Category Archives: Số học

PHƯƠNG TRÌNH NGHIỆM NGUYÊN DẠNG LUỸ THỪA

A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng

  • Sử dụng đồng dư để xét tính chẵn lẻ, hay modun của nghiệm.
  • Phân tích thành thừa số.
  • Đánh giá bất đẳng thức.

Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.

Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.

B MỘT SỐ VÍ DỤ
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^3+1=4 y^2$. Ta có
$$
x^3=4 y^2-1=(2 y-1)(2 y+1) \text {. }
$$

Đặt $d=(2 y-1,2 y+1)$, ta có $d$ lẻ và $\left\{\begin{array}{l}d \mid 2 y-1 \\\ d \mid 2 y+1\end{array}\right.$.
Do đó $d \mid 2$, suy ra $d=1$ (vì $d$ lẻ). Như vậy $2 y-1$ và $2 y+1$ nguyên tố cùng nhau.
Kết hợp với (3.1) ta suy ra $2 y-1=a^3$ và $2 y+1=b^3$ với $a, b \in \mathbb{Z}$.
Dẫn đến $b^3-a^3=2$ hay $(b-a)\left(b^2+b a+a^2\right)=2$. Từ đó ta được $b=1$ và $a=-1$, suy ra $y=0$ và khi đó $x=-1$. Thử lại thỏa.
Vậy $(x, y)=(-1,0)$.

Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.
Vì $5^y+2$ lẻ nên $x$ lẻ, do đó $x^5+2023 x=x\left(x^4+2023\right) \vdots 4$ (vì $x$ lẻ nên $x \equiv 1(\bmod 4)$.
Tuy nhiên $x^5+2023 x=5^y+2 \equiv 1^y+2 \equiv 3(\bmod 4)$ (Vô lí).

Vậy không tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.

Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Nhận xét $x \geq 0$.
Ta có $3^x=y^3-1=(y+1)\left(y^2-y+1\right)$, suy ra $\left\{\begin{array}{l}y+1=3^t \\\ y^2-y+1=3^{x-t}\end{array} \quad(t \in \mathbb{N}, t \leq x)\right.$.
Khi đó $y=3^t-1$ và
$$
\left(3^t-1\right)^2-\left(3^t-1\right)+1=3^{x-t} \Leftrightarrow 3^{2 t}-3^{t+1}+3=3^{x-t} .
$$

  • Nếu $t=0$, từ (3.2) ta được $1=3^x$ hay $x=0$. Ngoài ra $y=3^0-1=2$.

Nếu $t \geq 1$, giả sử $x-t \geq 2$, khi đó $3^{x-t} \vdots 9$. Từ (3.2) ta có $3^{2 t} \vdots 9$ và $3^{t+1} \vdots 9$ (do $t \geq 1$ ), từ đó suy ra $3 \vdots 9$ (Vô lí).
Do đó $x-t \in{0,1}$.

  • Nếu $x-t=0$ thì $y^2-y+1=1 \Leftrightarrow y(y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=0 \ y=1\end{array}\right.$.
    Với $y=0$ ta tìm được $x=0$ và với $y=1$ ta có $3^x=2$ (Vô lí).
  • Nếu $x-t=1$ thì $y^2-y+1=3 \Leftrightarrow y^2-y-2=0 \Rightarrow y=2$.
    Khi đó $3^x=2^3+1=9$, dẫn đến $x=2$.

Vậy $(x, y)=(0,0)$ hoặc $(x, y)=(2,1)$.

Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho
$$
9^x-7^x=2^y .
$$

Hướng dẫn giải

Giả sử tồn tại các số nguyên dương $x, y$ sao cho $9^x-7^x=2^y$.
Nếu $x$ lẻ thì
$$
9^x-7^x \equiv 1^x-(-1)^x \equiv 2(\bmod 8) .
$$

Do đó $2^y \equiv 2(\bmod 8)$, suy ra $y=1$. Khi đó $9^x-7^x=2 \Rightarrow x=1$.
Nếu $x$ chẵn, đặt $x=2 k\left(k \in \mathbb{N}^*\right)$, ta được
$$
2^y=9^{2 k}-7^{2 k}=\left(9^k-7^k\right)\left(9^k+7^k\right) .
$$

Suy ra
$$
\left\{\begin{array}{l}
9^k-7^k=2^t \\
9^k+7^k=2^{y-t}
\end{array}\right.
$$
với $t \in \mathbb{N}^*$ và $t \leq y$.
– Nếu $k$ lẻ, khi đó $2^t \equiv 9^k-7^k \equiv 2(\bmod 8)$, do đó $t=2$ và $k=1$.
Dẫn đến $x=2$ và $2^y=81-49=32 \Rightarrow y=5$.
– Nếu $k$ chẵn, ta có
$$
9^k+7^k \equiv 1^k+(-1)^k \equiv 2(\bmod 8) .
$$

Do đó $2^{y-t} \equiv 2(\bmod 8)$, suy ra $y-t=1$. Như vậy $9^k+7^k=2$ (Vồ lí).
Vậy $(x, y)=(1,1)$ hoặc $(x, y)=(2,5)$.

Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn
$$
p^n=x^3+y^3 .
$$

Hướng dẫn giải

Đặt $x=p^t x_1$ và $y=p^s y_1\left(x_1, y_1, s, t \in \mathbb{N}\right.$ và $\left.x_1, y_1 \neq p\right)$.
Ta có
$$
p^n=p^{3 t} x_1^3+p^{3 s} y_1^3>p^{3 t} \Rightarrow n>3 t .
$$

Không mất tính tổng quát, giả sử $t \geq s$.
Nếu $t>s$ thì $p^{n-3 s}=p^{3(t-s)} x_1^3+y_1^3 \vdots p \Rightarrow y_1^3 \vdots p$ (Vô lí).
Vậy $t=s$, do đó $p^{n-3 t}=x_1^3+y_1^3=\left(x_1+y_1\right)\left(x_1^2-x_1 y_1+y_1^2\right)$.

  • Nếu $x_1^2-x_1 y_1+y_1^2=1$ thì $x_1=y_1=1$.
    Khi đó $p^{n-3 t}=2 \Rightarrow\left\{\begin{array}{l}p=2 \\\ n-3 t=1\end{array} \Rightarrow\left\{\begin{array}{l}p=2 \\\ n=3 t+1\end{array}\right.\right.$.
    Lúc này ta được $x=y=2^t$. Thử lại thỏa.
  • Nếu $x_1^2-x_1 y_1+y_1^2>1$, ta được
    $$
    \left\{\begin{array}{l}
    x_1+y_1=p^k \\\
    x_1^2-x_1 y_1+y_1^2=p^{n-3 t-k}
    \end{array}\right.
    $$
    với $k \geq 1, n-3 t-k \geq 1$.

Do đó $\left(x_1+y_1\right)^2-\left(x_1^2-x_1 y_1+y_1^2\right)=3 x_1 y_1 \vdots p \Rightarrow 3 \vdots p \Rightarrow p=3$.

Ngoài ra, nếu $n-3 t-k \geq 2$ thì $x_1^2-x_1 y_1+y_1^2=\left(x_1+y_1\right)^2-3 x_1 y_1 \vdots 3^2$, mà $\left(x_1+y_1\right)^2 \vdots 3^2$ nên $3 x_1 y_1 \vdots 3^2 \Rightarrow x_1 y_1 \vdots 3$ (Vô lí).
Vậy $n-3 t-k=1$ hay $x_1^2-x_1 y_1+y_1^2=3$. Không mất tính tổng quát, giả sử $x_1 \geq y_1$ thì ta được $x_1=2$ và $y_1=1$.
Từ đây ta được $n-3 t=2 \Leftrightarrow n=3 t+2$ và $x=2 \cdot 3^t$ và $y=3^t$.
Thử lại thỏa.
Vậy $p=2$ và $p=3$ là các số nguyên tố cần tìm.

Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Hướng dẫn giải

Giả sử tồn tại các số tự nhiên $x, y$ thỏa mãn
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Ta có
$$
\begin{aligned}
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right) & =\left(4^x+5 \cdot 2^x+4\right)\left(4^x+5 \cdot 2^x+6\right) = \left(4^x+5 \cdot 2^x+5\right)^2-1 .
\end{aligned}
$$

Do đó $\left(4^x+5 \cdot 2^x+5\right)^2-1-5^y=11879 \Leftrightarrow\left(4^x+5 \cdot 2^x+5\right)^2-5^y=11880$.
Nếu $y \geq 1$ thì ta suy ra $4^x+5 \cdot 2^x+5 \vdots 5 \Rightarrow 4^x \vdots 5$. (Vô lí)
Do đó $y=0$, khi đó
$$
\left(4^x+5 \cdot 2^x+5\right)^2=11881 \Rightarrow 4^x+5 \cdot 2^x+5=109 \Leftrightarrow 4^x+5 \cdot 2^x-104=0 .
$$

Suy ra $2^x=8 \Rightarrow x=3$.
Vậy $x=3$ và $y=0$.

Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương.
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .

Hướng dẫn giải

(a) Ta có $a^2+3 a+1=a(a+3)+1$ là số lẻ. Do đó mọi ước của $M$ đều là số lẻ.
(b) Giả sử tồn tại $n \in \mathbb{N}^*$ thỏa mãn $a^2+3 a+1=5^n$. Khi đó
$$
a^2+3 a-4=5^n-5 \Leftrightarrow(a+4)(a-1)=5\left(5^{n-1}-1\right) .
$$

Nếu $n>1$ thì $5^{n-1}-1>0$.
Ta lại có $(a+4)(a-1) \vdots 5$ và $a+4-(a-1)=5$ nên $\left\{\begin{array}{l}a+4 \vdots 5 \\\ a-1 \vdots 5\end{array}\right.$.
Do đó $(a+4)(a-1) \vdots 25 \Rightarrow 5\left(5^{n-1}-1\right) \vdots 25 \Rightarrow 5^{n-1}-1 \vdots 5$. (Vô lí)
Vậy $n=1$ hay $a^2+3 a+1=5 \Rightarrow a=1$.
Thử lại thỏa, vậy $M$ là lũy thừa của 5 khi và chỉ khi $a=1$.

Ví dụ 3.36. Tìm số tự nhiên $n$ sao cho $8^n+47$ là số nguyên tố.

Hướng dẫn giải

  • Xét $n=2 k(k \in \mathbb{N})$, khi đó
    $$
    p^n \equiv 8^n+47 \equiv(-1)^{2 k}+47 \equiv 48 \equiv 0(\bmod 3) .
    $$

Do đó $p$ ! 3 nên $p$ không là số nguyên tố (Vô lí).

  • Xét $n=4 k+1\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8+47 \equiv 8+47 \equiv 55 \equiv 0(\bmod 5) .
    $$

Do đó $p \vdots: 5$ nên $p$ không là số nguyên tố (Vô lí).

  • Nếu $n=4 k+3\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8^3+47 \equiv 8^3+47 \equiv 559 \equiv 0(\bmod 13) .
    $$

Do đó $p$ : 13 nên $p$ không là số nguyên tố (Vô lí).
Vậy không tồn tại số tự nhiên $n$ để $8^n+47$ là số nguyên tố.

Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương).
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)

Hướng dẫn giải

(a) Giả sử tồn tại $y \in \mathbb{N}^*$ chẵn để phương trình trên có nghiệm.

  • Với $x=1$ thì $2+5^y=k^2 \equiv 2(\bmod 5)$.
    Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.
  • Với $x>1$, do $y$ chẵn nên ta đặt $y=2 m(m \in \mathbb{N})$.
    Khi đó
    $$
    2^x+5^{2 m}=k^2 \Leftrightarrow 2^x=\left(k-5^m\right)\left(k+5^m\right) \Rightarrow\left\{\begin{array}{l}
    k-5^m=2^t \\\
    k+5^m=2^{x-t}
    \end{array} \quad(t \geq 0) .\right.
    $$

Vì $k+5^m>k-5^m$ nên $x-t>t$, suy ra $k=2^{t-1}+2^{x-t-1}$.
Ta thấy nếu $t=0$ thì $k=\dfrac{1}{2}+2^{x-1} \notin \mathbb{N}$. Do đó $t \geq 1$.

Mặt khác $k$ lẻ và $t-1<x-t-1$ nên $2^{t-1}=1 \Rightarrow t=1$. Khi đó $k-5^m=2 \Leftrightarrow k=2+5^m$. Thay vào $2^x+5^{2 m}=k^2$, ta được
$$
2^x+5^{2 m}=\left(2+5^m\right)^2 \Leftrightarrow 2^x=4+2 \cdot 5^m .
$$

Vì $x>1$ nên $2^x \vdots 4$, suy ra $2 \cdot 5^m \vdots 4$ (Vô lí).
Vậy phương trình vô nghiệm khi $y$ chẵn.
(b) Giả sử phương trình có nghiệm, khi đó $y$ lẻ.

  • Nếu $x=4 z+1(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^x+5^y \equiv 2^{4 z} \cdot 2+5^y \equiv 2(\bmod 5) .
    $$

Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.

  • Nếu $x=4 z+3(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^{4 z} \cdot 2^3+5^y \equiv 8 \equiv 3(\bmod 5) \text { (Vô lí). }
    $$

Vậy $x$ chẵn, đặt $x=2 t\left(t \in \mathbb{N}^*\right)$.
Ta có
$$
2^x+5^y=k^2 \Leftrightarrow 5^y=\left(k-2^t\right)\left(k+2^t\right) \Rightarrow\left\{\begin{array}{l}
k-2^t=5^s \\\
k+2^t=5^{y-s}
\end{array} \quad(s \in \mathbb{N}) .\right.
$$

Nếu $s>0$ thì $5^{y-s}-5^s \vdots 5$ nên $2^{t+1} \vdots 5$ (vô lý). Do đó $s=0$.

Khi đó $\left\{\begin{array}{l}k=1+2^t \\\ k=5^y-2^t\end{array}\right.$. Suy ra $1+2^t=5^y-2^t \Rightarrow 5^y-1=2^{t+1}$.
Nếu $t>1$ thì $2^{t+1} \vdots 8$. Dặt $y=2 l+1$, khi đó
$$
2^{t+1}=5^y-1=25^l \cdot 5-1 \equiv 5-1 \equiv 4(\bmod 8) \text{vô lý}
$$

Vậy $t=1$, suy ra $k=3$. Với $k=3$, ta tìm được $x=2$ và $y=1$.
Vậy phương trình có nghiệm khi và chỉ khi $k=3$.

Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$.
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.

Hướng dẫn giải

(a) Ta có
$$
\begin{aligned}
2 a=6 k^2+6 k+2 & =k^2+\left(k^2+2 k+1\right)+\left(4 k^2+4 k+1\right) = k^2+(k+1)^2+(2 k+1)^2
\end{aligned}
$$
$$
\begin{aligned}
a^2 & =\left(3 k^2+3 k-1+2\right)^2=9 k^4+18 k^3+15 k^2+6 k+1 = \left(4 k^4+12 k^3+13 k^2+6 k+1\right)+\left(4 k^4+4 k^3+k^2\right)+\left(k^4+2 k^3+k^2\right) = \left(2 k^2+3 k+1\right)^2+\left(2 k^2+k\right)^2+\left(k^2+k\right)^2
\end{aligned}
$$
(b) Đặt $a^2=a_1^3+a_2^3+a_3^3$ với $a_1, a_2, a_3 \in \mathbb{Z}$.
Đặt $b=c a$ với $c$ là số nguyên dương, do $b$ bẳng tổng của ba số chính phương nên $b=b_1^2+b_2^2+b_3^2$ với $b_1, b_2, b_3$ là các số nguyên.
Xét số nguyên dương $n$ bất kì, khi đó

  • Nếu $n=2 k\left(k \in \mathbb{Z}^{+}\right)$thì
    $$
    \begin{aligned}
    b^n & =c^{2 k} a^{2 k}=\left(c^k a^{k-1}\right)^2 a^2 = \left(c^k a^{k-1}\right)^2\left(a_1^2+a_2^2+a_3^2\right) = \left(c^k a^{k-1} a_1\right)^2+\left(c^k a^{k-1} a_2\right)^2+\left(c^k a^{k-1} a_3\right)^2
    \end{aligned}
    $$
  • Nếu $n=2 k+1(k \in \mathbb{Z})$ thì
    $$
    b^n=\left(b^k\right)^2 \cdot b=\left(b^k\right)^2\left(b_1^2+b_2^2+b_3^2\right)=\left(b^k b_1\right)^2+\left(b^k b_2\right)^2+\left(b^k b_3\right)^2
    $$

Hoàn tất chứng minh.


C. CÁC BÀI TẬP RÈN LUYỆN

Bài 3.13. Tìm nghiệm nguyên dương của phương trình
$$
x^3+x^2+x+1=2011^y .
$$

Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình
$$
8^x+15^y=17^z .
$$

Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn
$$
(x+1)^y-x^z=1 .
$$

Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$.

Bài 3.17. Tìm nghiệm nguyên dương của phương trình
$$
2^x \cdot 3^y+5^z=7^t .
$$

Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình
$$
x^n+y^n=3^m .
$$

Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$.

Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên.

Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên.
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Bài 3.22.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)

ƯỚC CHUNG VÀ MỘT SỐ ÁP DỤNG

Bài viết của thầy Nguyễn Vĩnh Khang – Giáo viên Star Education

Các tính chất của ước chung

Nhận xét: Nếu ta đặt $(x, y)=d$, thì $x^{\prime}=\dfrac{x}{d}$ và $y^{\prime}=\dfrac{y}{d}$ nguyên tố cùng nhau. Từ đó lợi dụng các tính chất liên quan đến số nguyên tố cùng nhau như (được sử dụng thẳng, không cần chứng minh)

  • Nếu $a b: c$, và $(b, c)=1$, ta có $a: c$.
  • Nếu $a: b$ và $a: c$, với $(b, c)=1$, ta có $a: b c$.
  • Nếu $(a, b)=1, r$ là ước của $a, s$ là ước của $b$, ta cũng có $(r, s)=1$.
    để phân tích bài toán tiếp. Việc đặt ước chung như vậy sẽ làm đơn giản bài toán (do ta có thể rút $d$ ra rồi triệt tiêu, nếu được) và cho thêm dữ kiện $\left(x^{\prime}, y^{\prime}\right)=1$.

Tính chất 3.1. Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$
(b) $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$
(c) Nếu $\operatorname{gcd}(a, b)=1$, ta có $\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$
(d) $\operatorname{gcd}\left(a^n, b^n\right)=\operatorname{gcd}(a, b)^n$.

Chứng minh.
Phần 1: gọi $d=\operatorname{gcd}(a, b, c)$ ta có $d$ là ước của $a, b$, nên $\operatorname{gcd}(a, b)$ : $d$. Nhưng $c: d$, nên ta được một chiều
$$
\operatorname{gcd}(\operatorname{gcd}(a, b), c) \vdots d=\operatorname{gcd}(a, b, c)
$$

Để chứng minh chiều còn lại, gọi $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Tương tự như trên ta có $d$ là ước của $\operatorname{gcd}(a, b)$, nên $d$ cũng là ước của $a, b$. Nhưng $d$ là ước của $a, b, c$, nên
$$
\operatorname{gcd}(a, b, c) \vdots d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$

Kết hợp (1.1) và (1.2), ta có đpcm.

Phần 2: nếu $d=(a c, b c)$, ta có $d: c$ do $c$ là ước chung của $a c, b c$. Đặt $d=k c$, ta có $(a c, b c)=k c$, và $a c, b c: k c$. Nói cách khác $a, b: k$, nên $(a, b): k$, và
$$
c(a, b) \vdots k c=(a c, b c)
$$

Mặt khác, đặt $k=(a, b)$, ta có $a, b: k$, nên $a c, b c: k c$. Theo định nghīa, $(a c, b c) \vdots k c=(a, b) c$. Kết hợp với (2.1) ta có đpem $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$.

Phần 3: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo tính chất 2 , ta được
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{l}\right)=1
\end{array}\right.
$$

Mặt khác $a: k, b: l$, nhưng $a, b$ lại nguyên tố cùng nhau, nên $k, l$ cūng vậy. Kết hợp với $c: k, l$, ta có $c: k, l$. Để ý rằng $\dfrac{c}{k l}$ là ước của $\dfrac{c}{k}$ và $\dfrac{c}{l}$, nên
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k l}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{k l}\right)=1
\end{array}\right.
$$

Ta chứng minh $\operatorname{gcd}(a b, c)=1$ nếu $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(a, c)=1$. Thật vậy, giả sử ngược lại, tức $\operatorname{gcd}(a b, c) \neq 1$. Khi đó tồn tại $p$ là ước nguyên tố chung của $a b, c$. Nhưng $a b: p$ thì ta phải có $a: p$ hoặc $b: p$, nên $\operatorname{gcd}(a, c): p$ hoặc $\operatorname{gcd}(b, c)$ : $($ cả 2 đều mâu thuẫn với giả thiết).

Áp dụng quan sát trên cho (3.1), ta được
$$
\operatorname{gcd}\left(\dfrac{a b}{k k}, \dfrac{c}{k l}\right)=1 \Leftrightarrow \operatorname{gcd}(a b, c)=k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)
$$

Phần 4: ta chứng minh $\operatorname{gcd}\left(a^n, b^n\right)=1$ nếu $\operatorname{gcd}(a, b)=1$. Thật vậy, giả sử $\operatorname{gcd}\left(a^n, b^n\right) \neq 1$, khi đó $a^n, b^n$ phải có một ước nguyên tố chung $p$. Sử dụng tính chất nếu $x y: p$ thì $x: p$ hoặc $y: p$. Từ đó $a, b: p$, vô lý.

Đặt $d=\operatorname{gcd}(a, b)$, ta có $\operatorname{gcd}\left(\dfrac{a}{d}, \dfrac{b}{d}\right)=1$, nên
$$
\operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=1
$$

Nhân $d^n$ cho cả 2 vế, và dùng tính chất 2 , ta được
$$
\operatorname{gcd}(a, b)^n=d^n=d^n \operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=\operatorname{gcd}\left(a^n, b^n\right)
$$

Hệ quả 3.1
Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) Nếu $a b: c$ và $(a, b)=1$, tồn tại $k, l$ sao cho $k l=c$, và $a: k, b \vdots l$.
(b) Nếu $a b=c^n$ và $(a, b)=1(n \geq 2)$, tồn tại $k, l$ sao cho $k l=c$ và $a=k^n, b=l^n$.

Chứng minh.

Phần 1: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=$ $\operatorname{gcd}(a b, c)=c$, và $a: k, b: l$ theo định nghĩa.

Phần 2: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=\operatorname{gcd}(a b, c)=$ c. Mặt khác
$$
k^n=\operatorname{gcd}\left(a^n, c^n\right)=\operatorname{gcd}\left(a^n, a b\right)=a \operatorname{gcd}\left(a^{n-1}, b\right)=a
$$
, ở đây $\operatorname{gcd}\left(a^{n-1}, b\right)=1$ do nếu tồn tại $p$ là ước nguyên tố chung cho $a^{n-1}, b$, ta phải có $p$ là ước chung của $a, b$ (vô lý). Chứng minh tương tự, ta cũng có $l^n=b$. Ta có đpcm.

B. MỘT SỐ VÍ DỤ ÁP DỤNG
Ví dụ 3.1 (Junior Balkan Mathematical Olympiad 2001).
Tìm ước chung lớn nhất của $A_0, A_1, A_2, \ldots, A_{1999}$, với $A_n=2^{3 n}+3^{6 n+2}+5^{6 n+2}$.

Hướng dẫn giải

Do $A_0=35=5 \cdot 7$, nên ước chung lớn nhất, gọi là $d$, phải là 1 trong 4 số ${1,5,7,35}$. Do $A_1=$ $2^3+3^8+5^8 \equiv 8+(-2)^8 \equiv 4(\bmod 5)$ nên $d \neq 5,35$. Mặt khác, theo định lý Fermat, ta có $3^6 \equiv 5^6$ $(\bmod 7)$, nên
$$
A_n \equiv 8^n+\left(3^6\right)^n \cdot 9+\left(5^6\right)^n \cdot 25 \equiv 1+9+25 \equiv 0 \quad(\bmod 7)
$$
Ta kết luận $d=7$.


Ví dụ 3.2. Chứng minh rằng nếu $d>0$ không phải là số chính phương, thì $\sqrt{d}$ là số vô tỷ.

Hướng dẫn giải

Để ý rằng $d=1^2 \cdot d$ nên $d$ luôn có thể viết thành dạng $d=x^2 y$ (với $x, y>0$ ). Chọn $x$ lớn nhất có thể, và để ý $y \neq 1$. Nếu $y$ có ước chính phương $z^2$ ngoài 1 , thì $d=x^{\prime 2} y^{\prime}$, với $x^{\prime}=x z>x$ và $y^{\prime}=\dfrac{y}{z}$, vô lý. Như vậy $y$ là tích các số nguyên tố khác nhau (do nếu $p$ là ước nguyên tố của $y$, thì $\dfrac{y}{p}$ không thể nào chia hết cho $p$ được).

Giả sử $\sqrt{d}=\dfrac{a}{b}$ là một số hữu tỷ, với $a, b$ nguyên dương nguyên tố cùng nhau. Ta có $$ a^2=b^2 d=(b x)^2 \cdot y $$ nên $a^2: y$. Nhưng $y$ chỉ là tích các số nguyên tố khác nhau, nên $a: y$. Thế $a=c y$ vào (*), ta được
$$
c^2 y^2=(b x)^2 y \Leftrightarrow b^2 x^2=c^2 y
$$

Để ý $c^2 y: b^2$, nhưng $(c, b)=1$ (do $(a, b)=1$ ), nên $y: b^2$. Ta đã chọn sao cho $y$ không thể nào có ước chính phương nào ngoài 1 , nên $b=1$ ! Từ đó ta có $\sqrt{d}=a$, hay $d=a^2$, vô lý.


Hướng dẫn giải

Gọi $d>0$ là một ước chung của $a^m+b^n, a^m-b^n$. Khi đó $\left\{\begin{array}{I}2 a^m=\left(a^m+b^n\right)+\left(a^m-b^n\right) \vdots d \\\ 2 b^n=\left(a^m+b^n\right)-\left(a^m-b^n\right) \vdots d\end{array}\right.$.
Để ý rằng $a, b$ khác tính chẵn lẻ, nên $a^m+b^n$ và $a^m-b^n$ luôn lẻ. Nhưng $d$ là một ước chung, nên $d$ lẻ. Như vậy $a^m, b^n: d$.

Nếu $d \neq 1$, gọi $p$ là một ước nguyên tố của $d$ (có thể $d=p$ ). Khi đó $a^m, b^n: p$, nên ta cũng có $a, b: p$. Điều này mâu thuẫn với giả thiết $a, b$ nguyên tố cùng nhau, nên $d=1$. Nhưng $d$ bất kỳ, nên $a^m+b^n, a^m-b^n$ chỉ có ước chung (dương) là 1 . Hay nói cách khác, $a^m+b^n, a^m-b^n$ nguyên tố cùng nhau.

Ví dụ 3.4. Cho 2 số hữu tỷ $\dfrac{a}{b}, \dfrac{c}{d}$ viết ở dạng tối giản (tức $(a, b)=(c, d)=1$ ) sao cho $d\frac{a}{b}+\dfrac{c}{d}$ là một số nguyên. Chứng minh rằng $|b|=|d|$.

Hướng dẫn giải

Ta có $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a d+b c}{b d}$ là một số nguyên, nên $a d+b c: b$, hay $a d: b$. Nhưng $a, b$ nguyên tố cùng nhau, nên $d: b$.
Chứng minh tương tự với $a d+b c: d$, ta có $b: d$. Như vậy $|b|=|d|$.

Ví dụ 3.5 (Spanish Mathematical Olympiad 1996).
Giả sử $a, b$ là các số nguyên dương sao cho $\dfrac{a+1}{b}+\dfrac{b+1}{a}$ là số nguyên. Nếu $d$ là ước chung lớn nhất của $a, b$
(a) Chứng minh rằng $a+b \geq d^2$.
(b) Tìm một cặp $(a, b)$ mà $a+b=d^2$.

Hướng dẫn giải

(a) Đặt $a=d a^{\prime}, b=d b^{\prime}$, ta có
$$
\dfrac{a+1}{b}+\dfrac{b+1}{a}=\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2 a^{\prime} b^{\prime}} \in \mathbb{Z}
$$
nên $\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2}=a^{\prime 2}+b^{\prime 2}+\dfrac{a^{\prime}+b^{\prime}}{d}$ cūng là số nguyên. Như vậy $a^{\prime}+b^{\prime}: d$. Nhưng $a, b$ nguyên dương, nên $a^{\prime}+b^{\prime} \geq d$, hay $a+b=d\left(a^{\prime}+b^{\prime}\right) \geq d^2$.
(b) $a=3, b=6$, thì $\dfrac{a+1}{b}+\dfrac{b+1}{a}=3$ và $a+b=9=\operatorname{gcd}(a, b)^2$.

Ví dụ 3.6 (Romanian Mathematical Olympiad 2003).
Cho $n$ là một số chẵn nguyên dương. Tìm tất cả các số nguyên dương $a, b$ sao cho $a^n+b^n: a+b$.

Hướng dẫn giải

Do $n$ chẵn ta có $a^n-b^n: a^2-b^2: a+b$. Như vậy
$$
\left\{\begin{array}{l}
2 a^n=\left(a^n+b^n\right)+\left(a^n-b^n\right) \vdots a+b \\\
2 b^n=\left(a^n+b^n\right)-\left(a^n-b^n\right) \vdots a+b
\end{array}\right.
$$

Gọi $d=(a, b)$, và $a=d u, b=d v$, ta có $u, v$ nguyên tố cùng nhau và $\operatorname{gcd}(a, b)=2 d^n \operatorname{gcd}\left(u^n, v^n\right)=$ $2 d^n: d(u+v)$. Nói cách khác, $2 d^{n-1}: u+v$.

Để cho ra tất cả giá trị $a, b$ có thể, ta bắt đầu với 2 số $u, v$ nguyên dương và nguyên tố cùng nhau. Tiếp theo chọn $d$ bất kỳ sao cho $2 d^{n-1}: u+v(d$ luôn tồn tại do ta có thể chọn $d=u+v)$. Khi đó $a=d u, b=d v$ thỏa mãn đề bài.

Thật vậy, từ $a^n+b^n=d^n\left(u^n+v^n\right)$, ta chia làm 2 trường hợp
(a) Nếu $u, v$ đều lẻ: ta có $u^n+v^n$ chẵn, nên $a^n+b^n: 2 d^n: d(u+v)=a+b$.
(b) Nếu, không mất tính tổng quát, $u$ chẵn, $v$ lẻ: do $2 d^{n-1}: u+v$, và $u+v$ lẻ, nên $d^{n-1}: u+v$. Từ đó $a^n+b^n: d^n: d(u+v)=a+b$.

Ta kết luận $a=d u, b=d v$, với $u, v$ nguyên tố cùng nhau sao cho $u+v$ là ước của $2 d^{n-1}$.

Ví dụ 3.7 (India Mathematical Olympiad 1998).
Tìm tất cả các bộ số nguyên dương $(x, y, n)$ sao cho
$$
\operatorname{gcd}(x, n+1)=1 \text { và } x^n+1=y^{n+1} .
$$

Hướng dẫn giải

Do $x>0$, nên $y^{n+1}=x^n+1>1$. Ta có
$$
x^n=y^{n+1}-1=(y-1)\left(y^n+y^{n-1}+\cdots+y+1\right)
$$

Do $y-1>1$, ta phải có $y-1: p$ với $p$ là một ước nguyên tố nào đó của $x$. Từ đó
$$
y^n+y^{n-1}+\cdots+y+1 \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n+1 \quad(\bmod p)
$$

Như vậy $p$ là ước chung của $x$ và $n+1$, vô lý.

Ví dụ 3.8 (Bulgarian Mathematical Olympiad 2001).

Tìm tất cả các bộ $(a, b, c)$ nguyên dương sao cho $a^3+b^3+c^3$ chia hết cho $a^2 b, b^2 c$, và $c^2 a$.

Hướng dẫn giải

Đầu tiên để ý rằng nếu $d$ là ước chung của $a, b$, ta có $a^3+b^3+c^3: a^2 b: d^3$, nên $c: d$. Như vậy nếu ta đặt $d=(a, b, c)$, và $a=d u, b=d v, c=d w, u, v$ phải nguyên tố cùng nhau. Chứng minh tương tự, ta có $u, v, w$ đôi một nguyên tố cùng nhau.

Do $a^3+b^3+c^3: a^2 b$, ta có
$$
d^3\left(u^3+v^3+w^3\right): d^3 u^2 v \Leftrightarrow u^3+v^3+w^3: u^2 v
$$

Từ đó, $u^3+v^3+w^3: u^2$, và $v^3+w^3: u^2$. Chứng minh tương tự, ta cūng có $u^3+v^3+w^3: v^2, w^2$, và $w^3+u^3: v^2, u^3+v^3: w^2$. Nhưng $u, v, w$ nguyên tố cùng nhau đôi một, nên
$$
\left\{\begin{array}{l}
u^3+v^3+w^3: u^2 v^2 w^2 \\\
v^3+w^3: u^2 \\\
w^3+u^3: v^2 \\\
u^3+v^3: w^2
\end{array}\right.
$$

Không mất tính tổng quát, giả sử $u \leq v \leq w$. Do $a, b, c$ nguyên dương, $u, v, w$ cũng nguyên dương, và $u^2 v^2 w^2 \leq u^3+v^3+w^3 \leq 3 w^3$. Nói cách khác, $w \geq \dfrac{u^2 v^2}{3}$. Mặt khác, $u^3+v^3: w^2$, nên ta được
$$
u^3+v^3 \geq w^2 \geq \dfrac{u^4 v^4}{9} (*)
$$

Nhưng $u \leq v$, nên $2 v^3 \geq u^3+v^3 \geq \frac{u^4 v^4}{9}$, hay $u^4 v \leq 18$. Ta suy ra $u=1$ hoặc $u=2$. Nhưng $u=2$ thì $v \geq 2$, nên $32 \leq u^4 v \leq 18$, vô lý.
*Như vậy $u=1$. Nếu $v=1$ thì 2 : $w^2$, cho nên $w=1$. Ta có bộ $(a, b, c)=(d, d, d)$ thỏa mãn. Nếu $v \geq 2$, ta phải có $w>v$, hay $w \geq v+1 \geq 3$ do $v, w$ nguyên tố cùng nhau. Nhưng $u^3+v^3+w^3: u^2 v^2 w^2$, nên ta có
$$
1+v^3+w^3: v^2 w^2 \Rightarrow v^2 w^2 \leq 1+v^3+w^3 \leq 1+(w-1)^3+w^3<2 w^3
$$

Chia $w^2$ cho cả 2 vế, ta được $v^2<2 w$, hay $w>\frac{v^2}{2}$. Mặt khác, ta có $v^3+u^3: w^2$, nên
$$
v^3+1 \geq w^2>\frac{v^4}{4} \Leftrightarrow 4>v^3(v-4)
$$

Vậy $v \leq 4$. Nhưng $v \geq 2$, ta xét các trường hợp sau
(a) $v=4$ : khi đó $u^3+v^3=65: w^2$, nên $w=1$ (vô lý do $v \leq w$ ).
(b) $v=3$ : khi đó $u^3+v^3=28: w^2$, nên $w \in{1,2}$ (cũng vô lý như trên).
(c) $v=2$ : khi đó $u^3+v^3=9: w^2$, nên $w=3$ (do $w \geq v$ ).

Kiểm tra lại, ta nhận $(a, b, c)=(d, 2 d, 3 d)$ và các hoán vị của nó. Ta kết luận
$$
\begin{aligned}
& (a, b, c)=(k, k, k),(k, 2 k, 3 k),(k, 3 k, 2 k), \
& \quad(2 k, k, 3 k),(2 k, 3 k, k),(3 k, k, 2 k),(3 k, 2 k, k) \quad k \geq 1
\end{aligned}
$$

Ví dụ 3.9. Cho các số nguyên dương $x, y, z$ sao cho $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}$. Giả sử $x, y, z$ nguyên tố cùng nhau (tức $(x, y, z)=1$ ), chứng minh rằng $x+y$ là một số chính phương.

Hướng dẫn giải

Viết lại phương trình thành $x+y=\dfrac{x y}{z}$. Đặt $d=(x, y)$, và $x=d a, y=d b$, ta có $(d, z)=1$ (do $(x, y, z)=1)$ và $(a, b)=1$. Thêm nữa
$$
a+b=\dfrac{d a b}{z}
$$

Ta có $d a b: z$, và $(d, z)=1$, nên $a b: z$. Do $(a, b)=1$, ta sẽ chứng minh $z$ có thể tách thành $z=r s$ sao cho $a: r$ và $b: s$.
*Đặt $r=(a, z)$ và $s=(b, z)$.

  • Theo định nghĩa $a: r, b: s$. Nhưng $(a, b)=1$, nên $(r, s)=1$.
  • Tương tự z:r,s. Kết hợp với điều chứng minh ở trên, ta có $z$ :rs.
  • Mặt khác, đặt $a=k r, b=l s$ và $z=q(r s)$, ta có $k l r s: q r s$, nên $k l: q$. Ta cũng có $(a, z)=r$, nên $(k, q s)=1$.

Như vậy $k l: q$ và $(k, q)=1$. Chứng minh tương tự, ta có $(l, q)=1$. Từ đó $q=1$, và $z=r s$.
Tóm tắt lại, ta có $a=k r, b=l s$ và $z=r s$.
*Thế vào $a+b=\dfrac{d a b}{z}$, ta có
$$
k r+l s=d k l
$$

Để ý $(a, b)=1$ nên $(k, l s)=1$. Mặt khác, $l s=d k l-k r: k$, cho nên $k=1$. Chứng minh tương tự, ta có $l=1$, nên $a b=r s=z$, và $a+b=\dfrac{d a b}{z}=d$. Từ đó $x+y=d(a+b)=d^2$ là một số chính phương.

Ví dụ 3.10. Giải phương trình nghiệm nguyên sau (theo các biến $x, y, n, m$ ) với $m, n \geq 0$.
$$
x^n+y^n=2^m
$$

Hướng dẫn giải

Đặt $d=(x, y)>0$ và $x=d u, y=d v$, ta có $u, v$ nguyên tố cùng nhau và $d^n\left(u^n+v^n\right)=2^m$. Như vậy $d=2^e\left(0 \leq e \leq \frac{m}{n}\right)$. Đặt $k=2^{m-n e}$, ta xét phương trình sau (với $u, v$ nguyên tố cùng nhau).
$$
u^n+v^n=2^k
$$
(a) Nếu $n$ chẵn

(a) Nếu $n=0$ : phương trình gốc trở thành $2^m=2$, nên $m=1$. Ta nhận bộ nghiệm $(x, y, 0,1)$ với mọi $x, y \neq 0$.

(b) Nếu $n \geq 2$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $n$ chẵn, nên phương trình chỉ có 4 nghiệm $(0, \pm 1)$ và $( \pm 1,0)$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, 0, n e, n\right),\left(0, \pm 2^e, n e, n\right) \quad(n \text { chẵn })
$$
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn. Kết hợp với $u, v$ nguyên tố cùng nhau, ta được $u, v$ cùng lẻ. Xét modulo 4, ta có $2^k=u^n+v^n \equiv 1+1 \equiv 2(\bmod 4)$. Nói cách khác $k=1$ và $u^n+v^n=2$, hay $u, v= \pm 1$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, \pm 2^e, n e+1, n\right) \quad(n \text { chẵn })
$$

(b) Nếu $n$ lẻ: ta có $2^k=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)$, nên $u+v=2^s$ với $s \geq 0$.
(a) Nếu $n=1$ : ta có $u+v=2^k$, nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(u, 2^m-u, m, 1\right) \quad(u \text { nguyên bất kỳ })
$$

(b) Nếu $n \geq 3$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $u^n+v^n=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots-u v^{n-2}+v^{n-1}\right)$, cho nên $u+v= \pm 1$.
*Với $v=1-u$, ta xét phương trình sau
$$
u^n-(u-1)^n=1
$$

Ta có $u=0,1$ là nghiệm, cho nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right) \quad(n \text { lẻ })
$$

Nếu $u \geq 2$, ta chứng minh
$$
u^n-(u-1)^n>1
$$
với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $u^2-(u-1)^2=2 u-1 \geq 3>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
u^{n+1}-(u-1)^{n+1} & =u^n+(u-1) u^n-(u-1)^{n+1} \
& =u^n+(u-1)\left[u^n-(u-1)^n\right] \
& \geq 2^n+(2-1) \cdot 1>1
\end{aligned}
$$

Nếu $u \leq-1$, ta cũng chứng minh $u^n-(u-1)^n=(1-u)^n-(-u)^n>1$ với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $(1-u)^n-(-u)^n=-2 u+1>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
(1-u)^{n+1}-(-u)^{n+1} & =(1+w)^{n+1}-w^{n+1} \quad(\text { đặt } w=-u \geq 1) \
& =w(w+1)^n+(w+1)^n-w^{n+1} \
& =(w+1)^n+w\left[(w+1)^n-w^n\right] \
& \geq 2^n+1 \cdot 1>1
\end{aligned}
$$
*Với $v=-1-u$, ta xét phương trình sau
$$
u^n-(u+1)^n=1 \Leftrightarrow(u+1)^n-u^n=-1
$$

Dùng những bất đẳng thức ta đã chứng minh ở trên, cộng với trường hợp $u=0,1$ không thỏa, ta kết luận trường hợp này vô nghiệm.
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn, và $u, v$ nguyên tố cùng nhau, nên $u, v$ cùng lẻ. Như vậy
$$
u^{n-1}-u^{n-2} v+\cdots-v^{n-1} \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n \equiv 1 \quad(\bmod 2)
$$

Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có

Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
$$
\left\{\begin{array}{l}
u+v=2^k \quad(k \geq 1) \\\
u^{n-1}-u^{n-2} v+\cdots+v^{n-1}=1
\end{array}\right.
$$

Để ý $u^n+v^n=2^k=u+v$, ta sẽ chứng minh

$\left(u^n-v^n\right)(u-v) \geq 0$ với mọi $u, v$ và $n$ lẻ bằng quy nạp lên $n$. Trường hợp $n=1$ chính là $(u-v)^2 \geq 0$, còn $n=3$ là $\left(u^3-v^3\right)(u-v)=(u-v)^2\left(u^2+u v+v^2\right) \geq 0$.

Giả sử nó đúng với $n-2$ và $n$, ta chứng minh nó cũng đúng với $n+2$
$$
\begin{aligned}
\left(u^{n+2}-v^{n+2}\right)(u-v)= & \left(u^{n+2}-u^2 v^n+u^2 v^n-u^n v^2+u^n v^2-v^{n+2}\right)(u-v) \
= & u^2\left(u^n-v^n\right)(u-v)+u^2 v^2\left(u^{n-2}-v^{n-2}\right)(u-v) \
& +v^2\left(u^n-v^n\right)(u-v) \geq 0
\end{aligned}
$$

  • $2\left(u^n+v^n\right) \geq\left(u^2+v^2\right)\left(u^{n-2}+v^{n-2}\right)$ với mọi $u, v$ và $n \geq 3$ lẻ. Thật vậy, bất đẳng thức tương đương với
    $$
    u^n+v^n-u^2 v^{n-2}-v^2 u^{n-2} \geq 0 \Leftrightarrow\left(u^{n-2}-v^{n-2}\right)(u-v) \geq 0
    $$

Đúng theo bất đẳng thức ta đã chứng minh ở trên.
Áp dụng vào bài toán, ta có $u+v=u^n+v^n \geq \frac{u^2+v^2}{2} \cdot\left(u^{n-2}+v^{n-2}\right) \geq\left(\frac{u^2+v^2}{2}\right)^2$. $\left(u^{n-4}+v^{n-4}\right) \geq \cdots\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2}(u+v)$. Nhưng $u+v=2^k \geq 2^1>1$, nên
$$
\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2} \leq 1 \Leftrightarrow u^2+v^2 \leq 2
$$

Xét các giá trị $u, v=0, \pm 1$ thỏa mãn điều kiện trên, ta được các cặp $(u, v)=$ $(0,0),( \pm 1,0),(0, \pm 1),( \pm 1, \pm 1)$. Thử vào $u+v=u^n+v^n=2^k$ (với $2^k \geq 2^1=2$ ), ta chỉ có đúng $u=v=1$ và $k=1$ thỏa. Ta nhận các bộ
$$
(x, y, m, n)=\left(2^e, 2^e, n e+1, n\right) \quad(n \geq 3 \text { lẻ })
$$

Tổng hợp các trường hợp lại, ta kết luận các nghiệm $(x, y, m, n)$ như sau
(a) $\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right)$, và $\left(2^e, 2^e, n e+1, n\right)(e, n \geq 0)$.
(b) $\left(-2^e, 0, n e, n\right),\left(0,-2^e, n e, n\right)$, và $\left( \pm 2^e, \pm 2^e, n e+1, n\right)(e, n \geq 0, n$ chẵ $)$.
(c) $\left(u, 2^m-u, m, 1\right)(u \in \mathbb{Z}, m \geq 0)$

Ví dụ 3.11. Tìm tất cả các số nguyên dương $x, y, z$ sao cho
$$
16 x y z=d(x+y+z)^2
$$
với $d$ là ước chung của $x, y, z$

Hướng dẫn giải

Đặt $x=d a, y=d b, z=d c$, ta có $(a, b, c)=1$. Phương trình tương đương với $16 a b c=(a+b+c)^2$.
*Gọi $p^{2 k+1}$ là một ước của $a, p$ nguyên tố. Ta sẽ chứng minh $p^{2 k+2}$ cũng là ước của $a$.

(a) Nếu $p=2$ : đặt $a=2^{2 k+1} u$, ta có
$$
2^{2 k+5} u b c=\left(2^{2 k+1} u+b+c\right)^2
$$

Nếu $b$ chẵn thì $c$ cũng phải chẵn (và ngược lại), nhưng điều này mâu thuẫn với $a, b, c$ nguyên tố cùng nhau. Như vậy $b, c$ phải lẻ. Đê ý vế trái là bội của $2^{2 k+5}$ (mũ lẻ), nên $Q^2: 2^{2 k+5}(Q=$ $2^{2 k+1} u+b+c$. Nói cách khác, $Q: 2^{k+3}$ hay $Q=2^{k+3} R$. Từ đó
$$
2^{2 k+5} u b c=Q^2=2^{2 k+6} R^2
$$
nên $2^{2 k+5} u b c: 2^{2 k+6}$. Nhưng $b, c$ lẻ, nên ta có $u: 2$. Như vậy $a=2^{2 k+1} u: 2^{2 k+2}$.
(b) Nếu $p>2$ : lập luận tương tự như trên, ta đặt $Q=a+b+c$ và $a=p^{2 k+1} u$. Phương trình tương đương với
$$
Q^2=16 p^{2 k+1} u b c: p^{2 k+1}
$$
hay $Q: p^{k+2}$. Ta có $16 p^{2 k+1} u b c=Q^2: p^{2 k+2}$. Nhưng $p>2$, nên $u b c: p$.

Giả sử, không mất tính tổng quát b:p. Khi đó $(a+b+c)^2=16 a b c: p$, nên $a+b+c: p$. Nhưng $a: p$, nên c:p. Ta có điều vô lý do $a, b, c$ nguyên tố cùng nhau. Như vậy $u: p$, nên $a=p^{2 k+1} u: p^{2 k+2}$.

Như vậy nếu $a=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ là phân tích thừa số nguyên tố, các số mũ $\alpha_i$ phải chẵn (nếu $\alpha_i$ lẻ thì $p_i^{\alpha_i+1}$ cũng là ước của $a$, vô lý). Cùng với $a>0$, ta kết luận $a$ là số chính phương. Chứng minh tương tự, $b, c$ cũng chính phương.
*Đặt tiếp $a=u^2, b=v^2, c=w^2(u, v, w>0)$, ta có phương trình
$$
16 u^2 v^2 w^2=\left(u^2+v^2+w^2\right)^2 \Leftrightarrow u^2+v^2+w^2=4 u v w
$$

Do $a, b, c$ nguyên tố cùng nhau, $u, v, w$ cũng phải nguyên tố cùng nhau. Mặt khác, xét modulo 4 cho cả 2 vế, ta có $u^2+v^2+w^2 \equiv 0,1,2,3(\bmod 4)$, với $u^2+v^2+w^2 \equiv 0(\bmod 4)$ khi và chỉ khi $u^2, v^2, w^2 \equiv 0 (\text{b mod 4} )$. Như vậy $u, v, w$ đều chẵn, vô lý.

Ta kết luận phương trình vô nghiệm.

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bài tập số học ôn thi vào lớp 10 – Phần 3

Bài 21. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên

Lời giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Bài 22. Tìm tất cả các số tự nhiên n sao cho ${5^{{5^{n + 1}}}} + {5^{{5^n}}} + 1$ là một số nguyên tố.

Lời giải

Đặt $m = 5^n$ ta có bài trên.

Bài 23. Tìm số nguyên tố $p$ để $p^2 + 2^p$ cũng là số nguyên tố.

Lời giải

Nhận thấy $p=3$ thỏa đề bài.
Xét $p>3$ thì $p$ lẻ và $p$ không chia hết cho 3.
Khi đó $p^2 \equiv 1 (\mod 3)$ và $2^p \equiv -1 (\mod 3)$. Do đó $p^2 + 2^p \equiv 3$ nên không là số nguyên tố.

Bài 24. Cho $p, q$ là các số nguyên tố và phương trình $x^2 – px+q=0$ có nghiệm nguyên dương. Tìm $p$ và $q$.

Lời giải

Gọi $x_1, x_2$ là nghiệm của phương trình. Ta có $x_1 + x_2 = p, x_1 x_2 = q$. Do đó $x_1, x_2 $ đều là các số nguyên dương. Giả sử $x_1 \geq x_2$.
Suy ra $x_2 = 1, x_1 = q$, $1+q = p$. Do đó $p = 3, q=2$.
Thử lại thấy thỏa đề bài.

Bài 25. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
$p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 26. Tìm tất cả các số nguyên tố $p$ sao cho tồn tại các số nguyên dương $x, y$ thỏa phương trình $x(y^2-p)+y(x^2-p)=5p$.

Lời giải

$(x+y)(xy-p) = 5p$, $x+y \geq 2$ Do đó có các trường hợp sau:\\
$x+y = 5, xy-p=p$. Giải ra được $x=2, y=3, p=3$, $x=3, y=2, p=3$, $x=1, y=4, p=2$, $x=4,y=1, p=2$.\\
$x+y = p, xy -p=5$. $x^2-px+p+5 = 0$. $p^2-4(p+5) = =k^2 \Leftrightarrow (p-2)^2 – 24 = k^2 \Leftrightarrow (p-2-k)(p-2+k) = 24$. \\
Ta có $p-2-k, p-2+k$ cùng chẵn. Có các trường hợp sau:
+ $p-2-k = 2, p-2+k=12$, suy ra $p=9$ (loại)\\
+ $p-2 -k = 4, p-2+k = 6$, suy ra $p=7$. Khi đó $x+y = 7, xy = 12$. Giải ra được $x=3, y=4$ và $x=4, y=3$.

Bài 27. Cho các số nguyên dương $a, b, c, d$ thỏa $ab = cd$. Chứng minh rằng $a + b + c + d$ là hợp số.

Lời giải

Đặt $k = (a,c), a= ka’, c=kc’$, Suy ra $a’b = c’d$, suy ra $b \vdots c’$, đặt $b = mc’$, suy ra $d=ma’$.
Khi đó $a+b+c+d = ka’+mc’ + kc’+ma’ = (k+m)(a’+c’)$ là hợp số.

Bài 28. Tìm tất cả các số nguyên tố $p>q>r$ sao cho $p-r, p-q, q-r$ cũng là các số nguyên tố.

Lời giải

Nếu các số $p, q, r$ đều lẻ, thì $p-r, p-q, q-r$ đề chẵn mà là số nguyên tố và bằng 2, vô lý.
Do đó có 1 số nguyên tố chẳn, suy ra $r = 2$.
$p-2, q-2, p-q$ nguyên tố. Suy ra $p-q = 2$.
Vậy $p-2, p,p+2$ là các số nguyên tố. Suy ra $p-2=3$, $p=5$, $q=7$.

Bài 29. Tìm các số nguyên tố $p,q$ thỏa mãn hệ thức $p + q = {\left( {p – q} \right)^3}$

Lời giải

$p-q = r$ ta có $r^3 =2p+r$. Suy ra $p = \dfrac{r^3-r}{2}$ chia hết cho 3. Suy ra $p=3, q=5$.

Bài 30. Tìm tất cả các số nguyên tố $p$ sao cho hệ phương trình $p+1=2x^2,p^2+ 1=2y^2$ có nghiệm nguyên.

Lời giải

Ta xét $y, x>0$. Ta có $p = 2$ không thỏa.
$p(p-1) = 2(y-x)(y+x)$, suy ra $p |2(y-x)(y+x)$
$p|y-x$, suy ra $2(x+y)|p-1$ (vô lý)
$p|x+y$, mặt khác $p > x, p > y$, suy ra $2p>x+y$, do đó $p = x+y$. Khi đó $p-1 = 2x – 2y$. Từ đó suy ra $x = \dfrac{3p-1}{4}$, thế vào ta giải ra được $p = 7, x = 2, y = 5$.

Bài tập số học ôn thi vào 10 – Phần 2

Bài 11. Chứng minh rằng

a) Trong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.

Giải

a) Một số khi chia cho 3 có các số dư là 0, 1, 2.
Nếu trong 5 số khi chia cho 3 số có đủ 3 số dư 0, 1, 2 thì tổng 3 số này chia hết cho 3.
Nếu có 2 loại số dư thì có 3 số khi chia cho 3 có cùng một số dư, tổng của chúng chia hết cho 3.
Nếu có 1 loại số dư, thì tổng 3 số bất kì đều chia hết cho 3.
b) Đặt các số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.
Trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho 3, không mất tính tổng quát là $a_1, a_2, a_3$. Đặt $a_1 + a_2 + a_3 = 3b_1$.
Trong 5 số $a_4, \cdots, a_8$ có 3 số có tổng chia hết cho 3, giả sử $a_4, a_5, a_6$ và đặt $a_4 + a_5+ a_6 = 3b_2$.
Tương tự ta xây dựng được các số $b_3, b_4, b_5$.
Khi đó áp dụng tiếp cho 5 số $b_1, b_2, b_3, b_4, b_5$ có 3 số có tổng chia hết cho 3, giả sử $b_1, b_2,b_3$ có tổng chia hết cho 3. Khi đó 9 số $a_1, \cdots, a_9$ có tổng chia hết cho 9.

Bài 12. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 2018)\ Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Giải

a) \item Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $\\
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.\\
$ \Rightarrow A_n \ \vdots \ 3. $\\
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.\\
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.\\
$ \Rightarrow A_n \ \vdots\ 17. $\\
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$

b) Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
\item Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
Ta có \begin{align*}
A_n &\equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}\\\\
&\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} \\\\
& \equiv 2^n(1-2^n) \quad \text { (mod 9)}
\end{align*}
Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài 13. Tìm các nghiệm nguyên không âm $(x, y)$ của phương trình
${\left( {xy – 1} \right)^2} = {x^2} + {y^2}$

Giải

$(xy-6)^2 – (x+y)^2 = -13$.
$(xy-6-x-y)(xy-6+x+y) = -13$.
Ta có $xy – 6 +x+y \leq xy – 6 -x-y$ nên có các trường hợp.
$xy -6 -x-y = -13, xy -6 +x+y = 1$, giải ra được $(x;y)$ là $(7;0), (0;7)$;
$xy – 6 -x-y=-1, xy-6+x+y = 13$ (VN);
$Vậy phương trình có nghiệm $(0;7), (7;0)$.

Bài 14. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Giải

Ta có $x^3 = (y-x)(y+x+1)$.
Gọi $d$ là ước nguyên tố chung lớn nhất của $y-x, y+x+1$, nếu $d$ là số nguyên tố thì $d|x, d|y$, suy ra $d|1$ (vô lý), Vậy $y-x, y+x+1$ nguyên tố cùng nhau.
Do đó $y -x = a^3, y+x+1 = b^3, ab=x$.
Ta có phương trình $b^3-a^3 = 2ab+1$ với $a, b$ nguyên dương và $b > a\geq 1$. Ta có $b^3-a^3 \geq a^2+b^2+ab > 2ab + 1$.
Vậy phương trình không có nghiệm trong tập các số nguyên dương.

Bài 15. Tìm tất cả các bộ ba số nguyên dương thỏa phương trình:
${\left( {x + y} \right)^2} + 3x + y + 1 = {z^2}$

Giải

Ta có $(x+y)^2 < z^2 < (x+y+2)^2$. Do đó $z^2 = (x+y+1)^2$ hay $(x+y+1)^2 = (x+y)^2+3x+y + 1 \Leftrightarrow y = x$.
\Vậy bộ nghiệm là $(n, n, 2n+1)$ với $n$ là số nguyên dương.

Bài 16. Tìm nghiệm nguyên dương của phương trình sau
$xy + yz + zx – xyz = 2$

Giải

Vai trò của $(x, y, z)$ là như nhau, giả sử $x \geq y \geq z$.
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} – 1 = \dfrac{2}{xyz} > 0$. Suy ra $\dfrac{3}{z} -1 > 0$, suy ra $z < 3$.
Nếu $z = 1$ thì $x+y = 2$ ta có $x = y = 1$.
Nếu $z=2$ thì $2(x+y)-xy = 2 \Leftrightarrow (x-2)(y-2) = 2$, giải ra được $x = 4, y = 3$.
Do tính đối xứng nên nghiệm của phương trình là $(1, 1, 1), (4,3,2)$ và các hoán vị.

Bài 17. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$

Giải

Có một nghiệm là $(0;0)$.
Dễ thấy $y$ chẵn nên $y^4+4y+1 \equiv 1 (\mod 8)$. Suy ra $x$ chẵn, $x = 2k$. Khi đó $(5^k)^2 = y^4 + 4y+1$ là số chính phương.
Ta có $y\geq 1$ nên $y^4 < y^4+4y + 1 < (y^2+2)^2$. Suy ra $y^4+4y + 1 = (y^2+1)^2 \Leftrightarrow y = 2$, suy ra $x = 2$.
Vậy có 2 cặp nghiệm $(0;0), (2;2)$.

Bài 18. Giải phương trình nghiệm tự nhiên $x – {y^4} = 4$ với $x$ là số nguyên tố.

Giải

$x = y^4+4 = (y^2-2y+2)(y^2+2y+2)$ là số nguyên tố khi và chỉ khi $y^2-2y + 2 = 1$ hay $y=1$. Từ đó $x=1$.

Bài 19. Tìm nghiệm nguyên của phương trình sau
${\left( {{x^2} – {y^2}} \right)^2} = 1 + 16y$

Giải

Dễ thấy nghiệm là $(-1;0), (1;0)$.
Ta có $y \geq 0$, vì $x$ thỏa pt thì $-x$ cũng thỏa nên có thể giả sử $x\geq 0$.
Ta có $(x^2-y^2)^2 = 1 + 16y >1$, suy ra $x^2 > y^2 \Rightarrow x \geq y + 1$.
Nếu $x \geq y + 2$, suy ra $x^2-y^2 \geq 4y + 4 \Rightarrow (x^2-y^2)^2 > 1+16y$.
Do đó $x = y + 1$, suy ra $(1+2y)^2 = 1+16y \Leftrightarrow 4y^2 – 12y = 0 \Leftrightarrow y = 3$. Suy ra $x = 4$.
Vậy nghiệm là $(-4;3), (4;3),(-1;0), (1;0)$.

Bài 20. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên tố.

Giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Bài tập số học ôn thi vào lớp 10 chuyên toán – Phần 1

Bài 1. Cho $m, n$ là các số nguyên. Chứng minh rằng nếu $mn+1$ chia hết cho 24 thì $m+n$ cũng chia hết cho 24.

Giải

Ta có $mn+1$ chia hết cho 24, suy ra $mn+1$ chia hết cho 3 và 8. Ta cũng chứng minh $m+n$ chia hết cho 3 và 8.

Nếu $m \equiv p (\mod 3), n \equiv q (\mod 3)$, suy ra $pq + 1 \equiv 0 (\mod 3)$. Suy ra $pq = 2$. Do đó $p = 1, q = 2$ hoặc $p=2, q=1$. Suy ra $p+q \equiv 0 (\mod 3)$ hay $m+n \equiv (\mod 3)$.
Tương tự $m \equiv q (\mod 8), n \equiv p (\mod 8)$, suy ra $pq \equiv 7 (\mod 8)$ và $p, q \in \{1, 2, 3, 4, 5, 6, 7\}$, suy ra $p=1, q=7$ hoặc $p=7, q=1$. Do đó $m+n$ chia hết cho 8.
Vậy $m + n$ chia hết cho 24.5

Bài 2. Tìm tất cả các số $n$ sao cho:

a) $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
b) $2^{2n} + 2^n + 1$ chia hết cho 21.

Giải

Đặt $A_n = 1^n + 2^n + 3^n + 4^n$.
Nếu $n$ lẻ ta có $1^n + 4^n$ chia hết cho 5, $2^n + 3^n$ chia hết cho 5. Suy ra $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
Nếu $n$ chẵn, đặt $n = 2k$. Ta có $1 + 2^n + 3^n + 4^n = 1 + 4^k + 9^k + 16^k \equiv 1 + (-1)^k + (-1)^k + 1 (\mod 5)$.
Do đó $A_n \vdots 5 \Leftrightarrow k$ lẻ.
Vậy $A_n$ chia hết cho 5 khi và chỉ khi $n$ lẻ hoặc $n$ chia 4 dư 2.

Đặt $B_n = 2^{2n} + 2^n + 1$.
Ta tìm $n$ để $B_n$ chia hết cho 3 và 7.

Nếu $n = 2k$ ta có $B_n = 16^k + 4^k + 1 \equiv 0 (\mod 3)$.\\
Nếu $n = 2k + 1$ ta có $B_n = 4\cdot 16^k + 2\cdot 4^k + 1 \equiv 7 (\mod 3)$ (loại)\\
Vậy $B_n \vdots 3 \Leftrightarrow n = 2k$.

Nếu $n = 3k$ ta có $B_n = 64^k + 8^k + 1 \equiv 3 (\mod 7)$. (loại)\\
Nếu $n = 3k+ 1$ ta có $B_n = 4 \cdot 64^k + 2 \cdot 8^k + 1 \equiv 0 (\mod 7)$ (nhận)
Nếu $n = 3k + 2 $ ta có $B_n = 16\cdot 64^k + 4\cdot 8^k + 1 \equiv 0 (\mod 7)$.

Vậy $B_n$ chia hết cho 7 khi và chỉ khi $n = 6k+4$ hoặc $n = 6k+2$.

Bài 3. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Giải

a) Nếu $n$ ta có $2^n + 3^n$ chia hết cho 5.
Xét $n=2k + 1$ ta có $n.2^n + 3^n = (n-1)2^n+ 2^n + 3^n$ chia hết cho 5 khi và chỉ khi $n-1$ chia hết cho 5, hay $k$ chia hết cho 5,suy ra $k = 5q$. Vậy $n = 10q + 1$.
Xét $n = 2k$ ta có $n.2^n + 3^n = 2k.4^k + 9^k = 2k.4^k + 4^k + 9^k – 4^k = (2k+1).4^k + 9^k – 4^k $ chia hết cho 5 khi $2k+1$ chia hết cho 5. Khi đó $k = 5q + 2$, suy ra $n = 10q + 4$.
Vậy với $n = 10q + 1, 10q + 4$ thì $n.2^n + 3^n$ chia hết cho 5.

b) Theo câu a để $A=n.2^n + 3^n$ chia hết cho 5 thì $n = 10q+1, 10q + 4$. Ta tìm $q$ để $n.2^n + 3^n$ chia hết cho 25.
+Với $n = 10q + 1$ ta có $A = (10q+1)2^{10q+1} + 3^{10q+1} = (20q+2).1024^q + 3.3^{10q}$\\
Ta có $1024 \equiv -1 (\mod 25), 3^10 \equiv -1 (\mod 25)$. Suy ra $A \equiv (20q + 2)(-1)^q + 3.(-1)^q (\mod 25)$ hay $A = (-)^q (20q+5) (\mod 25)$.
Suy ra $A$ chia hết cho 25 khi và chỉ khi $20q +5$ chia hết cho 25 hay $4q+1$ chia hết cho 5. Suy ra $q = 5k + 1$. Vậy $n = 10(5k+1)+1 = 50k + 11$.
+Với $n = 10q + 4$. Ta có $A = (10q+4)2^{10q+4} + 3^{10q+4} = (160q+64)2^{10q} + 81.3^{10q} \equiv (10q+14)(-1)^q + 6(-1)^q (\mod 25) \equiv (-1)^q(10q+20) (\mod 25)$.
Do đó $A$ chia hết cho 25 khi và chỉ khi $10q+20$ chia hết cho 25 hay $q+2$ chia hết cho 5, suy ra $q = 5k + 3$. Suy ra $n = 10(5k+3) + 4 = 50k + 34$.
Vậy $n = 50k+11, 50k+34$.

Bài 4. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Giải

a)
TH1: $n = 3k$ ta có $2^n – 1 = 2^{3k}-1 = 8^k – 1$ chia hết cho 7.
TH2: $n = 3k + 1$ ta có $2^n- 1= 2.8^k – 1$ chia 7 dư 1.
TH3: $n = 3k + 2$ ta có $2^n – 1= 4.8^k – 1$ chia 7 dư 3.
Vậy $2^n- 1$ chia hết cho 7 khi và chỉ khi $n$ chia hết cho 3.

b)
$42p = 2.3.7.p$.
TH1: $p = 7$ ta có $3^7 – 2^7 – 1$ chia hết cho $42.7$.
TH2: $p > 7$ khi đó các số $2, 3, 7, p$ đôi một nguyên tố cùng nhau.
+ Ta có $3^p – 1 – 2^p$ chia hết cho 2.
+ $2^p + 1$ chia hết cho 3 vì $p$ lẻ, suy ra $3^p -2^p-1$ chia hết cho 3.
+ $p$ nguyên tố lớn hơn hoặc bằng 5, suy ra $p = 6k + 1$ hoặc $p = 6k+5$. Nếu $p = 6k + 1$ ta có $3^p – 2^p – 1 = 3^{6k+1} – 2^{6k+1} – 1 = 3.3^{6k} – 2.2^{6k} – 1$.
Ta có $3^6 \equiv 1 (\mod 7)$, suy ra $3^{6k} \equiv 1 (\mod 7)$, tương tự thì $2^{6k} \equiv 1 (\mod 7)$. Do đó $3.3^{6k} – 2.2^{6k} – 1 \equiv 0 (\mod 7)$.
Nếu $p = 6k + 5$ ta có $3^p – 2^p – 1 \equiv 3^5 – 2^5 – 1 \equiv 0 (\mod 7)$.
Do đó $3^p – 2^p – 1$ chia hết cho 7.
+ Theo định lý Fermat nhỏ, ta có $3^p \equiv 3 (\mod p), 2^p \equiv 2 (\mod 7)$. Suy ra $3^p – 2^p – 1$ chia hết cho $p$.
Vậy $3^p – 2^p – 1$ chia hết cho $42p$.

Bài 5. Cho a,b là hai số nguyên dương thỏa mãn $4{a^2} – 1$ chia hết cho $4ab – 1$. Chứng minh rằng $a = b$.

Giải

$4a^2-1$ chia hết cho $4ab-1$ suy ra $4a^2\geq 4ab \Rightarrow a\geq b$.
Ta có $4a^2 – 1 \vdots 4ab-1 \Rightarrow 4b^2(4a^2-1) \vdots 4ab – 1 \Rightarrow 16a^2b^2-1-(4b^2-1) \vdots 4ab-1$, suy ra $4b^2-1 \vdots 4ab-1$. Tương tự trên ta có $b \geq a$.
Do đó $a = b$.

Bài 6. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.

Giải

Nếu $x, y, z$ khi chia cho 3 có số dư khác nhau thì $x+y+z \vdots 3$ nhưng $(x-y)(y-z)(z-x)$ không chia hết cho 3 (mẫu thuẫn).
Nếu 2 trong 3 số $x, y,z$ có số dư giống nhau, giả sử là $x, y$. Khi đó $x-y \vdots 3$, suy ra $(x-y)(y-z)(z-x)$ chia hết cho 3, nhưng $x+y + z$ không chia hết cho 3 (mâu thuẫn).
Vậy $x, y, z$ có cùng số dư khi chia cho 3, suy ra $x-y, y-z, z-x$ đều chia hết cho 3. Do đó $x+y+z = (x-y)(y-z)(z-x)$ chia hết cho 27.

Bài 7. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Giải

$a_nb^n = (2^{2n+1}-2^{n+1}+1)(2^{2n+1}+2^{n+1}+1) = (2^{2n+1}+1)^2 – (2^{n+1})^2 = 4^{2n+1} +2.2^{2n+1} + 1 – 2^{2n+2} = 4^{2n+1} + 1$.
Ta có $4 \equiv -1(\mod 5)$, suy ra $4^{2n+1} \equiv -1 (\mod 5)$. Suy ra $4^{2n+1} + 1 \equiv 0(\mod 5)$.
Vậy $a_nb_n$ chia hết cho 5 với mọi $n$.
Ta có $a_n + b_n = 2.2^{2n+1} + 2 = 4^{n+1} + 2$.
Ta có $4^{n+1} \equiv -1, 1 (\mod 5)$. Suy ra $4^{n+1} +2 \equiv 1, 3 (\mod 5)$. Vậy $a_n + b_n$ không chia hết cho 5 với mọi $n$.
Do đó chỉ có một trong 2 số $a_n, b_n$ chia hết cho 5.

Bài 8. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Giải

Nếu $3^nn^3 + 1$ chia hết cho 7. Suy ra $n$ không chia hết cho 7, suy ra $n^6-1$ chia hết cho 7.\\
Ta có $n^3 (3^n + n^3 ) = n^33^n + n^6 = n^33^n +1 + n^6 – 1$ chia hết cho 7. \\
Mà $(n,7) = 1$. Suy ra $3^n + n^3$ chia hết cho 7.
Nếu $3^n + n^3$ chia hết cho 7. Làm tương tự ta cũng có $n^33^n + 1$ chia hết cho 7.

Bài 9. Chứng minh rằng nếu $2^n-1$ là số nguyên tố thì $n$ cũng là số nguyên tố.

Giải

Giả sử $n$ không là số nguyên tố.
Nếu $n = 1$ thì $2^1 – 1$ không nguyên tố.
Nếu $n$ là hợp số, ta có $n = pq$ với $1 < p < n$.
Khi đó $2^n – 1= (2^p)^q -1$ chia hết cho $2^p-1$. Mà $1< 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (Vô lý).

Bài 10. Ta điền các số từ 1 đến 9 vào bảng vuông $3\times 3$ sao cho mỗi số điền một lần, tổng các số cùng một hàng, một cột và đường chéo chia hết cho 9. Chứng minh rằng ô chính giữa bảng luôn là một số chia hết cho 3.

Giải

Giả sử các số là $a, b, c, d, e, f, g, h,i$ trong đó $e$ là ô chính giữa.

a  b  c
d  e  f
g  h  i

Ta có $a+e+i + d+e+f + c+e+g + b+e+h = (a+b+c+d+e+f+g+h+i) +3e \vdots 9$, mà $a +b+c+d+e+f+g+h+i = 1+2+\cdots + 9 = 45$ chia hết cho 9.
Suy ra $3e\, \, \vdots 9$, do đó $e \,\vdots \, 3$.

Bài tập số chính phương – Lớp 9

Bài 1. Chứng minh rằng

a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.

Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.

Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.

Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.

Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.

Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.

Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.

Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.

Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.

Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.

Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.

Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.

Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.

a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$

a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?

Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.

 

Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.

 

Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.

Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.

Bài  21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.

Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.

Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.

Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.

Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)

a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.

 

 

Số hữu tỉ – Vô tỉ

Số hữu tỉ – Số vô tỉ

(Bài viết dành cho các em trung học cơ sở)

Trong bài viết nhỏ này tôi xin giới thiệu một số bài toán liên quan đến các tập hợp số hữu tỉ và vô tỉ, một số trong đó đã xuất hiện trong các kì thi tuyển sinh vào 10 hay các kì thi học sinh giỏi.
Đầu tiên ta xem lại một số khái niệm và tính chất quan trọng.

Định nghĩa. Tập hợp các số có dạng $\dfrac{p}{q}$ trong đó $p, q$ là các số nguyên, $q \neq 0$ được gọi là số hữu tỉ. Kí hiệu là $\mathbb{Q}$. Tập số nguyên là tập con của tập các số hữu tỉ.
Tập hợp các số không phải là số vô tỉ được gọi là số vô tỉ, kí hiệu là $I$.

Tính chất 1. Ta có một số tính chất sau của số vô tỉ và hữu tỉ.

  • Tổng hiệu tích thương của hai số hữu tỉ là hữu tỉ.
  • Tổng, tích, thương của một số hữu tỉ và vô tỉ là một số vô tỉ

Việc chứng minh một số là số hữu tỉ hay vô tỉ chủ yếu dựa vào các định nghĩa trên, trong đó việc chứng minh một số là số vô tỉ hầu hết là sử dụng phương pháp chứng minh phản chứng.
Ta bắt đầu với bài toán cơ bản sau:
Ví dụ 1.
a) Chứng minh $\sqrt{2}$ là một số vô tỉ.
b) Chứng minh $\sqrt{2}+\sqrt{3}$ là một số vô tỉ.

Lời giải.

Ta sử dụng phương pháp chứng minh là phản chứng.

a) Giả sử $\sqrt{2}$ là số hữu tỉ, tức là tồn tại $\dfrac{p}{q}$ trong đó $p, q \in \mathbb{Z},(p,q) = 1, q \neq 0$ và $\sqrt{2}=\dfrac{p}{q}$.
Khi đó ta có $p^2 = 2q^2$, suy ra $p^2$ chia hết cho $2$ mà $2$ nguyên tố nên $p$ chia hết cho $2$, $p = 2k$.
Suy ra $q^2 = 2k^2$, lí luận tương tự thì $q$ chia hết cho $2$, do đó $(p, q) \neq 1$ (mâu thuẫn).
Vậy điều giả sử sai, $\sqrt{2}$ là số vô tỉ.
b) Giả sử $\sqrt{2}+\sqrt{3} = a$ hữu tỉ, suy ra $\sqrt{6} = \dfrac{a^2-5}{2}$ hữu tỉ. Chứng minh tương tự trên ta cũng suy ra điều vô lí.

Từ bài toán trên ta có thể chứng minh bài toán tổng quát sau:

Ví dụ 2. Cho $n$ là số tự nhiên nếu $\sqrt{n}$ không là số tự nhiên thì $\sqrt{n}$ là số vô tỉ.

Lời giải.

Giả sử $\sqrt{n}$ không phải vô tỉ và không phải số nguyên, suy ra $\sqrt{n} = \dfrac{p}{q}$ trong đó $(p,q) =1, q > 1$.
Tương tự ta có $p^2 = nq^2$. Do $q > 1$ nên có ước nguyên tố, giả sử $r$ là một ước nguyên tố của $q$, suy ra $p^2$ chia hết cho $r$, suy ra $p$ chia hết cho $r$, khi đó $(p,q) \neq 1$ (vô lí).
Vậy căn của một số nguyên là một số nguyên hoặc là một số vô tỉ.
\

Đặt $\sqrt{2} = x$, ta có $x^2 = 2 \Leftrightarrow x^2 – 2 = 0$, đến đây ta thấy $\sqrt{2}$ là một nghiệm của phương trình $x^2-2 = 0$. Ta có thể chứng minh phương trình $x^2 -2=0$ không có nghiệm hữu tỉ, từ đó suy ra $\sqrt{2}$ không là số hữu tỉ. Tất nhiên việc chứng minh này không khác mấy chứng minh trên. Tuy nhiên với các nhìn khác, ta có bài toán sau:

Ví dụ 3. Cho phương trình với các hệ số nguyên $a_0, a_1, \cdots, a_n$: $$a_nx^n + a_{n-1}x^{n-1}+\cdots+a_1x + a_0 = 0$$
Khi đó nếu $\dfrac{p}{q}$ với $(p,q)=1$ là một nghiệm hữu tỉ của phương trình thì $p|a_0, q|a_n$.Đặt biệt nếu $a_n=1$ thì nếu phương trình có nghiệm hữu tỉ thì nghiệm là số nguyên.

Lời giải

Thế $\dfrac{p}{q}$ vào phương trình và qui đồng, ta có $$a_np^n+a_{n-1}qp^{n-1}+\cdots+a_1q^{n-1}p + a_0q^n = 0$$
Khi đó $a_np^n$ chia hết cho $q$, suy ra $a_n$ chia hết cho $q$, tương tự thì $a_0$ chia hết cho $p$.

Cũng tương tự, ta có bài toán sau:
Ví dụ 4. Cho phương trình $ax^2 + bx + c = 0$, trong đó $a, b, c$ là các số tự nhiên lẻ. Chứng minh rằng phương trình không có nghiệm hữu tỉ.
Lời giải.

Giả sử $\dfrac{p}{q}, (p,q)=1$ là một nghiệm hữu tỉ của phương trình trên. Khi đó ta có $p|c, q|a$, suy ra $p, q$ đều lẻ. Mặt khác ta có $ap^2 + bpq+ cq^2 = 0$. Vế trái là một số lẻ nên vô lí. Vậy phương trình không có nghiệm hữu tỉ.

Sử dụng bài toàn 3 ta có thể chứng minh $\sqrt{2} + \sqrt{6}$ là số vô tỉ theo một các khác. Bằng cách chứng minh $a = \sqrt{2}+\sqrt{6}$ là nghiệm của phương trình bậc 4: $x^4 – 10x^2 – 1 = 0$, và dễ thấy phương trình trên không có nghiệm hữu tỉ nên $\sqrt{2}+\sqrt{6}$ là số vô tỉ.

Sau đây ta đi tới một số bài toán khác cũng liên quan đến số hữu tỉ và vô tỉ.
Ví dụ 5. Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.
Lời giải.

a) Ta có $xy, yz \in \mathbb{Q}$, suy ra $\dfrac{x}{z} \in \mathbb{Q}$.
Mà $xz \in \mathbb{Q}$ suy ra $x^2 \in \mathbb{Q}$.
Tương tự ta cũng có $y^2, z^2 \in \mathbb{Q}$.
b) Ta có $x(x^3+y^3+z^3) = (x^2)^2 + (xy)y^2 + (xz)z^2 \in \mathbb{Q}$. Suy ra $x \in \mathbb{Q}$.
Tương tự ta cũng có $y, z \in \mathbb{Q}$.

Chú ý. Với cách giải trên ta chấp nhận không thể xảy ra $x^3+y^3+z^3 = 0$ vì phương trình này không có nghiệm nguyên hay nghiệm hữu tỷ.

Ví dụ 6. Tìm tất cả các số tự nhiên $a, b$ sao cho $$\dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}
$$ là số hữu tỉ.
Lời giải.
Đặt $x = \dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}$ là số nguyên.
Suy ra $\sqrt{a} – x\sqrt{b} = x\sqrt{3}-\sqrt{2}$
Bình phương hai vế ta có $a +x^2b -2x\sqrt{ab} = 3x^2+2-2x\sqrt{6} \Rightarrow a+x^2b-3x^2-2 = 2x(\sqrt{ab}-\sqrt{6})$.
Suy ra $\sqrt{ab}-\sqrt{6} = y \in \mathbb{Q}$.
Khi đó $ab = 6+y^2 – 2y\sqrt{6}$.
Vì $\sqrt{6}$ là số vô tỉ nên đẳng thức xảy ra khi và chỉ khi $y = 0$ và $ab=6$.
Ta xét các trường hợp sau:

  • $a = 1, b = 6 \Rightarrow x = \dfrac{1}{\sqrt{6}}$ vô tỉ.
  • $a = 2, b = 3 \Rightarrow x= \dfrac{\sqrt{2}}{\sqrt{3}}$.
  • $a = 3, b = 2 \Rightarrow x = 1$.
  • $a = 6, b = 1 \Rightarrow x = \sqrt{2}$ vô tỉ.

Vậy $a = 3, b = 2$ là số cần tìm.

Ví dụ 7. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Lời giải.
Đặt $a = x+\dfrac{1}{y} (1), b = y + \dfrac{1}{z} (2), c = z+\dfrac{1}{x} (3)$.
Từ (1) ta có $y = \dfrac{1}{a-x}, z = \dfrac{1}{b-y} = \dfrac{a-x}{ab-1-bx}$. Thế vào (3) ta có:
$\dfrac{a-x}{ab-1-bx}+\dfrac{1}{x} = c \Leftrightarrow (bc-1)x + (a-b+c-abc)x + ab – 1 = 0$ (4).
Nếu $bc = 1$ thì $b = 1, c = 1$ suy ra $a = 1$. Khi đó $3 = x + \dfrac{1}{x} + y +\dfrac{1}{y} + z + \dfrac{1}{z} \geq 6$ (vô lý)
Nếu $bc \neq 1$, khi đó ta xem (4) như phương trình bậc hai có nghiệm hữu tỷ $x$, khi đó $\Delta = (a-b+c-abc)^2 – 4(bc-1)(ab-1) = (abc-a-b-c)^2 – 4$ là số chính phương.
Đặt $t = abc-a-b-c$ ta có $t^2-4 = k^2$, giải ra được $ t = 2$ hoặc $t = -2$.

$0=abc-a-b-c +2 = a(bc-1) – b-c+2 \geq bc-b-c+1 = (b-1)(c-1)$. Suy ra $b = c=1$ (vô lý).
$0=abc-a-b-c-2 \geq (b-1)(c-1) – 4\Rightarrow (b-1)(c-1) \leq 4$.
Nếu $(b-1)(c-1) = 4$ thì $b = 2, c=5$; $b = 3, c=3$; $b=5, c=2$. Trong các trường hợp này thì $a=1$.
Nếu $ a= 1, b = 2, c = 5$ giải được $(x, y, z) = (\dfrac{1}{3}, \dfrac{3}{2},2)$.
Nếu $a = 1, b = 3, c = 3$ thì $(x, y, z) = (\dfrac{1}{2},2,1)$.
Nếu $a = 1, b = 5, c = 2$ thì $(x, y, z) = (\dfrac{2}{3}, 3,2)$.
Nếu $(b-1)(c-1) = 3 \Rightarrow bc= b+c +2 = abc-a = a(bc-1) \Rightarrow bc-1|bc \Rightarrow bc = 1, a = 1$. (loại)
Khi $(b-1)(c-1) =2 \Rightarrow a = b = c = 2$, giải ra được $(x, y, z) = (1, 1, 1)$.

Trên đây là một số bài toán liên quan đến số hữu tỉ, vô tỉ, hi vọng các em có thêm kinh nghiệm để làm bài trong các tình huống này. Sau đây là một số bài tập rèn luyện.

Bài 1.  Tìm một đa thức hệ số nguyên nhận $\alpha = 2 + \sqrt[3]{2} + \sqrt[3]{4}$ làm nghiệm. Chứng minh $\alpha$ là số vô tỷ.
Bài 2.  Cho các số $a, b$ sao cho $a – \sqrt{ab}$ và $b-\sqrt{ab}$ đều là các số hữu tỉ. Chứng minh rằng $a, b$ cũng là các số hữu tỉ.
Bài 3. Ta nói các căp số $(\mathrm{a}, \mathrm{b}) a \neq b$, là có tính chất $\mathrm{P}$ nếu $a^{2}+b \in Q$ và $b^{2}+a \in \mathbb{Q}$.
Chứng minh rằng:
a) Các số $a=\dfrac{1+\sqrt{2}}{2}, b=\dfrac{1-\sqrt{2}}{2}$ là các số yô tỷ có tính chất $\mathrm{P}$.
b) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $a+b \in \mathbb{Q} \backslash{1}$ thì $a, b$ à các số hũu tỷ.
c) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $\dfrac{a}{b} \in \mathbb{Q}$ thì $\mathrm{a}, \mathrm{b}$ là các số hũu tỷ.
Bài 4.  Với mỗi số hữu tỷ $q$ đặt $V_q = {x \in \mathbb{Q}|x^3-2015x =q}$.

a)Tìm $q$ sao cho $V_q$ có là tập rỗng và $V_q$ có đúng một phần tử.
b) Gọi $S(V_q)$ là số phần tử của $V_q$, tìm tất cả các giá trị của $S(V_q)$.
Bài 5.
a) Cho số thực $x$ thỏa $x^2+x$ và $x^3+2x$ là số hữu tỷ. Chứng minh $x$ cũng là số hữu tỷ.
b) Chứng minh rằng tồn tại số vô tỷ $x$ sao cho $x^2+x$ và $x^3-2x$ là hữu tỷ.

Hết

Bội chung – Bội chung nhỏ nhất

Bội chung. Một số là bội chung của hai hay nhiều số khi nó là bội của tất cả các số đó.

Kí hiệu bội chung của $a, b$ là BC(a, b).

Ví dụ 1. B(4) = {0, 4, 8, 12, 16, 20,…} và B(6) = {0, 6, 12, 18, 24, 30,…}

Thì BC(4,6) = {0, 12, 24, …}

Cách tìm bội chung của a và b

  • Tìm tập các bội của a là B(a), tìm bội của b là B(b)
  • Tìm các phần tử của của B(a) và B(b), ta được BC(a, b).

Bội chung nhỏ nhất. 

Bôi chung nhỏ nhất của hai hay nhiều số là số khác 0 nhỏ nhất trong tập các bội chung của nó.

Kí hiệu là BCNN(a,b).

Chú ý. Nếu $a \neq 1$ thì BCNN(a,1) = a và BCNN(a,b,1) = BCNN(a,b).

Ví dụ 2. Một lớp có không quá 42 học sinh. Nếu xếp hàng 4 hoặc hàng 6 thì vừa đủ. Nếu xếp hàng 5 thì thừa 1 em. Hỏi lớp đó có bao nhiêu học sinh?
Lời giải.
Số học sinh của lớp đó là bội chung của 4 và 6 .

Ta có $\mathrm{BCNN}(4,6)=12$ nên $\mathrm{BC}(4,6)={0 ; 12 ; 24 ; 36 ; 48 ; \ldots}$.
Vi số học sinh của lớp đó không quá 42 và là một số chia cho 5 dư 1 nên lớp đó có 36 học sinh.

Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  • Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Ví du 5: Tìm BCNN của 12,90 và 150 .
Lời giải.
– Phân tích mỗi số $12,90,150$ ra thừa số nguyên tố:
$$
12=2^{2} \cdot 3 ; 90=2 \cdot 3^{2} \cdot 5 ; 150=2 \cdot 3 \cdot 5^{2} .
$$
– Các thừa số nguyên tố chung và riêng là 2,3 và 5 .
– Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: $2^{2} \cdot 3^{2} \cdot 5^{2}$
Vậy $\operatorname{BCNN}(12,90,150)=2^{2} \cdot 3^{2} \cdot 5^{2}=900$.

Ứng dụng trong quy đổng mẫu các phân số

Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

  • Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.
  • Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).
  • Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

Ví dụ 6. Ta có thể quy đồng mẫu hai phân số $\frac{1}{6}$ và $\frac{5}{8}$ theo hai cách như sau:
Ta có: 48 là một bội chung của 6 và 8 ; Ta có: $\mathrm{BCNN}(6,8)=24$;

Do đó: $\quad 24: 6=4 ; 24: 8=3$.

$\frac{1}{6}=\frac{1.4}{6.4}=\frac{4}{24}$ và $\frac{5}{8}=\frac{5.3}{8.3}=\frac{15}{24}$.

 

Bài tập rèn luyện.

Bài 1. Tìm:
a) $\mathrm{BC}(6,14)$;
b) $\mathrm{BC}(6,20,30)$
c) $\mathrm{BCNN}(1,6)$
d) $\mathrm{BCNN}(10,1,12)$;
e) $\mathrm{BCNN}(5,14)$.
Bài 2. a) Ta có $\mathrm{BCNN}(12,16)=48$. Hãy viết tập hợp A các bội của 48 . Nhận xét về tập hợp $\mathrm{BC}(12,16)$ và tập hợp $\mathrm{A}$.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của $\mathrm{BCNN}(\mathrm{a}, \mathrm{b})$. Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30 ; $\quad$ ii. 42 và 60 ; $\quad$ iii. 60 và 150 ; $\quad$ iv. 28 và 35 .
Bài 3. Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
a) $\frac{3}{16}$ và $\frac{5}{24}$;
b) $\frac{3}{20} ; \frac{11}{30}$ và $\frac{7}{15}$

Bài 4. Chị Hoà có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hoà có bao nhiêu bông sen? Biết rằng chị Hoà có khoảng từ 200 đến 300 bông.

Ước chung lớn nhất

Ước chung

  • Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
  • Tập các ước chung của $a$ và $b$ kí hiệu ƯC(a,b). Ta có x thuộc ƯC(a,b) khi và chỉ khi $a \vdots x$ và $b \vdots x$.

Ví dụ 1. Ư(12) = {1, 2, 3, 4, 6, 12}, Ư(8) = {1, 2, 4, 8}

Thì ước chung của 12 và 8 là 1, 2, 4, kí hiệu ƯC(8,12) = {1, 2, 4}.

Cách tìm ước chung của $a$ và $b$.

  • Tìm tập các số là ước của $a$, tập các ước của $b$.
  • Tìm các phần tử của của hai tập trên ta được tập ước chung của $a$ và $b$.

Ví dụ 2. Tìm ước chung của 24 và 30.

Ta có Ư(24) = {1, 2, 3, 4, 6, 8, 12, 24}, Ư(30) = {1, 2, 3, 5, 6, 15, 30}

Khi đó ƯC(24,30) = {1, 2, 3, 6}.

Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của $a$ và $b$ là ƯCLN(a,b)

Ví dụ 3. ƯC(24,30) = {1, 2, 3, 6}, ƯCLN(24,30) = 6.

Ví dụ 4. Các bạn học sinh lớp 6 A đang lên kế hoạch làm sạch môi trường ở địa phương. Cả lớp có 12 bạn nữ và 18 bạn nam. Các bạn muốn chia lớp thành các nhóm nhỏ gồm cả nam và nữ sao cho số bạn nam và số bạn nữ được chia đều vào các nhóm. Có thể chia được nhiều nhất thành bao nhiêu nhóm học sinh? Khi đó, mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Lời giải.

  • Số nhóm được chia phải là ước của cả 12 và 18 .
  • Số nhóm được chia phải là nhiều nhất có thể. Vì vậy, số nhóm được chia là ước chung lớn nhất của 12 và 18 .

Ta có $\mathrm{U}^{\circ} \mathrm{CLN}(12,18)=6$. Do đó cần chia lớp thành 6 nhóm.

Số học sinh trong mỗi nhóm là $(12+18): 6=5$ (học sinh).

Vậy mỗi nhóm có 5 học sinh, gồm 2 nữ và 3 nam.

Cách tìm ước chung lớn nhất của $a, b$ bằng phân tích thành thừa số nguyên tố.

Muốn tìm U’CLN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.
    Tích đó là ƯCLN phải tìm.

Ví dụ 5. Tìm ước chung lớn nhất của 24 và 30.

Lời giải.

Ta có $24 = 2^3 \cdot 3$ và $30 = 2 \cdot 3 \cdot 5$.

Ta có ƯCLN (a, b) = 2 \cdot 3 = 6.

Định nghĩa. Hai số có ước chung lớn nhất bằng 1 được gọi là nguyên tố cùng nhau. 

Kí hiệu hai số $a, b$ nguyên tố cùng nhau là (a,b) = 1

Ứng dụng tối giản phân số. Khi rút gọn $\frac{90}{126}$, ta chia cả tử số và mẫu số cho
một ước chung của 90 và 126 để được phân số mới. Tiếp tục
quy trình đó đến khi không rút gọn cho đến khi
tử số và mẫu số của chúng không có ước chung nào khác 1
(tử số và mẫu số là hai số nguyên tố cùng nhau). Khi đó, ta
được một phân số tối giản.

Bài tập rèn luyện

Bài 1. Tìm:
a) $\mathrm{UCLN}(1,16)$;
b) $\operatorname{UCLN}(8,20)$
c) UCLN $(84,156)$;
d) UCLN $(16,40,176)$.
Bài 2. a) Ta có $\mathrm{U}^{\prime} \mathrm{CLN}(18,30)=6$. Hãy viết tập hợp A các ước của 6 . Nêu nhận xét về tập hợp UC $(18,30)$ và tập hợp $\mathrm{A}$.
b) Cho hai số a và b. Để tìm tập hợp $\mathrm{UC}(\mathrm{a}, \mathrm{b})$, ta có thể tìm tập hợp các ước của $\mathrm{U}^{\circ} \mathrm{CLN}(\mathrm{a}, \mathrm{b})$. Hãy tìm UCLN rồi tìm tập hợp các ước chung của:
i. 24 và 30 ;
ii. 42 và 98 ;
iii. 180 và 234 .
Bài 3. Rút gọn các phân số sau: $\frac{28}{42} ; \frac{60}{135} ; \frac{288}{180}$.
Bài 4. Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là $140 \mathrm{~cm}, 168 \mathrm{~cm}$ và $210 \mathrm{~cm}$. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

BÀI GIẢNG ƯỚC CHUNG LỚN NHẤT VÀ MỘT SỐ TÍNH CHẤT