Category Archives: Đề thi

Đề thi chọn học sinh giỏi quốc gia 2021 – 2022

Ngày 1 (04/3/2022)

Bài 1 (5,0 điểm)

Cho $a$ là một số thực không âm và dãy số $(u_{n})$ được xác định bởi

$u_{1}=6, u_{n+1}=\dfrac{2n+a}{n} + \sqrt{\dfrac{n+a}{n} u_{n} + 4},  \,\, \forall n \geq 1.$

a) Với $a=0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn và tìm giới hạn đó.

b) Với mọi $a\geq 0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)

Tìm tất cả các hàm số $f: \left( 0; + \infty \right) \rightarrow \left( 0; + \infty \right)$ thỏa mãn

$f\left( \dfrac{f(x)}{x} + y \right) = 1+f(y), \,\, \forall x,y \in \left( 0; + \infty \right).$

Bài 3 (5,0 điểm)

Cho tam giác nhọn $ABC$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $BA, CA$ sao cho $BF = CE \,\, (E \ne B, F\ne C)$. Gọi $M, N$ tương ứng là trung điểm của $BE, CF$ và $D$ là giao điểm của $BF$ với $CE$.

a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $DBE, DCF$. Chứng minh rằng $MN$ song song với $IJ$.

b) Gọi $K$ là trung điểm của $MN$ và $H$ là trực tâm của tam giác $AEF$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)

Với mỗi cặp số nguyên dương $(n, m)$ thỏa mãn $n < m$, gọi $s(n,m)$ là số các số nguyên dương thuộc đoạn $[n;m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thỏa mãn đồng thời hai điều kiện sau:

i) $\dfrac{s(n,m)}{m-n} \geq \dfrac{s(1,m)}{m}$ với mọi $n = 1,2,…,m-1$;

ii) $2022^{m} + 1$ chia hết cho $m^{2}$.

 

Ngày 2 (05/3/2022)

Bài 5 (6,0 điểm)

Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022) = Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \ne 0 \, (p,q \in \mathbb{Z}$; $p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $| p | + n | q | \leq Q(n) – P(n)$ với mọi $n = 1, 2, …, 2021$.

Bài 6 (7,0 điểm)

Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_{i} \, (1\leq x_{i} \leq 6)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i \, (i=1,2,3,4).$

a) Tính số các bộ $(x_{1}, x_{2}, x_{3}, x_{4})$ có thể có.

b) Tính xác suất để có một số trong $x_{1}, x_{2}, x_{3}, x_{4}$ bằng tổng của ba số còn lại.

c) Tính xác suất để có thể chia $x_{1}, x_{2}, x_{3}, x_{4}$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)

Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ($B C$ không đi qua tâm $O$) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_{a}$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, \,L$ là giao điểm của $I_{a} D$ với $O I$ và $E$ là điềm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_{a} B C$ lấy điểm $M$ sao cho $I_{a} M$ song song với $A D,\, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.

Đáp án đề thi chọn đội dự tuyển trường PTNK năm 2020

Thời gian làm bài 120 phút

Đề bài.

Bài 1. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a^{4}+b^{4}+2}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}$, với $a, b \in \mathbb{R}$.
Bài 2. Tìm tất cả các hàm $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$thỏa mãn
$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y), \text { với mọi } x, y \in \mathbb{Q}^{+} .
$$
Bài 3. Cho $x_{1}, x_{2}, x_{3}, \ldots$ là dãy số nguyên thỏa mãn đồng thời hai điều kiện $1=$ $x_{1}<x_{2}<x_{3} \ldots$ và $x_{n+1} \leq 2 n$ với $n=1,2,3 \ldots$ Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Cho tam giác $A B C$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $A B$ sao cho $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$. Đường tròn tâm $M$ bán kính $M B$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $A D$ cắt $A C$ tại $N$. Chứng minh rằng $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.

Đáp án

Bài 1. Với mọi $x \in \mathbb{R}$, ta có
$$
x^{4}+1-\frac{2}{9}\left(x^{2}-x+1\right)^{2}=\frac{1}{9}(x+1)^{2}\left(7 x^{2}-10 x+7\right) \geq 0 .
$$
Vì thế nên ta có
$$
P \geq \frac{2}{9} \frac{\left(a^{2}-a+1\right)^{2}+\left(b^{2}-b+1\right)^{2}}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}=\frac{2}{9}\left(\frac{a^{2}-a+1}{b^{2}-b+1}+\frac{b^{2}-b+1}{a^{2}-a+1}\right) \geq \frac{4}{9} .
$$
Suy ra giá trị nhỏ nhất của $P$ là $\frac{4}{9}$, đạt được khi $a=b=-1$.

Bài 2. Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán. Đặt $f(1)=a>$ 0 , trong phương trình đề cho, thay $x=y=1$ ta có $f\left(a^{2}\right)=a^{3}$.
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^{2}, y$ bởi 1 và $x$ bởi $1, y$ bởi $c^{2}$ vào phương trình ấy, ta thu được
$$
a^{7}=f\left(a^{6}\right)=a^{5} .
$$
Chú $\hat{y} a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi 1 vào phương trình đề cho, ta có
$$
f\left(f(y)^{2}\right)=f(y) \text {, với mọi } y \in \mathbb{Q}^{+} \text {. }
$$
Lại thay $y$ bởi 1 vào phương trình đề cho, ta có
$$
f(x)^{2}=f\left(x^{2}\right), \text { với mọi } x \in \mathbb{Q}^{+} .
$$
Suy ra
$$
f(x)=f\left(f(x)^{2}\right)=f(f(x))^{2}=\ldots=f^{n+1}(x)^{2^{n}}, \text { với mọi } x \in \mathbb{Q}^{+},
$$
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q}^{+}$sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_{p}(f(q)) \neq 0$ thì ta có
$$
v_{p}(f(q))=v_{p}\left(f^{n+1}(q)^{2^{n}}\right)=2^{n} v_{p}\left(f^{n+1}(q)\right) \neq 0 .
$$
Trong đẳng thức trên, cho $n \rightarrow+\infty$ ta thấy điều vô lý. Suy ra $v_{p}(f(q))=0$ với mọi $q \in \mathbb{Q}^{+}, p \in \mathbb{P}$, hay $f(x) \equiv 1$.
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.

Bài 3. Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_{1}, x_{2}, \ldots, x_{k+1}$. Ta có $x_{1}=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_{q} \leq k$ thì ta có $q<k+1$ và
$$
1 \leq x_{1}<x_{1}<\cdots<x_{q} \leq k<x_{q+1}<\cdots<x_{k+1}<2 k \text {. }
$$
Nếu tồn tại $1 \leq j<i \leq k+1$ sao cho $x_{i}-x_{j}=k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số
$$
x_{1}+k, x_{2}+k, \ldots, x_{q}+k, x_{q+1}, \ldots, x_{k+1}
$$
là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2 k$, vô lí!

Từ đó suy ra với mọi $k$ nguyên dương, luôn tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Ta có $O B=O D, M B=M D$ nên dễ thấy $O M$ là phân giác ngoài của góc $A M D$, mà $O A=O D$ nên suy ra $O \in(A M D)$.

Gọi $N^{\prime}$ là giao điểm khác $A$ của $(A M D)$ và $A C$. Ta chứng minh $N$ trùng $N^{\prime}$. Thật vậy, ta có $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$ nên $\angle A M O$ tù, do đó nếu $N^{\prime}$ nằm ngoài tia $A C$ thì $N^{\prime}$ nằm khác phía $O$ so với $A M$ nên
$$
\angle A M O=\angle A N^{\prime} O=\angle C A O-\angle A O N^{\prime}<\angle C A O<90^{\circ},
$$
vô lý. Suy ra $N^{\prime}$ nằm trên tia $A C$, kéo theo $A O$ là phân giác trong góc $M A N^{\prime}$ nên $O M=O N^{\prime}$, mà $O A=O D$ nên $M N^{\prime}$ song song $A D$, suy ra $N$ trùng $N^{\prime}$.

Từ đó, dễ thấy $A M N D$ là hình thang cân nên $A N=M D=M B$, hơn nữa $N$ nằm trên tia $A C$ nên ta thu được
$$
\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}
$$
Ta có điều cần chứng minh.

Tài liệu tham khảo

[1] Nguyễn Tăng Vũ, Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển và đội tuyển PTNK 2008-2021

Đáp án đề thi chọn đội dự tuyển PTNK năm 2021

Thời gian làm bài 120 phút

Đề thi

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$.

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Đáp án.

Bài 1. Ta có
$$
P-\frac{7}{2}=\frac{7}{2}(a-1)+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}
$$
Theo bất đẳng thức AM-GM, ta có
$$
a^{2} b^{2} c^{2} \leq a b^{2} c^{2} \leq a\left(\frac{b^{2}+c^{2}}{2}\right)^{2}=\frac{a\left(1-a^{2}\right)^{2}}{4} \leq \frac{a\left(1-a^{2}\right)}{4}=(1-a) \frac{a+a^{2}}{4} .
$$
Do đó, suy ra
$$
P-\frac{7}{2} \leq(1-a)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\frac{a+a^{2}}{4}-\frac{7}{2}\right)
$$
Vì $\sqrt{a}+\sqrt{b}+\sqrt{c}+\frac{a+a^{2}}{4} \leq 1+1+1+\frac{1+1^{2}}{4}=\frac{7}{2}$ và dấu bằng không xảy ra nên biểu thức trong dấu ngoặc thứ hai luôn âm. Vì thế nền ta có $P \leq \frac{7}{2}$.
Giá trị lớn nhất cần tìm là $\frac{7}{2}$, đạt được khi $(a, b, c)=(1,0,0)$.

Bài 2.  Đặt $a=f(0)$, ta thay $y=0$ vào đề bài, ta đưa về $f(x-a)-4 f(x)=3 x+a$, kéo theo $f(u)-4 f(v)$ toàn ánh với $u, v \in \mathbb{R}$. Ta thực hiện các phép thế sau
– Thay $x=f(y)$, ta có $f(0)=4 f(f(y))+4 f(y)$ với mọi $y$.
– Thay $x=2 f(y)$, ta có $f(f(y))=4 f(2 f(y))+7 f(y)$ với mọi $y$.
– Thay $x=3 f(y)$, ta có $f(2 f(y))=4 f(3 f(y))+10 f(y)$ với mọi $y$.
– Thay $x=4 f(y)$, ta có $f(3 f(y))=4 f(4 f(y))+13 f(y)$ với mọi $y$.

Từ đó suy ra
$$
\begin{aligned}
&4 f(4 f(y))=f(3 f(y))-13 f(y) \
&=\frac{1}{4}(f(2 f(y))-10 f(y))-13 f(y) \
&=\frac{1}{4}\left(\frac{1}{4}(f(f(y))-7 f(y))-10 f(y)\right)-13 f(y) \
&=\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{4}(a-4 f(y))-7 f(y)\right)-10 f(y)\right)-13 f(y) \
&=\frac{a}{64}-16 f(y)
\end{aligned}
$$
Thay $x=4 f(x)$, ta có
$$
f(4 f(x)-f(y))=4 f(4 f(x))+12 f(x)+f(y)
$$
hay
$$
f(4 f(x)-f(y))=\frac{a}{64}-4 f(x)+f(y)
$$
với mọi $x, y \in \mathbb{R}$. Đặt $t=4 f(x)-f(y)$ thì $t$ nhận giá trị trên $\mathbb{R}$, ta có $f(t)=-t+\frac{a}{64}$ với mọi $t \in \mathbb{R}$. Thay $t=0$, ta có $a=0$ nên $f(t)=-t$. Thử lại thấy thỏa. Vậy tất cả hàm số cần tìm là $f(x)=-x, \forall x \in \mathbb{R}$.

Bài 3. Trước hết, với mỗi số nguyên dương $n$, ta ký hiệu $T(n)$ là ước dương lớn nhất không chia hết cho 5 của $n$. Ta chia tất cả các số nhỏ hơn $30 n$, nguyên tố cùng nhau với 6 ra thành các nhóm sao cho $m, n$ thuộc cùng nhóm khi và chỉ khi $T(m)=T(n) .$ Do
$$
\phi(30)=(2-1)(3-1)(5-1)=8
$$
nên từ 1 đến $30 n$ có tổng cộng $8 n$ số nguyên tố cùng nhau với 30 , suy ra có tổng cộng $8 n$ nhóm.

Do $|A|=8 n+1$ nên theo nguyên lý Dirichlet trong $A$ sẽ có 2 số thuộc cùng một nhóm, và số lớn sẽ chia hết cho số nhỏ.

Bài 4. (a) Ta thấy hai tam giác vuông $A M H, O A H$ dồng dạng và có các cạnh tương ứng vuông góc nên hai trung tuyến tương ứng của hai tam giác này sẽ vuông góc với nhau. Gọi $K$ là trung điểm $A H$ thì ta sẽ có $A D \perp O K$. Giả sử đường thẳng qua $H$, vuông góc với $A D$ cắt $O A$ ở $N$ thì ta có $O K | H N$, suy ra $O$ là trung điểm của $A N$ hay $N$ là điểm đối xúng với $A$ qua $O$, là điểm cố định.

(b) Ta có
$$
O A^{2}=O N^{2}=O H \cdot O M
$$
nên $O N$ tiếp xúc với đường tròn $(H M N)$. Gọi $I$ là tâm của $(H M N)$ thì $I N \perp O A$ nên $I$ luôn thuộc một đường thẳng cố định.

Gọi $J$ là trung điểm $O A$ thì $J$ là tâm đường tròn $(O H A)$. Giả sử $(I)$ tiếp xúc $(J)$ thì tiếp điểm là $H$, chứng tỏ các điểm $I, H, J$ thẳng hàng. Ta có
$$
\angle I M H=\angle I H M=\angle J H O=\angle J O H
$$
nên $I M | O A$. Khi đó, tứ giác $I N A M$ là hình vuông và ta tính được tỷ số $\frac{A M}{O A}=$ $\frac{A N}{O A}=2$.

Tài liệu tham khảo.

[1] Nguyễn Tăng Vũ – Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển, đội tuyển trường Phổ thông Năng khiếu 2008 – 2021,NXB ĐHQG HN, 2021

Đề thi Học kì 1 lớp 10 chuyên Toán PTNK năm 2018

Bài 1. Cho hàm số $y=x^{2}-4 x+3$. (1)
a) Khảo sát sự biến thiên và vē đồ thị hàm số.
b) Từ đồ thị hàm số (1), suy ra đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$. (2)
c) Dựa vào đồ thị hàm số (2), tìm $m$ để phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm.

Bài 2. Giải phương trình và hệ phương trình sau:
a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5$
b) $\left\{ \begin{array}{l} \left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right.$.

Bài 3. Tìm tham số $m$ để hệ phương trình $\left\{ \begin{array}{l} m x+(m-1) y=m+1 \\ (m-1) x+m y=m+1 \end{array}\right.$ có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thóa $x_{0}^{2}+y_{0}^{2}=2$.

Bài 4. Cho $x$ là số thực dương, đặt $A=x+\dfrac{1}{x}$.
a) Chứng minh rằng $A$ là số nguyên thì $A_{n}=x^{n}+\dfrac{1}{x^{n}}$ cūng là số nguyên với mọi số nguyên dương $n$.
b) Tìm giá trị lớn nhất của $B=-A^{2}+6 A+1$.

Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn tâm $O$ đường kính $B C=2 R, \widehat{A B C}=60^{\circ} . D$ là điểm đối xứng của $A$ qua $B C$.
a) Chứng minh rằng với mọi điểm $M$ ta có: $\overrightarrow{M A} \cdot \overrightarrow{M D}=\overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}$.
b) Tìm $M$ để $S=M A^{2}-4 M B^{2}+M D^{2}$ đạt giá trị lớn nhất. Tìm giá trị lớn nhất theo $R$.
c) Cho $M$ thay đổi trên $A C . D M$ cắt $(O)$ tại $N$. Xác định $M$ để $\mathcal{P} {C/(AMB)}=2 \mathcal{P} {B/(CMN)}$. $a_12$
d) Tìm quy tích $M$ thỏa $\overrightarrow{M A} \cdot \overrightarrow{M D}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2}$.

Lời giải
Bài 1.
a) Ta có $a=1>0, \dfrac{-b}{2 a}=2$ và $\dfrac{-\Delta}{4 a}=-1$.
Bảng biến thiên:

Vậy hàm số (1) đồng biến trên $(2 ;+\infty)$ và nghịch biến trên $(-\infty ; 2)$.

Đồ thị hàm số:

b) Từ đồ thị hàm số (1), ta suy ra đồ thị hàm số $y=x^{2}-4|x|+3$  như sau:

Khi đó, ta có được đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$ như sau:

c) Theo đồ thị hàm số (2), phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm phân biệt khi và chỉ khi $m^{2}+2 m=3 \Leftrightarrow\left[\begin{array}{l}m=1 \\ m=-3\end{array}\right.$.

Bài 2. 

a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5 \quad (1)$.

ĐKXĐ: $\left\{\begin{array}{l}x-1 \geq 0 \\ 6-x \geq 0 \\ 7 x-6-x^{2} \geq 0\end{array} \quad \Leftrightarrow 1 \leq x \leq 6\right.$

Đặt $a=\sqrt{x-1} \geq 0$ và $b=\sqrt{6-x} \geq 0$, khi đó $\left\{\begin{array}{l}a b=\sqrt{7 x-6-x^{2}} \\ a^{2}+b^{2}=5\end{array}\right.$.

Kết hợp với (1), ta có hệ phương trình sau: $\left\{\begin{array}{l}a+b+a b=5 \\ a^{2}+b^{2}=5 .\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=5-a b \quad (2) \\ a^{2}+b^{2}=5\end{array}\right.\right.$

Ta có: $5=a^{2}+b^{2}=(a+b)^{2}-2 a b=(5-a b)^{2}-2 a b=a^{2} b^{2}-12 a b+25$.

Do đó: $a^{2} b^{2}-12 a b+20=0 \Leftrightarrow\left[\begin{array}{l}a b=2 \\ a b=10\end{array}\right.$.

– Nếu $a b=2$, từ (2) ta suy ra $a+b=3$. Khi đó $a, b$ là nghiệm của phương trình:

$$X^{2}-3 X+2=0 \Leftrightarrow \left[ \begin{array}{l} X=1 \\ X=2 \end{array}\right.$$

Khi đó $(a ; b)=(1 ; 2)$ hoặc $(a ; b)=(2 ; 1)$.

+) Nếu $\left\{\begin{array}{l}a=1 \\ b=2\end{array} \Rightarrow\left\{\begin{array}{l}\sqrt{x-1}=1 \\ \sqrt{6-x}=2\end{array} \Leftrightarrow x=2\right.\right.$. Thử lại thấy nghiệm $x=2$ thỏa (1).

+) Nếu $\left\{\begin{array}{l}a=2 \\ b=1\end{array} \Leftrightarrow\left\{\begin{array}{l}\sqrt{x-1}=2 \\ \sqrt{6-x}=1\end{array} \Leftrightarrow x=5\right.\right.$. Thử lại thấy nghiệm $x=5$ thỏa (1).

– Nếu $a b=10$, từ (1) ta suy ra $a+b=-5$ (Loại vì $a, b \geq 0$ nên $a+b \geq 0)$.

Vậy tập nghiệm của phương trình (1) là $S=\{2 ; 5\}$.

b) $\left\{\begin{array}{l}\left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right. \quad (I)$

Đặt $a=x^{2}+y$ và $b=x+y^{2}$ thì (I) trở thành:

$$\left\{\begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 8 } \\ { a + b = 4 } \end{array} \Leftrightarrow \left\{\begin{array} { l } { ( a + b ) ^ { 2 } – 2 a b = 8 } \\ { a + b = 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l} a b=4 \\ a+b=4 \end{array}\right.\right.\right. $$

Do đó $a, b$ là nghiệm của phương trình:

$$X^{2}-4 X+4=0 \Leftrightarrow X=2 $$

Suy ra $\left\{\begin{array}{l}a=2 \\ b=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}+y=2 \\ x+y^{2}=2\end{array}\right.\right.$

Từ (1) và (2) ta suy ra $x^{2}+y=x+y^{2} \Leftrightarrow(x-y)(x+y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=x \\ y=1-x\end{array}\right.$.

– Nếu $y=x$, thay vào $(1)$, ta được: $x^{2}+x+2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\ x=-2\end{array}\right.$.

+) Với $x=1$, suy ra $y=1$.

+) Với $x=-2$, suy ra $y=-2$.

– Nếu $y=1-x$, thay vào $(1)$, ta được: $x^{2}+1-x=2 \Leftrightarrow x^{2}-x-1=0 \Leftrightarrow\left[\begin{array}{l}x=\dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{1-\sqrt{5}}{2}\end{array}\right.$

+) Với $x=\dfrac{1+\sqrt{5}}{2}$, suy ra $y=\dfrac{1-\sqrt{5}}{2}$.

+) Với $x=\dfrac{1-\sqrt{5}}{2}$, suy ra $y=\dfrac{1+\sqrt{5}}{2}$.

Thử lại thấy các cặp nghiệm trên đều thỏa.

Vậy tập nghiệm của (I) là $(x ; y)=\left\{(1 ; 1),(-2 ;-2),\left(\dfrac{1+\sqrt{5}}{2} ; \dfrac{1-\sqrt{5}}{2}\right),\left(\dfrac{1-\sqrt{5}}{2} ; \dfrac{1+\sqrt{5}}{2}\right)\right\}$.

Bài 3.

$\left\{\begin{array}{l} m x+(m-1) y=m+1 \\ (m-1) x+m y=m+1 \end{array}\right. \quad (I)$

Ta có:

$D=m^{2}-(m-1)^{2}=2 m-1$

$D_{x}=(m+1) m-(m+1)(m-1)=m+1 $

$D_{y}=m(m+1)-(m-1)(m+1)=m+1$

Để (I) có nghiệm duy nhất $\Leftrightarrow D \neq 0 \Leftrightarrow 2 m-1 \neq 0 \Leftrightarrow m \neq \dfrac{1}{2}$.

Khi đó nghiệm của (I) là $\left\{\begin{array}{l}x_{0}=\dfrac{D_{x}}{D}=\dfrac{m+1}{2 m-1} \\ y_{0}=\dfrac{D_{y}}{D}=\dfrac{m+1}{2 m-1}\end{array}\right.$

Vì $x_{0}^{2}+y_{0}^{2}=2$ nên $\left(\dfrac{m+1}{2 m-1}\right)^{2}+\left(\dfrac{m+1}{2 m-1}\right)^{2}=2 \Leftrightarrow\left(\dfrac{m+1}{2 m-1}\right)^{2}=1 \Leftrightarrow\left[\begin{array}{ll}m=0 & \text { (Nhận) } \\ m=2 & \text { (Nhận) }\end{array}\right.$

Vậy $m=0$ hoặc $m=2$ thì (I) có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thỏa $x_{0}^{2}+y_{0}^{2}=2$.

Bài 4.

a) – Ta có: $A_{1}=x+\dfrac{1}{x}=A \in \mathbb{Z}, A_{2}=x^{2}+\dfrac{1}{x^{2}}=\left(x+\dfrac{1}{x}\right)^{2}-2 \in \mathbb{Z}$.

– Giả sử $A_{k} \in \mathbb{Z}$ với mọi $k \leq n$ ( $n$ nguyên dương và $n \geq 2$ ), hay $x^{k}+\dfrac{1}{x^{k}} \in \mathbb{Z}$.

Ta chứng $\operatorname{minh} A_{n+1} \in \mathbb{Z}$, tức là $x^{n+1}+\dfrac{1}{x^{n+1}} \in \mathbb{Z}$.

– Thật vậy, vì $x^{n}+\dfrac{1}{x^{n}}$ và $x+\dfrac{1}{x}$ là các số nguyên nên $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right) \in \mathbb{Z}$.

Mặt khác, $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=x^{n+1}+x^{n-1}+\dfrac{1}{x^{n-1}}+\dfrac{1}{x^{n+1}}=\left(x^{n+1}+\dfrac{1}{x^{n+1}}\right)+\left(x^{n-1}+\dfrac{1}{x^{n-1}}\right)$.

Do đó $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=A_{n+1}+A_{n-1}$.

Suy ra $A_{n+1}+A_{n-1} \in \mathbb{Z}$, mà $A_{n-1} \in \mathbb{Z}$ nên $A_{n+1} \in \mathbb{Z}$.

Như vậy, theo nguyên lí quy nạp, ta có $A_{n} \in \mathbb{Z}$ với mọi số nguyên dương $n$.

b) Ta có $B=-A^{2}+6 A+1=-(A-3)^{2}+10 \leq 10$.

Dấu “=” xảy ra $\Leftrightarrow A=3 \Leftrightarrow x+\dfrac{1}{x}=3 \Leftrightarrow\left[\begin{array}{l}x=\dfrac{3+\sqrt{5}}{2} \\ x=\dfrac{3-\sqrt{5}}{2}\end{array}\right.$.

Vậy giá trị lớn nhất của $B$ là 10 khi $x=\dfrac{3+\sqrt{5}}{2}$ hoặc $x=\dfrac{3-\sqrt{5}}{2}$.

Bài 5. 

a) Ta có $\Delta A B O$ cân tại $O(O A=O B)$ và $\widehat{A B O}=60^{\circ}$ nên $\Delta A B O$ là tam giác đều.

Suy ra $O A=O B=A B$. (1)

Do $D$ đối xứng với $A$ qua đường kính $B C$ nên $D \in(O)$ và $\widehat{A O B}=\widehat{B O D}=60^{\circ}$.

Kết hợp với $O D=O B=R$, suy ra $\Delta B O D$ là tam giác đều,

kéo theo $B O=O B=O D$. (2)

Từ (1) và (2) suy ra $A B=A O=O D=D B$, dẫn đến $A O D B$ là hình thoi. Do đó $\overrightarrow{A B}=\overrightarrow{O D}$.

Với điểm $M$ bất kì, ta có:

$\overrightarrow{M A} \cdot \overrightarrow{M D} =(\overrightarrow{M B}+\overrightarrow{B A})(\overrightarrow{M O}+\overrightarrow{O D}) $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{M B} \cdot \overrightarrow{O D}+\overrightarrow{B A} \cdot \overrightarrow{M O}+\overrightarrow{B A} \cdot \overrightarrow{O D} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{M B} \cdot \overrightarrow{O D}-\overrightarrow{O D} \cdot \overrightarrow{M O}-\overrightarrow{O D} \cdot \overrightarrow{O D} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{O D}(\overrightarrow{M B}-\overrightarrow{M O})-\overrightarrow{O D}^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{O D} \cdot \overrightarrow{O B}–\overrightarrow{O D}^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+O D \cdot O B \cos 60^{\circ}-O D^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}$

b) Gọi $H$ là giao điểm của $A D$ và $B C$. Vì $A O D B$ là hình thoi nên $H$ là trung điểm của $A D$ và $B C$.

Lấy $I$ đối xứng với $H$ qua $B$, khi đó $\overrightarrow{I H}=2 \overrightarrow{I B}$.

Mặt khác, $\overrightarrow{I A}+\overrightarrow{I D}=2 \overrightarrow{I H}$ (do $H$ là trung điểm của $A D)$.

Suy ra $\overrightarrow{I A}+\overrightarrow{I D}=4 \overrightarrow{I B} \Leftrightarrow \overrightarrow{I A}-4 \overrightarrow{I B}+\overrightarrow{I D}=0$

Ta có:

$M A^{2}-4 M B^{2}+M D^{2} $

$=\overrightarrow{M A}^{2}-4 \overrightarrow{M B}^{2}+\overrightarrow{M D}^{2} $

$=(\overrightarrow{M I}+\overrightarrow{I A})^{2}-4(\overrightarrow{M I}+\overrightarrow{I B})^{2}+(\overrightarrow{M I}+\overrightarrow{I D})^{2} $

$=-2 \overrightarrow{M I}^{2}+2 \overrightarrow{M I}(\overrightarrow{I A}-4 \overrightarrow{I B}+\overrightarrow{I D})+\overrightarrow{I A}^{2}-4 \overrightarrow{I B}^{2}+\overrightarrow{I D}^{2}$

$=-2 M I^{2}+I A^{2}-4 I B^{2}+I D^{2} $

$ \leq I A^{2}-4 I B^{2}+I D^{2} .$

Ta có:

$I A^{2}-4 I B^{2}+I D^{2}=2 I A^{2}-4 I B^{2}=2\left(I K^{2}+K A^{2}\right)-4 I B^{2}=2\left(R^{2}+\dfrac{3}{4} R^{2}\right)-4 \cdot \dfrac{R^{2}}{4}=\dfrac{5}{2} R^{2} .$

Vậy giá trị lớn nhất của $M A^{2}-4 M B^{2}+M D^{2}$ là $\dfrac{5}{2} R^{2}$ khi và chỉ khi $M \equiv I$.

d) Lấy $L$ đối xứng với $O$ qua $C$. Khi đó $\overrightarrow{L O}=2 \overrightarrow{L C}$.

Do đó $\overrightarrow{M O}-2 \overrightarrow{M C}=\overrightarrow{M L}+\overrightarrow{L O}-2 \overrightarrow{M L}-2 \overrightarrow{L C}=-\overrightarrow{M L}$.

Ta có:

$\overrightarrow{M A} \cdot \overrightarrow{M D}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2} $

$\Leftrightarrow \overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2} $

$ \Leftrightarrow \overrightarrow{M B} \cdot \overrightarrow{M O}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=0 $

$ \Leftrightarrow \overrightarrow{M B}(\overrightarrow{M O}-2 \overrightarrow{M C})=0 $

$ \Leftrightarrow-\overrightarrow{M B} \cdot \overrightarrow{M L}=0$

Do đó $M L \perp M B$, vậy $M$ thuộc đường tròn đường kính $B L$.

Lời giải của bạn Trần Thái Hưng – Star Education

Đề thi học kì 1 lớp 10 chuyên toán PTNK năm 2016

Thời gian làm bài: 120 phút

Câu 1.
a) Giải phương trình $x^{2}-x+2-(x+2) \sqrt{x-1}=0$.
b) Tìm $m$ để hệ phương trình $\left\{\begin{array}{l}x+y+x y=m \\ x^{2}+y^{2}=m\end{array}\right.$ có nghiệm.

Câu 2. Cho hàm số $y=f(x)=-x^{2}+2 x+3(1)$.
a) Khảo sát và vẽ đồ thị hàm số (1).
b) Từ đồ thị hàm số $(1)$, suy ra đồ thị hàm số $y=g(x)=-x^{2}+2|x|+3$. Tìm $k$ để phương trình $g(x)=m^{3}-3 m^{2}+m$ có đúng 3 nghiệm.

Câu 3.
a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
$$
y=\sqrt{x+1}+\sqrt{1-x}-\frac{4}{3} \sqrt{1-x^{2}}
$$
b) Cho các số $a, b, c>0$. Chứng minh rằng
$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \geq \frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)
$$
Bài 4. Cho tam giác $A B C$ cân tại $A, \angle B A C=120^{\circ}$ nội tiếp đường tròn tâm $O$ bán kính $R . A O$ cắt $(O)$ tại $D .$
a) Chứng minh rằng với mọi $M$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M A} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$.
b) Tìm quỹ tích điểm $M$ sao cho $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M A} \cdot \overrightarrow{M D}=\frac{R^{2}}{4}$.
c) Xác định điểm $N$ trên cạnh $B D$ thỏa $P_{D /(A B N)}=R^{2}$.
d) $P$ là điểm thay đổi trên cạnh $B C .$ Gọi $\left(O_{1}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $B ;\left(O_{2}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $C .\left(O_{1}\right)$ và $\left(O_{2}\right)$ cắt nhau tại $Q$ khác $P$. Chứng minh đường thẳng $P Q$ đi qua một điểm cố định $T$. Tính $P_{T /(O)}$.
Kí hiệu $P_{M /(O)}$ là phương tích của $M$ đối với đường tròn $(O)$.

Đề thi học kì 1 lớp 10 chuyên toán trường PTNK năm 2014

Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.

Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$
Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$

Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?

Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đề thi Học kì 1 Toán 10 PTNK năm 2018 (CS2)

Bài 1. Giải các phương trình sau:
a) $\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
Bài 3. Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 4. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 5. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 6. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.
Bài 7. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.
a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Lời giải
Bài 1.
a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x \\
\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) \\
\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\
x^2-x-1=3-2x
\end{array} \right. $

Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.
$P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.

Bài 3. Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2 \Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 4. $D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 5. $\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$
Bài 6.
a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 7.
a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đề thi Học kì 1 Toán 10 PTNK năm 2017 (CS2)

Đề và lời giải: Thầy Nguyễn Tấn Phát

Bài 1. Giải các phương trình sau:
a) $(x+2)\sqrt{x^2-5}=x^2-4$
b) $x^2+8x+|x+4|+14=0$
Bài 2. Tìm $a$, $b$, $c$ biết hàm số $y=ax^2+bx+c$ có đồ thị được cho như hình sau.

Bài 3. Tìm $m$ để phương trình $(m-1)^2x^2 – 4(m+1)x+3=0$ có hai nghiệm, trong đó có một nghiệm gấp 3 lần nghiệm còn lại.
Bài 4. Tìm số nguyên $m$ sao cho hệ $\left{ \begin{array}{l}
mx-y=1 \
x+4(m+1)y=4m
\end{array} \right. $ có nghiệm duy nhất và là nghiệm nguyên.
Bài 5. Tính giá trị của biểu thức $P=\dfrac{16\cos ^3 a – \sin ^3 a + 5\cos a}{9\cos a + \sin ^3 a}$ khi $\tan a =3$.

Bài 6. Cho ba vectơ $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ bất kì. Xét tính đúng, sai của các mệnh đề sau:
a) $\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] $ vuông góc với $\overrightarrow{a}$
b) $\left( \overrightarrow{a}\cdot \overrightarrow{b} \right) \overrightarrow{c} = \left( \overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{a}$
Bài 7. Cho $\overrightarrow{u}= (1;-2)$, $\overrightarrow{v} = (x;y)$. Tìm $x$, $y$ sao cho $\overrightarrow{u}$, $\overrightarrow{v}$ cùng phương và $\overrightarrow{u} \cdot \overrightarrow{v}=-\dfrac{13}{2}$. Tính $|\overrightarrow{v}|$.
Bài 8. Cho tam giác $ABC$ với $A(-3;6)$, $B(1;-2)$, $C(6;3)$. Tìm tọa độ tâm $I$ và bán kính đường tròn ngoại tiếp của tam giác $ABC$.
Bài 9. Cho các điểm $M(-1;2m+3)$, $N(-4; 5m)$ và $P(-3; 3m+2)$. Tìm điều kiện cần và đủ của $m$ để $M$, $N$, $P$ là ba đỉnh của một tam giác. Khi đó chứng minh $\angle NMP$ là góc nhọn.

Lời giải
Bài 1.
a) Nghiệm của phương trình $x=\dfrac{9}{4}$
b) Phương trình tương đương: $(x+4)^2 + |x+4| -2=0$. Đặt $t= |x+4|$, phương trình trở thành $t^2 +t-2=0$.

Từ đó giải được tập nghiệm của phương trình là $S=\left\{ -3;-5 \right\} $
Bài 2. $(P):y=x^2 -4x+2$

Bài 3. Để phương trình có hai nghiệm phân biệt $x_1$, $x_2$ thì $\left\{ \begin{array}{l}
m \ne 1 \\
\Delta = m^2 +14m+1 >0
\end{array} \right. $

Theo Viete, ta có: $\left\{ \begin{array}{l}
x_1+x_2 = \dfrac{4(m+1)}{(m-1)^2} \quad (2) \\
x_1x_2= \dfrac{3}{(m-1)^2} \quad (3)
\end{array} \right. $

Vì nghiệm này gấp ba nghiệm kia nên từ $(2)$, ta tìm được $x_1$, $x_2$ theo $m$, sau đó thay vào $(3)$ giải được $m=0$ (nhận)

Vậy $m=0$

Bài 4. Để hệ có nghiệm duy nhất thì $D \ne 0 \Leftrightarrow m \ne -\dfrac{1}{2}$.

Tính $D_x$, $D_y$, suy ra $x=\dfrac{4}{2m+1}$, $y=\dfrac{2m-1}{2m+1}$.

Để nghiệm nguyên thì $2m+1 \in U(4)$ và $2m-1 \, \vdots \, 2m+1$. Từ đó suy ra $m \in \left\{ -1; 3 \right\} $
Bài 5. Vì $\cos a \ne 0$ nên chia cả tử và mẫu của $P$ cho $\cos ^3 a$, ta được:
$$P= \dfrac{16-\tan ^3 a + 5 \left( \tan ^2 a +1 \right) }{9 \left( \tan ^2 a +1 \right) + \tan ^3 a} = \dfrac{1}{3}$$
Bài 6.
a) Xét tích vô hướng:
$\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] \overrightarrow{a} \\= |\overrightarrow{a}|\cdot |\overrightarrow{b} | \cdot \cos (\overrightarrow{a} , \overrightarrow{b} ) \cdot |\overrightarrow{c}|\cdot |\overrightarrow{a} | \cdot \cos (\overrightarrow{c} , \overrightarrow{a} ) – |\overrightarrow{c}|\cdot |\overrightarrow{a} | \cdot \cos (\overrightarrow{c} , \overrightarrow{a} ) \cdot |\overrightarrow{a}|\cdot |\overrightarrow{b} | \cdot \cos (\overrightarrow{a} , \overrightarrow{b} ) = 0$
Suy ra $\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] $ vuông góc với $\overrightarrow{a}$
b) $\left( \overrightarrow{a}\cdot \overrightarrow{b} \right) \overrightarrow{c}$ cùng phương với $\overrightarrow{c}$; $\left( \overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{a}$ cùng phương với $\overrightarrow{a}$

Xét trường hợp $\overrightarrow{a}$ không cùng phương với $\overrightarrow{c}$ thì mệnh đề trên sai. Vậy mệnh đề trên sai.

Bài 7. $\overrightarrow{v}=\left( -\dfrac{13}{10} ; \dfrac{13}{5} \right) \Rightarrow |\overrightarrow{v} | = \dfrac{13\sqrt{5}}{10}$
Bài 8. $I(1;3)$, $R=5$
Bài 9. Để $MNP$ là tam giác thì $m \ne 1$

$\cos NMP = \dfrac{2+(m-1)^2}{\sqrt{1+(m-1)^2} \sqrt{4+(m-1)^2}} >0, \; \forall m$ nên $\angle NMP$ là góc nhọn.

Đề thi Học kì 1 Toán 10 PTNK năm 2016 (CS1)

Đề và lời giải: Thầy Nguyễn Tấn Phát

Bài 1. (1 điểm) Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm
Bài 2. (1 điểm) Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$
Bài 3. (1 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$. Định m để hệ phương trình có nghiệm duy nhất.
Bài 4. (2 điểm) Giải các phương trình sau:
a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
Bài 5. (1 điểm) Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. (1 điểm) Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.
Bài 7. (3 điểm) Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Lời giải
Bài 1. (1 điểm)
Điều kiện: $x \ge 2$
$\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ (1)
$\Leftrightarrow (x-1)(x-3m)=0$
$\Leftrightarrow x-3m=0$ (2) vì $x \ge 2$
Để phương trình (1) vô nghiệm thì (2) phải vô nghiệm $\Leftrightarrow 3m<2 \Leftrightarrow m < \dfrac{2}{3}$

Bài 2. (1 điểm)
$A(1;-4)$, $B(2;-3)$ thuộc $(P)$, ta có:
$\left\{ \begin{array}{l}
1+b+c=-4\\
4+2b+c=-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
b=-2\\
c=-3
\end{array} \right.$
Do đó $(P): y=x^2 – 2x -3$
Phương trình hoành độ giao điểm của $(P)$ và $(P’)$: $ x^2-2x-3=(2x-1)^2 -4$
$\Rightarrow\left[ \begin{array}{l}
x=0 \Rightarrow y=-3 \\
x=\dfrac{2}{3} \Rightarrow y=-\dfrac{35}{9}
\end{array} \right.$
Vậy giao điểm của $(P)$ và $(P’)$ là $(0;-3)$ và $\left( \dfrac{2}{3};-\dfrac{35}{9} \right)$

Bài 3. (1 điểm)
Ta có:
$D=1-\dfrac{1}{m^2}$
$Dx= \dfrac{4m^2-2m-2}{m^2}$
$Dy= \dfrac{2m-2}{m}$
Để hệ phương trình có nghiệm duy nhất thì:
$\left\{ \begin{array}{l}
D \ne 0 \\
y=\dfrac{Dy}{D} \ge 0
\end{array} \right.$
$\Rightarrow \left\{ \begin{array}{l}
m \ne \pm 1\\
\left[ \begin{array}{l}
m \ge 0 \\
m \le -1
\end{array} \right.
\end{array} \right. $
$\Rightarrow \left[ \begin{array}{l}
m < -1 \\ \left\{ \begin{array}{l} m > 0 \\
m \ne 1
\end{array} \right.
\end{array} \right.$

Bài 4. (2 điểm)
a) Điều kiện: $x \ge 3$.
Ta có $\sqrt{2x+1}+\sqrt{x-3} = 4 \Leftrightarrow 2\sqrt{2x^2-5x-3}=18 – 3x$
$\Leftrightarrow 4(2x^2-5x-3) = 9x^2-108x + 324$ ($x\leq 6$)
$\Leftrightarrow x^2-88x+332 = 0 \Leftrightarrow x = 4 (n), x = 84(l)$.
Vậy $S=\{4\}$.
b) Điều kiện: $x^2 \ge 9 \Rightarrow \left[ \begin{array}{l}
x \ge 3 \\
x \le -3
\end{array} \right.$
$x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
$\Rightarrow x^2 + \dfrac{9x^2}{x^2-9} + \dfrac{6x^2}{\sqrt{x^2-9}}=\left( \dfrac{35}{4} \right)^2$
$\Rightarrow \dfrac{x^4}{x^2-9}+\dfrac{2.x^2.3}{\sqrt{x^2-9}} +9 = \left( \dfrac{35}{4} \right)^2 + 9$
$\Rightarrow \left( \dfrac{x^2}{\sqrt{x^2-9}} +3 \right)^2 = \dfrac{1369}{16}$
$\Rightarrow \left[ \begin{array}{l}
\dfrac{x^2}{\sqrt{x^2-9}} +3 = \dfrac{37}{4} \\
\dfrac{x^2}{\sqrt{x^2-9}} +3 = -\dfrac{37}{4} \quad \text{(loại)}
\end{array} \right.$
$\Rightarrow \dfrac{x^2}{\sqrt{x^2-9}} = \dfrac{25}{4}$
$\Rightarrow 16x^4=625.x^2-9.625$
$\Rightarrow \left[ \begin{array}{l}
x= \pm 5\\
x= \pm \dfrac{15}{4}
\end{array} \right.$
Thử lại nghiệm ta chọn $x=5$ hoặc $x=\dfrac{15}{4}$
Vậy $x=5$ hoặc $x=\dfrac{15}{4}$

Bài 5. (1 điểm)
$\tan^2 a – \tan^2 b \\
= \dfrac{\sin^2a}{\cos^2a}-\dfrac{\sin^2b}{\cos^2b} \\
= \dfrac{\sin^2a.\cos^2b – \sin^2b.\cos^2a}{\cos^2a.\cos^2b} \\
= \dfrac{(\sin a.\cos b+\sin b.\cos a)(\sin a.\cos b-\sin b.\cos a )}{\cos^2a.\cos^2b} \\
= \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. (1 điểm)
$AB^2 =(-3+1)^2+(-3-3)^2=40$
$BC^2 =(2+3)^2+(2+3)^2=50$
$AC^2 =(2+1)^2+(2-3)^2=10$
$\Rightarrow BC^2=AB^2+AC^2$
Vậy tam giác $ABC$ vuông tại $A$ và có $A$ là trực tâm.

Bài 7. (3 điểm)
a) $MA = \dfrac{2}{3}AB = 4a$
$\angle BAD = 180^0-\angle ABC = 180^0-60^0 = 120^0 $
$\overrightarrow{AM}.\overrightarrow{AD}=|\overrightarrow{AM}|.|\overrightarrow{AD}|.\cos(\overrightarrow{AM},\overrightarrow{AD}) = 4a.3a.\cos 120^0 = -6a^2$
b) $DN = \dfrac{2}{3} CN=\dfrac{2}{5} CD
= \dfrac{2}{5}.6a=\dfrac{12}{5}a$
Áp dụng định lý cosin cho tam giác $ADN$, ta có:
\begin{align*}
AN^2&= AD^2+DN^2-2.AD.DN.\cos \angle ADN \\
&= (3a)^2 + \left( \dfrac{12}{5}a \right)^2 – 2.3a.\dfrac{12}{5}a.\cos 60^0 \\
&= \dfrac{189}{25} a^2
\end{align*}
Do đó $AN= \dfrac{3\sqrt{21}}{5}a$
c) \begin{align*}
\overrightarrow{BG} &= \overrightarrow{BE} + \overrightarrow{EG} \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3} \overrightarrow{EN} \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3} \left( \overrightarrow{EA}+\overrightarrow{AN} \right) \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3}.\dfrac{1}{3}\overrightarrow{BA}+ \dfrac{1}{3} \left( \overrightarrow{AD} + \overrightarrow{DN} \right) \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{9} \overrightarrow{BA} + \dfrac{1}{3} \left( \overrightarrow{BD} – \overrightarrow{BA} \right) + \dfrac{1}{3}.\left( -\dfrac{2}{5} \right) \overrightarrow{BA} \\
&= \dfrac{14}{45}\overrightarrow{BA} + \dfrac{1}{3} \overrightarrow{BD}
\end{align*}
Vậy $x=\dfrac{14}{45}$ và $y=\dfrac{1}{3}$