Tag Archives: TuGiacNoiTiep

Tứ giác nội tiếp – Phần 3

Bài 1. Cho tam giác $ABC$. Gọi $M$ là trung điểm $BC$. Gọi $D, E, F$ lần lượt là tâm đường tròn nội tiếp các tam giác
$ABM, ACM, ABC$. Gọi $H$ là hình chiếu vuông góc của $F$ trên BC. Chứng minh $D, H, M, E$ cùng thuộc một đường tròn.

Lời giải
  Gọi $P, Q$ là hình chiếu của $D, E$ trên BC.

Ta có $\triangle MDP \backsim \triangle EMQ$, suy ra $MQ\cdot MP = EQ\cdot PD$.

Ta có $BP = \dfrac{1}{2}(AB+BM-AM), BH = \dfrac{1}{2}(AB+BC-AC)$

Suy ra $PH = BH – BP = \dfrac{1}{2}(BC – AC – BM + AM ) = \dfrac{1}{2}(MC + AM – AC) = MQ$

Suy ra $PM = HQ$. Suy ra $PH\cdot HQ = MQ\cdot MP = DP\cdot EQ$, suy ra $\triangle DPH \backsim \triangle HQE$

Từ đó ta có $\angle DHE = 90^\circ$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$ và dây $BC =R \sqrt{3}$ cố định. $A$ là một điểm thay đổi trên cung lớn $BC$ sao cho tam giác $ABC$ nhọn. Các đường cao $BD$ và $CE$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $(O)$ tại $G$ và cắt $DE$ tại $F$.

a) Chứng minh tứ giác $BEGF$ nội tiếp.
b) Gọi $I$ là giao điểm của $AH$ và $BC$. Chứng minh $FIHG$ nội tiếp.

Lời giải

(a) Ta có $BEFC$ nội tiếp nên $\angle AED = \angle ACB$
Và $\angle ACB = \angle AFB$ (cùng chắn cung AB).
Suy ra $\angle AED = \angle AFB$, do đó tứ giác $BEGF$ nội tiếp.
(b) Tứ giác $BEGF$ nội tiếp, suy ra $AG\cdot AF = AE\cdot AB$.
Mặt khác ta có $AE\cdot AB = AH \cdot AI$
Suy ra $AG\cdot AF = AH\cdot AI$, từ đó ta có $\triangle AHF \backsim AGI$, suy ra $\angle AFH = \angle AIG$.

Bài 3. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Lời giải

Gọi $Q$ là giao điểm của $(PDE)$ và $(PAB)$.

Ta có $\triangle QAD \backsim \triangle QBE$, suy ra $QD/QE = AD/EB = CD/CE$. Khi đó $QC$ là phân giác $\angle DQE$.

Ta có $QO$ cũng là phân giác $\angle AQB$ và $\angle AQB = \angle DQE$. Suy ra $\angle DQC = \angle OQB$.

Mà $\angle QDC = \angle QOB$ nên $\angle QCD =\angle QBO = \angle QPF$.  Vậy tứ giác $QPFC$ nội tiếp.

Bài 4. Gọi $O$ là giao điểm của hai đường chéo hình thang $ABCD$ có đáy là $AB, CD$. Lấy $M, N$ là điểm thuộc $OA$, $N$ là điểm thuộc $OD$ sao cho $\angle BMD = \angle AMC$. Chứng minh rằng BMNC là tứ giác nội tiếp.

Lời giải
  Cho đường tròn ngoại tiếp tam giác $ABM$ cắt $OC$ tại $N’$. Chứng minh $\angle AN’C = \angle BMD = \angle ANC$.

Bài 5. Cho $(O)$ và $(O_1)$ cắt nhau tại $M, N$. Tiếp tuyến tại $M$ của $(O)$ cắt $(O_1)$ tại $B$. Tiếp tuyến tại $M$ của $(O_1)$ cắt $(O)$ tại $A$. Gọi $P$ là điểm đối xứng của $M$ qua $N$. Chứng minh rằng tứ giác $MAPB$ nội tiếp.

Lời giải

Chứng minh $NM^2 = NA \cdot NB = NP^2$. Suy ra $\angle A + \angle B = \angle M + \angle N$.

Bài 6. Cho tứ giác $ABCD$ có các cạnh đối diện $AD$ và $BC$ cắt nhau tại $E$, $AB$ và $CD$ cắt nhau tại $F$. Chứng minh rằng tứ giác $ABCD$ nội tiếp khi và chỉ khi $EA.ED + FA.FB = EF^2$.

Lời giải

Gọi $K$ là giao điểm của đường tròn ngoại tiếp tam giác $ADF$ và $EF$. Ta có $EK \cdot EF = EA \cdot ED$, suy ra $FK \cdot FE = FA \cdot FB$, suy ra $EKAB$ nội tiếp. \\
Khi đó $\angle EBA = \angle FKA = \angle ADC$ nên $ABCD$ nội tiếp.

Bài 7. Cho tứ giác $ABCD$ có hai đường chéo vuông góc nhau tại $I$. Gọi $E, F, G, H$ lần lượt là hình chiếu vuông góc của $I$ trên $AB, BC, CD$ và $DA$. $IE$ cắt $CD$ tại $M$.

a) Chứng minh $EFGH$ và $HGMF$ nội tiếp.
b) $BH$ cắt đường tròn ngoại tiếp tam giác $IEH$ tại $J$, $BG$ cắt đường tròn ngoại tiếp tam giác $IFG$ tại $K$. Chứng minh $E, J, K, F$ cùng thuộc một đường tròn.

Lời giải

(a) Ta có $BD$ là tiếp tuyến chung của $(IHE)$ và $(IFG)$. \\ $\angle BEF = \angle BIF = \angle IGF, \angle AEH = \angle EIH = \angle HGI$. \\ Suy ra $\angle FEF + \angle HGF = 180^\circ $. Suy ra $HEFG$ nội tiếp. \\ Ta có $\angle IMG = \angle ICM + \angle MIC = \angle DIG + \angle AIE = \angle DHG + \angle AHE = 180^\circ – \angle EHG$. \\ Suy ra $EHGM$ nội tiếp. \\ Do đó $EGMF$ nội tiếp. \\ (b) Ta có $BJ\cdot BH = BE\cdot BA = BI^2 = BK\cdot BG$. \\ Suy ra $GHJK$ nội tiếp. \\ Ta có $\angle EFK = \angle EFI – \angle KFI = \angle EBI – \angle IGB$. \\ Và $\angle EJK = \angle EJB + \angle BJK = \angle DAB + \angle HGB$. \\ Suy ra $\angle EFK + \angle EJK = \angle DAB + \angle HGB – \angle IBG + \angle EBI = \angle DAB + \angle HGI + \angle EBI = 180^\circ $. \\ Do đó $EJKF$ nội tiếp.

Bài 8. (Thi HSGQG THPT Việt Nam năm 2010) Cho tam giác $ABC$ không cân có $\angle ABC$ và $\angle ACB$ nhọn. $D$ là điểm di chuyển trên cạnh $BC$ sao cho $AD$ không vuông góc $BC$. Đường thẳng qua $D$ vuông góc với $BC$ cắt các đường thẳng $AB, AC$ tại $E$ và $F$. Gọi $M, N, P$ là tâm đường tròn nội tiếp các tam giác $AEF, BDE, CDF$. Chứng minh rằng $A, M, N, P$ cùng thuộc một đường tròn khi và chỉ khi $d$ đi qua tâm nội tiếp của tam giác $ABC$.

Lời giải

Gọi $I$ là tâm nội tiếp của tam giác $ABC$.
Gọi $J$ là giao điểm của $AI$ và $EN$, suy ra $FJ$ là phân giác góc $AFD$.
Ta có $FKC = 90^o + \dfrac{1}{2}\angle ACB = \angle JIN$.
Tứ giác $AMFJ$ nội tiếp, suy ra $\angle NJI =\angle AJM = \angle AFM = \angle KFP$ ($K$ là giao điểm của $d$ và $IC$).
Từ đó $\triangle NIJ \backsim \triangle PFK$.
Suy ra $IJ/FK = JN/FP$.
Ta có $A, M, P, N$ đồng viên khi và chỉ khi $\angle ANJ = \angle APF \Leftrightarrow \triangle AJN \backsim \triangle AFP \Leftrightarrow AF/AJ = FP/JN$.
Mà $AF/AJ = FS/JS$ (Với $S$ là giao điểm của $AI$ và $d$)
Vậy $A, M, P, N$ đồng viên khi và chỉ khi $IJ/KF = FS/JS$.
Điều này chỉ đúng khi $I$ trùng $S$. Vì nếu $I$ khác $S$ thì $IK//FJ$ (!)

Bài tập rèn luyện

Bài 9. Cho tam giác $ABC$ nhọn và khác tam giác cân. Phân giác góc nhọn tạo bởi hai đường cao hạ từ $B$ và $C$ của tam giác cắt các cạnh $AB$ và $AC$ lần lượt tại $P$ và $Q$. Phân giác của góc $BAC$ cắt đoạn thẳng nối trực tâm của tam giác $ABC$ và trung điểm $BC$ tại $R$. Chứng minh rằng $P, A, Q, R$ cùng thuộc một đường tròn.

Bài 10. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, phân giác góc $A$ cắt $BC$ tại $D$, $M$ là trung điểm $BC$, $E$ là điểm đối xứng của $D$ qua $M$. Trên các đường thẳng $AO$ và $AD$ lấy điểm $P$ và $Q$ sao cho $PD$ và $EQ$ vuông góc $BC$. Chứng minh 4 điểm $B, C, P, Q$ cùng thuộc một đường tròn.

Bài 11. (Đề đề nghị thi Toán Quốc Tế 2010) Cho tam giác $ABC$ nội tiếp $w$, các đường cao là $AD, BE, CF$. Tia $EF$ cắt $w$ tại $P$. $BP$ cắt $DF$ tại $Q$. Chứng minh 4 điểm $A, P, Q, F$ cùng thuộc một đường tròn và $AQ = AP$.

Tứ giác nội tiếp – Phần 2

(Bài viết dành cho học sinh lớp 9 chuyên toán – Lời giải bài tập chương 1 sách [1]) Chứng minh 4 điểm cùng nằm trên một đường tròn là dạng toán thường xuất hiện nhất trong các đề thi, đây cũng là kĩ năng quan trọng để chứng minh các ý toán khác trong một bài toán, có nhiều cách chứng minh 4 điểm cùng thuộc đường tròn trong đó chủ ý các các dấu hiệu một tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi có một trong các dấu hiệu sau:
  • 4 đỉnh cách đều một điểm
  • Tổng hai góc đối bằng $180^\circ$ (đặc biệt hai góc đối vuông)
  • Góc ngoài bằng góc đối trong
  • Hai đỉnh kề cùng nhìn cạnh còn lại với hai góc bằng nhau (đặc biệt hai góc nhìn là góc vuông).
Ngoài ra còn có bổ đề thường dùng. Bổ đề 1. Cho tứ giác $ABCD$ có hai đường chéo cắt nhau tại $P$ và hai đường thẳng $AB, CD$ cắt nhau tại $P$. Khi đó $ABCD$ nội tiếp khi và chỉ khi $PA \cdot PC = PB \cdot PD$ hoặc $QA \cdot QB=QC \cdot QD$. Bổ đề 2. Phân giác trong góc $A$ của tam giác $ABC$ cắt trung trực của $BC$ tại $D$, khi đó $D$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Ta bắt đầu với các bài toán sau: Bài 1. Hai dây $AB$ và $CD$ của một đường tròn cắt nhau tại $I$. Gọi $M$ là trung điểm của $IC$ và $N$ đối xứng với $I$ qua $D$. Chứng minh rằng $AMBN$ nội tiếp một đường tròn. Lời giải. Xét tam giác $IAC$ và $IBD$ có $\angle AIC = \angle BID$ và $\angle IAC = \angle IBD$, suy ra $\triangle IBD \backsim \triangle IAC$; $\Rightarrow IA \cdot IB = IC \cdot ID = 2 IM \cdot \dfrac{IN}{2} = IM \cdot IN \Rightarrow \dfrac{IM}{IB} = \dfrac{IA}{IN}$. Suy ra $\triangle IMA \backsim \triangle IBN \Rightarrow \angle IAM = \angle INB$; Do đó tứ giác $AMBN$ nội tiếp. Bài 2. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. $AO$ cắt $EF$ tại $K$ và cắt $(O)$ tại $L$ khác $A$. Gọi $P$ là điểm đối xứng của $A$ qua $K$. Chứng minh rằng các tứ giác $DHKL$ và $DHOP$ nội tiếp.
Lời giải. Dễ thấy tứ giác $BCEF$ nội tiếp, suy ra $\angle AEF = \angle ABC$; Mà $\angle ABC = \angle ALC$, suy ra $\angle AEF = \angle ALC$, từ đó $KECL$ nội tiếp; Theo chú ý trên ta có $AK \cdot AL = AE \cdot AC$ \hfill (1) Mặt khác tứ giác $CDHE$ nội tiếp nên $AH \cdot AD = AE \cdot AC$ \hfill (2) Từ (1) và (2) suy ra $AK \cdot AK = AH \cdot AD \Rightarrow DHKL$ nội tiếp. Ta có $AP = 2AK, AL = 2AO \Rightarrow AP \cdot AO = AK \cdot AL = AH \cdot AD$, suy ra $DHOP$ nội tiếp. Bài 3. Cho hình vuông $ABCD$. Trên các cạnh $BC, CD$ lấy điểm $M,N$ sao cho $\angle MAN = 45^\circ$. $AM, AN$ cắt $BD$ lần lượt tại $P$ và $Q$. a) Chứng minh các tứ giác $ADNP, ABMQ$ nội tiếp. b) Chứng minh $MNQP$ nội tiếp. Lời giải.
Tứ giác $APND$ có $\angle PAN = \angle PDN = 45^\circ$ nên là tứ giác nội tiếp. Tương tự thì $ABMQ$ cũng là tứ giác nội tiếp. Từ $ADNP, ABMQ$ nội tiếp suy ra $\angle APN = 180^\circ – \angle ADN = 90^\circ$ và $\angle AQM = 180^\circ -\angle ABM = 90^\circ$. Tứ giác $MPQN$ có $\angle MPN = \angle MQN = 90^\circ$ nên là tứ giác nội tiếp. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Gọi $M, N$ lần lượt là trung điểm $AB, AC$. $DM, DN$ cắt $(O)$ tại $E, F$ khác $M$, $AD$ cắt $MN$ tại $S$. a) Chứng minh rằng 4 điểm $M, N, E, F$ cùng thuộc một đường tròn. b) $OD$ cắt $BC$ tại $P$, đường tròn ngoại tiếp tam giác $DPS$ cắt $BC$ tại $Q$ khác $P$. Chứng minh $QA$ là tiếp tuyến của $(O)$. Lời giải. 
Gọi $K$ là giao điểm của $AD$ và $BC$. a) Ta có $\angle AED = \angle ABD = \angle AKC$. Mà $MN \parallel BC \Rightarrow \angle AKC = \angle ASN$. Suy ra $\angle AED = \angle ASN \Rightarrow AEMS$ nội tiếp. Do đó $DM \cdot DE = DS \cdot DA$. Chứng minh tương tự ta có $MN \cdot DF = DS \cdot DA$. Suy ra $DM \cdot DE = DN \cdot DF$, từ đó dẫn đến tứ giác $MNFE$ nội tiếp. b) Ta có $OD \bot BC$ tại $P$. Suy ra $\angle QPD = \angle QPD = 90^\circ$. Tam giác $AQK$ có $QS \bot AK$ và $S$ là trung điểm $AK$ nên $QAK$ cân tại $Q$. Suy ra $\angle QAK = \angle AKQ = \angle ACD$, suy ra $QA$ là tiếp tuyến của $(O)$. Bài 5. Cho tam giác $ABC$ cân tại $A$. Từ một điểm $M$ tùy ý trên cạnh $BC$ kẻ các đường song song với các cạnh bên cắt $AB$ tại $P$ và cắt $AC$ tại $Q$. $D$ là điểm đối xứng của $M$ qua $PQ$. Chứng minh rằng $ADBC$ nội tiếp đường tròn. Lời giải. Tứ giác $APMQ$ là hình bình hành, $D$ đối xứng với $M$ qua $PQ$ ta suy ra được $ADPQ$ là hình thang cân. Suy ra $\angle DAP = 180^\circ – \angle DPQ$.\hfill (1) Ta có $PB = PM = PD$ nên $B, M, D$ thuộc đường tròn tâm $P$, suy ra $\angle MBD = \dfrac{1}{2}(360^\circ – \angle DPM) = \angle DPQ$. \hfill (2) Từ (1) và (2) ta có $\angle DAQ + \angle MBD = 180^\circ$, suy ra $ADBC$ nội tiếp. Bài 6. Cho hai đường tròn $(O)$ và $(O’)$ cắt nhau tại $A, B$. Qua điểm $I$ nằm trên $AB$ vẽ cát tuyến $IMN$ đến $(O)$ và cát tuyến $IPQ$ đến $(O’)$. Chứng minh rằng $M, N, P, Q$ cùng thuộc một đường tròn. Lời giải. Ta có $\angle INA = \angle IBN$, suy ra $\triangle INA \backsim \triangle IBN$ (g.g), khi đó $\dfrac{IA}{IB} = \dfrac{IA}{IN} \Rightarrow IN^2 = IA \cdot IB \Rightarrow IN = \sqrt{IA \cdot IB}$. Chứng minh tương tự thì $IP = \sqrt{IA \cdot IB}$. Mặt khác $IM = IN, IP = IQ$ nên $IM = IN = IP = IQ$, do đó $M, N, P, Q$ cùng thuộc đường tròn tâm $I$. Bài 7. Cho tam giác $ABC$ nhọn, $D$ thuộc cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt cạnh $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $F$. $BE, CF$ cắt nhau tại $K$. Chứng minh đường tròn ngoại tiếp tam giác $BKC$ qua trực tâm $H$ của tam giác $ABC$. Lời giải. Các tứ giác $AEDB, ADDC$ nội tiếp nên ta có $\angle AFB = \angle ADB$ và $\angle AEC = \angle ADC$; Suy ra $\angle AFB + \angle AEC = \angle ADB + \angle ADC = 180^\circ$, suy ra $AEKF$ nội tiếp. Suy ra $\angle EKF = 180^\circ – \angle BAC$, mà $\angle BKC = \angle EKF$ nên $\angle BKC= 180^\circ – \angle BAC$.\hfill (1) Mặt khác, từ $H$ là trực tâm của tam giác $ABC$ nên $\angle BHC = 180^\circ – \angle BAC$. \hfill (2) Từ (1) và (2), ta có $\angle BHC = \angle BKC$, suy ra $BHKC$ nội tiếp. Bài 8. Cho tam giác $ABC$ có đường tròn nội tiếp tiếp xúc với $AB, BC$,$AC$ lần lượt tại $M, D, N$. Lấy điểm $E$ thuộc miền trong của tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $EBC$ cũng tiếp xúc với $BC$ tại $D$ và tiếp xúc với $EB, EC$ tại $P, Q$. Chứng minh rằng $MNPQ$ nội tiếp đường tròn. Lời giải.
Gọi $T$ là giao điểm của $MN$ và $BC$. Chứng minh được $\dfrac{TB}{TC} = \dfrac{TB}{TC}$ và $PM \cdot PN = PD^2$. Gọi $T’$ là giao điểm của $PQ$ và $BC$ ta cũng có $\dfrac{T’B}{T’C} = \dfrac{DB}{DC}$. Suy ra $\dfrac{TB}{TC} = \dfrac{T’B}{T’C} = \dfrac{DB}{DC}$, do đó $T’ \equiv T$. Và $TP \cdot TQ = TD^2$. Từ đó ta có $TM \cdot TN = TP \cdot TQ$. Suy ra 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. Bài tập tự luyện.  Bài 9. Cho đường tròn tâm $O$ và dây cung $AB$ khác đường kính. $C$ là một điểm thuộc cung nhỏ $AB$. Tiếp tuyến tại $A$ và $B$ của $(O)$ cắt nhau tại $P$. $AC$ cắt $BP$ tại $D$ và $BC$ cắt $AP$ tại $E$. Gọi $Q$ là giao điểm của đường tròn ngoại tiếp tam giác $AEC$ và $BCD$. a) Chứng minh $Q$ là giao điểm của đường tròn ngoại tiếp các tam giác $APD$ và $BPE$. b) Chứng minh $Q$ thuộc đường tròn ngoại tiếp tam giác $OPC$. Bài 10. Cho hình bình hành $ABCD$ có góc $A$ tù. Gọi $F$ là trung điểm cạnh $AD, CF$ cắt đường tròn ngoại tiếp tam giác $ACD$ tại $K$ khác $C$. Đường tròn ngoại tiếp tam giác $BCK$ cắt $CD$ tại $E$. a) Chứng minh $AE \bot CD$. b) $BD$ cắt $AC$ tại $I$ và đường tròn ngoại tiếp tam giác $BCK$ tại $G$. Chứng minh 4 điểm $E, F, G, I$ cùng thuộc một đường tròn. Tài liệu tham khảo. 
  1. Chuyên đề hình học 9 – Bồi dưỡng học sinh năng khiếu, Nguyễn Tăng Vũ, NXB GD 2018.

Một số định lý, mô hình hình học quan trọng hình học 9

Bài 1. (Đường thẳng Euler, Đường tròn Euler) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, trung điểm các cạnh là $M, N, P$, các đường thẳng $AM, BN, CP$ cắt nhau tại $G$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

a) Chứng minh $AH = 2OM$.

b) Chứng minh $H, G, O$ thẳng hàng và $HG = 2OG$. (Đường thẳng qua $O, H, G$ là đường thẳng Euler)

c) Gọi $X, Y, Z$ là trung điểm của $HA, HB, HC$. Chứng minh 9 điểm $D, E, F, M, N, P, X, Y, Z$ cùng thuộc một đường tròn và tâm là trung điểm $OH$. (Đường tròn Euler – Đường tròn 9 điểm).

d) Lấy một điểm $T$ thuộc (O), chứng minh trung điểm của $HT$ thuộc đường tròn Euler.

Hướng dẫn

a) Vẽ đường kính $AK$, ta có $BHCK$ là hình bình hành, trung điểm $M$ của $BC$ cũng là trung điểm $HK$, tam giác $AHK$ thì $OM$ là đường trung bình nên $AH = 2OM$.

b) Tam giác $AHK$ có $AM$ là trung tuyến và $GA =2GM$ nên $G$ cũng là trọng tâm, do đó $H, G, O$ thẳng hàng và $HG = 2GO$.

c) Ta có $\angle XEH = \angle XHE, \angle MEH = \angle MBE$, suy ra $\angle MEX = \angle XEH + \angle MEH = \angle XHE + \angle MBE = 90^\circ$, suy ra $E$ thuộc đường tròn đường kính $XM$ tâm $J$.

$XN||CH, MN||AB$, suy ra $MN \bot NX$, suy ra $N$ thuộc $(J)$.

$MZ||BH, XZ ||AC$ suy ra $\angle MZX = 90^\circ$, suy ra $Z \in (J)$.

Từ đó chứng minh được các điểm cùng thuộc đường tròn đường kính $MX$.

$HXMO$ là hình bình hành nên $J$ là trung điểm $OH$.

d) Tam giác $MNP$ và $ABC$ đồng dạng, tỉ số 1/2 nên đường tròn Euler có bán kính bằng 1/2 bán kính đường tròn ngoại tiếp tam giác $ABC$.

Xét tam giác $HOT$ có $JL$ là đường trung bình nên $JL= \dfrac{1}{2}OT$, suy ra $L$ thuộc $(J)$.

Bài 2. (Đường thẳng Simson – Đường thẳng Steiner) Cho tam giác $ABC$ nội tiếp đường tròn $w$, $P$ là một điểm thuộc $(w)$. Gọi $D, E, F$ là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$.

a) Chứng minh rằng $D, E, F$ cùng thuộc một đường thẳng. (Đường thẳng Simson của tam giác $ABC$ ứng với $P$.

b) Gọi $D’, E’,F’$ đối xứng của $P$ qua $BC, AC, AB$. Chứng minh rằng $D’, E’, F’$ cùng thuộc một đường thẳng và đường thẳng này qua trực tâm của tam giác $ABC$.

Hướng dẫn

Bài 3. (Bài toán về điểm humpty) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, $M$ là trung điểm $BC$, $P$ là hình chiếu của $H$ trên $AM. Khi đó

a) $P$ là giao điểm của đường tròn đường kính $AH$ và đường tròn ngoại tiếp tam giác $BHC$. ($P$ được gọi là điểm $A-humpty$)

b) $MP \cdot MA = MB^2 = \dfrac{1}{4}BC^2$ và $BC$ là tiếp tuyến chung của $(ABP)$ và $(ACP)$

c) Vẽ $AQ$ vuông góc $MH$, thì $Q$ thuộc $(ABC)$.

d) $AQ, HP, BC$ đồng quy.

Hướng dẫn

a) Ta có các $AP \cdot AM = AH \cdot AD = AF \cdot AB$, suy ra $BFPM$ nội tiếp. Khi đó $\angle MPB = \angle MFB = \angle ABM$.

Chứng minh tương tự thì $\angle MPC = \angle ACB$

Suy ra $\angle BPC = \angle MPB + \angle MPC = \angle B + \angle C = 180^\circ – \angle A = \angle BHC$.

Suy ra $BHPC$ nội tiếp.

b) Từ câu a, ta có $\angle MPB = \angle ABM$, suy ra tam giác $MPB$ và $MBA$ đồng dạng, khi đó $MA \cdot MP = MB^2 = \dfrac{1}{4} BC^2$.

c) Ta xét tam giác $BHC$ với $A$ là trực tâm thì vai trò điểm $Q$ giống vai trò điểm $P$, nên $Q$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

d) Xét tam giác $AHM$ thì $AQ, HP, DM$ là 3 đường cao nên đồng quy.

Bài 4. (Tứ giác điều hòa – Điểm Dumpty).  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $B, C$ cắt nhau tại $P$, $AP$ cắt $(O)$ tại $D$ khác $A$ và cắt $BC$ tại $I$. $OP$ cắt $BC$ tại $M$.

a) Chứng minh $OMDA$ nội tiếp và $\dfrac{IA}{ID} = \dfrac{PA}{PD}$

b) Chứng minh $\angle MDC = \angle ADB$ và $AD\cdot BC = 2 AC \cdot DB = 2 BD \cdot AC$.

c) Tiếp tuyến tại $A,D$ cắt nhau tại $Q$. Chứng minh $Q$ thuộc $BC$.

d) Gọi $X$ là giao điểm của $OQ$ và $AD$, chứng minh $\angle XBA = \angle XAC, \angle XAC = \angle XBA$. (Điểm $A-dumpty$ của tam giác $ABC$).

Hướng dẫn

a) $PM \cot PO = PB^2 = PA \cdot PD$.

$\angle PMD = \angle PAO = \angle ODA = \angle AMO$, suy ra $MP, MI$ là phân giác ngoài và phân giác trong của $\angle APD$.

b) $MO \cdot MP = MB^2 = MA \cdot MD$, suy ra $ABM$ và $BMD$ đồng dạng.

c) 5 điểm $A, P, M, D, Q$ cùng thuộc đường tròn, $QA = QD$ nên $MQ$ là phân giác $\angle AMD$.

d)  Chứng minh $BAX$ và $BCD$ đồng dạng, do $AX \cdot BC = AB \cdot CD$.

Bài 5. Cho tam giác $ABC$, có $O$ là tâm đường tròn ngoại tiếp tam giác. Một đường thẳng vuông góc với $OA$ cắt các cạnh $AB, AC$ tại $F, E$ và đường thẳng $BC$ tại $D$. 

a) Chứng minh $BFEC$ nội tiếp.

b) Đường tròn ngoại tiếp tam giác $AEF$ cắt $(O)$ tại điểm $P$ khác $A$. Chứng minh các tam giác $PEF$ và $PCB$ đồng dạng.

c) Chứng minh các tứ giác $BDPF, BCEP$ nội tiếp và $A, P, D$ thẳng hàng.

d) Gọi $O_a, O_b$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $AEF, BDF$ và $BCEF$. Chứng minh $O_a, O_b, O_c, O$ cùng thuộc một đường tròn.

Hướng dẫn

a) Vẽ tiếp tuyến tại $A$ là $Ax$, $\angle ACB = \angle xAB = \angle AEF$.

b) $\angle AFP = \angle AEP, \angle PBA = \angle BCA$.

c) $\angle PEF = \angle PAC = \angle PBD$

$\angle DPF + \angle APF = \angle ABC + \angle CEF = 180^\circ$.

d) $O_bO_c$ là trung trực $BF, $O_aO_c$ là trung trực $EF$.

Suy ra $\angle O_aO_cO_b = \dfrac{1}{2} \angle $ACB$.

Tương tự cũng có $\angle O_aOO_b$

Bài 6. (Tứ giác điều hòa) xem tại đây https://geosiro.com/?p=1185

Các bài toán biến đổi góc cạnh – Bài tập

BÀI TẬP CÁC BÀI TOÁN BIẾN ĐỔI GÓC

 

Bài 1 Cho tam giác $ABC$ các đường cao cắt nhau tại $H$. Chứng minh rằng đường tròn Euler của các tam $ABH, ACH, BCH$ và $ABC$ là trùng nhau

Bài 2 Cho tứ giác $ABCD$. Chứng minh rằng đường tròn Euler của các tam giác $ABC, ACD, ABD, BCD$ cùng đi qua một điểm.

Bài 3 Cho tứ giác $ABCD$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $BCD$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ được định nghĩa tương tự. Chứng minh rằng các đường thẳng $d_a, d_b, d_c, d_d$ đồng quy.

Bài 4 Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 5(IMO 2007) Xét 5 điểm $A, B, C, D, E$ sao cho $ABCD$ là hình bình hành và $B, C, D, E$ cùng thuộc một đường tròn. Gọi $d$ là đường thẳng qua $A$, giả sử $d$ cắt đoạn $BC$ tại $F$ và $BC$ tại $G$. Giả sử $EF = EG = EC$, chứng minh rằng $d$ là phân giác góc $\angle DAB$.

Bài 6(VMO 2009) Trong mặt phẳng cho hai điểm $A$ và $B$ cố định ($A$ khác $B$). Một điểm $C$ di động trên mặt phẳng sao cho $\angle ACB = \alpha (0^o < \alpha < 180^o)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với $AB, BC, CA$ lần lượt tại $D, E, F$. $AI, BI$ cắt $EF$ tại $M, N$.

a) Chứng minh $MN$ có độ dài không đổi.
b) Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định khi $C$ lưu động.

Bài 7 Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 8 Cho tam giác $ABC$, $M$ là trung điểm $BC$. Trên đoạn $AM$ lấy điểm $P$. Gọi $D$ là hình chiếu của $P$ trên $BC$. $E$ là một điểm thuộc đoạn $PD$. Gọi $H, K$ là hình chiếu của $E$ trên $AB, AC$. Chứng minh rằng $H, P, K$ thẳng hàng khi và chỉ khi $\angle EAB = \angle EAC$.

Bài 9 Cho tam giác $ABC$ với $I$ là tâm đường tròn nội tiếp. Gọi $K, L$ lần lượt là trực tâm các tam giác $IBC$ và $IAC$. Gọi $T$ là tiếp điểm của đường tròn bàng tiếp góc $C$ với cạnh $AB$. Chứng minh rằng $CT$ và $KL$ cắt nhau tại một điểm thuộc đường tròn $(I)$.

Bài 10 Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB (AC < BC)$. Đường tròn $w$ tâm $O$ thay đổi tiếp xúc với $AB$ tại $C$. Từ $A$ và $B$ vẽ các tiếp tuyến $AD$ và $BE$ ($D, E$là hai tiếp điểm khác $C$). $AD$ và $BE$ cắt nhau tại $P$.

a) Chứng minh rằng $DE$ luôn đi qua một điểm cố định
b) Gọi $F$ là giao điểm của $OC$ và $DE$. Chứng minh $PF$ luôn đi qua một điểm cố định.

Bài 11 Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 12(Chọn đội tuyển Toán Việt Nam năm 2000) Cho hai đường tròn $(C_1)$ và $(C_2)$ cắt nhau tại $P$ và $Q$. Tiếp tuyến chung (tiếp tuyến gần $P$) tiếp xúc với $(C_1)$ tại $A$ và tiếp xúc với $(C_2)$ tại $B$. Tiếp tuyến của $(C_1)$ và $(C_2)$ tại $P$ cắt hai đường tròn tại $E$ và $F$ (khác $P$). Gọi $H$ và $K$ là các điểm trên tia $AF$ và $BE$ sao cho $AH = AP$ và $BK = BP$. Chứng minh rằng $A, H, Q, K, B$ cùng thuộc một đường tròn.

Bài 13(IMO 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 14 Cho tam giác $ABC$ ngoại tiếp đường tròn tâm $I$. Trên các đoạn $AI, BI$ và $CI$ lấy các điểm $A’,B’,C’$. Đường trung trực của các đoạn $AA’, BB’, CC’$ đôi một cắt nhau tại $A_1, B_1, C_1$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $ABC$ và tam giác $A_1B_1C_1$ trùng nhau khi và chỉ khi $I$ là trực tâm của tam giác $A’B’C’$.

Bài 15 (IMO 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 16(Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Bài 17(Đề thi HSG Iran 2018 – Vòng 3) Cho tam giác $ABC$, đường tròn $w$ thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $E$ và $F$. $BF, CE$ cắt $(ABC)$ tại $B’, C’$. $A’$ là điểm thuộc $BC$ sao cho $\angle C’A’B = \angle B’A’C$. Chứng minh rằng đường tròn ngoại tiếp tam giác $A’B’C’$ luôn đi qua một điểm cố định.

Bài 18(IMO shortlist 2017) Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường thẳng $OA$ cắt đường cao từ $B$ và $C$ của tam giác $ABC$ lần lượt tại $P$ và $Q$. $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc đường trung trung tuyến của tam giác $ABC$.

Bài 19 Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $N$, tiếp tuyến tại $B$ và $C$ của $(O)$ cắt nhau tại $P$; tiếp tuyến tại $A$ và $C$ cắt nhau tại $M$.
a) Chứng minh $PA, CN$ và $BM$ đồng quy tại một điểm $L$.
b) Gọi $X, Y, Z$ là hình chiếu của $L$ trên $BC, AC$ và $AB$. Chứng minh $L$ thuộc đường thẳng Euler của tam giác $XYZ$.
c) Gọi $A’, B’, C’$ là trung điểm của $OP, OM$ và $ON$. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy.

Bài 20 Cho tam giác $ABC$ có các đường cao $AD, BE, CF$ cắt nhau tại $H$. Đường tròn đường kính $BH$ cắt $DE$ tại $K$, đường tròn đường kính $CH$ cắt $DF$ tại $L$. Chứng minh $KL$ vuông góc với đường thẳng euler của tam giác $ABC$.

Bài 21 Cho tam giác $ABC$ có $\angle A = 45^o$. Các đường cao $AD, BE, CF$. Gọi $A’, B’, C’$ lần lượt là hình chiếu của $A, B, C$ trên $EF, DF, DE$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $A’B’C’$ thuộc đường tròn euler của tam giác $ABC$.

Bài 22 Cho tam giác $ABC$, đường thẳng $d$ cắt các cạnh $AB, AC$ tại $D, E$ và đường thẳng $BC$ tại $F$. Gọi $O,O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, ADE, BDF, CEF$.

a) Chứng minh rằng 4 điểm $O, O_a, O_b, O_c$ cùng thuộc một đường tròn.
b) Chứng minh trực tâm tam giác $O_aO_bO_c$ thuộc $d$.

Bài 23(IMO 2019) Cho tam giác $ABC$, các điểm $A_1$ thuộc cạnh $BC$ và $B_1$ thuộc cạnh $AC$. Trên đoạn $AA_1, BB_1$ lấy $P, Q$ sao cho $PQ$ song song $AB$. Trên tia $PB_1$ lấy $P_1$ sao cho $\angle PP_1C = \angle BAC$, trên tia $QA_1$ lấy điểm $Q_1$ sao cho $QQ_1C = \angle ABC$. Chứng minh 4 điểm $P, Q, P_1, Q_1$ đồng viên.

Bài 24 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$. Các đường phân giác trong của các góc $A, B, C, D$ cắt nhau tạo thành tứ giác nội tiếp tâm $I$. Các đường phân giác ngoài cắt nhau tạo thành tứ giác nội tiếp tâm $J$. Chứng minh rằng $O$ là trung điểm của $IJ$.

Bài 25 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$, $AD$ và $BC$ cắt nhau tại $K$. Đường tròn ngoại tiếp tam giác $KAC$ và $KBD$ có tâm là $I$ và $J$ cắt nhau tại $M$. Chứng minh
a) $O, J, I, M$ đồng viên.
b) $OM \bot KM$.

Bài 26 Cho tam giác $ABC$ nội tiếp đường tròn $w$. Trung tuyến $BM$ và $CN$ cắt $w$ tại $D$ và $E$. Đường tròn tâm $O_1$ qua $D$ và tiếp xúc với $AC$ tại $C$; đường tròn $O_2$ qua $E$ và tiếp xúc với $AB$ tại $B$.

a) Chứng minh rằng $O_1 O_2$ qua tâm đường tròn euler của tam giác $ABC$.
b) Gọi $K$ là giao điểm của $O_1M$ và $O_2N$. Chứng minh rằng $AK\bot BC$.

 

Bài 27 (IMO Shorlist 2019) Cho tam giác $ABC$, đường tròn $w$ qua $A$ cắt các cạnh $AB, AC$ tại $D$ và $E$ tương ứng; $w$ cắt $BC$ tại $F$ và $G$ sao cho $F$ nằm giữa $B$ và $G$. Tiếp tuyến tại $F$ của $(BDF)$ và tiếp tuyến tại $G$ của $(CEG)$ cắt nhau tại $T$. Giả sử $A, T$ phân biệt. Chứng minh rằng $AT$ song song $BC$.

Bài 28 (ISL 2107) Cho tam giác $ABC$ khác tam giác cân. Các đường cao từ $B$ và $C$ cắt nhau tại $H$. Đường thẳng $OA$ cắt $BH, CH$ tại $P$ và $Q$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc trung tuyến của tam giác $ABC$.

 

Bài 29 (ISL 2015 – G2) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn $w$ tâm $A$ cắt cạnh $BC$ tại $D, E$ sao cho $D$ nằm giữa $B$ và $E$; $w$ cắt $(O)$ tại $F$ và $G$, trong đó $F$ thuộc cung nhỏ $AB$. Đường tròn ngoại tiếp tam giác $BDF$ cắt $AB$ tại $K$; đường tròn ngoại tiếp tam giác $CEG$ cắt $AC$ tại $L$. Gọi $X$ là giao điểm của $FK$ và $GL$. Chứng minh $A, X, O$ thẳng hàng.

Bài 30 (IMO 2013 – G6) Cho tam giác $ABC$, gọi $A_1$ là tiếp điểm của đường tròn bàng tiếp góc $A$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Giả sử tâm đường tròn ngoại tiếp tam giác $A_1B_1C_1$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Chứng minh tam giác $ABC$ vuông.

 

Một vài tính chất của một bài toán hình học lớp 9: Tứ giác điều hòa (tứ giác đẹp)

Trong một bài kiểm tra lớp 9 mới đây, mình cho các em làm bài toán này. Với các em học sinh lớp 9, mình không thích cho quá nhiều bài toán của THPT áp xuống, việc dạy học của mình trong bao năm qua vẫn kiên trì với triết lý đó. Nhưng ngày càng thấy nhiều bài toán hồn cấp 3 mà cách giải cấp 2 được đưa xuống, tinh thần cũng lung lay, vì dạy chuyên cả hai cấp nên mình biết khá rõ bài toán nào của cấp nào, không phải mình không dạy được hoặc không ra được bài toán như thế, nhưng mình không thích những cách giải khi nhìn với con mắt hàng điểm điều hòa, cực đối cực…ra liền mà các em cấp hai lại mất thời gian để suy nghĩ chân phương.

Nhưng đó cũng là cách chế biến đề phổ biến cho những bài toán hình cấp 2 hiện nay, âu cũng là một xu hướng mới, tuy vậy trong lúc dạy thực sự mình ít ra bài tập dạng đó, đây là trường hợp hiếm mà mình ra bài tập kiểu này.

Bài toán. Cho đường tròn tâm $O$, dây cung $AB$ khác đường kính. Tiếp tuyến tại $A, B$ cắt nhau tại điểm $P$. Một đường thẳng qua $P$ cắt $(O)$ tại $C, D$ sao cho $PC > PD$, $OP$ cắt $AB$ tại $H$.

  1. Gọi $M$ là trung điểm $CD$. Chứng minh 5 điểm $O, A, B, P, M$ cùng thuộc một đường tròn.
  2. Chứng minh $PC \cdot PD = PA^2 = PH \cdot PO$. Suy ra tứ giác $OHDC$ nội tiếp.
  3. $CH$ cắt $(O)$ tại $R$ khác $C$. Chứng minh $ORPC$ nội tiếp.
  4. Chứng minh $HA, HP$ lần phân giác trong và phân giác ngoài của $\angle CHD$.
  5. Chứng minh $AD \cdot BC = BD \cdot AC$.
  6. Chứng minh $\angle HCB = \angle DCA$ và $AD \cdot BC = \dfrac{1}{2}AB \cdot CD$.
  7. Tiếp tuyến tại $C, D$ cắt nhau tại $Q$. Chứng minh $Q, A, B$ thẳng hàng.
  8. Đường thẳng qua $A$ song song với $PB$ cắt $BD, BC$ tại $K$ và $L$. Chứng minh $A$ là trung điểm của $K, L$.
  9. Gọi $I$ là điểm đối xứng của $O$ qua $H$. Chứng minh $I$ là trực tâm tam giác $APB$.
  10. Dựng các tiếp tuyến $AT, AV$ đến đường tròn đường kinh $PI$. Chứng minh $T, V, B$ thẳng hàng.

Giải

  1. $ \angle PAP = \angle PMO = \angle PBP = 90^\circ $, suy ra $ A,M,B,P,O $ cùng thuộc đường tròn đường kính $PO$.
  2. Ta có $ \triangle PBD \backsim \triangle PCB$ (g.g) suy ra $PD.PC = PB^2$. Mà $PB^2 = PH.PO$ (hệ thức lượng tam giác vuông $PBO$), nên $ PD.PC = PH.PO $, suy ra $ \triangle PDH \backsim \triangle POC $ (c.g.c), do đó $ \angle PHD = \angle PCO $, suy ra tứ giác $DHOC$ nội tiếp.
  3. Ta có $ \angle DCR = \frac{1}{2}\angle DOR $ (cùng chắn cung $DR$), và $ \angle DCR = \angle DHO $ (tứ giác $DHOC$ nội tiếp), suy ra $ \angle DOH = \angle ROH $, suy ra $ \angle PCR = \angle ROP $, nên tứ giác $PROC$ nội tiếp.
  4. $ \angle OHC = \angle ODC = \angle OCD = \angle PHD $, suy ra $HA$, $HD$ lần lượt là phân giác trong và phân giác ngoài $ \angle CHD $.
  5. Từ các cặp tam giác đồng dạng $PAD$ và $PCA$, $PBD$ và $PCB$ ta có
    \[ \frac{AD}{AC} = \frac{PD}{PA} \text{ và } \frac{BC}{BD} = \frac{PB}{PD}\]
    Nhân vế theo vế ta được $ AD.BC = AC.BD $.
  6. Từ $ \angle DOH = \angle ROH $ (cmt), suy ra $ \angle DOA = \angle ROB $, nên cung $AD$ bằng cung $BR$, suy ra $ \angle ACD = \angle HCB $, nhờ vậy $ \triangle ACD \backsim \triangle HCB $ (g.g), suy ra $ AD.BC = CD.BH = \frac{1}{2}AB.CD $.
  7. Trong đường tròn ngoại tiếp tứ giác $QDHC$, $Q$ là điểm chính giữa cung $DC$, nên $HQ$ là phân giác $\angle DHC$, suy ra ba điểm $H$, $A$, $Q$ thẳng hàng (cùng nằm trên phân giác trong $ \angle DHC $), do đó ba điểm $Q$, $A$, $B$ cũng thẳng hàng.
  8. Từ các cặp tam giác đồng dạng $ \triangle BAD \backsim \triangle BKA $ (g.g), $ \triangle BAL \backsim \triangle BCA $ (g.g), ta có
    \[ AK = \frac{AD.AB}{BD} \text{ và } KL = \frac{AC.AB}{BC} \]
    Như vậy, để chứng minh $AK = KL$, cần chứng minh $ AD/BD = AC/BC $, điều này được suy trực tiếp từ câu (5).
  9. Tứ giác $AOBI$ là hình thoi, suy ra $BI$ song song với $AO$ do đó vuông góc với $AP$, suy ra $I$ là trực tâm tam giác $ABP$.
  10. Gọi $S$ là tâm đường tròn đường kính $PI$, gọi $B’$ là giao điểm của $BI$ với $AP$. Do $BI \bot AP$ nên $B’ \in (S)$.
    Ta có $AH.AB = AB’.AP = AT^2$, suy ra $ \angle ABT = \angle ATH $.
    Tương tự, từ $AH.AB = AV^2$ ta có $ \angle ABV = \angle AVH $.
    Như vậy, để chứng minh $B,V,T$ thẳng hàng, chỉ cần chứng minh $ \angle ATH = \angle AVH $, điều này hiển nhiên do tứ giác $ATVH$ nội tiếp đường tròn đường kính $SA$.

Chứng minh ba điểm thẳng hàng

Đề bài. Cho tam giác $OBA$ vuông tại $B$ đường cao $BH$. Gọi $C$, $D$ lần lượt là điểm đối xứng của $B$, $O$ qua $H$. Từ $B$ kẻ hai tiếp tuyến $BP$, $BQ$ đến đường tròn đường kính $AD$. Chứng minh ba điểm $C$, $P$, $Q$ thẳng hàng.

Cách 1 (sử dụng tam giác đồng dạng)

Gọi $I$ là trung điểm $AD$. Qua $C$ kẻ đường thằng vuông góc với $BI$, cắt $BI$ tại $J$ và cắt $OA$ tại $K$. Nếu chứng minh được

\[ IJ.IB = IQ^2 = IP^2 \qquad (*)\]

ta sẽ chứng minh được $QJ \bot BI$ và $PJ \bot BI$ nhờ các tam giác đồng dạng. Từ đó suy ra được $C, P, Q$ thẳng hàng (cùng nằm trên đường thẳng vuông góc với $BI$ tại $J$).

Vì $IJ.IB = IH.IK$ nên việc chứng minh (*) có thể đưa về chứng minh $IH.IK = IA^2$ (xem chứng minh ở đây).

Cách 2 (tứ giác nội tiếp, phương tích)

Do tứ giác $BOCD$ là hình thoi, nên $CD$ song song $OB$, tia kéo dài $CD$ sẽ vuông góc với $AB$ tại $E$. Tứ giác $HEAC$ nội tiếp có

\[BE.BA = BH.BC \]

Lại có $BP$, $BEA$ lần lượt là tiếp tuyến và cát tuyến của đường tròn đường kính $AD$ nên

\[ BE.BA = BP^2 \]

Suy ra được $BH.BC = BP^2$, suy ra tam giác $BPC$ và $BHP$ đồng dạng (c.g.c), ta có được $\angle BCP = \angle BPH$. Chứng minh tương tự với $\angle BCQ = \angle BQH$.

Mặt khác, năm điểm $B,Q,I,P,H$ cùng nằm trên đường tròn đường kính $BI$, nên $\angle BPH = \angle BQH$ (cùng chắn cung $AH$).

Vậy $\angle BCP = \angle BCQ$, suy ra ba điểm $C,P,Q$ thẳng hàng (đpcm).

Bài tập cực trị

Đề bài. Cho tam giác nhọn $ABC$ nội tiếp $(O)$. Tia $AO$ cắt $(OBC)$ tại $D$, tia $BO$ cắt $(OCA)$ tại $E$, tia $CO$ cắt $(OAB)$ tại $F$. Chứng minh

\[ OD.OE.OF \ge 8R^3 \]

Gợi ý

Gọi $I,J,K$ lần lượt là giao điểm của $AO$, $BO$, $CO$ với các cạnh $BC$, $CA$, $AB$ của tam giác $ABC$. Sử dụng tam giác đồng dạng ta chứng minh được

\[ OD.OI = OE.OJ = OF.OK= R^2 \]

Do đó điều cần chứng minh tương đương với

\[ 8 OI.OJ.OK \le R^3 \]

Đặt $OI = x, OJ – y, OK = z$. Từ $O$ kẻ các đường vuông góc xuống 3 cạnh, đồng thời kẻ 3 đường cao của tam giác $ABC$. Kết hợp Thales cùng tỷ số diện tích ta có được

\[ \frac{x}{x + R} + \frac{y}{y + R} + \frac{z}{z + R} = 1 \]

Quy đồng mẫu và rút gọn ta có

\[ R(xy + yz + zx) + 2xyz = R^3 \]

Đặt $t = \sqrt[3]{xyz}$ và sử dụng bất đẳng thức AM-GM: $xy + yz + zx \ge 3t^2$, thay vào trong biểu thức trên ta được

\[ R^3 \le 3Rt^2 + 2t^3 \]

tương đương với

\[ (2t – R)(t+R)^2 <= 0 \]

Ta có được $t \le R/2$. Từ đó suy ra điều cần chứng minh.

Đẳng thức xảy ra khi tam giác $x=y=z$, tức khi tâm $O$ cách đều 3 cạnh, tam giác $ABC$ là tam giác đều.

Nhận xét

  • Trường hợp $ABC$ là tam giác tù, ta vẫn có $ OD.OI = OE.OJ = OF.OK= R^2 $. Tuy nhiên $OI$, $OJ$, $OK$ có thể lớn nhỏ tùy ý [geogebra], nên bất đẳng thức không còn đúng.

Tứ giác nội tiếp (Cơ bản)

Định nghĩa. Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.

Dấu hiệu nhận biết tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi:

  1. Tổng hai góc đối bằng $180^o$.
  2. Góc ngoài bằng góc đối trong.
  3. Hai đỉnh kề cùng nhìn một cạnh dưới hai góc bằng nhau.

Ví dụ 1. Tính $x$ và $y$ trong các hình sau.

Gợi ý

a. Ta có tứ giác có tổng hai góc đối bằng $180^\circ$ nên

  • $x-21 + x + 15 = 180$
  • $x = 93$.

b. Tứ giác nội tiếp góc ngoài bằng góc đối trong nên

  • $x = 80$
  • $y = 120$.

Ví dụ 2.  Cho ngũ giác $ABCDE$ nội tiếp đường tròn đường kính $BD$ tâm $O$ với các số đo như hình vẽ, $AE||BD$, $EF$ là tia đối của $EA$.

  1. Tính $\angle BCD$.
  2. Chứng minh $CB = CD$.
  3. Tính $DEF$.

Gợi ý

  1. $\angle BCD$ góc nội tiếp nửa đường tròn nên $\angle BCD = 90^\circ$.
  2. $\angle BAC = \angle CDB  = 45^\circ$, suy ra $\angle CBD = 180^\circ – \angle BCD – \angle BDC = 45^\circ$. Suy ra $CBD$ cân tại $C$, hay $CB = CD$.
  3. Ta có $ABDE$ nội tiếp, suy ra $\angle DEF = \angle ABD$.

Mà $AE||BD$, suy ra $\angle ABD + \angle BAE = 180^\circ$, suy ra $\angle ABD = 180^\circ – \angle BAD = 65^\circ$.

Suy ra $\angle DEF = \angle ABD = 65^\circ$.

Bài tập.

  1. Tính các góc chưa biết trong các hình sau.

  1. Tính số đo các góc chưa biết.

  2. Chứng minh góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắc cung đó theo 2 bước.

a. Vẽ đường kính $AX$. Chứng minh $\angle CAX +\angle CXA = 90^\circ$.

b. Chứng minh $\angle CAT = \angle CBA$.

  1. Tính $\alpha + \beta + \gamma$.

Một bài tứ giác nội tiếp khó

Đề bài. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.

Gợi ý

Gọi $F$ là giao điểm của đường tròn ngoại tiếp tam giác $BMD$ và $AM$. Khi đó ta có $AM.AF = AD.AB = AE.AC$, suy ra $M$ thuộc đường tròn ngoại tiếp của tam giác $MCE$.

Ta có $\angle MFB = \angle ADM = \angle AEM = \angle AFC$ và $\angle FMB = \angle AME = \angle ACF$, suy ra $\Delta FBM \backsim \Delta FAC \Rightarrow \dfrac{BF}{AF} = \dfrac{BM}{AC}$.

Mà $BF = CQ$, suy ra $\dfrac{BF}{AF} = \dfrac{CQ}{AC} \Rightarrow \dfrac{BF}{CQ} = \dfrac{AF}{AC}$.

Xét tam giác $ABF$ và $ACQ$ có $\angle AFB = \angle ACQ$ (cùng bù với $\angle BDC$) và $\dfrac{BF}{CQ} = \dfrac{AF}{AC}$ nên $\Delta ABF \backsim \Delta ACQ$. Suy ra $\angle AQC = \angle ABF$.

Mặt khác $ABF = \angle CMF = 180^\circ – \angle AMC = 180^\circ – \angle APC$.

Nên $AQC = 180^\circ – \angle APC \Rightarrow \angle AQC + \angle APC = 180^\circ$, do đó tứ giác $APCQ$ là tứ giác nội tiếp.

Bài giảng Tứ giác nội tiếp

Điểm Migel của tam giác vuông

Đề bài. Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$.Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$.

a. Chứng minh các tứ giác $KPEC, KPDB$ nội tiếp.

b. Chứng minh $K, D, E$ thẳng hàng.

Gợi ý

a. Tứ giác $AHDP$ nội tiếp nên $\angle KPD = \angle AHD$.

Tứ giác $AHDP$ nội tiếp nên $\angle KPD = \angle AHD$.

Mà $\angle ABH = \angle AHD$, suy ra $\angle KPD = \angle ABH$, do đó tứ giác $KPDB$ nội tiếp.

Ta có $\angle APE = \angle AHE$ (APHE nội tiếp) và $\angle AHE = \angle ACB$ nên $\angle APE = \angle ACB$, do đó tứ giác $KPEC$ nội tiếp.

b. Ta có $\angle ADE = \angle AHE = \angle AHC$.(1)

Tứ giác $KPDB$ nội tiếp, suy ra $\angle KDB = \angle KPB$, mà $\angle KPB = \angle ACB$ (APBC nội tiếp) nên $\angle KDB = \angle ACB$.(2)

Từ (1) và (2), suy ra $\angle KDB = \angle ADE$. Khi đó $\angle KDB + \angle BDE = \angle ADE + \angle BDE = 180^\circ$. Vậy $K, D, E$ thẳng hàng.

Bài giảng Tứ giác nội tiếp