Category Archives: Lớp 10

Hệ phương trình – Phương pháp thế

Trong chương này đề cập đến một số phương pháp giải hệ phương trình cơ bản nhất: Phương pháp thế, phương pháp cộng đại số, phương pháp ẩn phụ, và phương pháp đánh giá. Qua các phương pháp chúng ta cũng đi qua một số dạng phương trình mẫu mực như: hệ phương trình đối xứng loại một, loại hai, hệ đẳng cấp, hệ hoán vị vòng quanh,…Ngoài ra là các hệ không mẫu mực ở mức độ vừa phải, không quá xấu về mặt hình thức, phù hợp với các bạn THCS.

1. Phương pháp thế

Nội dung phương pháp: Từ một trong các phương trình, tính được một hoặc nhiều biến theo một hoặc nhiều biến khác, sau đó thế hết vào các phương trình còn lại để số biến sẽ giảm lại.

Trong các phương pháp giải hệ phương trình thì Phương pháp thế là phương pháp quan trọng và được sử dụng nhiều nhất. Mục tiêu của việc thế là đưa hệ nhiều ẩn thành hệ ít ẩn hơn, hoặc đưa về phương trình một ẩn, từ đó có thể giải được bài toán.

Ví dụ 1: Giải hệ phương trình $ \left\{\begin{array}{l} x + 2y = 3\\ x^2-3y^2 + 4xy=2 \end{array} \right. $

Giải

$\left\{\begin{array}{l} x + 2y = 3 (1) \\x^2-3y^2 + 4xy=2 (2) \end{array} \right.$

Từ (1) ta có $x = 3-2y$, thế vào (2) ta có:

$(3-2y)^2-3y^2 + 4(3-2y)y = 2 \Leftrightarrow y^2 = 1 \Leftrightarrow \left[\begin{array}{l} y = 1\\ y=-1 \end{array} \right.$

Với $y = 1 \Rightarrow x = 1$.

Với $y = -1 \Rightarrow x = 5$.

Vậy hệ có 2 nghiệm $(x;y)$ là $(1;1), (5;-1)$.

Ví dụ 2: Giải hệ phương trình $\left\{ \begin{array}{l} 2x^2+x+y^2=7\\ xy-x+y=3 \end{array} \right.$

Giải

Nếu $x=-1$ thì phương trình thứ hai vô nghiệm.

Xét $x \ne -1.$ Từ phương trình thứ hai ta được

$xy-x+y=3 \Leftrightarrow y=\dfrac{x+3}{x+1}$.

Thay vào phương trình đầu của hệ ta được

$2x^2+x+\left( \dfrac{x+3}{x+1}\right) ^2=7$

$\Leftrightarrow (2x^2+x-6)+\left[ \left( \dfrac{x+3}{x+1}\right)^2 -1\right] =0$

$\Leftrightarrow (x+2)(2x-3)+\dfrac{4}{(x+1)^2}(x+2)=0$

$\Leftrightarrow x=-2 \ \text{hoặc} \ 2x^3+x^2-4x+1=0.$

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-1$.

Trường hợp $2x^3+x^2-4x+1=0  \Leftrightarrow (x-1)(2x^2+3x-1)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x=\dfrac{-3 \pm \sqrt{17}}{4}.$

Với $x=1$ thay vào phương trình thứ hai ta được $y=2.$

Với $x=\dfrac{-3 \pm \sqrt{17}}{4}$ thay vào phương trình thứ hai của hệ ta được $y=\dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-2;-1), (1;2), \left(\dfrac{-3\pm \sqrt{17}}{4}; \dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}\right)\right\} .$

Ví dụ 3: Giải hệ phương trình $\left\{\begin{array}{l} 2x^2y+3xy=4x^2+9y\\ 7y+6=2x^2+9x. \end{array} \right.$

Giải

Từ phương trình thứ hai suy ra $y=\dfrac{2x^2+9x-6}{7}$.

Thay vào phương trình thứ nhất ta được

$2x^2 \left( \dfrac{2x^2+9x-6}{7} \right) +3x \left(  \dfrac{2x^2+9x-6}{7} \right) =\dfrac{7.4x^2}{7}+9 \left( \dfrac{2x^2+9x-6}{7} \right) $

$\Leftrightarrow (2x^2+9x-6)(2x^2+3x-9)=28x^2$

$\Leftrightarrow 4x^4+24x^3-31x^2-99x+54=0$

$\Leftrightarrow \left( x-\dfrac{1}{2}\right) (x+2)(4x^2+18x-54)=0$

$\Leftrightarrow x=\dfrac{1}{2} \ \text{hoặc} \ x=2 \ \text{hoặc} \ x=\dfrac{-9 \pm \sqrt{33}}{4}.$

Trường hợp $x=\dfrac{1}{2}$ thay vào phương trình thứ hai ta được $y=-\dfrac{1}{7}$.

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-\dfrac{16}{7}$.

Trường hợp $x=\dfrac{-9 \pm \sqrt{33}}{4}$ thay vào phương trình thứ hai ta được $y=3$.

Vậy hệ có nghiệm $(x,y) \in \left\{ \left( \dfrac{1}{2}; – \dfrac{1}{7} \right) ;  \left( -2; -\dfrac{16}{7}\right) ;  \left( \dfrac{-9 \pm \sqrt{33}}{4}; 3\right) \right\} $.

Ví dụ 4: Giải hệ phương trình $\left\{\begin{array}{l} 1+x^3y^3=19x^3\\ y+xy^2=-6x^2. \end{array} \right.$

Giải

Nếu $x=0$ thì hệ vô nghiệm.

Xét $x \ne 0$. Nhân hai vế của phương trình thứ hai cho $x$ ta được $xy+x^2y^2=-6x^3.$

Thay vào phương trình thứ nhất ta được

$-6(1+x^3y^3)=19(xy+x^2y^2)$

$\Leftrightarrow xy=-\dfrac{2}{3} \ \text{hoặc} \ xy=-\dfrac{3}{2} \ \text{hoặc} \ xy=-1.$

Trường hợp $xy=-\dfrac{2}{3}$ thay vào phương trình thứ nhất ta được $\begin{cases} x=\dfrac{1}{3}&\\ y=-2 \end{cases}$.

Trường hợp $xy=-\dfrac{3}{2}$ ta được $\begin{cases}x=-\dfrac{1}{2}&\\y=3. \end{cases}$

Trường hợp $xy=-1$ ta được $x=0$ (loại).

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( \dfrac{1}{3}; -2\right) , \left( \dfrac{-1}{2};3\right) \right\} $.

Một số hệ phương trình nhiều khi phải biến đổi một vài bước thì mới xuất hiện phép thế.

Ví dụ 5:  Giải hệ phương trình $\begin{cases} xy+x+y=x^2-2y^2 &\\ x\sqrt{2y}-y\sqrt{x-1}=2(x-y). \end{cases}$

Giải

Điều kiện $x \ge1, y \ge 0.$

Phương trình thứ nhất tương đương

$(x+y)^2-(x+y)-3y^2-3xy=0$

$\Leftrightarrow (x+y)(x-2y-1)=0$

$\Leftrightarrow x=-y \ \text{hoặc} \ x=2y+1.$

Do $x \ge 1, y \ge 0$ nên trường hợp $x=-y$ không thể xảy ra.

Xét $x=2y+1$ thay vào phương trình thứ hai ta được

$(2y+1)\sqrt{2y}-y\sqrt{2y}=2y+2$

$\Leftrightarrow (y+1)(\sqrt{2y}-2)=0$

$\Leftrightarrow y=2 \ (\text{do} \ y \ge 0)$

Suy ra $x=5$.

Vậy hệ có nghiệm $(x,y)=(5,2).$

Trong ví dụ trên thì từ một phương trình ta phân tích thành thừa số, từ đó có những phương trình đơn giản hơn và sử dụng phương pháp thế.Ta xét tiếp ví dụ sau:

Ví dụ 6: Giải hệ phương trình $\begin{cases} xy+x-2=0&\\ 2x^3-x^2y+x^2+y^2-2xy-y=0. \end{cases}$

Giải

$2x^3-x^2y+x^2+y^2-2xy-y=0$

$\Leftrightarrow (x^2-y)(2x-y+1)=0$

$\Leftrightarrow y=x^2 \ \text{hoặc} \ y=2x+1.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1,1), \left( \dfrac{-1 \pm \sqrt{5}}{2}, \pm \sqrt{5}\right) \right\} $.

Ví dụ 7:  Giải hệ phương trình $\begin{cases} y^2=(5x+4)(4-x)&\\ y^2-5x^2-4xy+16x-8y+16=0 \end{cases}$

Giải

Viết lại phương trình thứ hai của hệ dưới dạng $ y^2-(4x+8)y-5x^2+16x+16=0.$

Coi đây là phương trình bậc hai theo $y$ ta được $\Delta=(4x+8)^2-4(-5x^2+16x+16)=36x^2.$

Suy ra $y=\dfrac{4x+8+6x}{2}=5x+4$ hoặc $y=\dfrac{4x+8-6x}{2}=4-x.$

Trường hợp $y=5x+4$ thay vào phương trình đầu của hệ ta được $x(5x+4)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=-\dfrac{4}{5}.$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), \left( -\dfrac{4}{5},0\right) \right\} $.

Trường hợp $y=4-x$ thay vào phương trình thứ nhất của hệ ta được $$x(4-x)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=4.$$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0)\right\} $.

Vậy hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0), \left( -\dfrac{4}{5},0\right) \right\} $.

Ngoài cách phân tích thành nhân tử, ta còn có một số biến đổi khác phức tạp hơn, ta xét các ví dụ sau:

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+y^2=x-y&\\ y^3-x^3=y-x^2 \end{cases}$.

Giải

Ta có $\begin{cases} x^2+y^2=x-y\\ y^3-x^3=y-x^2 \end{cases} $

$\Leftrightarrow \begin{cases} x(x-1)=-y(y+1)&\\ y(y-1)(y+1)=x^2(x-1). \end{cases}$

Thay phương trình thứ hai vào phương trình thứ nhất ta được

$ -x(x-1)(y-1)=x^2(x-1)$

$\Leftrightarrow x(x-1)(x+y-1)=0$

$\Leftrightarrow x=0 \ \text{hoặc} \ x=1 \ \text{hoặc} \   x=1-y.$

Trường hợp $x=0$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1-y$ thay vào phương trình thứ nhất ta được $y=0.$

Ví dụ 9: Giải phương trình $\begin{cases} (x-y)^4=13x-4&\\ \sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}. \end{cases}$

Giải

Điều kiện $\begin{cases} x+y \ge 0&\\ 3x-y \ge 0. \end{cases}$

Khi đó $\sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}$

$\Leftrightarrow x+y+3x-y+2\sqrt{(x+y)(3x-y)}=2$

$\Leftrightarrow 1-2x=\sqrt{(x+y)(3x-y)}$

$\Leftrightarrow \begin{cases} 4x^2-4x+1=3x^2+2xy-y^2&\\ x \le \dfrac{1}{2} \end{cases}$

$\Leftrightarrow \begin{cases} (x-y)^2=4x-1&\\ \dfrac{1}{4} \le x \le \dfrac{1}{2}. \end{cases}$

Thay vào phương trình đầu của hệ ta được

$(4x-1)^2=13x-4$

$\Leftrightarrow 16x^2-21x+5=0$

$\Leftrightarrow x=\dfrac{5}{16} \ \text{hoặc} \ x=1 \ \text{(loại)}.$

Với $x=\dfrac{5}{16}$ thì $y=-\dfrac{3}{16}$.

Vậy hệ có nghiệm $(x;y)$ là $\left(\dfrac{5}{16}; -\dfrac{3}{16}\right).$

2. Bài tập 

Bài 1: Giải các hệ phương trình sau

a) $\begin{cases} \sqrt{x+y}+\sqrt{2x-4}=5&\\ 2x+y=14 \end{cases}$

b) $\begin{cases} x+y=-1&\\ x^3-3x=y^3-3y& \end{cases}$

c) $\begin{cases} x^2y+2(x^2+y)=8&\\ xy+x+y=5 \end{cases}$

d) $\begin{cases} x^2+5x+y=9&\\ 3x^3+x^2y+2xy+6x^2=18 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} y^2-xy+1=0&\\ x^2+y^2+2x+2y+1=0& \end{cases}$

b) $\begin{cases} x^3-2xy+5y=7&\\ 3x^2-2x+y=3& \end{cases}$

c) $\begin{cases} x-\sqrt{y+1}=\dfrac{5}{2}&\\ y+2(x-3)\sqrt{x+1}=-\dfrac{3}{4}& \end{cases}$

d) $\begin{cases} x^4+2x^3y+x^2y^2=2x+9&\\ x^2+2xy=6x+6& \end{cases}$

e) $\begin{cases} x^2+1+y(y+x)=4y&\\ (x^2+1)(y+x-2)=y& \end{cases}$

f) $\begin{cases} x(x+y+1)-3=0&\\ (x+y)^2-\dfrac{5}{x^2}+1=0& \end{cases}$

Bài 3: Giải các hệ phương trình sau:

a) $\begin{cases}x-2y-\sqrt{xy}=0&\\ \sqrt{x-1}+\sqrt{4y-1}=2 \end{cases}$

b) $\begin{cases} \sqrt{2x-3}=(y^2+2018)(5-y)+\sqrt{y}&\\ y(y-x+2)=3x+3 \end{cases}$

c) $\begin{cases} 2x^2+4xy+2y^2+3x+3y-2=0&\\ x^2+y^2+4xy+2y=0 \end{cases} $

d) $\begin{cases} 2x^2+xy-y^2-5x+y+2=0&\\ x^2+y^2+x+y-4=0 \end{cases}$

e) $\begin{cases} 2x^2-5xy+3y^2=0&\\ x^2-2xy=-1& \end{cases}$

f) $\begin{cases} x^3+3x^2y+3xy^2+2y^3=0&\\ 4x^2+y^2=5& \end{cases}$

Bài 4: Giải các hệ phương trình sau

a) $\begin{cases} x+\dfrac{1}{x}=y+\dfrac{1}{y}&\\ x+2y=3& \end{cases}$

b) $\begin{cases} x^3-4y^3=6x^2y-9xy^2&\\ \sqrt{x+y}+\sqrt{x-y}=2& \end{cases}$

c) $\begin{cases} -x^2y+2xy^2+3y^3-4(x+y)=0&\\ xy(x^2+y^2) -1=3xy-(x+y)^2 \end{cases}$

d) $\begin{cases} \sqrt{x-1}+\sqrt{x}(3\sqrt{x}-y)+x\sqrt{x}=3y+\sqrt{y-1}&\\ 3xy^2+4=4x^2+2y+x \end{cases}$

e) $\begin{cases} x^2+y^2+\dfrac{2xy}{x+y}=1&\\ \sqrt{x+y}=x^2-y \end{cases}$

f) $\begin{cases} y^2-x\sqrt{\dfrac{y^2+2}{x}}=2x-2&\\ \sqrt{y^2+1}+\sqrt[3]{2x-1}=1 \end{cases}$

Bài 5: Giải các hệ phương trình sau:

a) $\begin{cases} 2x^2+y^2-3xy+3x-2y+1=0&\\ 4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}& \end{cases}$

b) $\begin{cases} 6\dfrac{x}{y}-2=\sqrt{3x-y}+3y&\\ 2\sqrt{3x+\sqrt{3x-y}}=6x+3y-4. \end{cases}$

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$

Phương trình vô tỉ – Phương pháp đặt ẩn phụ

1. Phương pháp đặt ẩn phụ

Phương pháp đặt ẩn phụ sử dụng khi phương trình chứa một biểu thức lặp đi lặp lại nhiều lần, việc đặt ẩn phụ đưa phương trình về một phương trình đơn giản hơn, hoặc là đưa về dạng phương trình đã biết cách giải. Có rất nhiều dạng đặt ẩn phụ với nhiều dạng toán khác nhau, ở đây chúng tôi chỉ trình bày những dạng bài tập phù hợp nhất với chương trình trung học cơ sở, không đi sâu quá vào các ẩn phụ mẹo mực khác.

Chú ý. Khi đặt ẩn phụ thì nhớ đặt điều kiện cho ẩn phụ để giảm được các trường hợp cần xét.

Ví dụ 1: Giải phương trình $\sqrt{x^2-x+3}-\sqrt{-x^2+x+2}=1$.

Giải

Đặt $t=\sqrt{-x^2+x+2}, t \ge 0$. Khi đó $t^2=-x^2+x+2 \Leftrightarrow x^2-x+3=5-t^2.$

Phương trình trở thành

$ \sqrt{5-t^2}-t=1$

$\Leftrightarrow \sqrt{5-t^2}=t+1$

$\Leftrightarrow 5-t^2 = (t+1)^2$

$\Leftrightarrow t^2+t-2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=-2(l)$

$\Leftrightarrow \sqrt{-x^2+x+2}=1$

$\Leftrightarrow x^2-x-1=0$

$\Leftrightarrow x=\dfrac{1 \pm \sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{1 \pm \sqrt{5}}{2}.$

Ví dụ 2: Giải phương trình $2x^2-6x+7=5\sqrt{x^2-3x+5}$.

Giải

Đặt $t=\sqrt{x^2-3x+5}, t \ge 0$.

Khi đó phương trình trở thành

$2t^2-3=5t$

$\Leftrightarrow 2t^2-5t-3=0$

$\Leftrightarrow t=3 \ \text{hoặc}\   t=-\dfrac{1}{2}(l)$

$\Leftrightarrow \sqrt{x^2-3x+5}=3$

$\Leftrightarrow x^2-3x-4=0$

$\Leftrightarrow x=-1 \ \text{hoặc} \ x=4. $

Vậy phương trình có hai nghiệm $x=-1$ hoặc $x=4.$

Ví dụ 3: Giải phương trình $(x-1)^2+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=12$.

Giải

Điều kiện $\dfrac{x-3}{x+1} \ge 0 \Leftrightarrow x<-1$ hoặc $x \ge 3.$

Khi đó phương trình tương đương

$(x^2-2x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8$

$\Leftrightarrow (x+1)(x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8.$

Đặt $t=(x+1) \sqrt{\dfrac{x-3}{x+1}} \Rightarrow t^2=(x+1)(x-3)$.

Khi đó phương trình trở thành $t^2+2t-8=0 \Leftrightarrow t=2 \ \text{hoặc} \ t=-4.$

Trường hợp $t=2 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=2$

$\Leftrightarrow \begin{cases} x \ge -1\\ (x+1)(x-3) =4 \end{cases}$

$\Leftrightarrow \begin{cases} x \ge -1\\ x^2-2x-7=0 \end{cases}$

$\Leftrightarrow x=1+2\sqrt{2}.$

Trường hợp $t=-4 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=-4$

$\Leftrightarrow \begin{cases} x \le -1\\ (x+1)(x-3) =16 \end{cases}$

$\Leftrightarrow \begin{cases} x \le -1\\ x^2-2x-19=0 \end{cases}$

$\Leftrightarrow x=1-2\sqrt{5}.$

Thử lại ta nhận $x=1+2\sqrt{2}$ và $x=1-2\sqrt{5}$ là hai nghiệm của phương trình.

Trên đây là các phương trình mà ta thấy rõ được biểu thức $f(x)$ lặp đi lặp lại, trong một số trường hợp khác $f(x)$ không xuất hiện một cách tường mình, mà phải thông qua một số biến đổi thì mới xuất hiện. Ta xem các ví dụ sau:

Ví du 4: Giải phương trình $x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$.

Giải

Điều kiện $x-\dfrac{4}{x} \ge 0 \Leftrightarrow -2 \le x <0 $ hoặc $x \ge 2.$

Khi đó phương trình

$x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$

$\Leftrightarrow x+3\sqrt{x-\dfrac{4}{x}}=10+\dfrac{4}{x}$

$\Leftrightarrow x-\dfrac{4}{x}+3\sqrt{x-\dfrac{4}{x}}-10=0.$

Đặt $t=\sqrt{x-\dfrac{4}{x}}, t \ge 0$. Phương trình trở thành:

$ t^2+3t-10=0$

$\Leftrightarrow t=2 \ \text{hoặc} \ t=-5(l)$

$\Leftrightarrow \sqrt{x-\dfrac{4}{x}}=2$

$\Leftrightarrow x-\dfrac{4}{x}=4$

$\Leftrightarrow x^2-4x-4=0$

$\Leftrightarrow x=2\pm 2\sqrt{2}.$

So sánh với điều kiện ta được phương trình có hai nghiệm $x=2 \pm 2\sqrt{2}.$

Ví dụ 5: Giải phương trình $\sqrt{1+x}+2\sqrt{1-x}=3\sqrt[4]{1-x^2}$

Giải

Điều kiện $-1 \le x \le 1.$

Dễ thấy $x=1$ không là nghiệm của phương trình. Xét $x \ne 1.$

Khi đó phương trình tương đương $\sqrt{\dfrac{1+x}{1-x}}+2=3\sqrt[4]{\dfrac{1+x}{1-x}}.$

Đặt $t=\sqrt[4]{\dfrac{1+x}{1-x}}$, phương trình trở thành

$t^2-3t+2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=2.$

  • Trường hợp $t=1 \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=1 \Leftrightarrow \dfrac{1+x}{1-x}=1 \Leftrightarrow x=0.$
  • Trường hợp $t=2  \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=2 \Leftrightarrow \dfrac{1+x}{1-x}=16  \Leftrightarrow x=\dfrac{15}{17}.$

Vậy phương trình có nghiệm $x=0$ hoặc $x=\dfrac{15}{17}.$

Trong một số trường hợp phức tạp hơn, ta đặt ẩn phụ một biểu thức, và tính các biểu thức còn lại theo ẩn phụ. Ta xem ví dụ sau:

Ví dụ 6: Giải phương trình $\sqrt{11-x}+\sqrt{x+2}+2\sqrt{22+9x-x^2}=17$.

Giải

Điều kiện $-2 \le x \le 11.$

Đặt $t=\sqrt{11-x}+\sqrt{x+2}, t \ge 0$. Khi đó

$t^2=13+2\sqrt{(11-x)(x+2)}$

$\Rightarrow 2\sqrt{22+9x-x^2}=t^2-13.$

Phương trình trở thành

$t+t^2-13=17$

$\Leftrightarrow t^2+t-30=0$

$\Leftrightarrow t=5 \ \text{hoặc} \ t=-6(l).$

$\Leftrightarrow \sqrt{11-x}+\sqrt{x+2}=5$

$\Leftrightarrow \sqrt{22+9x-x^2}=6$

$\Leftrightarrow x^2-9x+14=0$

$\Leftrightarrow x=2 \ \text{hoặc} \ x=7.$

Vậy phương trình có nghiệm $x=2$ hoặc $x=7.$

Sau đây là cách đặt ẩn phụ để đưa phương trình thành một phương trình hai ẩn, từ đó giải ẩn này theo ẩn kia để thiết lập một phương trình đơn giản hơn phương trình đã cho.

Ví dụ 7: Giải phương trình $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$.

Giải

Ta có $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$

$\Leftrightarrow 4(2x+1)^2-5(3x^2+4)=(2x+1)\sqrt{3x^2+4}$

Đặt $\begin{cases} a=2x+1&\\ b=\sqrt{3x^2+4}, b \ge 2. \end{cases}$

Phương trình trở thành

$4a^2-5b^2=ab$

$\Leftrightarrow 4a^2-ab-5b^2=0$

$\Leftrightarrow a=-b \ \text{hoặc} \ a=\dfrac{5}{4}b.$

  • Trường hợp $a=-b$ ta có:

$ \sqrt{3x^2+4}=-(2x+1)$

$\Leftrightarrow \begin{cases} x \le -\dfrac{1}{2}&\\ x^2+4x-3=0 \end{cases}$

$\Leftrightarrow x=-2-\sqrt{7}$

  • Trường hợp $a=\dfrac{5}{4}b$ ta có:

$5\sqrt{3x^2+4}=4(2x+1)$

$\Leftrightarrow \begin{cases} x \ge -\dfrac{1}{2}&\\ 11x^2-64x+84=0 \end{cases}$

$\Leftrightarrow x=\dfrac{42}{11} \ \text{hoặc} \ x=2.$

Vậy phương trình có các nghiệm $x=-2-\sqrt{7}, x=\dfrac{42}{11}$ hoặc $x=2.$

Ví dụ 8: Giải phương trình $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$.

Giải

Ta có  $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$

$\Leftrightarrow \sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{-(x^2+1)+2(x^2+2x+3)}.$

Đặt $\begin{cases} a=\sqrt{x^2+1}, a \ge 1&\\ b=\sqrt{x^2+2x+3}, b \ge \sqrt{2}. \end{cases}$.

Phương trình trở thành:

$a+2b=3\sqrt{-a^2+2b^2}$

$\Leftrightarrow (a+2b)^2=9(-a^2+2b^2)$

$\Leftrightarrow 5a^2+2ab-7b^2=0$

$\Leftrightarrow (a-b)(5a+7b)=0$

$\Leftrightarrow a=b$.

Khi đó ta có

$\sqrt{x^2+1}=\sqrt{x^2+2x+3}$

$\Leftrightarrow x^2+1=x^2+2x+3$

$\Leftrightarrow x=-1$.$

Vậy nghiệm của phương trình là $x=-1.$

Ví dụ 9: Giải phương trình $\sqrt{1+x}-2\sqrt{1-x}-3\sqrt{1-x^2}=x-3$.

Giải

Điều kiện $-1 \le x \le 1$.

Đặt $\begin{cases} a=\sqrt{x+1}, a \ge 1&\\b=\sqrt{1-x}, b \ge 0 \end{cases}$.

Khi đó $x-3=-a^2-2b^2$ và phương trình trở thành

$a-2b-3ab=-a^2-2b^2$

$\Leftrightarrow (a^2-3ab+2b^2)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b+1)=0$

$\Leftrightarrow a=2b \ \text{hoặc} \ b=a+1.$

  • Trường hợp $a=2b$ ta có:

$\sqrt{1+x}=2\sqrt{1-x}$

$\Leftrightarrow \begin{cases} -1 \le x \le 1&\\ 1+x=4(1-x) \end{cases}$

$\Leftrightarrow x=\dfrac{3}{5}.$

  • Trường hợp $b=a+1$ ta có:

$ \sqrt{1-x}=\sqrt{1+x}+1$

$\Leftrightarrow 1-x=x+2+2\sqrt{1+x}$

$\Leftrightarrow 2\sqrt{1+x}=-2x-1$

$\Leftrightarrow \begin{cases} -1 \le x \le -\dfrac{1}{2}&\\ 4(1+x)=(2x+1)^2 \end{cases}$

$\Leftrightarrow \begin{cases} -1 \le x \le \dfrac{1}{2}&\\ x^2=\dfrac{3}{4} \end{cases}$

$\Leftrightarrow x=-\dfrac{\sqrt{3}}{2}.$

Vậy phương trình có hai nghiệm $x=\dfrac{3}{5}$ hoặc $x=-\dfrac{\sqrt{3}}{2}.$

Ví dụ 10: Giải phươg trình $x^2+5x-3=2(2x+3)\sqrt{x-1}$.

Giải

Điều kiện $x \ge 1.$

Khi đó $x^2+5x-3=2(2x+3)\sqrt{x-1}$

$\Leftrightarrow 3(x-1)-2(2x+3)\sqrt{x-1}+x^2+2x=0$

Đặt $t=\sqrt{x-1}, t \ge 0$. Ta được $3t^2-2(2x+3)t+x^2+2x=0.$

Đặt $\Delta’=(2x+3)^2-3(x^2+2x)=(x+3)^2.$

Do đó phương trình trên có hai nghiệm $t=x+2$ hoặc $t=\dfrac{x}{3}$.

  • Trường hợp $t=x+2$

$\Leftrightarrow \sqrt{x-1}=x+2$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2+3x+5=0 \end{cases} \ \text{(vô nghiệm)}.$

  • Trường hợp $t=\dfrac{x}{3}$

$\Leftrightarrow 3\sqrt{x-1}=x$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2-9x+9=0 \end{cases}$

$\Leftrightarrow x=\dfrac{9 \pm 3\sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{9 \pm 3\sqrt{5}}{3}.$

Ngoài ra còn có cách đặt ẩn phụ đưa về hệ phương trình, ta xét ví dụ sau:

Ví dụ 11: Giải phương trình: $\sqrt[3]{7+x} – \sqrt{2-x}=1$

Giải

Phương trình có nhiều dấu căn bậc khác nhau, và biểu thức trong căn lại có mối liên hệ khá rõ ràng.

Ta đặt $u = \sqrt[3]{7+x}, v = \sqrt{2-x}$ ta có hệ $\left\{ \begin{array}{l} u – v = 1\\ u^3 + v^2 = 9 \end{array} \right. $.

Sử dụng phương pháp thế ta có $\left\{ \begin{array}{l} v = u-1\\ u^3 + (u-1)^2 – 9 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} v=u-1\\ u^3+u^2-2u-8 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} u = 2\\ v = 1\end{array}\right. $.

Từ đó giải ra $x = 1$ là nghiệm.

2. Bài tập rèn luyện

Bài 1: Giải các phương trình sau

a) $\sqrt{2x^2-4x+8} + \sqrt{2x^2-4x+3} = 5$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $(x+4)(x+1)-3\sqrt{x^2+5x+2}=6$

d) $4x^2+10x+9=5\sqrt{2x^2+5x+3}$

Bài 2: Giải các phương trình sau:

a) $1+\dfrac{2}{3} \sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}$

b) $\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$

c) $\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}$

d)$\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$.

Bài 3: Giải các phương trình sau

a) $\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=7$

b) $\dfrac{4x-1}{\sqrt{4x-3}}+\dfrac{11-2x}{\sqrt{5-x}}=\dfrac{15}{2}$

c) $\dfrac{3-x}{\sqrt{13-6x}}+\dfrac{3+x}{\sqrt{13+6x}}=2$

Bài 4: Giải các phương trình sau:

a) $2x^2+5x-1=7 \sqrt{x^3-1}$

b) $2(x^2+2)=5 \sqrt{x^3+1}$

c) $\sqrt{5x^2+14x+9}-\sqrt{x^2-x+20}=5 \sqrt{x+1}$

d) $(x^2-6x+11) \sqrt{x^2-x+1}=2(x^2-4x+7) \sqrt{x-2}$

Bài 5: Giải các phương trình sau:

a) $2 \sqrt{\dfrac{3x-1}{x}}=\dfrac{x}{3x-1}+1$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $2(1-x)\sqrt{x^2+2x-1}=x^2-2x-1$

d) $(x+4)(x+1)-3 \sqrt{x^2+5x+6}+4=0$

e) $(x-1)(x+2)+2(x-1) \sqrt{\dfrac{x+2}{x-1}}=8$

f) $\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2$.

Đề thi HK1 môn toán lớp 10 (không chuyên) trường Phổ Thông Năng Khiếu năm học 2020-2021

Bài 1. (2 điểm). Giải các phương trình:

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$

b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$

Bài 2 (1 điểm). Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.

Bài 3 (1 điểm). Chứng minh $\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] = \dfrac{1}{{1 + \cos x}}$

Bài 4 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} mx – \left( {m + 1} \right)y = 1\\ \left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m \end{array} \right.$ ($m$ là tham số).

a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.

b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$

Bài 5 (1 điểm). Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là $4$. Tìm $m$ và tọa độ đỉnh của $(P)$.

Bài 6 (2 điểm). Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.

a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $

b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.

Bài 7 (2 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.

a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $

b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Giải

Bài 1.

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $

Điều kiện: $x>2$

$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l} x=1 \quad (l) \\ x=-1 \quad (l) \\ x=3 \quad (n) \\ x=-3 \quad (l) \end{array} \right. $

Vậy $S=\left\{ 3 \right\} $

b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ \sqrt{x^2 -x +3 } = x-6 \ (*) \end{array}\right. $

$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\ x^2 -x +3 = (x-6)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l}  x\ge 6\\ x=3\end{array}\right. $

$\Leftrightarrow x\in \emptyset$

Vậy $S=\left\{ 0\right\} $

Bài 2. ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l} m+2\ne 0\\\\ \dfrac{1}{m+2}\ne 0\\\\ \dfrac{1}{m+2}\ne 1 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne -2\\ m\ne -1 \end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$

Bài 3.

$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$

Bài 4.

a) Ta có: $D=\left| \begin{array}{*{20}{c}} {m}&{-(m+1)}\\ {2-m}&{m-3} \end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}} {1} & {-(m+1)}\\ {3-2m} & {m-3} \end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}} {m} & {1}\\ {2-m} & {3-2m} \end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$

b) Ta có: $\left\{ \begin{array}{l} x_0 = \dfrac{D_x}{D} = m\\\\ y_0= \dfrac{D_y}{D} = m-1 \end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$

Bài 5. Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$

Tọa độ đỉnh $I( -1;3)$

 

Bài 6.

a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$

b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$

 

Bài 7.

a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$

$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$

$\Leftrightarrow \left\{ \begin{array}{l} x-6 = -5\\ y-1=1 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x=1\\ y=2 \end{array}\right. $

Vậy $M(1;2)$

b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l} IA = IB\\ IA = IC \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} 5x_I -y_I =12\\ (5-y_I)^2 = (1-y_I)^2 \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} x_I=3\\ y_I=3 \end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l} y_E =1\\ y_E =5 \end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2020-2021

Bài 1 (3 điểm). Giải các phương trình và hệ phương trình sau:

a} $|2x^2+2x+3|=x+3$

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right.$

Bài 2 (2 điểm). Tìm giá trị tham số $m$ sao cho:

a) Phương trình $(m^2-2m)x+2-m=0$ vô nghiệm.

b) Phương trình $x^2-(2m+1)x+m^2+1=0$ có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm). Tìm giá trị lớn nhất của hàm số $y=f(x)=x(3-2x)$ khi $0\le x\le \dfrac{3}{2}$.

Bài 4 (2 điểm). Cho $\triangle ABC$ có $I$ là trung điểm cạnh $AB$.

a) Chứng minh $CA^2 + CB^2 = 2CI^2 + \dfrac{AB^2}{2}$.

b) Tìm tập hợp các điểm $M$ sao cho $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$.

Bài 5 (2 điểm). Trong mặt phẳng tọa độ $Oxy$, cho $\triangle ABC$ có $A(-5;0)$, $B(1;0)$, $C(2;3)$.

a) Tìm tọa độ tâm $I$ của đường tròn ngoại tiếp $\triangle ABC$.

b) Tìm tọa độ điểm $M$ thuộc tia $Oy$ sao cho $|2MA – MB|$ nhỏ nhất.

Giải

Bài 1  (3 điểm).

a) $|2x^2+2x+3|=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x+3\ge 0\\ \left[ \begin{array}{l} 2x^2 +2x+3 = x+3\\ 2x^2 +2x+3 = -x-3 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} 2x^2 +x =0\\ 2x^2 +3x +6=0 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2} \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2}\end{array}\right. $

Vậy $S=\left\{ 0;-\dfrac{1}{2}\right\} $.

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$ $(1)$

Điều kiện xác định: $x\ge \dfrac{1}{2}$

$(1) \Leftrightarrow \sqrt{2x-1} -1 + \sqrt{x}-1 +x^2 -1=0$

$\Leftrightarrow \dfrac{2(x-1)}{\sqrt{2x-1}+1} + \dfrac{x-1}{\sqrt{x}+1}+ (x-1)(x+1)=0$

$\Leftrightarrow (x-1) \left( \dfrac{2}{\sqrt{2x-1}+1} + \dfrac{1}{\sqrt{x}+1} + x+1\right) =0$

$\Leftrightarrow x=1$ (nhận)

Vậy $S=\left\{ 1\right\} $.

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x+y = 5\\ xy=6 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ -y^2 +5y -6=0 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ \left[ \begin{array}{l} y=3\\ y=2 \end{array}\right.\end{array}\right. $
$\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x=2\\ y=3 \end{array}\right. \\ \left\{ \begin{array}{l} x=3\\ y=2\end{array}\right. \end{array}\right. $\
Vậy $(x;y)\in \left\{ (2;3); (3;2)\right\} $.

Bài 2 (2 điểm).

a) Ta có: $(m^2-2m)x+2-m=0 \Leftrightarrow (m^2 -2m)x = m-2 \ (2)$
$(2)$ vô nghiệm khi và chỉ khi $\left\{ \begin{array}{l} m^2 -2m =0\\ m-2\ne 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne 2\\ \left[ \begin{array}{l} m=0\\ m=2 \end{array}\right. \end{array}\right. $ $\Leftrightarrow m=0$

Vậy $m=0$ thì phương trình $(2)$ vô nghiệm.

b) $x^2-(2m+1)x+m^2+1=0$ $(3)$

Ta có: $\Delta = (2m+1)^2 -4(m^2 +1) = 4m-3$

Phương trình $(3)$ có $2$ nghiệm dương phân biệt khi và chỉ khi

$\left\{ \begin{array}{l} \Delta >0\\ S>0\\ P>0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 4m-3>0\\ 2m+1>0\\ m^2 +1 >0 \text{ (luôn đúng) } \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m>\dfrac{3}{4}\\ m>-\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow m>\dfrac{3}{4}$

Vậy $m>\dfrac{3}{4}$ thì phương trình $(3)$ luôn có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm).

Ta có: $y=x(3-2x) = -2x^2 +3x$

Tập xác định: $D=\mathbb{R}$

Tọa độ đỉnh: $I\left( \dfrac{3}{4};\dfrac{9}{8}\right) $
Với $0\le x\le \dfrac{3}{2}$ ta có bảng sau:

Vậy giá trị lớn nhất của hàm số $y=\dfrac{9}{8}$ khi $x=\dfrac{3}{4}$.

Bài 4 (2 điểm).

a) Ta có: $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$, $IA^2= IB^2 = \dfrac{AB^2}{4}$

Ta có: $CA^2 + CB^2 = \overrightarrow{CA}^2 + \overrightarrow{CB}^2 = \left( \overrightarrow{CI} + \overrightarrow{IA}\right) ^2 + \left( \overrightarrow{CI} + \overrightarrow{IB}\right) ^2$

$= 2CI^2 + 2\overrightarrow{CI}\left( \overrightarrow{IA} + \overrightarrow{IB}\right) + IA^2 + IB^2 = 2CI^2 + \dfrac{AB^2}{2}$

b) Ta có: $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$ $\Leftrightarrow 2\overrightarrow{MI} \cdot \overrightarrow{CB}=0$ $\Rightarrow MI \bot CB$
Vậy $M$ thuộc đường thẳng đi qua $I$ và vuông góc với $BC$.

Bài 5 (2 điểm).
a) Gọi $E$, $F$ lần lượt là trung điểm của $AB$, $AC$ suy ra $E(-2;0)$, $F\left( -\dfrac{3}{2};\dfrac{3}{2}\right) $

$\overrightarrow{AB}=(6;0)$, $\overrightarrow{AC}= (7;3)$, $\overrightarrow{EI} = \left( x_I +2; y_I\right) $, $\overrightarrow{FI}= \left( x_I + \dfrac{3}{2}; y_I – \dfrac{3}{2}\right) $

Ta có: $\left\{ \begin{array}{l} EI \bot AB\\ FI \bot AC \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{EI}\cdot \overrightarrow{AB} = 0\\ \overrightarrow{FI}\cdot \overrightarrow{AC}=0 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} 6\left( x_I+2\right) =0\\ 7\left( x_I+\dfrac{3}{2}\right) + 3\left( y_I-\dfrac{3}{2}\right) =0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_I=-2\\ y_I=\dfrac{8}{3}\end{array}\right. $

Vậy $I\left( -2;\dfrac{8}{3}\right) $.

b) Gọi $M(0;y)$ $(y\ge 0)$.

Ta có: $|2MA -MB| = |2\sqrt{y^2 +25}- \sqrt{y^2+1}| = 2\sqrt{y^2+25} – \sqrt{y^2 +1}=m$ $(m\ge 0)$

Khi đó ta có phương trình: $2\sqrt{y^2+25} – \sqrt{y^2+1} =m$ $(*)$

Ta đi tìm $m$ nhỏ nhất để phương trình $(*)$ có nghiệm không âm.

Đặt $t= \sqrt{y^2+1}$ $(t\ge 1)$

Khi đó: $2\sqrt{t^2 +24} =m+t$

$\Leftrightarrow 4t^2 +96 = t^2 + 2mt + m^2$

$\Leftrightarrow 3t^2 -2mt-m^2 +96=0$ $(**)$

$(*)$ có nghiệm không âm khi và chỉ khi $(**)$ có nghiệm lớn hơn hoặc bằng $1$.
Ta có: $\Delta’ = m^2 -3(-m^2 + 96) = 4m^2 – 288 \ge 0 \Leftrightarrow m^2 \ge 72$

Nếu $m^2 =72 \Rightarrow m=6\sqrt{2}$ thay vào $(**)$ ta tìm được $t=2\sqrt{2}$ thỏa yêu cầu và $m=6\sqrt{2}$ cũng là $m$ nhỏ nhất.
Với $t=2\sqrt{2} \Leftrightarrow y=\sqrt{7}$
Vậy $M(0;\sqrt{7})$.

Đề thi HK1 môn toán 10AB trường chuyên Lê Hồng Phong năm học 2020-2021

Bài 1 (1 điểm). Cho $(P):y=ax^{2}+bx+c$. Tìm $a$, $b$, $c$ biết $(P)$ có trục đối xứng là đường thẳng $x=2$ và $(P)$ qua hai điểm $A(0;1)$, $B(1;-2)$.

Bài 2 (1 điểm). Giải phương trình: $\sqrt{ x^2-3x+2}=x-1$.

Bài 3 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} (m+1)x+6y=m^2+3m+5\\ x+my=m^3-3 \end{array}\right.$.

Tìm tất cả các giá trị của tham số $m$ sao cho hệ phương trình có nghiệm.

Bài 4 (1 điểm). Giải hệ phương trình $\left\{ \begin{array}{l} x+2y=5\\  x^2+y^2+3xy=11 \end{array} \right.$.

Bài 5 (1 điểm). Cho phương trình $\dfrac{2x^{2}-8x+m}{x^{2}-4x+3}=1$. Tìm tất cả các giá trị của tham số $m$ để phương trình có nghiệm.

Bài 6 (3 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ biết $A(2;-1)$, $B(1;2)$, $C(4;3)$.

a) Chứng minh $ABC$ là tam giác vuông cân.

b) Tìm giao điểm của đường thẳng $AB$ và trục tung.

c) Tìm tọa độ điểm $D$ sao cho $ABCD$ là hình thang có $AD//BC$ và diện tích $ABCD$ bằng 15.

Bài 7 (1 điểm). Cho hình vuông $ABCD$ cạnh $a$, gọi $I$ là giao điểm của $AC$ và $BD$. $M$ là điểm thỏa $MA^{2}+2MB^{2}+MC^{2}+2MD^{2}=12a^2$, tính $MI$.

Bài 8 (1 điểm). Cho các số thực $x$, $y$ thảo $x^{2} + y^{2}+xy=3$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của $P=x^{4}+y^{4}+2(x^{2}+y^{2})+12xy$.

Đáp án

Bài 1 (1 điểm).

Ta có: $\left\{ \begin{array}{l}\dfrac{-b}{2a} =2\\ A(0;1) \in (P)\\B(1;-2) \in (P)\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}b=-4a\\ c=1\\ a+b+c=-2\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}a=1\\ b=-4\\ c=1\end{array}\right. $

Vậy $(P): y= x^2 -4x +1$.

Bài 2 (1 điểm).

$\sqrt{x^2 -3x +2} = x-1$ $\Leftrightarrow \left\{ \begin{array}{l}x-1\ge 0\\ x^2 -3x +2 = \left( x-1\right) ^2\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x\ge 1\\ x^2 -3x +2 = x^2 -2x +1\end{array}\right. $ $\Leftrightarrow x=1$

Vậy $S=\left\{ 1\right\} $.

Bài 3 (1 điểm).

$\left\{ \begin{array}{l}(m+1)x + 6y = m^2 +3m +5\\ x + my = m^3 -3\end{array}\right. $

Ta có: $D=\left| \begin{array}{*{20}{c}}{m+1}&{6}\\ {1}&{m}\end{array}\right|$ $=m(m+1) – 6 = m^2 +m -6$

$D_x=\left| \begin{array}{*{20}{c}}{m^2 +3m +5}&{6}\\ {m^3- 3}&{m}\end{array}\right|$ $=m(m^2+3m +5) – 6(m^3 -3)$

   $ = -5m^3 +3m^2 +5m +18 $

$D_y=\left| \begin{array}{*{20}{c}}{m+1}&{m^2 +3m+5}\\ {1}&{m^3 -3}\end{array}\right|$ $=(m+1)(m^3 -3) – (m^2 +3m +5)$ $ = m^4 + m^3 -m^2 -6m -8$

Hệ phương trình có nghiệm khi và chỉ khi $\left[ \begin{array}{l}D \ne 0\\ D = D_x = D_y =0\end{array}\right. $

  • Trường hợp 1: $D \ne 0 \Leftrightarrow m^2 +m -6 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m\ne -3\\ m\ne 2\end{array}\right. $
  • Trường hợp 2: $D = D_x =D_y =0 \Leftrightarrow m=2$

Vậy hệ phương trình có nghiệm khi $m=2$ hoặc $m\ne -3 $

Bài 4 (1 điểm). 

$\left\{ \begin{array}{l}x+2y=5\\ x^2 + y^2 + 3xy =11\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x=5-2y\\ \left( 5-2y\right) ^2 + y^2 + 3y\left( 5-2y\right) =11\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x=5-2y\\ y^2 +5y -14 =0\end{array}\right. $ $\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l}x=19\\ y=-7\end{array} \right. \\  \left\{ \begin{array}{l}x=1\\ y=2\end{array} \right.\end{array}\right. $

Vậy nghiệm của hệ phương trình là: $\left( 19;-7\right) $, $\left( 1;2\right) $.

Bài 5 (1 điểm). 

Điều kiện xác định: $x\ne 1$, $x\ne 3$

$\dfrac{2x^2 -8x+m}{x^2 -4x +3}=1$  $(1)$

$\Leftrightarrow 2x^2 -8x +m = x^2 -4x +3 $

$\Leftrightarrow x^2 -4x +m-3 =0$  $(2)$

$\Delta’ = 4 – (m-3) = 7-m$

  • Trường hợp 1: $\Delta’ =0 \Leftrightarrow m=7$ thì (2) có nghiệm kép $x_1 = x_2 =2$ (nhận).
  • Trường hợp 2: $\Delta’ >0 \Leftrightarrow m<7 $

Phương trình $(1)$ có nghiệm khi $1$ và $3$ không đồng thời là nghiệm của $(2)$

$\Leftrightarrow \left[ \begin{array}{l}1 – 4\cdot 1 + m-3 \ne 0\\ 9 – 4\cdot 3 + m-3 \ne 0\end{array}\right. $ $\Leftrightarrow m\ne 6$

Vậy $m=7$ hoặc $\left\{ \begin{array}{l}m<7\\ m\ne 6\end{array}\right. $ thì phương trình $(1)$ có nghiệm.

Bài 6 (3 điểm).

a) Ta có: $AB= \sqrt{10}$, $AC = 2\sqrt{5}$, $BC= \sqrt{10}$

$\triangle ABC$ có: $\left\{\begin{array}{l}AB = AC\\ AB^2 + BC^2 = AC^2\end{array}\right. $ $\Rightarrow \triangle ABC$ vuông cân tại $B$.

b) Gọi $M=AB\cap Oy \Rightarrow M(0;m)$

$\overrightarrow{AB}= (-1;3)$, $\overrightarrow{AM}=(-2;m+1)$

$M,\, A,\, B$ thẳng hàng nên $\overrightarrow{AB}$ và $\overrightarrow{AM}$ cùng phương                              $\Rightarrow \dfrac{-2}{-1}=\dfrac{m+1}{3} \Rightarrow m=5$

Vậy $M(0;5)$

c) $S_{ABCD} = \dfrac{1}{2}AB \left( BC + AD\right) $

$\Rightarrow 15 = \dfrac{1}{2}\cdot \sqrt{10} \left( \sqrt{10} + AD\right) $

$\Rightarrow AD = 2\sqrt{10} = 2BC$

$\overrightarrow{BC} = (3;1)$, $\overrightarrow{AD} = (x_D -2; y_D +1)$

Ta có: $\overrightarrow{AD}$ và $\overrightarrow{BC}$ cùng hướng, $AD = 2BC$

$\Rightarrow \overrightarrow{AD} = 2\overrightarrow{BC} \Rightarrow \left\{ \begin{array}{l}x_D -2 = 6\\ y_D +1 = 2\end{array}\right. $ $\Rightarrow \left\{ \begin{array}{l}x_D = 8\\ y_D =1 \end{array} \right. $

Vậy $D(8;1)$.

Bài 7 (1 điểm).

Ta có: $\overrightarrow{IA} + \overrightarrow{IC} = \overrightarrow{IB} + \overrightarrow{ID} = \overrightarrow{0}$, $IA = IB = IC = ID = \dfrac{a\sqrt{2}}{2}$

Ta có: $12a^2= MA^2 + 2MB^2 + MC^2 + 2MD^2 $

$=\left( \overrightarrow{MI} + \overrightarrow{IA}\right) ^2 + 2\left( \overrightarrow{MI} + \overrightarrow{IB}\right) ^2 + \left( \overrightarrow{MI} + \overrightarrow{IC}\right) ^2 + 2\left( \overrightarrow{MI} + \overrightarrow{ID} \right) ^2 $

$=6MI^2 + IA^2 + 2IB^2 + IC^2 + 2ID^2 + 2\overrightarrow{MI} \left( \overrightarrow{IA} + \overrightarrow{IC} + 2\overrightarrow{IB} + 2\overrightarrow{ID}\right) $

$=6MI^2 + 3a^2$

$\Rightarrow MI^2 = \dfrac{3}{2}a^2 \Rightarrow MI = \dfrac{a\sqrt{6}}{2}$

Vậy $MI = \dfrac{a\sqrt{6}}{2}$

Bài 8 (1 điểm).

Ta có: $x^2 + y^2 +xy =3 \Rightarrow \left( x+y\right) ^2 -xy =3$ $\Rightarrow 3+xy = \left( x+y\right) ^2 \ge 0$ $\Rightarrow xy\ge -3$

Dấu “=” xảy ra khi $\left\{ \begin{array}{l}x=\sqrt{3}\\ y=-\sqrt{3}\end{array}\right. $ hoặc ngược lại.

Lại có: $x^2 + y^2 + xy =3 \Rightarrow \left( x-y\right) ^2 + 3xy =3$ $\Rightarrow 3-3xy = \left( x-y\right) ^2 \ge 0$ $\Rightarrow xy \le 1$

Dấu “=” xảy ra khi $x=y=1$

Đặt $t=xy \Rightarrow t\in [-3;1]$

$P =x^4 + y^4 + 2\left( x^2 + y^2\right) + 12xy$

$= \left( x^2 + y^2\right) ^2 -2x^2y^2 + 2\left( x^2 + y^2\right) +12xy$

$=\left( 3-t\right) ^2 -2t^2 + 2\left( 3-t\right) + 12t$

$= -t^2 + 4t+15$

Vậy $P_{min} = -6$, $P_{max} = 18$

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2018-2019

Bài 1. Giải các phương trình và hệ phương trình sau
a) $1-\sqrt{5-3 x+x^{2}}=2 x$
b) $\sqrt{3 x-5}+\sqrt{x+1}=4+4 x^{2}-x^{3}-3 x$
c) $\left\{\begin{array}{l}x+y+x y=5 \\ x^{2}+y^{2}=5\end{array}\right.$
Bài 2. Tìm giá trị tham số $\mathrm{m}$ sao cho
a) Phương trình $\mathrm{m}^{2} \mathrm{x}=4 \mathrm{x}-2 \mathrm{~m}+\mathrm{m}^{2}$ có nghiệm tùy $\dot{\mathrm{y}}$.
b) Phương trình $\mathrm{x}^{2}+2 \mathrm{mx}+4=0$ có hai nghiệm $x_1, x_2$ thỏa $|x_1-x_2| = 2\sqrt{2}$.
Bài 3.Tìm giá trị lớn nhất của hàm số $\mathrm{y}=\mathrm{x} \sqrt{1-\mathrm{x}^{2}}$ với $0<\mathrm{x}<1$.

Bài 4. Cho tam giác $ABC$ có $K$ là trung điểm $AB$. Gọi $I,J$ là các điểm thỏa
$\overrightarrow{\mathrm{AI}}=\frac{1}{3} \cdot \overrightarrow{\mathrm{AC}} ; 2 \sqrt{\mathrm{JB}}=\overline{\mathrm{JC}}$
a) Chứng minh rằng $\mathrm{K},$ I , J thẳng hàng.
b) Tìm tập hợp các điểm $\mathrm{M}$ sao cho $|2 \overrightarrow{\mathrm{MA}}-3 \overrightarrow{\mathrm{MB}}-2 \overrightarrow{\mathrm{MC}}|=|\overrightarrow{\mathrm{MB}}-\overrightarrow{\mathrm{MC}}|$
Bài 5.Trong mặt phẳng tọa độ Oxy cho $\mathrm{A}(-2 ; 2), \mathrm{B}(1 ; 0), \mathrm{C}(3 ;-3)$
a) Tính tọa độ trực tâm $\mathrm{H}$ của $\Delta \mathrm{ABC}$.
b) Tính tọa độ điểm D thuộc trục Oy sao cho $\mathrm{ABCD}$ là hình thang có cạnh đáy lớn
$\mathrm{BC}$.

Đáp án thang điểm

Đề thi học kì 1 môn toán 10 năm học 2017-2018 trường Lê Quý Đôn – TPHCM

BÀI 1. Xét tính chẵn – lẻ của hàm số: $f(x)=\dfrac{2 x^{2}+3}{|x+2|-|x-2|}$.

BÀI 2. Xác định parabol $(\mathrm{P}): f(x)=\alpha x^{2}+b x+2$ biết $(\mathrm{P})$ đi qua điểm $\mathrm{B}(-1 ; 6)$ và có tung độ đỉnh là $-\frac{1}{4}$.

BÀI 3. Giải các phương trình:
a) $\sqrt{2 x^{2}+7 x+5}=x+1$
b) $2 x-\left|x^{2}-4 x+5\right|=5$

BÀI 4. Cho $\forall x>1 ; y>1$. Chứng minh: $\dfrac{x y}{\sqrt{(y-1)(x-1)}} \geq 4$

BÀI 5. Cho tam giác $\mathrm{ABC}$ có $\mathrm{AB}=9, \mathrm{AC}=12, \widehat{\mathrm{BAC}}=120^{\circ}$. Tính diện tích tam giác $\mathrm{ABC}$, độ dài cạnh BC; độ dài trung tuyến AM và bán kính đường tròn nội tiếp tam giác ABC.

BÀI 6. Trong mặt phằng $0 \mathrm{xy}$ cho tam giác $\mathrm{ABC}$ với $\mathrm{A}(1 ; 3), \mathrm{B}(-3 ; 0), \mathrm{C}(0 ;-2)$
a) Tìm tọa độ điểm $\mathrm{M}$ sao cho $\mathrm{ABCM}$ là hình bình hành.
b) Tìm tọa độ điểm D thuộc trục $y^{\prime}$ Oy sao cho $|\overrightarrow{A D}+\overrightarrow{B D}-\overrightarrow{C D}|=2 \sqrt{5}$.

BÀI 7. Xác định tất cả các giá trị của m để phương trình $\dfrac{x-m}{x+1}=m+1$ có nghiệm.

Đáp án thang điểm

 

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi học kì 1 môn toán lớp 10 trường Phổ thông Năng khiếu năm 2016

Bài 1. Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm

Bài 2. Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$

Bài 3. Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \\
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$.

Định m để hệ phương trình có nghiệm duy nhất.

Bài 4. Giải các phương trình sau:

a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$

Bài 5. Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$

Bài 6. Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.

Bài 7.  Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Hết

Đáp án

[userview]

ptnk10hk12016

[/userview]