Tag Archives: ThiThu

ĐỀ THI THỬ VÀO 10 PHỔ THÔNG NĂNG KHIẾU – TOÁN CHUNG

THỜI GIAN LÀM BÀI 120 PHÚT

PHẦN 1. TRẮC NGHIỆM (2 ĐIỂM)

Câu 1. Biểu thức $\sqrt{\frac{1}{1-2 x+x^2}}$ xác định khi và chỉ khi:
A. $x>1$
B. $x \geq 1$
C. $x \in R$
D. $x \neq 1$

Câu 2. Đường tròn tâm $O$ bán kính $R$ có $M A, M B$ là hai tiếp tuyến của $(\mathrm{O})(A, B$ là các tiếp điểm). Biết $\widehat{A O B}=90^{\circ}$, chu vi tam giác $M A B$ là:
A. $2 R$
B. $R \sqrt{2}+2$
C. $(2+\sqrt{2}) R$
D. $R \sqrt{2}$

Câu 3. Cho hai đường thẳng $\left(d_1\right): y=\left(2 m^2+3\right) x-3 m+1$ và $\left(d_2\right): y=5 x-2$. Hai đường thẳng trùng nhau khi:
A. $m=-1$
B. $m=1$
C. $m \neq 1$
D. $m \in{1 ;-1}$

Câu 4. Đường thẳng $\Delta: y=m x+n-2$ đi qua gốc tọa độ và điểm $A(-1 ; 3)$. Tính $m+2 n$.
A. 1
B. -2
C. -3
D. 2

Câu 5. Rút gọn biểu thức $T=\frac{\sqrt{x^4(x-y)^2}}{x^2-y^2}$ với $x<y<0$ bằng:
A. $\frac{x^2}{x-y}$
B. $\frac{-x^2}{x-y}$
C. $\frac{-x^2}{x+y}$
D. $\frac{x^2}{x+y}$

Câu 6. Câu nào sau đây đúng?
A. $|A|+|B|=0 \Leftrightarrow\left[\begin{array}{l}A=0 \\\ B=0\end{array}\right.$
C. $\sqrt{A}=|B| \Leftrightarrow\left\{\begin{array}{l}B \geq 0 \\\ A=B^2\end{array}\right.$
B. $(A-B)^2>0 \Leftrightarrow A \neq B$
D. $B, C$ đều đúng.

Câu 7. Cho đường tròn tâm $O$ có bán kính $2 R$ và một dây cung có độ dài bằng $2 R$. Khoảng cách từ tâm $O$ đến dây cung này là:
A. $R$
B. $\frac{R \sqrt{3}}{2}$
C. $R \sqrt{2}$
D. $R \sqrt{3}$

Câu 8. Gọi $\left(x_0, y_0\right)$ là nghiệm của hệ phương trình: $\left\{\begin{array}{l}2 x^2+y^2=5 \\\ x^2-y^2=1\end{array}\right.$. Tính $\frac{x_0}{y_0}$ biết $y_0<$ $0<x_0$.
A. -2
B. $\sqrt{2}$
C. $-\sqrt{2}$
D. 2

Câu 9. Tìm $m$ để parabol $(P): y=(m-2) x^2$ và đường thẳng $(D): y=2 x-3$ cắt nhau tại hai điểm phân biệt:
A. $m<\frac{7}{3}$ và $m \neq 2$

C. $m>\frac{7}{3}$ và $m \neq 2$
B. $m \geq \frac{7}{3}$ và $m \neq 2$
D. $m \leq \frac{7}{3}$ và $m \neq 2$

Câu 10. Cho tam giác $A B C$ có đường cao $A H$. Nếu $B C=2 A H$ và $\tan B=1$ thì tam giác $A B C$ là tam giác gì?
A. Tam giác nhọn
C. Tam giác vuông
B. Tam giác vuông cân
D. Tam giác cân

PHẦN TỰ LUẬN (8 ĐIỂM)

Bài 1. (1,5 điểm)
(a) Cho $M=\frac{3 \sqrt{x}-3}{4} \cdot\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) ; N=1-\frac{\sqrt{x}}{x-2}$ với $x \geq 0 ; x \neq$ $1 ; x \neq 2$.
Tìm $x$ biết $M \cdot N=6$.
(b) $\triangle A B C$ có $A D$ là đường phân giác của $\widehat{B A C}(D \in B C)$. Biết $A C=A B+B D$ và $\widehat{A B C}=60^{\circ}$. Lấy điểm $E$ trên đoạn thẳng $A C$ sao cho $A E=A B$. Đặt $\widehat{B A D}=x^{\circ}$ và $\widehat{A C B}=y^{\circ}$. Tìm $x, y$.

Bài 2. (2 diểm)
(a) Giải phương trình: $\left(-2 x^2+3 x+5\right) \cdot(\sqrt{1-2 x}-\sqrt{x+4}+1)=0$.
(b) Trong một ngày hội của trường, các lớp được yêu cầu tổ chức một gian hàng ẩm thực trong hai ngày. Lớp 10T dự định sẽ bán xiên thịt nướng, chi phí bỏ ra cho một xiên thịt nướng là 10000 đồng và số lượng xiên nướng chuẩn bị cho hai ngày là như nhau. Ngày thứ nhất, lớp bán hết số thịt đã chuẩn bị và lời 1000000 đồng. Sang ngày thứ hai, lớp tăng giá bán lên $20 \%$ và bán được $\frac{3}{4}$ số xiên thịt; với số xiên thịt còn lại lớp quyết định giảm về giá ban đầu, tuy nhiên khi còn 30 xiên thịt cuối lớp không bán mà để cho các bạn trong lớp tham gia bán hàng ăn. Biết số tiền lời ngày thứ hai bằng ngày thứ nhât, hỏi giá bán một xiên thịt ban đầu là bao nhiêu?

Bài 3. (1,5 điểm) Cho phương trình: $\frac{-3 x^2-2 m x+1-m}{x-1}=0$
(a) Phương trình (1) nhận $x=\frac{1}{3}$ là nghiệm. Tìm nghiệm còn lại của phương trình.
(b) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_1, x_2$ thỏa:
$$
3 x_1+6 x_2-3 x_1 x_2=m+2
$$
Bài 4. (3 diểm) Cho $\triangle A B C$ cân tại $A$ nội tiếp đường tròn tâm $O$ có $\widehat{B A C}=30^{\circ}$ và $B C=a$.
(a) Chứng minh tam giác $O B C$ đều, tính diện tích tam giác $O B C$.
(b) Gọi $M$ là trung điểm của $O B, C M$ cắt $(O)$ tại $K$ khác $C . O B$ cắt $A C$ tại $D$. Chứng minh tứ giác $O C B K$ là hình thoi và tính $\widehat{A D K}$.
(c) Trên đoạn $D C$ lấy điểm $E$ sao cho $A D=D E$. Chứng minh $A K \perp O E$ và $A C$ tiếp xúc với đường tròn ngoại tiếp tam giác $O E B$.

HẾT

ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN – TT STAR EDUCATION 2022

Bài 1. (1,5 điểm) Cho $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$.

a) Tính giá trị của biểu thức $A=x^{2}-y^{2}$.

b) Đặt $B=\left(x^{2}-5\right)^{2}+\left(y^{2}-5\right)^{2}$, rút gọn $\sqrt{19-2 \sqrt{B}}$.

Bài 2. (2,0 điểm)

a) Giải phương trình: $\sqrt{3 x^{2}-x-1}=2 x-1$.

b) Giải hệ phương trình: $\left\{\begin{array}{l}2022 x^{2}+2023 y^{2}=4045 \\ 2023 x^{2}-2022 y^{2}=1\end{array}\right.$.

Bài 3. (1,5 điểm) Cho parabol $(P): y=-x^{2}$ và đường thẳng $(d): y=-(2 m+1) x+3+m^{2}$.

a) Tìm $m$ để $(P)$ và $(d)$ cắt nhau.

b) Gọi $M\left(x_{1} ; y_{1}\right), N\left(x_{2} ; y_{2}\right)$ là giao điểm của $(P)$ và $(d)$.

Tìm $m$ dể $2 m x_{1}+x_{2}+y_{1}-2 y_{2}=-m^{2}+14 m+12$.

Bài 4. (2,0 điểm)

a) Hai lớp 10 Toán – Tin của trường PTNK có tổng cộng 80 học sinh. Hết học kì một, 3 học sinh lớp 10 Toán chuyển sang lớp 10 Tin nên số học sinh 10 Toán bằng $\frac{9}{7}$ số học sinh lớp 10 Tin. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh.

b) Trong một cuộc khảo sát về sở thích chơi bóng đá và tennis của một nhóm học sinh cho kết quả như sau: số học sinh chỉ thích chơi bóng đá gấp 3 lần số học sinh thích chơi tennis. Sau khi phỏng vấn thêm ba bạn và ba bạn đó thích chơi cả hai môn thì tổng số bạn được phỏng vấn gấp 3 lần số bạn thích cả hai môn. Hỏi ban đầu có bao nhiêu bạn chỉ thích chơi bóng đá, chỉ thích chơi tennis và thích chơi cả hai môn? Biết có ít nhất một bạn chỉ thích chơi tennis.

Bài 5. (3,0 điểm) Cho tam giác $A B C$ vuông cân tại $A$ và $A B=a, I$ là trung điểm $A C$, đường tròn tâm $O$ ngoại tiếp tam giác $A B C$.

a) Tính $B C, B I$ và bán kính của $(O)$ theo $a$.

b) Trên tia đối của $I B$ lấy điểm $D$ sao cho $I D=I B . B D$ cắt $(O)$ tại $E$ khác $B$. Tính $A D$ và chứng minh $A D$ là tiếp tuyến của $(O)$.

c) Vẽ $A H \perp B D$ với $H$ thuộc $B D$. Tứ giác $A H C E$ là hình gì? Tính $\angle C H D$.

 

LỜI GIẢI

 

Bài 1.

a) Với $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$, ta có: $A=(\sqrt{3}+\sqrt{2})^{2}-(\sqrt{2}-\sqrt{3})^{2}=4 \sqrt{6}$.

b) Với $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$, ta có:

$B=\left((\sqrt{3}+\sqrt{2})^{2}-5\right)^{2}+\left((\sqrt{2}-\sqrt{3})^{2}-5\right)^{2}=48  Suy ra  \sqrt{19-2 \sqrt{B}}=4-\sqrt{3} .$

Bài 2.

a)$\sqrt{3 x^{2}-x-1}=2 x-1 $

$\Leftrightarrow 3 x^{2}-x-1=(2 x-1)^{2}\left(Đ K: x \geq \frac{1}{2}\right)$

$\Leftrightarrow x^{2}-3 x+2=0 \Leftrightarrow\left[\begin{array}{l}x=1(n) \\ x=2(n)\end{array}\right.$

Vậy $S=(1 ; 2)$

b) $\left\{\begin{array}{l}2022 x^{2}+2023 y^{2}=4045 \\ 2023 x^{2}-2022 y^{2}=1\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}=1 \\ y^{2}=1\end{array} \Leftrightarrow\left\{\begin{array}{l}x=1 \\ y=-1 \\ x=-1 \\ y=1 \\ x=-1 \\ y=-1\end{array}\right.\right.\right.$

Bài 3.

a) ĐK: $m \neq-\frac{1}{2}$

Phương trình hoành độ giao điểm của $(P)$ và $(d): x^{2}-(2 m+1) x+3+m^{2}=0 (1)$ $(P)$ và $(d)$ cắt nhau $\Leftrightarrow \Delta>0 \Leftrightarrow 4 m-11>0 \Leftrightarrow m>\frac{11}{4}$

Vậy $m>\frac{11}{4}$.

b) Với $m>\frac{11}{4}$ và $x_{1}, x_{2}$ là hai nghiệm của phương trình (1), ta có:

$S=x_{1}+x_{2}=2 m+1 ; P=x_{1} x_{2}=m^{2}+3 ; $

$y_{1}=-(2 m+1) x_{1}+3+m^{2} ; $

$y_{2}=-(2 m+1) x_{2}+3+m^{2}$

Ta có: $2 m x_{1}+x_{2}+y_{1}-2 y_{2}=-m^{2}+14 m+12$

$\Leftrightarrow 2 m x_{1}+x_{2}-(2 m+1) x_{1}+3+m^{2}+2(2 m+1) x_{2}-6-2 m^{2}=-m^{2}+14 m+12$

$\Leftrightarrow-x_{1}+(4 m+3) x_{2}=14 m+15 $

$\Leftrightarrow-\left(x_{1}+x_{2}\right)+4(m+1) x_{2}=14 m+15 $

$\Leftrightarrow-2 m-1+4(m+1) x_{2}=14 m+15 $

$\Leftrightarrow 4(m+1) x_{2}=16(m+1) \Leftrightarrow x_{2}=4$

Với $x_{2}=4$ thay vào $(1)$ ta được: $m^{2}-8 m+15=0 \Leftrightarrow\left[\begin{array}{ll}m=5  (n) \\ m=3  (n)\end{array}\right.$

Vậy $m=3$ hoặc $m=5$.

Bài 4.

a) Gọi $x, y$ (học sinh) lần lượt là số học sinh mỗi lớp lúc đầu.

Tổng số học sinh là 80 nên $x+y=80$

Hết học kì 1 , lớp toán có $x-3$ học sinh, lớp Tin có $y+3$

Số học sinh lớp Toán bằng $\frac{9}{7}$ số học sinh lớp Tin nên $x-3=\frac{9}{7}(y+3) \Leftrightarrow x-\frac{9}{7} y=\frac{48}{7}$

Ta có hệ phương trình: $\left\{\begin{array}{l}x+y=80 \\ x-\frac{9}{7} y=\frac{48}{7}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=48 \\ y=32\end{array}\right.\right.$

Vậy ban đầu lớp Toán có 48 học sinh và lớp Tin có 32 học sinh.

b) Gọi $x$ là số bạn chỉ thích chơi tennis; $y$ là số bạn thích chơi cả hai môn. $(x, y \in \mathbb{N})$

Số bạn chỉ thích chơi bóng đá gấp 3 lần số bạn thích chơi tennis nên số bạn chỉ thích bóng đá là: $3(x+y)$.

Khi có thêm 3 bạn thích chơi cả hai môn thì tổng số bạn gấp 3 lần số bạn thích chơi cả hai môn nên: $3(x+y)+x+y+3=3(y+3) \Leftrightarrow 4 x+y=6$.

Vì có ít nhất một bạn chỉ thích chơi tennis nên $x \geq 1$ mà $4 x+y=6 \Rightarrow\left\{\begin{array}{l}x=1 \\ y=2\end{array}\right.$.

Vậy có 9 bạn chỉ thích chơi bóng đá, 1 bạn chỉ thích chơi tennis và 2 bạn thích chơi cả hai môn.

Bài 5.

a)  $\triangle A B C$ vuông cân tại $A$ nên $A B=A C=a \Rightarrow A I=\frac{a}{2}$ và $O$ là trung điểm của $B C$

$B C^{2}=A B^{2}+A C^{2}=2 a^{2} \Rightarrow B C=a \sqrt{2}$

  • Bán kính đường tròn tâm $O$ là $O B=O C=\frac{a \sqrt{2}}{2}$

  • $\triangle A B I$ vuông tại $A$ nên $B I^{2}=A B^{2}+A I^{2}=\frac{5 a^{2}}{4} \Rightarrow B I=\frac{a \sqrt{5}}{2}$

b)  Tứ giác $A B C D$ có $I$ là trung điểm của $A C$ và $B D$ $\Rightarrow A B C D$ là hình bình hành $\Rightarrow A D=B C=a \sqrt{2}$

  • $\triangle A B C$ vuông cân tại $A$ có $O$ là trung diểm $B C$

$\Rightarrow A O \perp B C$ mà $A D / / B C$ (do $A B C D$ là hình bình hành)

$\Rightarrow A O \perp A D \Rightarrow A D$ là tiếp tuyến của $(O)$.

c) $\angle B E C$ là góc nội tiếp chắn nửa đường tròn $\Rightarrow \angle B E C=90^{\circ}$

Ta có: $A H \perp B D$ và $C E \perp B D$ (do $\left.\angle B E C=90^{\circ}\right) \Rightarrow A H / / C E$. (1)

Tứ giác $A B C D$ là hình bình hành nên $A B=C D$ và $\angle C D B=\angle A B D$.

Xét $\triangle A H B$ và $\triangle C E D$ lần lượt vuông tại $H$ và $E$ có:

$A B=C D$ và $\angle A B H=\angle C D E(\mathrm{cmt})$

$\Rightarrow \triangle A H B=\triangle C E D$ (ch.gn) $\Rightarrow A H=C E$. (2)

Từ (1) và $(2)$ suy ra tứ giác $A H C E$ là hình bình hành.

  • Tứ giác $A H C E$ là hình bình hành suy ra $\angle C H D=\angle A E B=\angle A C B=45^{\circ}$.

 

 

 

 

 

 

 

 

 

 

ĐỀ THI THỬ VÀO LỚP 10 TRUNG TÂM STAR EDUCATION TOÁN CHUYÊN – 2020

Bài 1. (1,5 điểm )

a) Cho $f(x)=x^{2}-a x+a^{2}-4$, trong đó $a$ là tham số. Tìm giá trị của $a$, sao cho phương trình $f(x)=0$ có hai nghiệm thực $x_{1}$ và $x_{2}$ sao cho $\left|x_{1}^{3}-x_{2}^{3}\right| \leq 4$.

b) Giải phương trình: $\frac{1+3 \sqrt{x}}{4 x+\sqrt{2+x}}-1=0$.

Bài 2. (1,5 điểm ) Cho $x, y>0$ thỏa mãn $2 y>x$ và $11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

a) Tìm giá trị nhỏ nhất của biểu thức: $T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021$

b) Chứng minh rằng: $\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2} \geq 3$

Bài 3. (1,0 điểm) Cho hàm số bậc hai $f(x)=a x^{2}+b x+c,(a \neq 0)$. Biết rằng phương trình $f(x)=x$ vô nghiệm. Chứng minh rằng phương trình $f(f(x))=x$ cũng vô nghiệm.

Bài 4. $\left(1,5\right.$ điểm) Cho $x, y \in N$ thỏa mãn: $3^{x}+171=y^{2}$.

a) Chứng minh rằng: $x: 2$.

b) Tìm các cặp số $x, y$ thỏa mãn phương trình.

Bài 5. (3,0 điểm) Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $P A, P B$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $A B$, tiếp tuyến tại $C$ cắt $P A, P B$ và $P O$ lần lượt tại $D, E, F$.

a) Gọi $H$ là giao điểm của đường tròn ngoại tiếp tam giác $P D E$ và $P O$, kéo dài $H C$ cắt đường tròn $P D E$ tại điểm $G$. Chứng minh rằng tứ giác $P F C G$ nội tiếp.

b) Gọi $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$. Chứng minh rằng tứ giác $D O E I$ nội tiếp.

c) Chứng minh rằng $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Chứng minh rằng đường tròn ngoại tiếp các tam giác $P A B, P D E$ và $P C F$ cùng đi qua một điểm khác $P$.

Bài 6. (1,5 điểm) Trên mặt phẳng cho 17 điểm, trong đó không có ba điểm nào thẳng hàng. Qua hai điểm bất kì ta vẽ được một đoạn thẳng và trên đoạn thẳng đó ghi một số nguyên dương (các số ghi trên các đoạn thẳng khác nhau là các số nguyên dương khác nhau). Ta tô màu mỗi đoạn thẳng bằng một trong ba màu: đỏ, xanh và vàng.

a) Chứng minh rằng tồn tại một tam giác có ba cạnh cùng màu.

b) Chứng minh rằng tồn tại một tam giác có các cạnh là các đoạn thẳng đã vẽ và tổng các số ghi trên các cạnh của tam giác đó là hợp số.

LỜI GIẢI

 

Bài 1. a) Để phương trình có hai nghiệm thực $x_{1}$ và $x_{2}$ thì $\Delta=a^{2}-4\left(a^{2}-4\right)=16-3 a^{2} \geq 0$. Theo định lý Vietè ta có: $\left\{\begin{array}{l}x_{1}+x_{2}=a \\ x_{1} x_{2}=a^{2}-4\end{array}\right.$, do đó:

$\left|x_{1}^{3}-x_{2}^{3}\right|=\left|x_{1}-x_{2}\right|\left[\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right]=\left|x_{1}-x_{2}\right|\left[a^{2}-a^{2}+4\right]=4\left|x_{1}-x_{2}\right| \leq 4$

Lại có:

$0 \leq\left|x_{1}-x_{2}\right|=\sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}=\sqrt{a^{2}-4\left(a^{2}-4\right)}=\sqrt{16-3 a^{2}} \leq 1$

Vì vậy, ta có: $a \in\left[-\frac{4 \sqrt{3}}{3},-\sqrt{5}\right] \cup\left[\sqrt{5} ; \frac{4 \sqrt{3}}{3}\right]$.

b) $Đ K: x \geq 0$. Phương trình đã cho tương đương:

$1+3 \sqrt{x}-4 x-\sqrt{2+x}=0 $

$\Leftrightarrow 3 \sqrt{x}-\sqrt{2+x}=4 x-1 $

$\Leftrightarrow(8 x-2)=(4 x-1)(3 \sqrt{x}+\sqrt{2+x}) $

$\Leftrightarrow(4 x-1)[(3 \sqrt{x}+\sqrt{2+x})-2]=0 $

$\Leftrightarrow\left[\begin{array}{l}4 x-1=0 \\3 \sqrt{x}+\sqrt{2+x}=2\end{array}\right.$

Từ đó ta tính được hai nghiệm của phương trình là: $S=[\frac{1}{4} ; \frac{7-3 \sqrt{5}}{8}]$.

Bài 2. Áp dụng bất đẳng thức Cauchy ta có:

$11\left(\frac{x+y+2}{2}\right)+2(x+y) \geq 11 \sqrt{2(x+y)}+2(x+y) \geq 11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

Do đó: $\frac{15}{2}(x+y) \geq 15 \Leftrightarrow x+y \geq 2$

a) Áp dụng bất đẳng thức Cauchy ta có:

$T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021 \geq 11(x+y)+\frac{4}{x+y}+2021 $

$=(x+y)+\frac{4}{x+y}+10(x+y)+2021 $

$\geq 2 \sqrt{(x+y) \cdot \frac{4}{(x+y)}}+10.2+2021=2045$

b) Áp dụng bất đẳng thức Cauchy ta có:

$\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2}=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+y^{2} \geq \frac{1}{x^{2}\left(2 x y-x^{2}\right)}+2 x y $

$=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+\left(2 x y-x^{2}\right) \geq 3 \sqrt[3]{\frac{1}{x^{2}\left(2 x y-x^{2}\right)} \cdot x^{2} \cdot\left(2 x y-x^{2}\right)}=3$

Bài 3. Do phương trình $f(x)=x \Leftrightarrow a x^{2}+b x+c=x \Leftrightarrow a x^{2}+(b-1) x+c=0,(a \neq 0)$ vô nghiệm nên ta có:

$\Delta=(b-1)^{2}-4 a c<0 \Leftrightarrow(b-1)^{2}<4 a c$

Giả sử phương trình: $f(f(x))=x$ có nghiệm, gọi nghiệm đó là $x_{0}$, ta có:

$f\left(f\left(x_{0}\right)\right)=x_{0} \Leftrightarrow f\left(f\left(x_{0}\right)\right)-f\left(x_{0}\right)+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)\right]^{2}+b f\left(x_{0}\right)-a x_{0}^{2}-b x_{0}+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)-x_{0}\right]\left[f\left(x_{0}\right)+x_{0}\right]+b\left[f\left(x_{0}\right)-x_{0}\right]+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow\left[f\left(x_{0}\right)-x_{0}\right]\left[a\left(f\left(x_{0}\right)+x_{0}\right)+b+1\right]=0 $

$\Leftrightarrow a\left(f\left(x_{0}\right)+x_{0}\right)+b+1=0 $

$\Leftrightarrow a^{2} x_{0}^{2}+a(b+1) x_{0}+a c+b+1=0$

Do đó phương trình: $a^{2} x^{2}+a(b+1) x+a c+b+1=0$ có nghiệm nên ta có:

$\Delta=a^{2}(b+1)^{2}-4 a^{2}(a c+b+1) \geq 0$

Từ đó dẫn đến

$(b+1)^{2}-4(a c+b+1) \geq 0 \Leftrightarrow 4 a c \leq b^{2}-2 b-3$

Suy ra: $b^{2}-2 b-3>(b-1)^{2} \Leftrightarrow b^{2}-2 b-3>b^{2}-2 b+1 \Leftrightarrow-4>0$ (vô lí). Do đó ta có điều phải chứng minh.

Bài 4. a) Lần lượt xét $x=0,1,2,3$ đều không nhận được $x=1,2,3$ là nghiệm. Do đó ta xét $x \geq 4$ và $x, y$ là hai số nguyên dương.

Vế trái chia hết cho 9 nên vế phải chia hết cho 9 , đặt: $y=3 z,\left(z \in N^{*}\right)$, ta có phương trình: $3^{x-2}+19=z^{2}$.

Nhận xét: $3 \equiv-1(\bmod 4)$ nên $3^{n} \equiv 1(\bmod 4)$, nếu $n$ chẵn và $3^{n} \equiv-1(\bmod 4)$, nếu $n$ lẻ.

Giả sử: Nếu $x$ là số lẻ thì $3^{x-2}+19 \equiv 18 \equiv 2(\bmod 4)$. Do một số chính phương chia 4 chỉ dư 0 hoặc 1 (vô lí).

b) Do đó khi $x$ là số chẵn thì $3^{x-2}+19 \equiv 20 \equiv 0(\bmod 4)$, suy ra $z$ là số chẳn. Đặt: $x-2=2 k,\left(k \in N^{*}\right)$. Ta có phương trình:

$3^{2 k}+19=z^{2} \Leftrightarrow z^{2}-3^{2 k}=19 \Leftrightarrow\left(z-3^{k}\right)\left(z+3^{k}\right)=19 $

$\Leftrightarrow\left\{\begin{array}{l}z+3^{k}=19 \\ z-3^{k}=1\end{array} \Leftrightarrow\left\{\begin{array}{c}z=10 \\ 3^{k}=9\end{array} \Leftrightarrow\left\{\begin{array}{l}z=10 \\ k=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=6 \\ y=30\end{array}\right.\right.\right.\right.$

Thử lại với $x=6, y=30$ (nhận). Do đó nghiệm duy nhất của phương trình là $(x ; y)=(6 ; 30)$.

Bài 5. a) Ta có: $\angle D P H=\angle E P H$ (tính chất hai tiếp tuyến cắt nhau) nên $\angle D G H=\angle E G H$, do đó hai cung $H D$ và cung $H E$ bằng nhau. Từ đó:

$\angle H C F=\angle H G E+\angle D E G=\angle H P D+\angle D P G=\angle H P G $

Dẫn đến, tứ giác $C F P G$ nội tiếp.

b) Ta có: $\angle O D I+\angle O E I=90^{\circ}+90^{\circ}=180^{\circ}$ nên tứ giác $D O E I$ nội tiếp.

c) Xét đường tròn $(P D E)$, với $H$ là điểm chính giữa cung $D E$ và $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$, tính chất quen thuộc $H D=H I=H E$, do đó ta có $H$ là tâm đường tròn ngoại tiếp tứ giác $D O E I$.

Từ đó, $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Từ câu c) ta có $H O=H D=H I-H E$, lại có $\triangle H D C \sim \triangle H G D(\mathrm{~g}-\mathrm{g})$ nên $H D^{2}=H C . H G$, do đó $H O^{2}=H C . H G$. Suy ra $\triangle H O C \backsim \triangle H G O(\mathrm{c}-\mathrm{g}-\mathrm{c})$ nên $\angle H G O=\angle H O C$.

Lại có, $\angle H G P=\angle H F C$ nên $\angle O G P=\angle H G O+\angle H G P=\angle H O C+\angle H F C=90^{\circ}$, suy ra $A, G, P, B, O$ cùng thuộc một đường tròn.

Bài 6. a) Gọi $A$ là một điểm đã cho, nối $A$ với 16 điểm còn lại được 16 đoạn thẳng và chúng được tô bởi ba màu, Theo nguyên lý Dirichlet tồn tại ít nhất 6 đoạn thẳng có cùng một màu. Giả sử đó là các đoạn thẳng $A B, A C, A D, A E, A F, A G$ có cùng màu đỏ. Xét các đoạn thẳng nối từng cặp điểm trong 6 điểm $B, C, D, E, F, G$. Xảy ra các trường hợp sau:

– Trường hợp 1. Tồn tại một đoạn thẳng có màu đỏ, chẳng hạn $B C$, thì tam giác $\triangle A B C$ có ba cạnh cùng là màu đỏ, khẳng định đúng.

– Trường hợp 2. Tất cả các đoạn thẳng nối $B, C, D, E, F, G$ chỉ có màu xanh hoặc vàng. Ta xét 5 đoạn $B C, B D, B E, B F, B G$ được tô bởi hai màu thì theo nguyên lý Dirichlet tồn tại ít nhất 3 đoạn thẳng có cùng một màu. Giả sử là $B C, B D, B E$ cùng có màu xanh.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ có một đoạn tô màu xanh, chẳng hạn là $C D$ thì tam giác $\triangle B C D$ có ba cạnh cùng màu xanh, khẳng định đúng.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ không có một đoạn nào màu xanh, thì tam giác $\triangle C D E$ có ba cạnh cùng màu vàng, khẳng định đúng.

Vậy tồn tại tam giác có ba cạnh cùng một màu.

b) Chia mỗi số nguyên dương ghi trên các đoạn thẳng cho 3 ta được các số dư là $0,1,2$. Ta tô màu đoạn thẳng ghi số dư $0,1,2$ theo thứ tự úng với màu đỏ, xanh, vàng. Theo kết quả trên tồn tại một tam giác có ba cạnh cùng một màu, tức là ba số đó có cùng số dư $r$, chẳng hạn là $3 k+r, 3 h+r, 3 m+r$. Lúc đó tổng ba số trên ba cạnh của tam giác đó bằng:

$3 k+r+3 h+r+3 m+r=3(k+h+m+r) \vdots 3$

mà $3 k+r+3 h+r+3 m+r>3$ do đó $3 k+r+3 h+r+3 m+r$ là hợp số.