Category Archives: Lớp 8

Toán đố – P2

Tiếp theo phần 1, phần này tôi xin đưa ra những ví dụ phức tạp hơn, đòi hỏi cao hơn trong việc đưa ra phương trình, hoặc việc giải phương trình hệ phương trình ở mức khó hơn.

Ví dụ 1. Tổng kết học kì 2, trường trung học cơ sở N có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1, số học sinh giỏi của học kì 2 bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2. Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Lời  giải. 

Nhận xét: Bài toán có sự thay đổi về số học sinh giỏi của học kì 2 so với học kì 1, đó là số học sinh mới được và số học sinh bị rớt danh hiệu.

Ta có lời giải như sau:

Gọi $x$ $(x>0)$ là số học sinh giỏi học kì $2$ của trường.

Tổng số học sinh của trường là: $x+60$ (học sinh).

Số học sinh giỏi học kì $1$ là: $\dfrac{37}{40}x$ (học sinh).

$8\%$ số học sinh toàn trường không đạt giỏi học kì $1$ nhưng đạt giỏi học kì $2$: $(x+60).8\%=\dfrac{2x}{25}+\dfrac{24}{5}$ (học sinh).

Theo đề bài ta có phương trình $x = \dfrac{37}{40} x + \dfrac{2x}{25} + \dfrac{24}{5} – 6$.

Giải ra được $x = 240$.
Vậy số học sinh giỏi học kì $2$ của trường là $240$ học sinh.

Ví dụ 2. Bạn An dự định trong khoảng thời gian từ ngày 1/3 đến ngày 30/4 mỗi ngày sẽ giải 3 bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng 3 (tháng 3 có 31 ngày) thì A bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải 16 bài toán; sau đó, A cố gắng giải 4 bài một ngày và đến 30/4 thì A cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Lời giải. 

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Ví dụ 3. Lớp $9A$ có 28 học sinh đăng ký dự thi vào các lớp chuyên Toán, Lý, Hóa của trường Phổ thông Năng khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hóa; có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa; số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ chọn thi vào lớp Toán; có 6 học sinh chọn thi vào lớp Toán và Hóa; số học sinh chọn thi vào lớp Lý và Hóa gấp 5 lần số học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa. Hỏi số học sinh chọn thi vào từng lớp là bao nhiêu?

Lời giải.

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Bài tập rèn luyện.

Bài 1. Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi 240 mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được 2400 con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Bài 2. Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại rau sạch, các phần còn lại trồng hoa. Diện tích phần trồng rau sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

Bài 3. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Bài 4. Hai thị trấn $A$ và $B$ cùng nằm trên một dòng sông, cách nhau $D$ $km$. Thị trấn $B$ có địa thế cao hơn nên dòng nước luôn chảy từ $B$ đến $A$ với vận tốc $d$ $(km/h)$ không đổi. Nếu nước không chảy, tàu \textit{Hi vọng} có vận tốc $x$ $(km/h)$ không đổi, tàu \textit{Tương lai} có vận tốc $y$ $(km/h)$ không đổi. Vào lúc 8 giờ sáng, tàu \textit{Hi vọng} xuất phát từ $A$ đi về hướng $B$ và tàu \textit{Tương lai} xuất phát từ $B$ đi về hướng $A$. Vào lúc 12 giờ trưa hai tàu gặp nhau lần đầu tiên tại một điểm cách $A$ một khoảng cách là $\dfrac{1}{3}D$. Khi đến $A$ tàu \textit{Tương lai} nghỉ nửa giờ rồi quay về $B$; tương tự khi đến $B$ tàu \textit{Hi vọng} cũng nghỉ nửa giờ rồi quay về $A$. Hai tàu gặp nhau lần thứ hai tại một điểm cách $B$ một khoảng cách là $\dfrac{5}{27}D$. Hãy tìm vận tốc của các tàu \textit{Hi vọng} và \textit{Tương lai} biết rằng nếu ngay từ đầu, mỗi tàu tăng vận tốc thêm $7,5km/h$ thì hai tàu sẽ gặp nhau lần đầu vào lúc 11 giờ trưa.

Phương trình nghiệm nguyên – P3

Ta tiếp tục với phương pháp giải phương trình nghiệm nguyên, nay ta sẽ bàn tới phương pháp sử dụng đồng dư, chú ý một số cách tiếp cận sau:

  • Sử dụng đồng dư để chứng minh phương trình vô nghiệm.
  • Sử dụng đồng dư để suy ra tính chất của biến (tính chẵn lẻ, …), đưa về các dạng đã biết.

Ví dụ 1.  Giải phương trình $ x^3 +21y^3+5=0 $.

Lời giải
  • Ta có với mọi $x$ thì
    $ x^3\equiv 0, 1, -1\ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $
  • Do đó phương trình vô nghiệm.

Ví dụ 2. Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $.

Lời giải
  • Với mọi số nguyên x thì $ 6^x \equiv 1\ (mod\ 5) $.
  • Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3. Tìm nghiệm nguyên dương của phương trình $$7^x – 9^y = 4$$

Lời giải
  • Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv 2 (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.
  • Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.
  • Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4. Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$.

Lời giải
  • Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.
  • Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).
  • Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.
  • Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ. Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.
  • $3^x + 5^x = y^3$. $5^6 \equiv 1 (\mod 9)$, suy ra $5^x \equiv 5 (\mod 9)$ nếu $x \equiv 1 (\mod 6)$; $5^x \equiv -1 (\mod 9)$ khi $x \equiv 3 (\mod 6)$; $5^x \equiv 7 (\mod 9)$ khi $x \equiv 5(\mod 6)$.
  • Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó $x \equiv 3 (\mod 6)$.
  • Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.
    Do đó phương trình vô nghiệm.
  • Kết luận $(1,2,3)$.

Bài tập rèn luyện

Bài 1. Tìm nghiệm nguyên của các phương trình sau:
a) $2^x-3^y=1$;

b) $2^x-3^y=7$;
c) $2^x+3^y=z^2$;
d) $3^x+4^y=5^z$;
e) $3^x+4^y=7^z$.
Bài 2. (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.
a)  Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?
Bài 3. (PTNK 2009)
a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$
b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Phương trình nghiệm nguyên – P2

Tương tự như phân tích thành tổng, phương pháp tiếp theo là Biến đổi thành tích. Phương pháp này dựa trên tính chất: Mỗi số nguyên dương được phân tích hữu hạn lần thành tích của hai hay nhiều số khác nhau.

Ví dụ 1. Giải phương trình nghiệm nguyên $$2xy + 3x + 4y = 9$$

Lời giải
  • Ta biến đổi thành $(x+2)(2y+3) = 15$.
  • Do đó $x+2 \in \{-15, -5, -3, -1, 1, 3, 5, 15\}$.
  • Giải ra được các nghiệm $(x;y)$ là: $(-17;-2), (-7;-3), (-5;-4), (-3;-9), (-1;6), \\(1;1), (3;0), (13;-1)$.

Ví dụ 2. Tìm nghiệm tự nhiên của phương trình $(xy-7)^2 = x^2 + y^2$.

Lời giải
  • $(xy-6)^2-(x+y)^2==-13$
  • $(xy-x-y-6)(xy+x+y-6) = -13$.
  • TH1:$xy – x-y-6 = -13, xy+x+y-6 = 1$.
  • TH2:$xy-x-y-6 = -1, xy+x+y-6 = 13$.
  • Giải ra nghiệm $(x;y)$ là $(3;4), (4;3), (7;0), (0;7)$.

Ví dụ 3. Giải nghiệm nguyên dương của phương trình $$x(y^2-p) + y(x^2-p) = 5p$$ trong đó $p$ là số nguyên tố.

Lời giải
  •  Biến đổi pt thành $(x+y)(xy-p) = 5p$.
  • TH1: $x+y = 5, xy – p = p$, giải ra được $(x;y,p)$ là $(1;4;2),(4;1;2), (2;3;3), (3;2;3)$.
  • TH2: $x+y = p, xy-p=5$, ta có $xy – x-y = 5 \Leftrightarrow (x-1)(y-1) = 6$.
    $(x;y;p)$ là $(3;4;7), (4;3;7)$.
  • H3: $x+y=5p, xy-p = 1$, ta có $5xy -x-y = 5 \Leftrightarrow (5x-1)(5y-1) = 26$. (Vô nghiệm).

Ví dụ 4. Giải phương trình trong tập các số nguyên dương $$x + x^2 + x^3 = y+y^2$$.

Lời giải
  • $x^3 = (y-x)(y+x+1)$.
  • Khi đó nếu $p$ là ước nguyên tổ của $y-x, y+x+1$ thì $p = 1$(vô lí). Do đó $(y-x, y+x+1) = 1$.
  • $y-x = a^3, y+x+1 = b^3$ và $ab=x$.
  • $b^3-a^3 = 2ab+1$, vì $b \geq a+1$, suy ra $b^3-a^3 = (b-a)(a^2+b^2+1) > 2ab+1$ phương trình vô nghiệm.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập nguyên dương:
a) $ 2x^2+3xy-2y^2=7 $.
b) $ x^3-xy=6x-5y-8 $
c) $ x^3-y^3=91 $.
Bài 2. Giải phương trình nghiệm nguyên $$\dfrac{1}{x}+\dfrac{1}{y} = \dfrac{1}{2020}$$
Bài 3. Tìm các số nguyên $x$, $y$ sao cho:
a) $3^x-y^3=1$;
b) $1+x+x^2+x^3=2^y$;
c) $1+x+x^2+x^3=2003^y$.
Bài 4. Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$
Bài 5. Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Phương trình đưa về phương trình bậc nhất

1.Cách giải

Khi giải phương trình, chúng ta thường tìm cách biến đổi (dùng quy tắc chuyển vế hay quy tắc nhân) để đưa phương trình đó về dạng biết cách giải (đơn giản nhất là dạng $ax+b=0$ hay $ax=-b$).

2.Chú ý

  • Trong một vài trường hợp, ta còn có những cách biến đổi khác đơn giản hơn (ngoài việc bỏ dấu ngoặc và quy đồng mẫu).
  • Qúa trình giải có thể dẫn đến các trường hợp đặc biệt là hệ số của ẩn bằng $0$. Khi đó, phương trình có thể vô nghiệm hoặc nghiệm đúng với mọi $x$.

3. Ví dụ: Giải các phương trình sau:
a) $ 2(x-3)=12 $

Giải

$ 2(x-3)=12 $

$\Leftrightarrow 2x-6=12$

$\Leftrightarrow 2x=18$

$\Leftrightarrow x=9$

Tập nghiệm của phương trình: $S=\{9\}.

 

b)  $ x-(8+x)=4 $

Giải

$ x-(8+x)=4 $

$\Leftrightarrow x-8-x=4$

$\Leftrightarrow 0x=12$

$\Leftrightarrow 0=12 $ (vô lý)

Vậy phương trình trên vô nghiệm.

c) $ \dfrac{7x-1}{6}+2x=$ \dfrac{16-x}{5} $

Giải

$ \dfrac{5(7x-1)}{30}+\dfrac{30 \cdot 2x}{30}=$ \dfrac{6(16-x)}{30} $

$\Leftrightarrow 35x-5+60x=96-6x$

$\Leftrightarrow 95x-5=96-6x$

$\Leftrightarrow 95x+6x=96+5$

$\Leftrightarrow 101x=101$

$\Leftrightarrow x=1$

Tập nghiệm của phương trình: $S=\{1\}.

d)  $ (x+3)^2=x^2+4x $

Giải

$ (x+3)^2=x^2+4x $

$\Leftrightarrow x^2+6x+9=x^2+4x$

$\Leftrightarrow x^2-x^2+6x-4x=-9$

$\Leftrightarrow 2x=-9$

$\Leftrightarrow x=-\dfrac{9}{2}$

Tập nghiệm của phương trình: $S=\{-\dfrac{9}{2}\}.

4. Bài tập

Bài 1. Giải các phương trình sau:

a) $ 4x+20=0 $
b)  $ 2x-3=3(x-1)+x+2 $
c) $ (x-1)(x+3)=x^2+4 $
d) $ x-(x+2)(x-3)=4-x^2 $.

Bài 2. Giải các phương trình ẩn $ x $ sau:

a) $ \dfrac{x+2}{5}=3 $
b) $ \dfrac{3x-2}{7}=4 $
c) $\dfrac{x-2}{3}=1 $
d) $ \dfrac{x}{2}=x+5 $.

Bài 3. Giải các phương trình sau:

a) $ (x-1)^2+(x+3)^2=2(x-2)(x+1)+38 $
b) $ 5(x^2-2x-1)+2(3x-2)=5(x+1)^2 $
c) $(x-3)^3-2(x-1)=x(x-2)^2-5x^2 $
d) $ x(x+3)^2-3x=(x+2)^3+1 $.

Bài 4. Tìm giá trị của $ m $ sao cho phương trình:

a) $ 12-2(1-x)^2=4(x-m)-(x-3)(2x+5) $ có nghiệm $ x=3. $
b) $ (9x+1)(x-2m)=(3x+2)(3x-5) $ có nghiệm $ x=1. $

Phương trình bậc nhất một ẩn

1.Định nghĩa phương trình bậc nhất một ẩn

Phương trình dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \neq 0$, được gọi là phương trình bậc nhất một ẩn.

2. Hai quy tắc biến đổi phương trình

a) Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

b) Quy tắc nhân với một số: Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác $0$.

3. Cách giải phương trình bậc nhất một ẩn

  • Từ một phương trình, dùng quy tắc chuyển vế hay quy tắc nhân, ta luôn nhận được một phương trình mới tương đương với phương trình đã cho.
  • Phương trình bậc nhất $ax+b=0$ (với $a \neq 0$) được giải như sau:

$ax+b=0 \Leftrightarrow ax=-b \Leftrightarrow x = -\dfrac{b}{a}$

Vậy phương trình bậc nhất $ax+b=0$ luôn có một nghiệm duy nhất $x = -\dfrac{b}{a}$.

Ví dụ 1: 

Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) $ 1-x=0 $
b) $ x^3+1=0 $
c) $ 2+t=0 $
d) $ y=0 $
e) $ 0x-2=0 $.

Giải
  • Phương trình $ 1-x=0 $ là phương trình bậc nhất ẩn $x$ (vì có dạng $ax+b=0$ với $a=-1; b=1$).
  • Phương trình $ 2+t=0 $ là phương trình bậc nhất ẩn $t$ (vì có dạng $at+b=0$ với $a=1; b=2$).
  • Phương trình $ y=0 $ là phương trình bậc nhất ẩn $y$ (vì có dạng $ay+b=0$ với $a=1; b=0$).

Các phương trình còn lại không phải phương trình bậc nhất.

Ví dụ 2: 

Giải các phương trình:
a) $ 4x-12=0 $
b)  $ 5x+x+18=0 $
c) $ x-3=1-4x $
d) $ 6-2x=3-x $.

Giải

a) $ 4x-12=0 $

$\Leftrightarrow 4x=12$

$\Leftrightarrow x=12:4$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

b)  $ 5x+x+18=0 $

$\Leftrightarrow 6x+18=0$

$\Leftrightarrow 6x=-18$

$\Leftrightarrow x=-18:6$

$\Leftrightarrow x=-3$

Vậy tập nghiệm của phương trình là $S=\{-3\}$.

c) $ x-3=1-4x $

$\Leftrightarrow x+4x=1+4$

$\Leftrightarrow 5x=5$

$\Leftrightarrow x=5:5$

$\Leftrightarrow x=1$

Vậy tập nghiệm của phương trình là $S=\{1\}$.

d) $ 6-2x=3-x $

$\Leftrightarrow -2x+x=3-6$

$\Leftrightarrow -x=-3$

$\Leftrightarrow x=-3:(-1)$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

 

Ví dụ 3: 

Tìm giá trị của $ m, $ biết rằng phương trình: $ -4x^2+m^2=6x $ có nghiệm là $ x=\dfrac{1}{2} $.

Giải

Thay $ x=\dfrac{1}{2} $ vào $ -4x^2+m^2=6x $, ta được:

$ -4 \cdot \left(\dfrac{1}{2}\right)^2+m^2=6 \cdot \dfrac{1}{2} $

$\Leftrightarrow -1+m^2=3$

$\Leftrightarrow m^2=4$

$\Leftrightarrow m=2$ hoặc $m=-2$

Vậy $m=2$ hoặc $m=-2$.

 

4. Bài tập áp dụng

Bài 1. Trong các phương trình sau, phương trình nào là phương trình bậc nhất:
a) $ 3+3x=0 $
b) $ 5-4y=0 $
c) $ z^2-2z=0 $
d) $ 7t=0 $.

Bài 2. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
a) $ 2x^2-3=0 $
b) $ x+5=0 $
c) $ 0x-10=0 $
d)  $ x^2+2x-3=0 $.

Bài 3. Giải các phương trình:
a) $ x+5=7 $
b) $ 3=x-2 $
c) $ 2x=7+x $
d) $ 3x+1=5x+2 $.

Bài 4. Giải các phương trình:
a) $ 5x+35=0 $
b) $ 9x-3=0 $
c) $ 24-8x=0 $
d) $ -6x+16=0 $.

Bài 5. Giải các phương trình:
a) $ 7x-5=13-5x $
b) $ 2-3x=5x+10 $
c) $ 13-7x=4x-20 $
d) $ 11-9x=3-7x $.

Bài 6. Giải các phương trình sau:
a) $ \dfrac{3x}{4}=6 $
b) $ \dfrac{3}{5}x=-12 $
c) $ 7+\dfrac{5x}{3}=x-2 $
d) $ 1+\dfrac{x}{9}=\dfrac{4}{3} $.

Bài 7. Giải các phương trình sau, viết số gần đúng của mỗi nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
a) $ 3x=13 $
b) $ 16+9x=0 $
c) $ 6-2x=7x $

Bài 8. Tìm giá trị của $ m, $ sao cho phương trình sau nhận $ x=-3 $ làm nghiệm:
$ 4x+3m=3-2x. $

Bài 9. Cho hai phương trình ẩn $ x: \ 3x+3=0 \ (1); 5-kx=7 \ (2) $. Tìm giá trị của $ k $ sao cho nghiệm của phương trình $ (1) $ là nghiệm của phương trình $ (2) $.

Rút gọn phân thức cơ bản

Phương pháp giải: Để rút gọn các phân thức đơn giản dạng $\dfrac{A}{B}$, ta làm các bước sau:

  • Phân tích nhân tử $A$ và $B$.
  • Rút gọn cho thừa số chung của $A$ và $B$.

Ví dụ 1. Rút gọn phân thức

a) $\dfrac{x^2-2xy+y^2}{x^2-y^2}$
b) $\dfrac{ax^2+2axy+ay^2}{ax^3+ay^3}$

Giải

a) $\dfrac{x^2-2xy+y^2}{x^2-y^2}$

$=\dfrac{(x-y)^2}{(x-y)(x+y)}$

$=\dfrac{x-y}{x+y}$.

b) $\dfrac{ax^2+2axy+ay^2}{ax^3+ay^3}$

$=\dfrac{a(x^2+2xy+y^2)}{a(x^3+y^3)}$

$=\dfrac{(x+y)^2}{(x+y)(x^2-xy+y^2)}$

$=\dfrac{x+y}{x^2-xy+y^2}$.

 

Ví dụ 2. Rút gọn phân thức

a) $\dfrac{x^3-3x+2}{x^2-2x+1}$
b) $ \dfrac{x^2 -xy -x + y}{x^2 + xy – x- y}. $

Giải

a) $\dfrac{x^3-3x+2}{x^2-2x+1}$

$ =\dfrac{x^3 -x -2x + 2}{(x-1)^2} $

$ =\dfrac{(x^3 -x) -(2x – 2)}{(x-1)^2} $

$ =\dfrac{x(x-1)(x+1) -2(x – 1)}{(x-1)^2} $

$ =\dfrac{(x-1)[x(x+1) -2]}{(x-1)^2} $

$ =\dfrac{x(x+1) -2}{x-1} $.

b) $ \dfrac{x^2 -xy -x + y}{x^2 + xy – x- y} $

$ =\dfrac{(x^2 -xy) -(x – y)}{(x^2 + xy) – (x+y)}$

$ =\dfrac{x(x -y) -(x – y)}{x(x + y) – (x+y)}$

$ =\dfrac{(x -y)(x-1)}{(x + y) (x-1)}$

$ =\dfrac{x -y}{x+y}$.

Bài tập

Bài 1. Rút gọn các phân thức sau

a) $ \dfrac{6x^3y^2}{9x^2y} $.
b) $ \dfrac{12x^3y^2}{18xy^5}. $
c) $ \dfrac{6xy^3}{4x^2y}. $
d) $ \dfrac{15x(x+5)^3}{20x^2(x+5)} $
e) $ \dfrac{8(x^2 – xy)}{12x(x-y)^2} $.

Bài 2. Rút gọn các phân thức sau

a) $ \dfrac{x^2 + xy + x+ y}{x^2 -xy + x -y} .$
b) $ \dfrac{25(x-2)}{20x(2-x)} $.
c) $ \dfrac{x(4-x)^2}{x-4}. $
d) $ \dfrac{(x-y)^2}{x(y-x)^3} .$
Bài 3. Rút gọn các phân thức sau

a) $ \dfrac{6x^2y^2}{8xy^5}. $
b) $ \dfrac{10xy^2(x+y)}{15xy(x+y)^3} $
c) $ \dfrac{2x^2 +2x}{x+1}. $
d) $ \dfrac{x(x-2)}{(2-x)^3}. $

Bài 4. Rút gọn các phân thức

a) $ \dfrac{x^4-4x^2}{x(x+2)^2}. $
b) $ \dfrac{x^2 + 2x}{x^2+4x + 4}. $
c) $ \dfrac{8x(1-x)}{12x^2(x-1)^3}. $
d) $ \dfrac{xy -x^2}{y(x-y)^3}. $
e) $ \dfrac{x^3 – y^3}{xy^2 – x^2y}. $

Bài 5. Rút gọn các phân thức

a) $ \dfrac{36(x-2)^3}{32-16x} $.
b) $ \dfrac{x^2 – xy}{5y^2 – 5xy}. $
c) $ \dfrac{3x^2-12x+12}{x^4 – 8x}. $
d) $ \dfrac{7x^2 +14x+7}{3x^2+3x}. $

Phép nhân các phân thức

Quy tắc:

  • Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau:

$\dfrac{A}{B}.\dfrac{C}{D}=\dfrac{A.C}{B.D}$.

  • Muốn chia phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$ khác $0$, ta nhân phân thức $\dfrac{A}{B}$  với phân thức nghịch đảo của phân thức $\dfrac{C}{D}$: $\dfrac{A}{B}:\dfrac{C}{D}=\dfrac{A}{B}.\dfrac{D}{C}$ với $\dfrac{C}{D} \neq 0.$

Ví dụ 1:  Thực hiện phép nhân hai phân thức:

$\dfrac{{2{{\rm{x}}^2}}}{{x – y}}.\dfrac{y}{{5{{\rm{x}}^3}}}$.

Giải

$\dfrac{{2{{\rm{x}}^2}}}{{x – y}}.\dfrac{y}{{5{{\rm{x}}^3}}}$

=$\dfrac{2x^2.y}{(x-y).5x^3}$

=$\dfrac{2y}{5x(x-y)}$.

Ví dụ 2: Thực hiện phép chia hai phân thức:

$\dfrac{{5x – 15}}{{4x + 4}}:\dfrac{{x{}^2 – 9}}{{{x^2} + 2x + 1}}$

Giải

$\dfrac{{5x – 15}}{{4x + 4}}:\dfrac{{x{}^2 – 9}}{{{x^2} + 2x + 1}}$

$=\dfrac{{5x – 15}}{{4x + 4}}.\dfrac{{{x^2} + 2x + 1}}{{x{}^2 – 9}}$

$=\dfrac{{5(x – 3)}}{{4(x + 1)}}.\dfrac{(x+1)^2}{(x-3)(x+3)}$

$=\dfrac{{5(x + 1)}}{4(x+3)}$.

Bài tập

Bài 1. Thực hiện phép tính:

a) $\dfrac{{5x + 10}}{{4x – 8}}\,.\,\dfrac{{4 – 2x}}{{x + 2}}$
b)  $\dfrac{{{x^2} – 36}}{{2x + 10}}\,.\,\dfrac{3}{{6 – x}}$

c) $\dfrac{{{x^2} – 9{y^2}}}{{{x^2}{y^2}}}.\dfrac{{3{\rm{x}}y}}{{2{\rm{x}} – 6y}}$
d) $\dfrac{{3{{\rm{x}}^2} – 3{y^2}}}{{5{\rm{x}}y}}.\dfrac{{15{{\rm{x}}^2}y}}{{2y – 2{\rm{x}}}}$.

Bài 2. Thực hiện phép tính:

a) $\dfrac{{6x + 48}}{{7x – 7}}:\dfrac{{{x^2} – 64}}{{{x^2} – 2x + 1}}$

b) $\dfrac{{4x – 24}}{{5x + 5}}:\dfrac{{{x^2} – 36}}{{{x^2} + 2x + 1}}$
c) $\dfrac{{3x + 21}}{{5x + 5}}:\dfrac{{{x^2} – 49}}{{{x^2} + 2x + 1}}$
d) $\dfrac{{3 – 3x}}{{{{(1 + x)}^2}}}:\dfrac{{6{x^2} – 6}}{{x + 1}}$.

Bài 3. Thực hiện phép tính:

a) $ \dfrac{5x-10}{x^2+7} :(2x-4). $
b) $ (x^2-25):\dfrac{2x+10}{3x-7}. $
c) $ \dfrac{x^2+x}{5x^2-10x+5}: \dfrac{3x+3}{5x-5}. $
d) $ (x^-25):\dfrac{2x+10}{3x-7}. $

Bài 4. Thực hiện phép tính:

a) $ \dfrac{27-x^3}{3xy^3} : \dfrac{14x+14}{x^2y}. $
b) $ \dfrac{8xy}{3x-1} : \dfrac{12xy^3}{5-15x}. $
c) $ \dfrac{7x+2}{3xy^3} : \dfrac{14x+4}{x^2y}. $
d) $ (4x^2 -16):\dfrac{3x+6}{7x-2}. $
e) $ \dfrac{3x^3+3}{x-1} :(x^2 -x+1). $

Bài 5. Rút gọn biểu thức

a)$ \dfrac{x+1}{x+2} : \dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}. $
b) $ \dfrac{x+1}{x+2}\cdot \dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}. $

c) $ \dfrac{x+1}{x+2} : \dfrac{x+2}{x+3} \cdot \dfrac{x+3}{x+1}. $
d) $ \dfrac{x+1}{x+2} : \left(\dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}\right) $.

Cộng trừ hai phân thức

Quy tắc:

  • Muốn cộng hai phân thức có cùng mẫu thức, ta giữ nguyên mẫu thức và cộng các tử thức.
  • Muốn cộng hai phân thức không cùng mẫu, ta quy đồng mẫu thức rồi thực hiện phép cộng.
  • Muốn trừ phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$, ta cộng $\dfrac{A}{B}$ với phân thức đối của $\dfrac{C}{D}$: $\dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left(-\dfrac{C}{D}\right).$

Ví dụ 1: $\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

Giải

$\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

=$\dfrac{{5xy – 4y+3xy+4y}}{{2{x^2}{y^3}}} $

=$\dfrac{{8xy}}{{2{x^2}{y^3}}} $

=$\dfrac{{4}}{{2{x}{y^2}}} $.

Ví dụ 2: $\dfrac{{3{\rm{x}}}}{{5{\rm{x}} + 5y}} – \dfrac{x}{{10{\rm{x}} – 10y}}$

Giải

Ta có:

$\dfrac{3x}{5x+5y}=\dfrac{3x}{5(x+y)}$

$\dfrac{x}{10x-10y}=\dfrac{x}{10(x-y)}$

MTC: $10(x+y)(x-y)$

$\dfrac{3x}{5x+5y}-\dfrac{x}{10(x-y)}$

$=\dfrac{3x.2(x-y)}{2.5(x+y)(x-y)}-\dfrac{x(x+y)}{10(x-y)(x+y)}$

$=\dfrac{6x^2-6xy-x^2-xy}{10(x-y)(x+y)}$

$=\dfrac{5x^2-7xy}{10(x-y)(x+y)}$.

 

Ví dụ 3: $\dfrac{x-4}{4x-16} + \dfrac{4+x}{8-2x}$.

Giải

Ta có:

$\dfrac{x-4}{4x-16}=\dfrac{x-4}{4(x-4)}$

$\dfrac{4+x}{8-2x}=\dfrac{4+x}{2(4-x)}$

MTC: $4(x-4)$

$\dfrac{x-4}{4x-16}+\dfrac{4+x}{8-2x}$

$=\dfrac{x-4}{4(x-4)}+\dfrac{(4+x).(-2)}{2(4-x).(-2)}$

$=\dfrac{x-4-8-2x}{4(x-4)}$

$=\dfrac{-x-12}{4(x-4)}$.

Ví dụ 4: $\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

Giải

Ta có:

$\dfrac{y+1}{2y-2}=\dfrac{y+1}{2(y-1)}$

$\dfrac{-2y}{y^2-1}=\dfrac{-2y}{(y-1)(y+1)}$

MTC: $2(y+1)(y-1)$

$\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

$=\dfrac{(y+1)(y+1)}{2(y+1)(y-1)} +\dfrac{-2y.2}{2(y-1)(y+1)}$

$=\dfrac{(y+1)^2}{2(y+1)(y-1)} +\dfrac{-4y}{2(y-1)(y+1)}$

$=\dfrac{y^2+2y+1-4y}{2(y+1)(y-1)}$

$=\dfrac{y^2-2y+1}{2(y+1)(y-1)}$

$=\dfrac{(y-1)^2}{2(y+1)(y-1)}$

$=\dfrac{y-1}{2(y+1)}$.

Bài tập

Bài 1. Thực hiện phép tính:
a) $\dfrac{{x – 5}}{5} + \dfrac{{1 – x}}{5}$
b) $\dfrac{{x – y}}{8} + \dfrac{{2y}}{8}$
c) $\dfrac{{{x^2} – x}}{{xy}} + \dfrac{{1 – 4{\rm{x}}}}{{xy}}$
d)  $\dfrac{{5{\rm{x}}{y^2} – {x^2}y}}{{3{\rm{x}}y}} + \dfrac{{4{\rm{x}}{y^2} + {x^2}y}}{{3{\rm{x}}y}}$ .

Bài 2.Thực hiện phép tính:

a) $\dfrac{{2{\rm{x}} + 4}}{{10}} + \dfrac{{2 – x}}{{15}}$

b)  $\dfrac{{3{\rm{x}}}}{{10}} + \dfrac{{2{\rm{x}} – 1}}{{15}} + \dfrac{{2 – x}}{{20}}$
c) $\dfrac{{x + 1}}{{2{\rm{x}} – 2}} + \dfrac{{{x^2} + 3}}{{2 – 2{{\rm{x}}^2}}}$
d)  $\dfrac{{{x^2}}}{{{x^2} – 4{\rm{x}}}} + \dfrac{6}{{6 – 3{\rm{x}}}} + \dfrac{1}{{x + 2}}$.

Bài 3. Thực hiện phép tính:

a) $\dfrac{{4x + 1}}{2} – \dfrac{{3{\rm{x}} + 2}}{3}$
b)  $\dfrac{{x + 3}}{x} – \dfrac{x}{{x – 3}} + \dfrac{9}{{{x^2} – 3{\rm{x}}}}$
c)  $\dfrac{{x + 3}}{{{x^2} – 1}} – \dfrac{1}{{{x^2} + x}}$
d) $\dfrac{1}{{3{\rm{x}} – 2}} – \dfrac{4}{{3{\rm{x}} + 2}} – \dfrac{{ – 10{\rm{x}} + 8}}{{9{{\rm{x}}^2} – 4}}$
e)  $\dfrac{3}{{2{{\rm{x}}^2} + 2{\rm{x}}}} + \dfrac{{2{\rm{x}} – 1}}{{{x^2} – 1}} – \dfrac{2}{x}$.

Bài 4. Thực hiện phép tính:

a) $\dfrac{{4{{\rm{a}}^2} – 3{\rm{a}} + 5}}{{{a^3} – 1}} – \dfrac{{1 – 2{\rm{a}}}}{{{a^2} + a + 1}} – \dfrac{6}{{a – 1}}$
b) $\dfrac{{5{{\rm{x}}^2} – {y^2}}}{{xy}} – \dfrac{{3{\rm{x}} – 2y}}{y}$
c) $\dfrac{{x + 9y}}{{{x^2} – 9{y^2}}} – \dfrac{{3y}}{{{x^2} + 3{\rm{x}}y}}$

d)  $\dfrac{{3x + 2}}{{{x^2} – 2x + 1}} – \dfrac{6}{{{x^2} – 1}} – \dfrac{{3x – 2}}{{{x^2} + 2x + 1}}$

d) ${x^2} + 1 – \dfrac{{{x^4} + 1}}{{{x^2} + 1}}$.

Nhân đơn thức với đa thức- Phần 1

Quy tắc.

Muốn nhân đơn thức với đa thức, ta lấy đơn thức nhân với từng đơn thức của đa thức và cộng các kết quả lại.

Nếu $A$ là đơn thức $B, C$ là các đơn thức thì ta có:

 

Ví dụ 1. Thực hiện các phép nhân sau:

a) $2x(3x +\dfrac{3}{2})$.

b) $3y(3- 4y)$

Gợi ý
  • $2x (3x+ \dfrac{3}{2}) $
  • $ = 2x\cdot (3x) + 2x \cdot \dfrac{3}{2}$
  • $=6x^2 + 3x$.
  • $3y(3-4y)$
  • $=3y \cdot 3 + 3y\cdot (-4y)$
  • $=9y – 12y^2$.

Ví dụ 2.Thực hiện các phép toán sau:

a) $-2x^3y(2x^2-3y+5xy)$
b) $\dfrac{2}{3}x^2y(3xy-x^2+y).$

Gợi ý

a)

  • $-2x^3y(2x^2-3y+5xy)$
  • $=-2x^3y\cdot(2x^2)+(-2x^3y)\cdot (-3y) + (-2x^3y)(5xy)$
  • $=-4x^5y +6x^3y^2-10x^4y^2$

b)

  • $\dfrac{2}{3}x^2y(3xy-x^2+y)$
  • $=\dfrac{2}{3}x^2y\cdot(3xy) +\dfrac{2}{3}x^2y\cdot(-x^2)+\dfrac{2}{3}x^2y\cdot(y)$
  • $=2x^3y^2 -\dfrac{2}{3}x^4y +\dfrac{2}{3}x^2y^2$.

Bài tập tương tự.

Bài 1. Thực hiện phép tính: a

a) $-3x(4x + 2)$.

b) $-\dfrac{1}{3}y^2(6y  – 9y^2)$.

c) $-2x^2y(4x^2 – 5xy^2 + z)$.

d) $3x^2y^2(5x – 4y^2 + 2xy)$.

Đáp số

a) $-12x^2-6x$

b) $-2y^3+3y^4$

c) $-8x^4y+10x^3y^3 -2x^2yz$.

d) $15x^3y^2-12x^2y^4+6x^3y^3$

Bài 2. Thực hiện phép tính

a) $-2x^2y(4x-5y^2+z)$

b) $-\dfrac{3}{4}xy (-8x^2y^2 + 3x^4y-12)$

c) $2z^2y(zx+3xyz – 5y^2)$

d) $\dfrac{1}{2}xy(\dfrac{4}{3}x^2 – \dfrac{9}{2}xy^2)$

Đáp số

a) $-8x^3y + 10x^2y^3 -2x^2yz$

b) $6x^3y^3 -\dfrac{9}{4}x^5y^2 +9xy$

c) $2xyz^3+6xy^2z^3 – 10y^3z^2$

d) $\dfrac{2}{3}x^3y – 9x^2y^3$

 

 

 

 

 

Hình Thoi

Định nghĩa. Hình thoi là tứ giác có bốn cạnh bằng nhau.

Tính chất: hình thoi có mọi tính chất của hình bình hành, ngoài ra còn có

  • Hai cạnh kề bằng nhau.
  • Đường chéo này là trung trực của đường chéo kia (chúng vuông góc với nhau tại trung điểm mỗi đường).
  • Hai đường chéo là các đường phân giác các góc hình thoi.

Dấu hiệu nhận biết hình thoi

  • Tứ giác có bốn cạnh bằng nhau.
  • Hình bình hành có hai cạnh kề bằng nhau.
  • Hình bình hành có một đường chéo là đường phân giác một góc hình thoi.
  • Hình bình hành có hai đường chéo vuông góc.

Ví dụ 1. Chứng minh rằng

  1. Các trung điểm của bốn cạnh một hình chữ nhật là các đỉnh của một hình thoi;
  2. Các trung điểm của bốn cạnh một hình thoi là các đỉnh của một hình chữ nhật.
Gợi ý

 

Ví dụ 2. Cho hình thoi $ABCD$ có đường chéo $BD$ bằng độ dài bốn cạnh hình thoi. Gọi $M$ là một điểm bất kỳ trên cạnh $AB$. Lấy điểm $N$ trên cạnh $BC$ sao cho $\angle MDN = 60^\circ$. Chứng minh tam giác $ DMN $ đều. Từ đó suy ra vị trí của điểm $M$ trên $AB$ để độ dài đoạn $MN$ lớn nhất, nhỏ nhất.

Gợi ý

Bài tập

Bài 1. Cho hình thoi $ {ABCD}$ có $ {AB = 6cm, \angle A = 120^\circ}$.

a) Tính $ {AC,BD}$.

b) Gọi $ {E}$ là điểm đối xứng của $ {A}$ qua $ {BC}$. Chứng minh $ {D,E,C}$ thẳng hàng. Tứ giác $ {ABED}$ là hình gì? Tại sao?Bài 2.

Bài 2. Chứng minh rằng

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.

b) Hai đường chéo của một hình thoi là hai trục đối xứng của hình thoi.

Bài 3. Cho tứ giác $ {ABCD}$ có $ {AD = BC}$. Gọi $ {M,N,P,Q}$ lần lượt là trung điểm của $ {AB}$, $ {AC}$, $ {CD}$, và $ {BD}$.

a) Chứng minh rằng $ { MP \bot NQ }$.

b) Giả sử đường thẳng $ {MP}$ cắt các đường thẳng $ {AD}$, $ {BC}$ lần lượt tại $ {E}$ và $ {F}$. Chứng minh $ { \angle DEP = \angle CFP }$.

Bài 4. Cho hình bình hành $ { ABCD }$. Đường phân góc góc $ { ADC }$ cắt các đường thẳng $ {AB}$, $ {BC}$ lần lượt tại $ {M}$ và $ {N}$. Đường thẳng qua $ {M}$ song song với $ {AD}$ cắt đường thẳng $ {CD}$ tại $ {P}$, đường thẳng qua $ {N}$ song song với $ {AB}$ cắt đường thẳng $ {AD}$ tại $ {Q}$. Chứng minh $ { AP \parallel CQ }$.

Bài 5. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {A}$ tù. Gọi $ {H}$, $ {K}$ lần lượt là hình chiếu của $ {A}$ xuống $ {CB}$, $ {CD}$. Giả sử $ {HK = AC/2}$.

a) Chứng minh tam giác $ { HOK }$ đều.

b) Tính các góc của hình thoi $ {ABCD}$.

Bài 6. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {B}$ tù. Trong tam giác $ { ABD }$, hai đường cao $ { BM, DP }$ cắt nhau tại $ {H}$; trong tam giác $ {BCD}$, hai đường cao $ {BN}$, $ {DQ}$ cắt nhau tại $ {K}$. Tứ giác $ {BKDH}$ là hình gì? Tại sao?

Bài 7. Cho hình thoi $ {ABCD}$ cạnh $ {a}$ và $ {\angle B = 120^\circ}$. Một đường thẳng thay đổi cắt các cạnh $ {BA, BC}$ tại $ {M}$ và $ {N}$ sao cho $ {BM + BN = a}$.

a) Tính các góc của tam giác $ {MND}$.

b) Chứng minh rằng trung điểm của $ {MN}$ luôn thuộc một đường thẳng cố định.

Bài 8. Cho tam giác đều $ {ABC}$ đường cao $ {AD}$ và trực tâm $ {H}$. Từ điểm $ {M}$ bất kỳ trên cạnh $ {BC}$ kẻ $ {ME \bot AB}$, $ {MF \bot AC}$. Gọi $ {I}$ là trung điểm $ {AM}$.

a) Chứng minh tứ giác $ {DEIF}$ là hình thoi.

b) Chứng minh rằng các đường thẳng $ { MH }$, $ {ID}$, $ {EF}$ đồng quy. [gợi ý]