarrow \left[ \begin{array}{l} x=\sqrt{2} \Rightarrow y=\sqrt{2} \\ x=-\sqrt{2} \Rightarrow y= -\sqrt{2} \end{array}\right. $

Với $x-y+\dfrac{1}{xy}=0 \Rightarrow x-y= -\dfrac{1}{xy}$

Ta có $-\dfrac{1}{xy} =xy-2 \Leftrightarrow xy=1 \Rightarrow x-y=-1$, ta có:

$x(x+1)=1 \Leftrightarrow \left[ \begin{array}{l} x=\dfrac{-1+\sqrt{5}}{2} \Rightarrow y= \dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{-1-\sqrt{5}}{2} \Rightarrow y=\dfrac{1-\sqrt{5}}{2} \end{array}\right. $

Vậy hệ có $4$ nghiệm.

Bài 4. Có hai vòi nước $A$, $B$ cùng cung cấp cho một hồ cạn nước và vòi $C$ (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng $6$ giờ, hai vòi $A$, $B$ được mở; đến $7$ giờ vòi $C$ được mở; đến $9$ giờ thì đóng vòi $B$ và vòi $C$; đến $10$giờ $45$ phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi $B$ ngay từ đầu thì đến $13$ giờ hồ mới đầy. Biết lưu lượng vòi $B$ là trung bình cộng lưu lượng vòi $A$ và $C$, hỏi một mình vòi $C$ tháo cạn hồ nước đầy trong bao lâu?

Giải

Gọi $x$ là thời gian vòi $A$ làm đầy bể, $y$ là thời gian vòi $B$ làm đầy bể và $z$ là thời gian vòi $C$ làm cạn bể (hay đầy bể).

Ta có $\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z}$

Ta có $\dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1$ và $\dfrac{7}{x}-\dfrac{2}{z} =1$. Từ đó ta có:

$\left\{ \begin{array}{l} \dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z} \\ \dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1 \\ \dfrac{7}{x}-\dfrac{2}{z} =1 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=8 \\ z=12 \end{array}\right. $

Vậy thời gian vòi $C$  tháo cạn hồ là $12$ giờ.

Bài 5. Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.

a) Tính $BC$ và $CN$ theo $a$.

b) Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$. Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo $a$.

c) $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Giải

a) Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.

$\angle{BOC}=2\angle{BAC}=60^\circ $ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.

$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$

suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 + \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$

b) Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.

Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^\circ $ nên $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.

Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.

Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c) Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.

Do đó $\angle{KMI}=\angle{KFM}$. \hfill $(1)$

Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\angle{xMI}=\angle{IFM} $ \hfill $(2)$

Từ $(1)$ và $(2)$ suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^\circ $, mà $KF // ND$, suy ra $\angle{IND} =90^\circ $.

 

 

 

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2012

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2012

Bài 1. Cho phương trình $x^3 -4x\sqrt{x} +m + 1=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-33$

b) Tìm $m$ để phương trình $(1)$ có đúng hai nghiệm phân biệt $x_1$, $x_2$ thỏa $x_1^6 +x_2^6=82$.

Giải

Đặt $t=x\sqrt{x} \ge 0$.

a) Khi $m=-33$ ta có phương trình: $t^2 -4t -32=0$ có $2$ nghiệm $t=-4$, $t=8$, loại $t=-4$.

Với $t = 8$, thì $x = 4$

b) Ta có $\Delta’ =3-m >0 \Leftrightarrow m<3 $ và $\left\{ \begin{array}{l} S=t_1 + t_2 =4 \\ P=t_1t_2=m+1\end{array}\right. $

Khi đó $x_1^6 + x_2^6 = t_1^4 + t_2^4 = \left( t_1^2 + t_2^2 \right) ^2 – 2t_1^2 t_2^2 = 2m^2 -60m +194 $

$x_1^6 + x_2^6 =82 \Leftrightarrow m^2 -30m +56 =0 \Leftrightarrow \left[ \begin{array}{l} m=2 \,\, (n)\\\\ m=28 \,\, (l) \end{array} \right. $

Bài 2. Giải phương trình và hệ phương trình

a) $\sqrt{2x+7}-\sqrt{-3x-5}=1$.

b) $\left\{ \begin{array}{l} x^2 -2xy =1-2\sqrt{5}\\ xy-\dfrac{1}{10}y^2=\sqrt{5}-\dfrac{1}{2} \end{array} \right. $

Giải

a)Điều kiện: $-\dfrac{7}{2} \le x \le -\dfrac{5}{3}$

Phương trình tương đương:

$\sqrt{2x+7}=1+\sqrt{-3x-5}$

$\Leftrightarrow 5x+11 =2\sqrt{-3x-5} $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -\dfrac{11}{5} \\ 25x^2 +122x +141 =0 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -\dfrac{11}{5} \\ \left[ \begin{array}{l} x=-3 \,\, (l) \\ x=-\dfrac{47}{25} \end{array}\right. \end{array} \right. $

b) Lấy $(1) + 2 \times (2)$, ta có phương trình $y^2 = 5x^2 \Leftrightarrow \left[ \begin{array}{l} y=x\sqrt{5} \\ y=-x\sqrt{5} \end{array}\right. $

Với $y=x\sqrt{5}$, thế vào $(1)$ ta có $x^2 – 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} x=1 \Rightarrow y=\sqrt{5} \\ x=-1 \Rightarrow y=-\sqrt{5} \end{array}\right. $

Với $y=-x\sqrt{5}$, thế vào $(1)$ ta có $x^2 + 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow x^2 = \dfrac{1-2\sqrt{5}}{1+2\sqrt{5}}$ (VN)

Vậy nghiệm là: $\left( 1 ; \sqrt{5} \right)$, $\left( -1 ; -\sqrt{5} \right) $

Bài 3.

a) Rút gọn biểu thức: $$T = \left( \dfrac{2\sqrt{a}+ \sqrt{b}}{\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2}-\dfrac{2-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+\sqrt{b}+2} \right) $$ với $a,b \ge 0$ và $a \ne 1$.

Tìm giá trị lớn nhất của $T$ khi $a$ là số tự nhiên và $a \ne 1$.

b) Tìm $3$ số tự nhiên liên tiếp biết tổng $3$ tích của từng cặp số khác nhau của chúng là $1727$.

Giải

a) $MS1= \left( \sqrt{a}-1 \right) \left( \sqrt{b}+2 \right) $, $MS2= \left( \sqrt{a}+1 \right) \left( \sqrt{b}+2 \right) $

Quy đồng mẫu số chung $\left( \sqrt{a}-1 \right) \left( \sqrt{b}+2 \right) \left( \sqrt{a} +1 \right) = (a-1) \left( \sqrt{b} +2 \right) $ thì tử số bằng $(a+1)\left( \sqrt{b}+2 \right) $.

Suy ra $T= \dfrac{a+1}{a-1}$

$T= 1+ \dfrac{2}{a-1}$, $a=0 \Rightarrow T= -1$, $a>2 \Rightarrow T< 1+2 =3 =T (a=2) \Rightarrow T_{\max } =3$

b) Gọi $3$ số tự nhiên liên tiếp là $n – 1$, $n$ , $n + 1$ ($n \ge 1$), từ giả thiết ta có phương trình:

$(n-1)n+(n+1)n+(n-1)(n+1) =1727 \Leftrightarrow 3n^2 -1 = 1727 \Leftrightarrow n=24 \Rightarrow \text{ĐS}$

Bài 4. Tổng kết học kì $2$, trường trung học cơ sở $N$ có $60$ học sinh không đạt học sinh giỏi, trong đó có $6$ em từng đạt học sinh giỏi học kì $1$, số học sinh giỏi của học kì $2$ bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì $1$ và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì $1$ nhưng đạt học sinh giỏi học kì $2$. Tìm số học sinh giỏi học kì $2$ của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải

Gọi $x$ là số học sinh giỏi học kỳ $2$ của trường ($x$ nguyên dương).

Số học sinh của trường là $x + 60$ (học sinh)

Số học sinh giỏi của học kì $1$ là $\dfrac{37}{40}x$ (học sinh)

Ta có phương trình $\dfrac{8}{100}(x+60) -6= x-\dfrac{37}{40}x \Leftrightarrow x=240$.

Bài 5. Cho hình thang $ABCD$ ($AB // CD$) nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle{DAB}=105^\circ$, $\angle{ACD}=30^\circ$.

a) Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.

b) Tiếp tuyến của $(C)$ tại $B$ cắt các đường thẳng $DO$, $DA$ lần lượt tại $M$, $N$. Tính $\dfrac{MN}{MD}$.

c) Gọi $E$ là trung điểm của $AB$, tia $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Giải

a) Ta có $\angle{DAB}+ \angle{BCD}=180^\circ \Rightarrow \angle{BCD}=75^\circ $ $(1)$ $\Rightarrow \angle{ABC}= 105^\circ $

$\angle{ABD} =\angle{ACD}=30^\circ  \Rightarrow \angle{DBC} =\angle{ABC}-\angle{ABD}=105^\circ  -30^\circ  =75^\circ $ $(2)$

Từ $(1)$ và $(2)$ ta có $\angle{DBC} = \angle{DCB}$ ($=75^\circ $), nên $\triangle DCB$ cân tại $D$, suy ra $\dfrac{DB}{DC}=1$

Ta có $\angle{ACB}=75^\circ  -30^\circ  =45^\circ  \Rightarrow \angle{AOB}=2\angle{ACB} =90^\circ $, tam giác $AOB$ vuông cân tại $O$ nên $AB = AO\sqrt{2}=R\sqrt{2}$

b) Ta có $\angle{AOD}=2\angle{ACD}=60^\circ  \Rightarrow \Delta OAD$ đều $\Rightarrow \angle{ODA}=60^\circ $ hay $\angle{NDM}=60^\circ $

$\triangle DBC$ cân, nên $DO$ vừa là trung trực của $BC$ vừa là phân giác góc $\angle{BDC}$

$\angle{BOM}=180^\circ  -\angle{AOB} -\angle{AOD}=30^\circ  \Rightarrow \angle{OMB}= 60^\circ $ (do $OB \bot BM$)

Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} =1$

c) Gọi $E$ là trung điểm của $AB$, $\triangle AOB$ vuông cân tại $O$ nên $OE =AE$, $\angle{AEO}=90^\circ $

Ta có $\triangle ADE = \triangle ODE \Rightarrow \angle{AED} =\angle{OED}=45^\circ  , \angle{ADE}=\angle{ODE}=30^\circ$

$\Rightarrow DF$ là đường cao của tam giác $MDN$.

Gọi $I$ là trung điểm $BC$. Ta có $\angle{FDB}=15^\circ  =\angle{IDB}$

Khi đó $\triangle BFD = \triangle BID \Rightarrow BF =BI$ suy ra $\dfrac{BF}{BC}=\dfrac{1}{2}$

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2011

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình $(x^2-mx-2m^2)\sqrt{x-3} = 0$ $(1)$.

a) Giải phương trình $(1)$ khi $m = 2$.

b) Tìm $m$ để phương trình $x^2-mx-2m^2 = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+2x_2^2 = 7m^2+2$.

c) Chứng minh rằng phương trình $(1)$ không thể có quá hai nghiệm.

Giải

a) Điều kiện $x \geq 3$. Khi m = 2 ta có phương trình:

$\left( x^2 -2x -8 \right) \sqrt{x-3}=0 \Leftrightarrow \left[ \begin{array}{l} x=3 \,\, (n)\\ x=4 \,\, (n)\\ x=-2 \,\, (l) \end{array} \right. $

b) Ta có: $x^2 -mx-2m^2=0$

$\Delta = m^2 + 8m^2 =9m^2$, suy ra phương trình có nghiệm $x=2m$, $x=-m$

TH1: $x_1=2m$, $x_2 = -m$ ta có $4m^2=7m^2 +2 $ (VN)

TH2: $x_1=-m$, $x_2 =2m$ ta có $9m^2 = 7m^2 +2 \Leftrightarrow m=1, m=-1$

c) Điều kiện $x \ge 3$, phương trình $x^2 -mx – 2m^2 =0$ luôn có nghiệm $x_1$, $x_2$ và $x_1x_2 = -2m^2 \le 0$ nên không thể có hai nghiệm đều dương. Suy ra phương trình $(1)$ có nhiều nhất là hai nghiệm.

Bài 2.

a) Giải phương trình $\sqrt{x+2}+\sqrt{5-2x}=1+\sqrt{6-x}$.

b) Giải hệ phương trình $\left\{\begin{array}{l} x^2+y^2=2y+1\\ xy=x+1 \end{array} \right.$

Giải

Điều kiện: $-2 \le x \le \dfrac{5}{2}$

$\sqrt{x+2}+\sqrt{5-2x} = 1+ \sqrt{6-x} $

$\Leftrightarrow x+2+5-2x + 2\sqrt{x+2}\sqrt{5-2x}=1+6-x+ 2\sqrt{6-x} $

$\Leftrightarrow \sqrt{\left( x+2 \right) \left( 5-2x \right) } = \sqrt{6-x}$

$\Leftrightarrow -2x^2 +x+10 =6-x $

$\Leftrightarrow \left[ \begin{array}{l} x=-1 \,\, (n) \\ x=2 \,\, (n) \end{array} \right. $

b) Từ (2) ta có $y= \dfrac{x+1}{x}$ thế vào (1) ta có:

$x^2 + \dfrac{\left( x+1 \right) ^2}{x^2} = \dfrac{2(x+1)}{x}+1 $

$\Leftrightarrow x^4 + x^2 +2x+1 = 2x(x+1) + x^2 $

$\Leftrightarrow x^4 -2x^2 +1 = 0 \Leftrightarrow x=1, x=-1 $ $

Với $x = 1, y = 2.$

Với $x = -1 , y = 0.$

Bài 3.

a) Rút gọn biểu thức $$R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$$ với $x \geq 0, x \neq 1$.

b) Chứng minh $R < 1$.

Giải

a) $R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$

$= \left[ \dfrac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1} – \dfrac{(\sqrt{x}-1)(x+\sqrt{x} +1)}{(\sqrt{x}+1)(\sqrt{x}-1)}\right] : \dfrac{ x-2\sqrt{x} + 1+ \sqrt{x}}{\sqrt{x}+1}$

$= \left( \sqrt{x} +1 – \dfrac{x+\sqrt{x} +1}{\sqrt{x} -1}\right) \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$= \dfrac{\sqrt{x}}{\sqrt{x}+1} \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$

b) $R<1 \Leftrightarrow \dfrac{\sqrt{x}}{x-\sqrt{x}+1}<1 \Leftrightarrow \sqrt{x}< x-\sqrt{x}+1 \Leftrightarrow \left( \sqrt{x}-1 \right) ^2 >0$ (đúng vì $x \ne 1$).

Bài 4. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Giải

Gọi số tổ viên là $x$ $(x>2)$, số tiền mỗi tổ đóng lúc đầu là $y$. Ta có hệ phương trình:

$\left\{ \begin{array}{l} xy=72000 \\ (x-2)(y+3000)=72000 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=\dfrac{72000}{x} \ (1)\\ y+3000=\dfrac{72000}{x-2}\ (2) \end{array} \right.$

Lấy $(2) -(1)$ ta được: $\dfrac{72000}{x-2} – \dfrac{72000}{x}  =3000$

$\Leftrightarrow x^2 – 2x – 48 = 0 \Leftrightarrow \left[ \begin{array}{l} x=8 \, (n) \\ x=-6 \, (l) \end{array} \right. $

Vậy số người của tổ là $8$ người.

Bài 5. Cho tam giác $ABC$ có $\angle BAC = 75^\circ, \angle BCA = 45^\circ, AC = a\sqrt{2}$. $AK$ vuông góc với $BC$ và $K$ thuộc $BC$.

a) Tính độ dài các đoạn $KC$ và $AB$ theo $a$.

b) Gọi $H$ là trực tâm và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\angle OHC$.

c) Đường tròn tâm $I$ nội tiếp tam giác $ABC$. Tính bán kính đường tròn ngoại tiếp tam giác $HIO$ theo $a$.

Giải

a) Tam giác $ACK$ vuông cân tại $C$, suy ra $AK = \dfrac{AC}{\sqrt{2}}=a$

$\sin \angle{ABK} =\dfrac{AK}{AB}=\dfrac{\sqrt{3}}{2} \Rightarrow AB= \dfrac{2a}{\sqrt{3}}$

b) Ta có $\angle{AOC} = 2\angle{ABC}=120^\circ $ và $\angle{AHC}=2\angle{EHF} =180^\circ – \angle{BAC}=120^\circ $.

Suy ra $\angle{AHC}=\angle{AOC}$, suy ra $AHOC$ nội tiếp.

Do đó $\angle{OHC}=\angle{OAC}=30^\circ $

c) Ta có $\angle{AIC}=180^\circ – \angle{IAC}-\angle{ICA}$

$=180^\circ – \dfrac{1}{2}\left( \angle{BAC} + \angle{ACB} \right)$

$=120^\circ = \angle{AOC}$.

Do đó tứ giác $AIOC$ nội tiếp.

Vậy 5 điểm $A$, $H$, $I$, $O$, $C$ cùng thuộc đường tròn.

Gọi $D$ là điểm chính giữa cung $AC$.

Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO =DA=\dfrac{AB}{\sqrt{2}}= \dfrac{a\sqrt{2}}{\sqrt{3}}$

 

 

 

 

Đề thi và đáp án thi chọn đội dự tuyển trường PTNK năm học 2016-2017

ĐỀ BÀI

Bài 1. Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:
$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2. Tìm tất cả các hàm số $f:N^* \rightarrow  N^*$ thoả mãn đồng thời các điều kiện:

i)  $ f(mn)=f(m)f(n) \forall m,n \in N^* $.
ii) $f(m)+f(n)$ chia hết cho $m+n$, $\forall m,n \in N^* $.
iii) $f(2017)=2017^3$.

Bài 3.  Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.
a) Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.
b) Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4.  Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$. \medskip

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

 

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$

Đề và lời giải thi chọn đội dự tuyển năm học 2018-2019

Bài 1. Tìm tất cả các hàm số $f:\mathbb R\rightarrow \mathbb R$ thoả mãn:
i) $f(-x)=-f(x)\ \forall x\in \mathbb R$.
ii) $f(f(x)-y)=2x+f(f(y+x))\ \forall x,y\in \mathbb R$.

Bài 2. Tìm tất cả các bộ số tự nhiên $(a,b,c)$ để $a^2+2b+c,b^2+2c+a,c^2+2a+b$ đều là các số chính phương.

Bài 3. Cho tập hợp $X={1,2,\ldots,396}$. Gọi $S_1,S_2,\ldots,S_k$ là $k$ tập con khác nhau của $X$ thoả mãn đồng thời hai điều kiện sau:

i)$|S_1|=|S_2|=\ldots=|S_k|=198$.
ii) $|S_i\cap S_j|\le 99\ \forall i,j\in \mathbb N^*, 1\le i<j\le k$.

Chứng minh rằng $k\le 6^{50}$.

Bài 4. Cho tam giác $ABC$ nhọn. Đường tròn thay đổi qua $B,C$ cắt các cạnh $AB,AC$ lần lượt tại $D,E$.

a) Gọi $H,K$ lần lượt là hình chiếu của $B$ trên $CD$ và $DE$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.
b) Gọi $Q$ là hình chiếu của $C$ trên $DE$. Đường tròn ngoại tiếp tam giác $BDK$ cắt $BC$ tại $M$, đường tròn ngoại tiếp tam giác $CEQ$ cắt $BC$ tại $N$. $KM,QN$ cắt nhau tại $X$. Chứng minh rằng $X$ thuộc một đường thẳng cố định.

Lời giải

Bài 1.

Trong điều kiện $(ii),$ thay $x$ bởi $-x,$ ta được
$$
f(f(-x)-y)=-2x+f(f(y)-x)),
$$
hay
$$-f(f(x)+y)=-2x+f(f(y)-x),\text{ với mọi } x,y\in\mathbb{R}. (*) $$

Thay vai trò của $x$ và $y$ trong $(ii)$, ta có
$
f(f(y)-x)=2y+f(f(x)+y),\text{ với mọi }x,y\in\mathbb{R}.
$
Thay vào $(*)$, ta có
$$
-f(f(x)+y)=-2x+2y+f(f(x)+y),
$$
hay
$$
f(f(x)+y)=x-y,\text{ với mọi }x,y\in\mathbb{R}.
$$
Thay $y$ bởi $f(y),$ ta có
$$
f(f(x)+f(y))=x-f(y),\text{ với mọi }x,y\in\mathbb{R}.
$$
Đổi vai trò của $x,y$, ta thu được
$$
x-f(y)=y-f(x), \text{ tức là } f(x)=-x+c,\text{ với mọi }x\in\mathbb{R}.
$$
Thay vào đề bài, ta suy ra $c=0.$ Vậy hàm số cần tìm là $f(x)=-x.$

Bài 2.

Không mất tính tổng quát, ta giả sử $a=\min (a,b,c).$ Nếu $a=0$ thì ta có $2b+c,b^2+2c,c^2+b$ đều là các số chính phương.
Nếu như $b \le c$ thì $c^2 \le c^2+b \le c^2+c <(c+1)^2$ là số chính phương, kéo theo $c^2+b=c^2$ nên $b=0$. Từ đây dễ dàng có $c=0$. Tương tự nếu $c \le b$ cũng có $b=c=0$. \medskip

Do đó, trong trường hợp này, ta có bộ nghiệm $(a,b,c)=(0,0,0)$.
Ta xét các trường hợp sau ứng với $a>0.$

  • Nếu $a\le b\le c.$ Khi đó $c^2< c^2+2a+b\le c^2+3c<(c+2)^2$. Do đó $c^2+2a+b=(c+1)^2,$ hay $2a+b=2c+1.$ Ta cũng có
    $$
    b^2 < b^2+2c+a = b^2+2a+b-1+a \leq b^2+4b – 1 < (b+2)^2,
    $$
    tức là
    $$
    b^2+2c+a=(b+1)^2,\ 2c+a=2b+1.
    $$
    Đẳng thức xảy ra khi $a=1,b=c$, từ đây dễ dàng tìm được $a=b=c=1$. Thử lại ta thấy bộ số này thỏa mãn.
  • Nếu $a \leq c \leq b$. Khi đó $b^2 < b^2+2c+a \leq b^2 + 3b < (b+2)^2$, tức $b^2+2c+a=(b+1)^2$ và $2c+a=2b+1$. Ta suy ra
    $$4a+2b = 4a+2c+a-1 \leq 7c – 1 < 8c+8.
    $$
    Do đó $2a+b < 4c+4$ và $c^2 < c^2+2a+b < (c+2)^2$. Do đó $2a+b=2c+1$. Kết hợp với $2c+a=2b+1$, ta suy ra
    $$
    (a,b,c)=(a,3a-2,\frac{5a-3}{2}).
    $$
    Do đó $a$ lẻ và trường hợp $a=1$ đã xét nên ở đây ta đặt $a=2t+1$, với $t \geq 1$. Khi đó $(a,b,c)=(2t+1,6t+1,5t+1)$. Vì $b^2+2c+a$ và $c^2+2a+b$ là các số chính phương nên ta xét điều kiện để $a^2+2b+c=4t^2+21t+4$ là số chính phương. Với $t \geq 3$, ta có
    $$
    (2t+4)^2 < 4t^2+21t+4<(2t+6)^2
    $$

Do đó $4t^2+21t+4 = (2t+5)^2$ và $t=21$. Như vậy $t \in {1,2,21}$. Thử trực tiếp, ta thấy chỉ có $t=21$ là thỏa mãn ứng với $(a,b,c)=(43,127,106)$.

Vậy tất cả bộ ba số thỏa mãn đề bài là $$(a,b,c)=(0,0,0),(1,1,1),(43,127,106).$$

Bài 3.

Vì $|S_i\cap S_j|\le 99$ với mọi $1\le i<j\le k$ nên mỗi bộ $100$ phần tử chỉ có thể được chứa tối đa trong $1$ tập hợp. Ta đếm các bộ $\{x_1,x_2,\ldots,x_{100},M \}$, trong đó $x_i\in X$ với mọi $i$ và $M$ là một trong các tập $S_i$, $M$ chứa $x_1,x_2,\ldots,x_{100}$.

  • Số cách chọn tập $M$ là $k$. Số cách chọn $100$ phần tử trong $M$ là $C^{100}_{198}.$
  • Số cách chọn $x_1,x_2,\ldots,x_{100}$ từ $X$ là $C^{100}_{396}.$ Với mỗi bộ $100$ phần tử như vậy, có tối đa $1$ tập $S_i$ thỏa mãn $S_i$ chứa $x_1,x_2,\ldots,x_{100}.$

Do đó ta có bất đẳng thức
$ kC^{100}{198} \le C^{100}{396} $
hay

$k \le \dfrac{C^{100}{396}}{C^{100}{198}}$

$=\dfrac{396!100!98!}{100!296!198!}$

$=\dfrac{396!98!}{198!296!} $

$=\dfrac{297\cdot 298 \ldots 396}{99\cdot 100\ldots 198}$
$=\dfrac{297\cdot 299\ldots 395}{99\cdot 100\ldots 148}\cdot\dfrac{298}{149}\cdot \dfrac{300}{150}\ldots \dfrac{396}{198}$
$\le 3^{50}\cdot 2^{50}=6^{50}.$

Ta có đpcm.

Bài 4.

(a) Gọi $F$ là giao điểm của $KH$ và $AC.$ Ta chứng minh $F$ cố định. Ta có tứ giác $BDEC$ nội tiếp nên $\angle BDC=\angle BEC.$ Tứ giác $KDHB$ cũng nội tiếp nên ta suy ra $\angle BDC=\angle BKF.$ \medskip

Do đó $\angle BEC=\angle BKF,$ tức là tứ giác $KEFB$ nội tiếp. Khi đó ta có $$\angle EFB=180^{\circ}-\angle BKE =90^{\circ}.$$ Do đó $BF\perp AC,$ tức là điểm $F$ cố định.

(b) Tứ giác $DKMB$ nội tiếp nên $\angle BMK=\angle KDB$. Ta suy ra
$$\angle NMX=\angle EDA.$$
Ta có $EQCN$ nội tiếp nên $$\angle QNC=\angle QEC, \text{ hay } \angle MNX=\angle AED.$$
Từ đó, ta suy ra $\triangle MNX\sim \triangle DEA.$ Gọi $G$ là chân đường cao từ $A$ đến $BC$ và $AG$ cắt $DE$ tại $P$. Khi đó $BC\perp AG$. Mà $BC\perp DM$ và $BC\perp EN$ nên
$$
AC \parallel DM \parallel EN.
$$

Do đó $\dfrac{DP}{PE}=\dfrac{MG}{GN}$. Mà $\triangle ADE\sim \triangle XMN$ nên $\angle XMN=\angle EPA.$ Mà $$\angle EPA=180^{\circ}-\angle PAC-\angle PEA$$ nên ta có
$$
\angle EPA=180^{\circ}-(90^{\circ}-\angle C)-B={\rm const}.
$$
Do đó $\angle XGN$ không đổi. Mà $G$ là điểm cố định nên $GX$ cố định. Như vậy $X$ di chuyển trên đường cố định.

 

Đáp án kì thi chọn đội dự tuyển PTNK năm học 2019 – 2020

Đề bài

Bài 1. Tìm giá trị nhỏ nhất của biểu thức
$$ P=\dfrac{a^4+b^4+2}{\left(a^2-a+1\right)\left(b^2-b+1\right)}, \text{ với } a,b \in \mathbb{R}. $$

Bài 2. Cho $\mathbb{Q^+}$ là tập hợp số hữu tỉ dương. Tìm tất cả các hàm $f:\mathbb{Q^+} \to \mathbb{Q^+}$ thỏa mãn
$$ f\left( {{x^2}f{{\left( y \right)}^2}} \right) = f{\left( x \right)^2}f\left( y \right), \text{ với mọi } x,y \in \mathbb{Q^+}. $$

Bài 3. Cho $x_1$, $x_2$, $x_3$, \dots là dãy số nguyên thỏa mãn đồng thời hai điều kiện
$$ 1=x_1<x_2<x_3 \dots \text{ và } x_{n+1}\leq 2n \text{ với } n=1,2,3 \dots $$
Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. Cho tam giác $ABC$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}.$ Đường tròn tâm $M$ bán kính $MB$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $AD$ cắt $AC$ tại $N$. Chứng minh rằng $\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}$.

Giải

Lời giải của nhóm các bạn NGUYỄN TĂNG VU, LÊ PHÚC LỮ, NGUYỄN TIẾN HOÀNG

Bài 1. 

Với mọi $x \in \mathbb{R}$, ta có
\[{x^4} + 1 – \frac{2}{9}{\left( {{x^2} – x + 1} \right)^2} = \frac{1}{9}{\left( {x + 1} \right)^2}\left( {7{x^2} – 10x + 7} \right) \geq 0. \] Vì thế nên ta có
\[ P \ge \frac{2}{9}\frac{{{{\left( {{a^2} – a + 1} \right)}^2} + {{\left( {{b^2} – b + 1} \right)}^2}}}{{\left( {{a^2} – a + 1} \right)\left( {{b^2} – b + 1} \right)}} = \frac{2}{9}\left( {\frac{{{a^2} – a + 1}}{{{b^2} – b + 1}} + \frac{{{b^2} – b + 1}}{{{a^2} – a + 1}}} \right) \ge \frac{4}{9}. \] Suy ra giá trị nhỏ nhất của $P$ là $\dfrac{4}{9}$, đạt được khi $a=b=-1.$

Bài 2.

Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán.
Đặt $f(1)=a>0$, trong phương trình đề cho, thay $x=y=1$ ta có $f(a^2)=a^3$. \medskip

Từ đó, tiếp tục lần lượt thay $x$ bởi $a^2$, $y$ bởi $1$ và $x$ bởi $1$, $y$ bởi $c^2$ vào phương trình ấy, ta thu được
\[ a^7 = f(a^6) = a^5. \] Chú ý $a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi $1$ vào phương trình đề cho, ta có
\[ f\left( {f{{\left( y \right)}^2}} \right) = f\left( y \right), \text{ với mọi } y \in \mathbb{Q^+}. \] Lại thay $y$ bởi $1$ vào phương trình đề cho, ta có
\[ f{\left( x \right)^2} = f\left( {{x^2}} \right), \text{ với mọi } x \in \mathbb{Q^+}. \] Suy ra
\[ f\left( x \right) = f\left( {f{{\left( x \right)}^2}} \right) = f{\left( {f\left( x \right)} \right)^2} = \ldots = {f^{n + 1}}{\left( x \right)^{{2^n}}}, \text{ với mọi } x \in \mathbb{Q^+}, \] trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q^+}$ sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_p(f(q)) \ne 0$ thì ta có
\[ {v_p}\left( {f\left( q \right)} \right) = {v_p}\left( {{f^{n + 1}}{{\left( q \right)}^{{2^n}}}} \right) = {2^n}{v_p}\left( {{f^{n + 1}}\left( q \right)} \right) \ne 0. \] Trong đẳng thức trên, cho $n \to + \infty$ ta thấy điều vô lý. Suy ra $v_p(f(q)) = 0$ với mọi $q \in \mathbb{Q^+}$, $p \in \mathbb{P}$, hay $f(x) \equiv 1.$ \medskip

Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
\end{giai}

Bài 3. 

Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_1$, $x_2$, \dots, $x_{k+1}$. Ta có $x_1=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_q \leq k$ thì ta có $q<k+1$ và
\[ 1 \leq x_1 < x_1 < \dots < x_q \leq k < x_{q+1}<\dots<x_{k+1}<2k. \]

Nếu tồn tại $1 \leq j < i \leq k+1 $ sao cho $x_i – x_j = k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số $$x_1+k,x_2+k, \dots x_q+k, x_{q+1}, \dots, x_{k+1}$$ là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2k$, vô lí! \medskip

Từ đó suy ra với mọi $k$ nguyên dương,luôn tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. 

Ta có $OB=OD$, $MB=MD$ nên dễ thấy $OM$ là phân giác ngoài của góc $AMD$, mà $OA=OD$ nên suy ra $O \in \left(AMD\right).$

Gọi $N’$ là giao điểm khác $A$ của $\left(AMD\right)$ và $AC$. Ta chứng minh $N$ trùng $N’$. \medskip

Thật vậy, ta có $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}$ nên $\angle{AMO}$ tù, do đó nếu $N’$ nằm ngoài tia $AC$ thì $N’$ nằm khác phía $O$ so với $AM$ nên $$\angle{AMO}=\angle{AN’O}=\angle{CAO}-\angle{AON’}<\angle{CAO}<90^\circ,$$ vô lý. Suy ra $N’$ nằm trên tia $AC$, kéo theo $AO$ là phân giác trong góc $MAN’$ nên $OM=ON’$, mà $OA=OD$ nên $MN’$ song song $AD$, suy ra $N$ trùng $N’$. \medskip

Từ đó, dễ thấy $AMND$ là hình thang cân nên $AN=MD=MB$, hơn nữa $N$ nằm trên tia $AC$ nên ta thu được $$\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.$$ Ta có điều cần chứng minh.

 

Đề thi HK1 môn toán lớp 10 (không chuyên) trường Phổ Thông Năng Khiếu năm học 2020-2021

Bài 1. (2 điểm). Giải các phương trình:

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$

b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$

Bài 2 (1 điểm). Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.

Bài 3 (1 điểm). Chứng minh $\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] = \dfrac{1}{{1 + \cos x}}$

Bài 4 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} mx – \left( {m + 1} \right)y = 1\\ \left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m \end{array} \right.$ ($m$ là tham số).

a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.

b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$

Bài 5 (1 điểm). Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là $4$. Tìm $m$ và tọa độ đỉnh của $(P)$.

Bài 6 (2 điểm). Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.

a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $

b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.

Bài 7 (2 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.

a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $

b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Giải

Bài 1.

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $

Điều kiện: $x>2$

$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l} x=1 \quad (l) \\ x=-1 \quad (l) \\ x=3 \quad (n) \\ x=-3 \quad (l) \end{array} \right. $

Vậy $S=\left\{ 3 \right\} $

b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ \sqrt{x^2 -x +3 } = x-6 \ (*) \end{array}\right. $

$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\ x^2 -x +3 = (x-6)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l}  x\ge 6\\ x=3\end{array}\right. $

$\Leftrightarrow x\in \emptyset$

Vậy $S=\left\{ 0\right\} $

Bài 2. ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l} m+2\ne 0\\\\ \dfrac{1}{m+2}\ne 0\\\\ \dfrac{1}{m+2}\ne 1 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne -2\\ m\ne -1 \end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$

Bài 3.

$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$

Bài 4.

a) Ta có: $D=\left| \begin{array}{*{20}{c}} {m}&{-(m+1)}\\ {2-m}&{m-3} \end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}} {1} & {-(m+1)}\\ {3-2m} & {m-3} \end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}} {m} & {1}\\ {2-m} & {3-2m} \end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$

b) Ta có: $\left\{ \begin{array}{l} x_0 = \dfrac{D_x}{D} = m\\\\ y_0= \dfrac{D_y}{D} = m-1 \end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$

Bài 5. Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$

Tọa độ đỉnh $I( -1;3)$

 

Bài 6.

a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$

b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$

 

Bài 7.

a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$

$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$

$\Leftrightarrow \left\{ \begin{array}{l} x-6 = -5\\ y-1=1 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x=1\\ y=2 \end{array}\right. $

Vậy $M(1;2)$

b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l} IA = IB\\ IA = IC \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} 5x_I -y_I =12\\ (5-y_I)^2 = (1-y_I)^2 \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} x_I=3\\ y_I=3 \end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l} y_E =1\\ y_E =5 \end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.