Category Archives: Hình học 9

Hệ thức lượng trong tam giác – Tính toán độ dài

Dạng 1. Tính toán

Áp dụng đầu tiên của các hệ thức lượng trong tam giác vuông đó là tính toán độ dài khi biết một số yếu tố cho trước, việc tính toán này xem ra là bài toán dễ tuy vậy đòi hỏi tính chính xác và áp dụng định lí một cách thành thục.

  • Phương pháp chủ yếu là áp dụng định lí thiết lập mối quan hệ giữa yếu tố đã cho và yếu tố chưa biết, từ đó tính được đối tượng cần tính.
  • Với các bài toán khó hơn phải thiết lập các phương trình hoặc hệ phương trình để giải.
  • Ta cũng hay vẽ thêm các đường vuông góc để tao ra tam giác vuông hay đường cao, từ đó mới có thể áp dụng được hệ thức lượng.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 6cm, BC = 10cm$, đường cao $AH$ ($H$ thuộc $BC$).

a)Tính độ dài cạnh $AC,AH$.
b) Tính $BH, CH$.
Lời giải.
a) Áp dụng định lý Pitago cho tam giác $ABC$ ta có:\
$AB^2 + AC^2 = BC^2$ $\Leftrightarrow 6^2 + AC^2 = 10^2$ \
$\Rightarrow AC = \sqrt{10^2-6^2} =8(cm)$.\
Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có:\
$AH \cdot BC = AB \cdot AC \Rightarrow
AH = \dfrac{AB \cdot AC}{BC} = \dfrac{6\cdot 8}{10} = \dfrac{24}{5} (cm)$.
b) Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có: \
$BH \cdot BC = AB^2 \Rightarrow BH = \dfrac{AB^2}{BC} =\dfrac{18}{5} (cm)$ \
và $CH = BC – BH = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$. \

Ví dụ 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Cho $BH = 4, CH = 9$. Tính
a) Tính $AH, AB, AC$.
b)Vẽ $HD \bot AB$ và $HE \bot AC$( với $D$ thuộc $AB$ và $E$ thuộc $AC$). Tính $AD$ và $AE$.
Lời giải

Ta có $BC = BH + CH = 4 + 9 = 13$.
a) Tam giác $ABC$ vuông tại $A$ có đường cao $AH$ nên:
$AH^2 = BH \cdot CH = 36 \Rightarrow AH = 6$;
$AB^2 = BH \cdot BC = 4\cdot 13\Rightarrow AB = 2\sqrt{13}$;
$AC^2 = CH \cdot BC = 9 \cdot 13 \Rightarrow CH = 3\sqrt{13}$.
b)
Tam giác $ABH$ vuông tại $H$ có đường cao $HD$ nên:\
$AD\cdot AB = AH^2 \Rightarrow AD = \dfrac{AH^2}{AB} = \dfrac{36}{2\sqrt{13}} = \dfrac{18\sqrt{13}}{13}$;
Tương tự ta có $AE\cdot AC = AH^2 \Rightarrow AE = \dfrac{AH^2}{AC} = \dfrac{36}{3\sqrt{13}} = \dfrac{12\sqrt{13}}{13}$.

Ví dụ 3. Cho hình chữ nhật $ABCD$ có $AB = 2AD$ và $AC = 4\sqrt{5}$.

a)Tính độ dài cạnh của hình chữ nhật.
b) Vẽ $AH \bot BD$. Tính $AH, CH$.

Lời giải

a) Ta có $BD = AC = 4\sqrt{5}$.
Đặt $AD = x$, suy ra $AB = 2x$.
Ta có $BD^2 = AB^2 + CD^2\
\Leftrightarrow 80 = 5x^2 \Rightarrow x = 4$.
Do đó $AB = 8, AD = 4$.
b) Tam giác $ABD$ vuông có đường cao $AH$ nên
$AH \cdot BD = AB \cdot AD
\Rightarrow AH = \dfrac{AB \cdot AD}{BD} = \dfrac{8}{\sqrt{5}}$.
Vẽ $HK \bot CD$.
Ta có $\triangle DHK \backsim ADH$, suy ra $$\dfrac{HK}{DH} = \dfrac{DK}{AH} = \dfrac{DH}{AD} = \dfrac{1}{\sqrt{5}}$$
Suy ra $DK = \dfrac{8}{5}, KH = \dfrac{4}{5}$.
Khi đó $CK = CD – DK = 8-\dfrac{8}{5} = \dfrac{32}{5}$.
Và $CH = \sqrt{CK^2+HK^2}= \sqrt{\dfrac{32^2}{5^2}+\dfrac{4^2}{5^2}} = \dfrac{4\sqrt{65}}{5}$.

Ví dụ 4. Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 16$. Gọi $M$ là trung điểm $BC$.

a)Tính độ dài $AM$.
b) Vẽ $MD$ vuông góc $AB$. Tính $AM$.
Lời giải

Tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ cũng là đường cao, suy ra $AM \bot BC$. \
$AM^2 + MB^2 = AB^2 \Rightarrow AM = \sqrt{AB^2-MB^2}=\sqrt{10^2-8^2}=6$.
\item Tam giác $ABM$ vuông tại $M$ có $MD$ là đường cao:\ $AD\cdot AB = AM^2 \Rightarrow AD = \dfrac{AM^2}{AB} = \dfrac{36}{10} = \dfrac{18}{5}$.\

Ví dụ 5. Cho hình thang cân $ABCD$ có đáy nhỏ $AB = 3$, đáy lớn $CD = 7$, cạnh bên $AD = 5$. Tính diện tích hình thang $ABCD$.}

Lời giải

Vẽ đường cao $AH, BK$ của hình thang $ABCD$.
Ta có $\triangle AHD = \triangle BKC$ (ch.gn), suy ra $HD = CK$.
Hơn nữa $ABKH$ là hình chữ nhật nên $HK = AB =3$.
Suy ra $DH = CK = 2$.
Tam giác $ADH$ vuông tại $H$, suy ra $AD^2 = DH^2 + AH^2$

$\Rightarrow AH = \sqrt{AD^2-DH^2}=\sqrt{25-4}=\sqrt{21}$
Khi đó $S_{ABCD} = \dfrac{1}{2}AH \cdot (AB+CD) = 5\sqrt{21}$.

Bài tập rèn luyện

Bài 1. Cho tam giác vuông $A B C$, đặt $A B=c, A C=b, B C=a$, đường cao $A H=h, B H=c^{\prime}$, $C H=b^{\prime}$. Tính độ dài các đoạn thẳng còn lại khi biết:
(a) $a=13, b=12$.
(b) $b^{\prime}=3, c^{\prime}=12$.
(c) $b=5, h=4$.
(d) $h=3, a=10$.
Bài 2. Cho hình thang vuông $A B C D$ có $\angle A=\angle D=90^{\circ}$. Cho $A D=h, A B=a, C D=b, B C=$ c. Tính các độ dài chưa biết khi cho:
(a) $a=3, b=7, h=3$.
(b) $a=5, c=13, b=10$.
Bài 3. Cho tam giác $A B C$ vuông tại $A$ có $A B=9 cm, B C=15 cm, A H$ là đường cao $(H$ thuộc cạnh $B C$ ). Tính độ dài các đoạn thẳng $B H, C H, A C$ và $A H$.
Bài  4. Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$.
Biết $B H=\frac{9}{5} ; C H=\frac{16}{5}$.
(a) Tính $A H, A B, A C$.
(b) Gọi $D, E$ là hình chiếu vuông góc vuông góc của $H$ trên $A B, A C$.
Chứng minh $ A D \cdot A B=A E \cdot A C$.
(c) Đường thẳng $D E$ cắt đường thẳng $B C$ tại $F$. Chứng minh $F B \cdot F C=F D \cdot F E$.
Bài 5. Cho tam giác $A B C$ vuông tại $A$. Biết tỉ số hai cạnh góc vuông là $\frac{3}{4}$, độ dài cạnh góc vuông nhỏ bằng $6 \mathrm{~cm}$. Tính độ dài cạnh huyền, độ dài hình chiếu vuông góc của các cạnh góc vuông lên cạnh huyền.

Bài 6. Tam giác $A B C$ nhọn có đường cao $A H$, biết rằng $A B=26 cm, A C=25 cm$, đường cao $A H=24 ~cm$. Tính độ dài cạnh $B C$.
Bài 7. Cho tam giác $A B C$ vuông tại $A$ có $B C=\sqrt{13} cm$.
Tính $A B, A C$, cho biết $A B=\frac{2}{3} A C$.
Bài 8. Cho tam giác $A B C$ vuông tại $A$ có $A H$ là đường cao. $B H=1 cm, C H=4 cm$. Tính $B C$, $A H, A B$ và $A C$.

Tài liệu tham khảo

Nguyễn Tăng Vũ, Bài tập hình học 9 cơ bản và nâng cao, Star Education

Bài tập hình học ôn thi vào 10 – P1

Bài 1. Cho đường tròn tâm $O$ đường kính $AB$. Tiếp tuyến tại $A$ là $d$, tiếp tuyến tại $B$ là $d’$. $C$ là một điểm thuộc đường tròn, tiếp tuyến tại $C$ cắt $d$ và $d’$ lần lượt tại $D$ và $E$, $BC$ cắt $d$ tại $F$.
a) Chứng minh $D$ là trung điểm của $AF$.
b) Gọi $I$ là giao điểm của $BD$ và $CE$. $CI$ cắt $AB$ tại $G$. Chứng minh $CG^2 = GA.GB$.
c) Đường thẳng qua $A$ song song $EG$ cắt đường thẳng qua $B$ song song với $DG$ tại $H$. Chứng minh $D, H, E$ thẳng hàng.

Lời giải

a) Theo tích chất hai tiếp tuyến cắt nhau thì: $DA = DC$,

tam giác $DAC$ cân tại $D$ nên $\angle DCA = \angle DAC$, mà $\angle DAC + \angle DCF = \angle DAC + \angle DFC= 90^0$.

Do đó $\angle DCF = \angle DFC$, suy ra $DC = DF$. \Vậy $DF = DA$, hay $D$ là trung điểm của AF.

b) Ta có $AD||BE$ nên $\dfrac{ID}{IB} = \dfrac{AD}{BE}$, mà $AD = CD, BE = CE$, suy ra $\dfrac{ID}{IB} = \dfrac{CD}{CE}$. Từ đó ta có $CI || BE$, suy ra $IC \bot AB$.

Tam giác ACB vuông tại C, có CG là đường cao nên: $CG^2 = GA.GB$.

c) Ta có $\dfrac{GA}{GB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$, suy ra $\triangle ADG \backsim \triangle BEG$, do đó: $\angle AGD = \angle BGC$.
$GJ$ cắt $AD$ tại $J$. Ta có $\angle AGD =\angle BDE = \angle AGJ$.
Suy ra $GEJ$ cân tại $G$ và $A$ là trung điểm của $DJ$.
Gọi $H’$ là trung điểm của $DE$. Suy ra $AH’ || GE$.
Tương tự thì $H’B || GD$. Do đó $H’ \equiv H$.
Vậy $H, D, E$ thẳng hàng.

Bài 2. Cho tam giác $ABC (AB <AC)$ có 3 góc nhọn nội tiếp đường tròn tâm $O$. Vẽ 2 đường cao $AD$ và $CE$ của tam giác $ABC$ . Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $M$ . Từ $M$ kẻ tiếp tuyến thứ hai đến $(O)$ ($N$ là tiếp điểm ). Vẽ $CK$ vuông góc với $AN$ tại $K$. Chứng minh $DK$ đi qua trung điểm của đoạn thẳng $BE$.

Lời giải 

Gọi $Q$ là trung điểm đoạn $BC$.
Ta có $\angle AKD = \angle ACB = \angle ANB$, suy ra $DK || BN$, suy ra $\angle ATK = \angle ABN$.

Ta có 5 điểm $A, M, N, O, Q$ cùng thuộc đường tròn. Suy ra $\angle AQM = \dfrac{1}{2}\angle AON = \angle ACN$.

Suy ra $\angle ABN = 180^\circ- \angle ACN = 180^\circ – \angle AQM =\angle AQC$.

Suy ra $\angle ATK = \angle AQC$. Suy ra $ATDQ$ nội tiếp. Suy ra $AT \bot TQ$. Suy ra $T$ là trung điểm BE.

Bài 3. Cho đường tròn $(O)$ ngoại tiếp tam giác $ABC (AB < AC)$. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $M$ là trung điểm cạnh $BC$. Gọi $Q$ là điểm đối xứng của $I$ qua $M$, tia $OM$ cắt $(O)$ tại $D$ và $QD$ cắt $(O)$ tại $T$ ($T$ thuộc cung $BD$ không chứa $A$).
a) Chứng minh rằng $DI = DB = DC$.
b) Đường thẳng qua $I$ song song $QD$ cắt $DO$ tại $K$. Chứng minh $DK.DO = DB^2$.
c) Chứng minh $\angle ACT = \angle DOI$.

Lời giải

b) Vẽ đường kính $DE$. Ta có $DB^2 = DM\cdot  DE $

$IKQD$ là hình bình hành, suy ra $DK = 2DM$.

Mặt khác $DO = \dfrac{1}{2}DE$

Nên $BD^2 = DK\cdot DO$

c)Vì $DB = DI$ nên ta có $DI^2 = DK\cdot DO$, suy ra $\triangle DIK \backsim \triangle DOI$.

Suy ra $\angle DOI = \angle DIK$ ,

mà $\angle DIK = \angle ADT = \angle ACT$.

Bài tập luyện tập

Bài 1. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A vẽ đến (O) các tiếp tuyến AB và AC với B, C là các tiếp điểm. Trên tia đối của BA lấy điểm D, đường tròn ngoại tiếp ACD cắt (O) tai điểm thứ hai là E. DE cắt (O) tại F khác E. Gọi I là hình chiếu của B trên CD, H là giao điểm của OB và CD.
a) Chứng minh $CF||AC$.
b) Chứng minh tứ giác $IHEF$ nội tiếp.
c) Chứng minh $\angle IED = 2\angle ADC$.

Bài 2. Cho hình vuông ABCD cạnh a. E, F là các điểm thay đổi trên các cạnh CD và BC sao cho $\angle EAF = 45^0$. Gọi G, H lần lượt là giao điểm của AE, AF với BD.
a) Chứng minh rằng 5 điểm C,E, G, H, F cùng thuộc một đường tròn.
b) Chứng minh EF tiếp xúc với một đường tròn cố định.
c) Chứng minh $GH^2 = DG^2 + BH^2$.
d) Chứng minh chu vi tam giác CEF không đổi. Tìm giá trị lớn nhất diện tích của tam giác CEF.

Bài 3. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi D là hình chiếu của A trên BC và E là điểm đối xứng của A qua O. Gọi F là điểm chính giữa cung BC không chứa A.
a) Chứng minh rằng AF là phân giác góc $\angle DAE$.
b) Chứng minh $AD.AE = AB.AC$ và $S_{ABC} = \dfrac{AB.AC.BC}{4R}$.
c) Vẽ đường kính FG, đường tròn ngoại tiếp tam giác OAG cắt AB và AC tại M, N. Chứng minh BM = CN.

Góc trong đường tròn (tt)

 

 

 

 

 

 

 

 

Ví dụ 1.
Tính số đo góc $\angle BAC$ và $\angle BDC$ như hình vẽ.

Giải
  •  Ta có $\angle BAC = \dfrac{1}{2} \angle BOC = 60^\circ$.
  • Và $\angle BDC 180^\circ – \angle BAC = 180^\circ – 60^\circ = 120^\circ$.

Ví dụ 2.
Trên đường tròn $(O;R)$ lấy các điểm $A, B$ sao cho $\text{sđ} \arc{AB} = 120^\circ$ và $C$ thuộc cung nhỏ cung ${AB}$ và $\text{sđ} \text{cung}{AC} = 30^\circ$.
a) Tính số đo cung $BC$.
b) Tính độ dài $AB, BC$ theo $R$.

Giải
  • Nếu $C$ thuộc cung nhỏ $AB$ thì $\text{sđ} \arc{AB} = \text{sđ} \arc{AC}+\text{sđ} \arc{CB}$, suy ra $\text{sđ} \arc{BC} = 120^\circ – 30^\circ = 90^\circ$.
    Gọi $\arc{AmB}$ là cung lớn $AB$. Suy ra $\text{sđ} \arc{AmB} = 240^\circ$.
  • Gọi $M$ là trung điểm $AB$ ta có $OM \bot AB$ và $OM$ là phân giác $\angle AOB$.\\
    $\angle AOB = \text{sđ} \arc{AOB} = 120^\circ$, suy ra $\angle AOM = 60^\circ$. Suy ra $AM = OA.\sin AOM = \dfrac{R\sqrt{3}}{2}$. Do đó $AB = 2AM = R\sqrt{3}$.
  • Tam giác $OBC$ vuông cân tại O nên $BC=\sqrt{OB^2+OC^2} = R\sqrt{2}$.

Ví dụ 3. Cho tam giác ABC nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Chứng minh $DB = DC$ và $OD \bot BC$.

Giải


Ta có $\text{sđ} \text{cung} {DB} = 2\angle DAB$, $\text{sđ} \text{cung} {DC} = 2\angle DAC$. Mà $\angle DAB = \angle DAC$(gt) nên $\text{sđ} {DB}= \text{sđ} {CD}$, suy ra $DB = DC$. \\
Ta có $OB = OC, DB = DC$ nên $OD$ là trung trực của $BC$, do đó $OD \bot BC$.

Ví dụ 4. Cho đường tròn tâm $O$ đường kính $AB$. Hai điểm $C, D$ khác phía đối với $AB$ sao cho $\angle CAB = 60^\circ, \angle DAB = 45^\circ$.
a) Tính $\angle ACB, \angle ADB$.
b) Tính $\angle DCB$ và $\angle CDB$.
c) Tính $\angle COD$.

Giải

a) Ta có $\angle ACB = 90^\circ$ (góc nội tiếp nửa đường tròn)\\
$\angle ADB = 90^\circ$ (góc nội tiếp nửa đường tròn).
b) Ta có $\angle DCB = \angle DAB$ (góc nội tiếp cùng chắn cung DB), mà $\angle DAB = 60^\circ$ nên $\angle DCB = 60^\circ$.\\
Ta có $\angle ADC = \angle ABC$(góc nội tiếp cùng chắc cung AC).\\
Mà $\angle ABC = 90^\circ – \angle CAB = 45^\circ$, nên $\angle ADC =45^\circ$.
b) Ta có $\angle ABD = 90^\circ – \angle DAB = 30^\circ$, suy ra $\angle CBD = \angle ABC + \angle ABD = 75^\circ$.\\
Khi đó $\angle COD = 2\angle CBD = 150^\circ$.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $\angle A = 60^\circ, \angle B = 75^\circ$. Tiếp tuyến tại $A$ cắt $BC$ tại $D$.
a) Tính $\angle DAB$.
b) Phân giác góc $BAC$ cắt $BC$ tại $E$. Chứng minh tam giác $DAE$ cân.
c) Chứng minh $DA^2 = DB\cdot DC$.

Giải

a) Ta có $\angle ACB = 180^\circ – \angle ABC – \angle BAC = 45^\circ$. \\
Suy ra $\angle DAB = \angle ACB$ (góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung đó). Suy ra $\angle DAB = 45^\circ$.
b) Ta có $\angle DEA = \angle ACB + \angle EAC = 45^\circ + 30^\circ = 75^\circ$.\\
Và $\angle DAE = \angle DAB + \angle BAE = 75^\circ$.\\
Do đó $\angle DAE = \angle DEA$, suy ra tam giác $DAE$ cân tại $D$.
c)  Xét tam giác $DAB$ và tam giác $DCA$ có $\angle DAB$ chung và $\angle DAB = \angle DCA$, suy ra $\triangle DAB \backsim \triangle DCA \Rightarrow \dfrac{DA}{DC} = \dfrac{DB}{DA} \Rightarrow DB\cdot DC = DA^2$.

Bài tập rèn luyện

Bài 1. Hai tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $M$. Biết $\angle AMB = 60^\circ$.
a) Tính số đo góc ở tâm tạo bởi hai bán kính $OA, OB$.
b) Tính số đo mỗi cung $AB$ (cung lớn và cung nhỏ).

Bài 2. Cho tứ giác $ABCE$ nội tiếp đường tròn $(O)$. $BE$ và $AC$ cắt nhau tại $I$. Cho $\angle ABE = 40^\circ, \angle BAE = 100^o$.

a)Tính $\angle AOE$ và $\angle OAE$.
b)Tính $\angle ACE$.
c) Tính $\angle BCE$.
d) Chứng minh $IA\cdot IC = IB\cdot IE$.

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$, thỏa $\widehat {BAC} = {75^0},\widehat {ACB} = {45^0}$.
a) Tính $\widehat {AOB}$ và $AB$.
b) Tính $AC$.
c) Tính diện tích tam giác $ABC$.

Bài 4. Cho tam giác $ABC$ có $\angle BAC = 60^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Vẽ đường kính $BD$.
a) Tính các góc của tam giác $BCD$.
b) Tính $BC$ theo $R$.
c) Gọi $H$ là trực tâm tam giác $ABC$. Chứng minh $AH = R$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $D$ là điểm
chính giữa cung $AC$ không chứa $B$. Ta kẻ dây $DE$ song
song với cạnh $AB$, cắt $BC$ tại $I$. Chứng tỏ các tam giác
$ICE$ và $IBD$ cân.

Bài tập hình học 9: Ôn thi học kì 1

Dưới đây là một số bài tập ôn thi học kì 1 lớp 9, môn hình học với lời giải chi tiết được thực hiện bởi thầy Nguyễn Phi Hùng – Giáo viên Trường Phổ thông Năng khiếu. Nếu có gì sai sót comment dưới nhé.

Các bạn hãy share cho mọi người cùng tiếp cận được tài liệu này. Cảm ơn.

Đề tham khảo HK1 quận 1, Sài Gòn, năm học 2018-2019 [pdf]

Link xem bài – > LOI-GIAI-CAC-BAI-HINH-DE-NGHI-HK1

Một vài tính chất của một bài toán hình học lớp 9: Tứ giác điều hòa (tứ giác đẹp)

Trong một bài kiểm tra lớp 9 mới đây, mình cho các em làm bài toán này. Với các em học sinh lớp 9, mình không thích cho quá nhiều bài toán của THPT áp xuống, việc dạy học của mình trong bao năm qua vẫn kiên trì với triết lý đó. Nhưng ngày càng thấy nhiều bài toán hồn cấp 3 mà cách giải cấp 2 được đưa xuống, tinh thần cũng lung lay, vì dạy chuyên cả hai cấp nên mình biết khá rõ bài toán nào của cấp nào, không phải mình không dạy được hoặc không ra được bài toán như thế, nhưng mình không thích những cách giải khi nhìn với con mắt hàng điểm điều hòa, cực đối cực…ra liền mà các em cấp hai lại mất thời gian để suy nghĩ chân phương.

Nhưng đó cũng là cách chế biến đề phổ biến cho những bài toán hình cấp 2 hiện nay, âu cũng là một xu hướng mới, tuy vậy trong lúc dạy thực sự mình ít ra bài tập dạng đó, đây là trường hợp hiếm mà mình ra bài tập kiểu này.

Bài toán. Cho đường tròn tâm $O$, dây cung $AB$ khác đường kính. Tiếp tuyến tại $A, B$ cắt nhau tại điểm $P$. Một đường thẳng qua $P$ cắt $(O)$ tại $C, D$ sao cho $PC > PD$, $OP$ cắt $AB$ tại $H$.

  1. Gọi $M$ là trung điểm $CD$. Chứng minh 5 điểm $O, A, B, P, M$ cùng thuộc một đường tròn.
  2. Chứng minh $PC \cdot PD = PA^2 = PH \cdot PO$. Suy ra tứ giác $OHDC$ nội tiếp.
  3. $CH$ cắt $(O)$ tại $R$ khác $C$. Chứng minh $ORPC$ nội tiếp.
  4. Chứng minh $HA, HP$ lần phân giác trong và phân giác ngoài của $\angle CHD$.
  5. Chứng minh $AD \cdot BC = BD \cdot AC$.
  6. Chứng minh $\angle HCB = \angle DCA$ và $AD \cdot BC = \dfrac{1}{2}AB \cdot CD$.
  7. Tiếp tuyến tại $C, D$ cắt nhau tại $Q$. Chứng minh $Q, A, B$ thẳng hàng.
  8. Đường thẳng qua $A$ song song với $PB$ cắt $BD, BC$ tại $K$ và $L$. Chứng minh $A$ là trung điểm của $K, L$.
  9. Gọi $I$ là điểm đối xứng của $O$ qua $H$. Chứng minh $I$ là trực tâm tam giác $APB$.
  10. Dựng các tiếp tuyến $AT, AV$ đến đường tròn đường kinh $PI$. Chứng minh $T, V, B$ thẳng hàng.
Giải

  1. $ \angle PAP = \angle PMO = \angle PBP = 90^\circ $, suy ra $ A,M,B,P,O $ cùng thuộc đường tròn đường kính $PO$.
  2. Ta có $ \triangle PBD \backsim \triangle PCB$ (g.g) suy ra $PD.PC = PB^2$. Mà $PB^2 = PH.PO$ (hệ thức lượng tam giác vuông $PBO$), nên $ PD.PC = PH.PO $, suy ra $ \triangle PDH \backsim \triangle POC $ (c.g.c), do đó $ \angle PHD = \angle PCO $, suy ra tứ giác $DHOC$ nội tiếp.
  3. Ta có $ \angle DCR = \frac{1}{2}\angle DOR $ (cùng chắn cung $DR$), và $ \angle DCR = \angle DHO $ (tứ giác $DHOC$ nội tiếp), suy ra $ \angle DOH = \angle ROH $, suy ra $ \angle PCR = \angle ROP $, nên tứ giác $PROC$ nội tiếp.
  4. $ \angle OHC = \angle ODC = \angle OCD = \angle PHD $, suy ra $HA$, $HD$ lần lượt là phân giác trong và phân giác ngoài $ \angle CHD $.
  5. Từ các cặp tam giác đồng dạng $PAD$ và $PCA$, $PBD$ và $PCB$ ta có
    \[ \frac{AD}{AC} = \frac{PD}{PA} \text{ và } \frac{BC}{BD} = \frac{PB}{PD}\] Nhân vế theo vế ta được $ AD.BC = AC.BD $.
  6. Từ $ \angle DOH = \angle ROH $ (cmt), suy ra $ \angle DOA = \angle ROB $, nên cung $AD$ bằng cung $BR$, suy ra $ \angle ACD = \angle HCB $, nhờ vậy $ \triangle ACD \backsim \triangle HCB $ (g.g), suy ra $ AD.BC = CD.BH = \frac{1}{2}AB.CD $.
  7. Trong đường tròn ngoại tiếp tứ giác $QDHC$, $Q$ là điểm chính giữa cung $DC$, nên $HQ$ là phân giác $\angle DHC$, suy ra ba điểm $H$, $A$, $Q$ thẳng hàng (cùng nằm trên phân giác trong $ \angle DHC $), do đó ba điểm $Q$, $A$, $B$ cũng thẳng hàng.
  8. Từ các cặp tam giác đồng dạng $ \triangle BAD \backsim \triangle BKA $ (g.g), $ \triangle BAL \backsim \triangle BCA $ (g.g), ta có
    \[ AK = \frac{AD.AB}{BD} \text{ và } KL = \frac{AC.AB}{BC} \] Như vậy, để chứng minh $AK = KL$, cần chứng minh $ AD/BD = AC/BC $, điều này được suy trực tiếp từ câu (5).
  9. Tứ giác $AOBI$ là hình thoi, suy ra $BI$ song song với $AO$ do đó vuông góc với $AP$, suy ra $I$ là trực tâm tam giác $ABP$.
  10. Gọi $S$ là tâm đường tròn đường kính $PI$, gọi $B’$ là giao điểm của $BI$ với $AP$. Do $BI \bot AP$ nên $B’ \in (S)$.
    Ta có $AH.AB = AB’.AP = AT^2$, suy ra $ \angle ABT = \angle ATH $.
    Tương tự, từ $AH.AB = AV^2$ ta có $ \angle ABV = \angle AVH $.
    Như vậy, để chứng minh $B,V,T$ thẳng hàng, chỉ cần chứng minh $ \angle ATH = \angle AVH $, điều này hiển nhiên do tứ giác $ATVH$ nội tiếp đường tròn đường kính $SA$.

Biến đổi góc – Phần 2

Ví dụ 5. (Đề thi HSG Quốc Gia Việt Nam năm 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$ với $AB < AC$. Gọi $I$ là trung điểm cung $BC$ không chứa $A$. Trên $AC$ lấy điểm $K$ khác $C$ sao cho $IK = IC$. Đường thẳng $BK$ cắt $(O)$ tại $D$ $(D \neq B)$ và cắt đường thẳng $AI$ tại $E$. Đường thẳng $DI$ cắt đường thẳng $AC$ tại $F$.

a. Chứng minh rằng $EF = \dfrac{BC}{2}$.
b. Trên $DI$ lấy điểm $M$ sao cho $CM$ song song với $AD$. Đường thẳng $KM$ cắt đường thẳng $BC$ tại $N$. Đường tròn ngoại tiếp tam giác $BKN$ cắt $(O)$ tại $P$ $(P\neq B)$. Chứng minh rằng đường thẳng $PK$ đi qua trung điểm đoạn thẳng $AD$.

Giải

a.

  • Chứng minh $\angle AKI = \angle ABI$ (cùng bù $\angle ACI$).
  • Tam giác $ABI, AKI$ bằng nhau, suy ra $E$ là trung điểm của $BK$.
  • Chứng minh $F$ là trung điểm $CK$.

b.

  • Tam giác $AID$ có $DE, AF$ là đường cao cắt nhau tại $K$ nên $K$ là trực tâm, suy ra $IK \bot AD$, do đó $CM \bot IK$. Suy ra $M$ là trực tâm tam giác $IKC$.
  • Khi đó $AC$ là tiếp tuyến của $(BKN)$.
  • $\angle CKP = \angle KBP = \angle DIP$, suy ra $KFPI$ nội tiếp, do đó $\angle IPK = 90^\circ $, suy ra $IJ$ là đường kính.
  • Từ đó chứng minh $JAKD$ là hình bình hành.

 

Ví dụ 6.  (Trần Quang Hùng) Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$, $AD$ cắt $(O)$ tại $K$. $KF$ cắt $(O)$ tại $L$.
a. Chứng minh $CL$ đi qua trung điểm của $EF$.
b. Đường thẳng qua $A$ song song với $DE$ cắt $CL$ tại $N$. Chứng minh $\angle OFN = 90^\circ$.

Giải

a.

  •  Gọi $P$ là giao điểm của $CL$ và $DE$, $HP$ cắt $AC$ tại $D$.
  • Ta có $\angle CH \cdot CF = \angle CA \cdot CE = CP \cdot CL$ nên $LFHP$ nội tiếp.
  • Suy ra $\angle CHP = \angle CLF = \angle CAD = \angle CFE$, do đó $HP \parallel FE$.
  • Ta có $EH$ là phân giác $\angle DEF$, suy ra $\angle PHE = \angle HEF = \angle HEP$, suy ra $PE = PH$.
  • Tam giác $HES$ vuông, suy ra $P$ là trung điểm $HS$. Từ đó ta có $M$ là trung điểm của $EF$.

b.

  • Ta chứng minh $\triangle FAN \backsim \triangle FOC$ đồng dạng. Vì có $\angle FCO = \angle FAN$ nên ta chỉ cần chứng minh $\dfrac{NA}{OC} = \dfrac{AF}{CF}$. \hfill (1)
  • Trong đẳng thức trên chỉ có $AN$ có vẻ là chưa liên quan gì, nên ta tính $AN$ trước. Ta có $\dfrac{AN}{PE} = \dfrac{AC}{CE}$, suy ra $AN=\dfrac{AC \cdot PE}{CE}$.
  • Ta có $PE = \dfrac{1}{2} HS = \dfrac{CH \cdot EF}{2CF}$.
  • Suy ra $\dfrac{AN}{OC} = \dfrac{CA \cdot EF \cdot CH}{CE \cdot CF \cdot 2OC}$, ta cần chứng minh $\dfrac{CA \cdot EF \cdot CH}{CE \cdot CF \cdot 2OC} = \dfrac{AF}{CF} $
  • $\Leftrightarrow \dfrac{AF}{EF} = \dfrac{CA}{CE}\cdot \dfrac{CH}{2R}$
  • $\Leftrightarrow \dfrac{AC}{AB} = \dfrac{CA}{CE}\cdot \dfrac{CH}{2R}$
  • $\Leftrightarrow \dfrac{CE}{CH} = \dfrac{AB}{2R}$ (Đúng).

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, dường cao $AD$, trên đoạn $AD$ lấy điểm $E$, trên tia $BE, CE$ lấy các điểm $F, L$ sao cho $CL = CA, BF = BA$. $BF, CL$ cắt nhau tại $K$. Chứng minh rằng tam giác $KFL$ cân.

Giải

  • Gọi $M, N$ là giao điểm của $BE, CE$ với $(ABC)$.
  • Khi đó $CM, BN, AD$ đồng quy tại $H$.
  • Ta có $BN\cdot BH = BD\cdot BC = BA^2 = BF^2$. Suy ra $BF \bot AF$. Tương tự thì $CL \bot AL$.
  • $AF^2 = AN\cdot AB = AM\cdot AC = AL^2$. Suy ra $AF = AL$. Từ đó ta có $KF = KL$.

Ví dụ 8. Cho tam giác $ABC$ nội tiếp đường tròn $w$. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Các đường thẳng $AI, BI, CI$ cắt $w$ lần lượt tại $A’,B’, C’$. $M$ là một điểm trên cạnh $AB$. Đường thẳng qua $M$ và song song với $AI$ cắt đường thẳng qua $B$ vuông góc với $BI$ tại điểm $A_1$; đường thẳng qua $M$ song song với $BI$ và cắt đường thẳng qua $A$ vuông góc với $AI$ tại điểm $B_1$. Chứng minh rằng $A’A_1, B’B_1$ và $C’M$ đồng quy.

Giải

  • Gọi $T$ là giao điểm của $B’B_1$ và $(O)$. Ta có $\angle MB_1T = \angle BB’T = \angle MAT$, suy ra tứ giác $AMTB_1$ nội tiếp, kéo theo $\angle AB_1M = \angle ATM $ . \hfill (1)
  • Ta chứng minh được $B’C’ \bot AA’$, suy ra $AB_1 \parallel B’C’$, từ đó ta có $\angle AB_1M = \angle C’B’lB$. \hfill (2)
  •  Từ (1) và (2), suy ra $T, M$ và $C’$ thẳng hàng. Chứng minh tương tự thì giao điểm của $A’A_1$ và $(O)$ cũng thuộc $C’M$. Từ đó ta có điều cần chứng minh.

Bài tập rèn luyện.

Bài 1. Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 2. Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 3. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 4. (Đề thi chon đội dự tuyển PTNK năm 2009) Cho tam giác $ABC$ nhọn. Trên các tia đối của các tia $BC, CA, AB$ lấy các điểm $A_1, B_1, C_1$ sao cho tam giác $A_1B_1C_1$ đồng dạng với tam giác $ABC$. Chứng minh rằng trực tâm tam giác $A_1B_1C_1$ cũng là tâm đường tròn ngoại tiếp tam giác $ABC$.

Bài 5. (Đề thi HSG Toán Quốc Tế năm 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 6. (Đề thi toán Quốc tế năm 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 7. (Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Đáp án Toán PTNK 2017

Bài 1. (Toán chung)  Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$

Gợi ý

a.

  • Ta có $\angle AOC = 2 \angle ABC = 90^\circ$ (góc ở tâm bằng 2 lần góc nội tiếp cùng chắn 1 cung).
  • Suy ra tam giác $OAC$ vuông tại $O$, suy ra $AC^2 = OA^2 + OC^2 = 2R^2 \Rightarrow AC = R\sqrt{2}$. Tứ giác $BNPC$ có $\angle BNC = \angle BPC =90^\circ$ nên là tứ giác nội tiếp.
    Suy ra $\angle HPN = \angle HBC = 90^\circ – \angle ACB = 75^\circ$.
  • Các tứ giác $ANBM$ và $BNPC$ nội tiếp nên $\angle ANM = \angle ABC = 45^\circ, \angle CNP = \angle PBC = 45^\circ$.
  • Suy ra $\angle MNP = \angle CNP + \angle CPN = 90^\circ$.
    Và $\angle NPB = \angle ACB = \angle APM = 15^\circ$, suy ra $\angle NPM = \angle NPB + \angle APM = 30^\circ$.
  • Khi đó $\dfrac{MN}{MP} = \sin \angle NPM = \sin 30^\circ = \dfrac{1}{2}$. Suy ra $\dfrac{MP}{MN} = 2$.

b.

  • Ta có $\angle AEF = 90^\circ$ (góc nội tiếp chắn nửa đường tròn).
    Ta có $\angle ANH = \angle AEH = \angle APH = 90^\circ$ nên 5 điểm $A, N, H, P E$ cùng thuộc đường tròn đường kính $AH$.
  • Ta có $\angle ABD = \angle ACD = 90^\circ$ (góc nội tiếp chắn nửa đường tròn),
    suy ra $AB \bot BD$, suy ra $HC || BD$.
  • Tương tự ta có $HB \bot CN, \angle CD \bot CN$, suy ra $HB||CD$.
  • Tứ giác $HBDC$ có các cặp cạnh đối song song nên là hình bình hành, suy ra $F$ là trung điểm của $BC$ và $HD$.

c.

  • Ta có $\angle CAD = 45^\circ = \angle CNM$, suy ra $AD||MN$. Mà $MN \bot NP$, suy ra $AD \bot NP$.
  • Ta có $OF$ là trung trực của $BC$, suy ra $IB = IC$. $\angle BDC = 180^\circ – \angle BAC = 60^\circ$.
  • Xét tam giác $IOC$ có $\angle IOC = \dfrac{1}{2}\angle BOC = \angle 60^\circ$. Suy ra tam giác $IBC$ đều.
  • Do đó $IB =IC = IO$. (1)
  • Mặt khác tứ giác $HBOC$ có $\angle BHC + \angle BOC = 60^\circ + 120^\circ = 180^\circ$, suy ra $HBOC$ nội tiếp. (2)
  • Từ (1) và (2) suy ra $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$.
  • Tam giác $PBC$ có $\angle BPC = 90^\circ, \angle PBC = 45^\circ$ nên là tam giác vuông cân,
    suy ra $PB = PC$, suy ra $P$ thuộc trugn trực của BC. Do đó $P, O, I$ thẳng hàng và $PI \bot BC$, suy ra $PI||AM$.
  • Mặt khác ta có $\angle BIH = 2\angle HCB = 90^\circ$, suy ra $HBMI$ nội tiếp, suy ra $\angle IMC = \angle IBH = 45^\circ$.
  • Suy ra $\angle IMC = \angle PBC = 45^\circ$, suy ra $IM||PA$.
  • Tứ giác $APIM$ có 2 cặp cạnh đối song song nên là hình bình hành, suy ra $AI$ qua trung điểm của $MP$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.

Gợi ý

a.

  • Tứ giác $AEDB$ $\Rightarrow$ $\widehat{AEB}=\widehat{ADB}$, tứ giác $AFDC$ nội tiếp $\Rightarrow$ $\widehat{AFC}=\widehat{ADC}$.
  • Suy ra $\widehat{AEK}+\widehat{AFD}=\widehat{ADB}+\widehat{ADC}=180^o$.

b.

  • Ta có $\widehat{BKC}=\widehat{DKE}=180^o-\widehat{BAC}$ và $\widehat{BHC}=180^o-\widehat{BAC}$.
  • Suy ra $\widehat{BKC}=\widehat{BHC}$ $\Rightarrow$ $BHKC$ nội tiếp.
  • Suy ra $\widehat{FKH}=\widehat{HBC}=\widehat{HAC}$ và $\widehat{KCB}=\widehat{BAD}$.
  • Khi $A,\,O,\,D$ thẳng hàng, ta có $\widehat{BAD}=\widehat{BAO}=\widehat{HAC}$.
  • Do đó $\widehat{FKH}=\widehat{KCB}$ suy ra $KH//BC$

c.

  • Ta có $K$ thuộc cung $BHC$ của đường tròn ngoại tiếp tam giác $BHC$ tâm $T$.
  • Gọi $M$ là trung điểm của $BC$ và $N$ là điểm chính giữa cung $BHC$.
  • Dựng $KL\perp BC$, ta có $KL\le TN-TM=MN$.
  • Mà $\dfrac{MN}{BC}=\tan \dfrac{\widehat{NBM}}{2}=\tan \dfrac{\widehat{BAC}}{2}$, suy ra $MN=\tan \dfrac{\widehat{BAC}}{2}.\dfrac{BC}{2}$.
  • Do đó $S_{BKC}=\dfrac{1}{2}.KL.BC\le \dfrac{BC^2}{4}\tan \dfrac{\widehat{BAC}}{2}$.

d.

  • Xét tam giác $BCF$ và tam giác $BDA$ có $\widehat{BCF}=\widehat{BAD}$ và góc $B$ chung.
  • Suy ra $\Delta BFC\sim \Delta BDA$ $\Rightarrow$ $\dfrac{BD}{BA}=\dfrac{BF}{BC}$ $\Rightarrow$ $BF.BA=BD.BC$.
  • Chứng minh tương tự ta có $CE.CA=CB.CD$.
  • Suy ra $BF.BA-CE.CA=BC.BD-BC.CD=BC(BD-CD)=(BD+BC)(BD-BC)=BD^2-CD^2$.
  • Ta có $\widehat{ADF}=\widehat{ACF}=\widehat{AEB}-\widehat{EKC}=\widehat{AEB}-\widehat{A}$
  • và $\widehat{ADE}=\widehat{ABE}=\widehat{AFC}-\widehat{A}$,suy ra $\widehat{EDF}=\widehat{ADF}+\widehat{ADE}=\widehat{AEB}+\widehat{AFC}-2\widehat{A}=180^o-2\widehat{A}=\widehat{EIF}$.
  • Do đó tứ giác $IEDF$ nội tiếp, hơn nữa $IE=IF$ nên $DI$ là phân giác $\widehat{EDF}$.
  • Mặt khác $\widehat{FDB}=\widehat{BAC}=\widehat{CDE}$.
  • Suy ra $DB,\,DI$ lần lượt là phân giác ngoài và phân giác trong của $\widehat{EDF}$. Vậy ta có điều phải chứng minh.

Đáp án toán PTNK 2015

Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Gợi ý

Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.

Gợi ý

a.

  • Ta có $E$ là điểm chính giữa cung BC, suy ra $EB = EC$ và $OE \bot BC$ nên $M, O, E$ thẳng hàng.
  • Vẽ đường kính $EK$. Ta có $EM.EK = EB^2$.
  • Mặt khác $EF = 2EM, EO = \dfrac{1}{2}EK$. Do đó $EF.EO = EM.EK = EB^2$. (1)

b.

  • Ta có $\angle EBC = \angle EAC = \angle EAB$. Suy ra $\Delta EAB \sim \Delta EBD$. Suy ra $EB^2 + ED.EA$ (2).
  • Từ (1) và (2) ta có: $EA.ED = EO.EFF$. Suy ra tứ giác $OFDA$ nội tiếp.

c.

  • Ta có $\angle EIB = \angle EAB + \angle ABI = \dfrac{1}{2}(\angle A + \angle B) = \angle EBC + \angle CBI = \angle EBI$, suy ra $EB = EI = EC$. Vậy $E$ là tâm đường tròn ngoại tiếp tam giác $BIC$. Do đó $EP = EB$. Ta có $EP^2 = EB^2 = EO.EF$.
  • Suy ra $\Delta EPF \sim \angle EOP$. Suy ra $\angle EPF = \angle FOP$.
  • Hơn nữa, do $O,F$ cùng phía đối với $E$ nên $PO, PF$ cùng phía đối với $PE$.
  • Vẽ tia tiếp tuyến $Px$($PF, PO$ cùng phía đối với $Px$)của đường tròn ngoại tiếp tam giác $POF$. Khi đó $\angle xPF = \angle FOP = \angle EPx$. Suy ra $Px$ và $PE$ trùng nhau. Vậy $Px$ luôn qua điểm $E$ cố định.

 

Đáp án PTNK năm 2012

Bài 1. (Toán chung) Cho hình thang $ABC (AB||CD)$ nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle DAB = 105^\circ, \angle ACD =30^\circ$.
a. Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b. Tiếp tuyến của $(C)$ tại $B$ cắt đường thẳng $DO$ và $DA$ lần lượt tại $M, N$. Tính $\dfrac{MN}{MD}$.
c. Gọi $E$ là trung điểm của $AB$, tía $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Gợi ý

a.

  • Ta có $\angle DAB + \angle BCD = 180^\circ$, suy ra $\angle BCD = 75^\circ$ (1), suy ra $\angle ABC = 105^\circ$.
  • $\angle ABD = \angle ACD = 30^\circ$, suy ra $\angle DBC = \angle ABC – \angle ABD = 75^\circ$. (2)
  • Từ (1) và (2) ta có $\angle DBC = \angle DCB$, nên tam giác $DCB$ cân tại $D$, do đó $\dfrac{DB}{DC} = 1$.
  • Ta có $\angle ACB = 75^\circ – 30^\circ = 45^\circ$,suy ra $\angle AOB = 90^\circ$, tam giác $ABO$ vuông cân tại $O$ nên $AB = AO \sqrt{2} = R\sqrt{2}$.

b.

  • Ta có $\angle AOD = 2\angle ACD = 60^\circ$, suy ta tam giác $OAD$ đều. Suy ra $\angle ODA = 60^\circ$ hay $\angle NDM = 60^\circ$.
  • Tam giác $DBC$ cân, nên $DO$ cũng là trung trực của $BC$ và cũng là phân giác góc $\angle BDC$.
  • $\angle BOM = 180^\circ – \angle AOB – \angle AOD = 30^\circ$, suy ra $\angle OMB = 90^\circ – \angle BOM = 60^\circ$ (do $OB \bot BM$).
  • Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} = 1$.

c.

  • Gọi $E$ là trung điểm của $AB$, tam giác $AOB$ vuông cân tại $O$ nên $OE = AE, \angle AEO = 90^\circ$.
  • Ta có $\triangle ADE = \triangle ODE$ nên $\angle AED = \angle OED = 45^\circ$, $\angle ADE = \angle ODE = 30^\circ$, suy ra $DF$ là đường cao của tam giác $MDN$.
  • Gọi $I$ là trung điểm $BC$. Ta có $\angle FDB = 15^\circ = \angle IDB$.
  • Khi đó $\triangle BFD = \triangle BID$, suy ra $BF = BI$, suy ra $\dfrac{BF}{BC} = \dfrac{1}{2}$.

 

Bài 2. (Toán Chuyên) Cho hình vuông $ABCD$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $AB$ và $BC$ sao cho $\dfrac{AM}{AB} = \dfrac{CN}{CB} = x$ với $0 < x < 1$. Các đường thẳng qua $M , N$ song song với $BD$ lần lượt cắt $AD$ tại $Q$ và $CD$ tại $P$. Tính diện tích tứ giác $MNPQ$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

 

Gợi ý
  • Chứng minh được $MNPQ$ là hình chữ nhật.
  • Ta có $\dfrac{MN}{AC} = \dfrac{MB}{BA} = \dfrac{AB-AM}{AB} = 1 – \dfrac{AM}{AB} = 1 – x$, suy ra $MN = (1-x)a\sqrt{2}$.
  • $\dfrac{MQ}{BD} = \dfrac{AM}{AB} = x$, suy ra $MQ = xa\sqrt{2}$.
  • Từ đó $S = MN.MQ = 2a^2x(1-x)$ Mà $x(1-x) \leq \dfrac{1}{4}(x+1-x)^2 = \dfrac{1}{4}$. Suy ra $S \leq \dfrac{a^2}{2}$. Đẳng thức xảy ra khi $x = \dfrac{1}{2}$.
  • Vậy diện tích đạt giá trị lớn nhất bằng $\dfrac{1}{2}a^2$ khi $M$ là trung điểm $AB$.

Bài 3 (Toán chuyên)  Cho tam giác $ABC$ vuông tại $A$. Trên đường thẳng vuông góc với $AB$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $AB$ .
a. Chứng minh rằng nếu $AC + BD < CD$ thì trên cạnh $AB$ tồn tại hai điểm $M$ và $N$ sao cho $\angle CMD =\angle CND = 90^\circ$
b. Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $MD$ cắt đường thẳng qua $B$ song song với $MC$ tại $E$. Chứng minh rằng đường thẳng $DE$ luôn đi qua một điểm cố định . 

Gợi ý

a.

  • Xét đường tròn đường kính $CD$ có tâm $O$ là trung điểm $CD$. Gọi $I$ là trung điểm $AB$, khi đó $OI \bot AB$ và $OI$ là đường trung bình của hình thang $ACDB$ nên $OI = \dfrac{1}{2} (AC+BD) < \dfrac{CD}{2}$.
  • Do đó khoảng cách từ $O$ đến $AB$ nhỏ hơn bán kính đường tròn đường kính $CD$ nên $AB$ cắt đường tròn đường kính $AB$ tại hai điểm $M, N$. Suy ra $\angle CMD = \angle CND = 90^o$.
  • Hơn nữa $\angle OCA + \angle ODB = 180^o$ nên có một góc lớn hơn hoặc bằng $90^o$.
  • Giả sử là $\angle ACD \geq 90^o$. Suy ra $OA > OC$. Suy ra $A$ nằm ngoài đường tròn $(O)$. Do đó $M, N$ thuộc đoạn $AB$.

b.

  • Gọi $E’$ là giao điểm của đường thẳng qua $A$ song song với $MD$ với $CD$. Gọi $P$ là giao điểm của $MD$ với $AC$, $Q$ là giao điểm của $MC$ với $BD$.
  • Theo định lý Thalet ta có: $\dfrac{CE’}{CD} = \dfrac{CA}{CP}, \dfrac{CA}{CD} = \dfrac{BQ}{DQ}$. Suy ra $\dfrac{CE’}{CD} = \dfrac{BQ}{DQ}$.
  • Từ đó ta có $BE’ ||MC$. Suy ra $C, D, E$ thẳng hàng. Vậy đường thẳng $DE$ luôn qua điểm $C$ cố định.

Đáp án Phổ thông Năng khiếu 2011

Bài 1. (Toán chung) Tam giác $ABC$ có $\angle BAC = 75^\circ, \angle BCA = 45^\circ, AC = a\sqrt{2}$, $AK$
vuông góc với $BC$ ($K$ thuộc $BC$).
a. Tính độ dài các đoạn $KC$ và $AB$ theo $a$.
b. Gọi $H$ là trực tâm và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\angle OHC$.
c. Đường tròn tâm $I$ nội tiếp tam giác $ABC$. Tính bán kính đường tròn ngoại tiếp tam giác $HIO$ theo $a$.

Gợi ý

a.

  • Tam giác $ACK$ vuông cân tại $C$, suy ra $AK = \frac{{AC}}{{\sqrt 2 }} = a$
  • $\sin ABK = \frac{{AK}}{{AB}} = \frac{{\sqrt 3 }}{2} \Rightarrow AB = \dfrac{{2a}}{{\sqrt 3 }}$

b.

  • Ta có $\angle AOC = 2\angle ABC = 120^\circ$, và $\angle AHC = \angle EHF = 180^\circ – \angle BAC = 120^\circ$.
  • Suy ra $\angle AHC = \angle AOC$, suy ra $AHOC$ nội tiếp. Do đó $\angle OHC = \angle OAC = 30^\circ$.

c.

  • Ta có $\angle AIC = 180^\circ- \angle IAC – \angle ICA = 180^\circ– \dfrac{1}{2} (\angle BAC + \angle ACB) = 120^\circ = \angle AOC$.
  • Do đó tứ giác $AIOC$ nội tiếp.Vậy 5 điểm $A, H, I, O, C$ cùng thuộc đường tròn.
  • Gọi $D$ là điểm chính giữa cung $AC$. Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC  = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO = OA = \dfrac{{AB}}{{\sqrt 2 }} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }}$

Bài 2. (Toán chuyên) Cho tam giác nhọn $ABC$ có $AB = b, AC = c$. $M$ là một điểm thay đổi trên cạnh $AB$. Đường tròn ngoại tiếp tam giác $BMC$
cắt cạnh $AC$ tại $N$.
a. Chứng minh tam giác $AMN$ đồng dạng với tam giác $ACB$. Tính tỷ số $\dfrac{MA}{MB}$ để diện tích tam giác $AMN$
bằng một nửa diện tích tam giác $ACB$.
b. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AMN$. Chứng minh $I$ Thuộc một đường thẳng cố định.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $BMC$. Chứng minh rằng độ dài $IJ$ không đổi.

Gợi ý

a.

  • Ta có $BMN$ nội tiếp, suy ra $\angle ANM = \angle MBC = \angle ABC$. Mặt khác $\angle NAM = \angle BAC$. Suy ra hai tam giác $AMN$ và $ACB$ đồng dạng. Suy ra $\dfrac{AM}{AC} = \dfrac{AN}{AB} \Leftrightarrow AM.AB = AN.AC$.
  • Để diện tích $AMN$ bằng một nửa diện tích tam giác $ACB$ thì tỷ số đồng dạng phải bằng $\dfrac{1}{\sqrt{2}}$, tứ là $\dfrac{AM}{AC} = \dfrac{1}{\sqrt{2}}$. Suy ra $AM = \dfrac{c}{\sqrt{2}}$.
  • Từ đây tính được $BM = b – \dfrac{c}{\sqrt{2}}$. Suy ra $\dfrac{AM}{BM} = \dfrac{c}{b\sqrt{2}-c}$.

b.

  • Vẽ tia tiếp tuyến $Ay$ của đường tròn $(I)$ ngoại tiếp tam giác $AMN$.
  • Ta có $\angle yAM = \angle ANM$, mà $\angle ANM = \angle ABC$. Suy ra $\angle yAM = \angle ABC$. Suy ra $Ay||BC$.
  • Mà $IA \bot Ay$, suy ra $AI \bot BC$. Do đó $I$ thuộc đường cao hạ từ $A$ của tam giác $ABC$ cố định.

c.

  • Hai đường tròn $(O)$ và $(J)$ cắt nhau tại $B, C$ nên $OJ \bot BC$, $AI \bot BC$. Suy ra $AI ||BC$.
  • Mặt khác $OA \bot MN$ và $OI \bot MN$ (MN là giao của $(I), (O)$, suy ra $OA||IJ$.
  • Vậy tứ giác $AIJO$ là hình bình hành, vậy $IJ = OA$ không đổi.