Category Archives: Lớp 9

Giải bài toán bằng đại lượng cực biên – Phần 2

(Bài viết dành cho các em học sinh lớp 8, 9, 10)

Ví dụ 1. Tìm $n$ lớn nhất sao cho tồn tại $n$ điểm mà 3 điểm bất kì đều tạo thành tam giác vuông.

Lời giải. 

Ta thấy $n=3, n=4$ đều tồn tại. Ta chứng minh $n\geq 5$ thì không tồn tại. \
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.

Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp $ n = 5$, để chứng minh không tồn tại, ta sử dụng cực biên, kết hợp với phản chứng để cho lời giải trọn vẹn, chọn độ dài lớn nhất giúp mình gôm hết các điểm vào thành một đường tròn, từ đó giúp giải được bài toán.

Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.

Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.

Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó $A$ là tâm đường tròn, tâm các đường tròn còn lại là $A_1, \cdots, A_6$. Khi đó tồn tại $A_iA_{i+1} \leq 60^\circ$, suy ra $A_iA_{i+1} < AA_i$ vô lý, vì bán kính của $(A)$ là nhỏ nhất.

Ví dụ 3. Cho $n$ điểm trong mặt phẳng biết rằng cứ 3 điểm bất kì tạo thành một tam giác có diện tích không lớn hơn 1. Chứng minh rằng $n$ điểm thuộc một hình tam giác có diện tích không lớn hơn 4.

Lời giải. Gọi $A, B, C$ là 3 điểm tạo thành tam giác sao cho $ABC$ có diện tích lớn nhất. Từ $A, B, C$ vẽ các đường song song với các cạnh đối diện, các đường thẳng cắt nhau tại $A’, B’, C’$ ta chứng minh các điểm thuộc cạnh hoặc miền trong tam giác $A’B’C’$. \
Thật vậy, nếu có điểm nào nằm ngoài tam giác $A’B’C’$ thì điểm đó kết hợp với hai trong 3 điểm $A, B, C$ sẽ có diện tích lớn hơn diện tích tam giác $ABC$, vô lý. \
Do $S_{A’B’C’} = 4S_{ABC} \leq 4$.

Ví dụ 4. (Sylvester) Trong mặt phẳng cho $n$ điểm phân biệt, sao cho mỗi đường thẳng đi qua hai điểm thì đi qua ít nhất một điểm khác. Chứng minh rằng $n$ điểm này cùng thuộc một đường thẳng.

Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử $P$ là điểm có khoảng cách từ $P$ đến $d$ là nhỏ nhất, với $d$ là đường thẳng qua các điểm $A, B, C$ theo thứ tự. \
Gọi $H$ là hình chiếu của $P$ trên $d$, $D, E$ là hình chiếu của $A, B$ trên $B$ trên $PA, PC$. Nếu $H$ thuộc tia $BA$ thì $BE < PH$, nếu $H$ thuộc đoạn $BC$ thì $BD < PH$. Mâu thuẫn với $PH$ là nhỏ nhất. \
Vậy tất cả các điểm cùng thuộc một đường thẳng.

Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.

Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.

Ví dụ 5. Cho 3 trường, mỗi trường có $n$ học sinh, biết rằng cứ mỗi học sinh thì quen ít nhất $n + 1$ học sinh của hai trường khác. Chứng minh rằng có thể chọn được từ mỗi trường một bạn sao cho 3 bạn này đôi một quen nhau.

Lời giải. Giả sử 3 trường là $X, Y, Z$. Tồn tại một người có số người quen ở cùng một trường khác là nhiều nhất, giả sử $A$ thuộc $X$ có số người quen ở trường $Y$ nhiều nhất là $k$. Khi đó số người quen của $A$ ở $Z$ ít nhất là $n+1-k$. Nếu nhóm người quen $A$ ở $Z$ quen với số người quen $A$ ở $X$ có hai người quen nhau thì ta có điều chứng minh.\
Ngược lại xét người quen $A$ ở $Z$, đặt là $B$ quen số người ở $Y$ tối đa là $n-k$, khi đó $B$ quen ở $X$ ít nhất là $n+1 – (n-k) = k+1$, mâu thuẫn với cách chọn $A$. (Mâu thuẫn).

Ví dụ 6. Một bảng $2n \times 2n$ ô, người ta đánh dấu bất kì $3n$ ô trong bảng. Chứng minh rằng tồn tại $n$ dòng và $n$ cột sao cho $3n$ ô được đánh dấu thuộc $n$ dòng và $n$ cột này.

Lời giải. Chọn $n$ dòng sao cho số ô được tô là lớn nhất, ta chứng minh rằng số ô được tô trong $n$ dòng này là không ít hơn $2n$ ô.
Thực vậy giả sử số ô được tô là ít hơn $2n$, khi đó $n$ dòng còn lại có nhiều hơn $n$ ô được tô, nên có ít nhất một một dòng có 2 ô được tô.

Do đó $n$ dòng đã chọn, mỗi dòng ít nhất 2 ô được tô nên tổng số ô hơn hoặc bằng $2n$ (mâu thuẫn).
Vậy ta chỉ cần chọn $n$ cột chứa các ô được tô màu nhưng chưa được chọn trong $n$ dòng trên thì sẽ có điều cần chứng minh.

Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.

Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là $k$, $A_1A_2…A_k$, ta thấy các người còn lại không ai quen $A_1, A_k$ nên suy ra $k \geq 6$. \
Nếu $k = 6$, suy ra $A_1$ và $A_6$ quen nhau, khi đó trong các người còn lại $A_7$ quen một trong cái người giả sử là $A_i$, khi đó ta có chuỗi $A_7A_iA_{i-1}A_1A_6A_{i+1}$ có độ dài hơn 6, vô lý.\
Nếu $k =7$, khi đó $A_1$ quen từ $A_2$ đến $A_6$ và $A_7$ quen $A_2$ tới $A_6$, khi đó có một vòng $A_2A_7A_6A_5A_4A_3A_1A_2$. Khi đó sẽ có một người trong nhóm còn lại thì ta sẽ có chuỗi dài hơn, mâu thuẫn.\
Nếu $k=8,9$ xét tương tự, ta sẽ có $k=10$. Giả sử có chuỗi $A_1\cdots A_{10}$. Khi đó tồn tại $k>i$ sao cho $A_1$ quen $A_k$ và $A_{10}$ quen $A_i$, khi đó có cách xếp thỏa đề bài là $A_1A_k\cdot A_iA_{10}A_9…A_k$.

Bài tập Bài tập nguyên lý cực biên

Tài liệu tham khảo. 

  1. Problems – Solving Stretagies – Arthur Hegel
  2. Giải bài toàn bằng đại lượng cực biên – Nguyễn Hữu Điển

Giải bài toán bằng đại lượng cực biên – Phần 1

(Bài viết dành cho học sinh lớp 8,9 và đầu lớp 10)

Có một câu chuyện thú vị thường thấy là trong lớp học những người nào ngồi bàn đầu hay bàn cuối thì thường hay bị gọi lên bảng trả bài hơn là những người khác, vì sao như vậy? Thực sự vì hai vị trí đó là vị trí đầu và cuối, tức là vị trí biên, vị trí “đặc biệt” hơn các vị trí khác, nên dễ được chú ý hơn.

Hoặc có một bài toán đơn giản sau: Tam giác $ABC$, $M$ thuộc cạnh $BC$, với vị trí nào của $M$ thì $AM$ đạt giá trị lớn nhất? (nhỏ nhất?). Dễ nhận ra rằng $AM \leq AB$ hoặc $AM \leq AC$, do đó $AM$ lớn nhất chỉ khi $M$ là một trong hai vị trí $B$ hoặc $C$, đó chính là vị trí biên của đoạn thẳng.

Do đó các vị trí biên của một tập hợp $X$ nào đó luôn có những đặc điểm mà vị trí khác không có được, kiểu nếu lệch ra một tí thì “bay màu” khỏi $X$.

Nguyên lý cực biên cũng như nguyên lý quy nạp, đó là một trong các nguyên lý quan trọng để chứng minh các định lý hay các bài toán. Xuất phát tự quan hệ thứ tự trong tập các số thực, và tiên đề xây dựng số tự nhiên, ta có các tính chất sau

  • Mọi tập con khác rỗng hữu hạn của tập số thực luôn có phần tử lớn nhất và nhỏ nhất.
  • Mọi tập con khác rỗng của tập các số tự nhiên đều có phần tử nhỏ nhất
  • Mọi tập con khác rỗng bị chặn trên của tập số nguyên có phần tử lớn nhất, bị chặn dưới thì có phần tử nhỏ nhất.

Nguyên lý cực biên xuất hiện nhiều trong các chứng minh, trong bài viết nhỏ này tôi chỉ giới thiệu một số bài toán cơ bản thường gặp để giúp các em học sinh nắm được kĩ thuật chứng minh này, từ đó vận dụng để làm các bài toán khó hơn.

Việc sử dụng nguyên lí cực hạn có cái quan trọng nhất là mình sử dụng đặc điểm đặc biệt của đại lượng cực biên, xem như một giả thiết mới để khai thác, kết hợp với các kĩ thuật sắp xếp, phản chứng để giải quyết bài toán.

Ta xét vài ví dụ sau

Bài 1. Cho số thực $x$ chứng minh rằng tồn tại duy nhất số nguyên $n$ sao cho $n\leq x < n+1$. ($n$ được gọi là phần nguyên của $x$, kí hiệu là $[x]$.

Lời giải. 

Nhận xét: rõ ràng $n$ là số nguyên mà nhỏ hơn và “gần” $x$ nhất, tức là nếu $n$ tăng thêm một đơn vị thì nó sẽ vượt qua $x$. Từ ý đó ta có thể giải như sau:

Đặt $A = \{n \in \mathbb{Z}, n \leq x \}$, ta thấy $A$ là tập con khác rỗng của $\mathbb{Z}$, bị chặn trên bởi $x$ nên tồn tại phần tử lớn nhất, đặt là $n_\circ$. Ta chứng minh $n_\circ \leq x < n_\circ+1$.

Rõ ràng $n_\circ \in A$ nên $n_\circ \leq x$.

Giả sử $n_\circ + 1 \leq x$ thì $n_\circ \in A$ và $n_\circ + 1  > n_\circ $ vô lí vì $n_\circ$ là phần tử lớn nhất của $A$. Do đó $n_\circ +1 > x$

Từ đó ta có $n_\circ \leq x < n_\circ + 1$.

Bước kế tiếp là chứng minh duy nhất,giả sử tồn tại $n’$ nguyên thỏa $n’\leq x < n’+1$. \

Nếu $n’ > n_\circ$ thì $n’ \geq n_\circ+1 > x$, vô lí, tương tự với $n_\circ > n’$.

Do đó $n’ = n_\circ$.

Bài 2. Cho hai số nguyên dương $a, b$. Chứng minh rằng tồn tại duy nhất cặp số $q, r$ sao cho $0 \leq r \leq b-1$ và $$a = bq + r$$

Lời giải. Do $0 \leq r \leq b-1$ nên mình thấy rằng, $q$ trong đẳng thức trên là số lớn nhất để hiệu $a-bq$ không không âm.

Đặt $A = \{a-bq \leq 0, q\in \mathbb{N} \}$.

Rõ ràng $A$ khác rỗng vì $a-b \cdot 0 > 0$, và là tập con của tập các số tự nhiên. Khi đó $A$ có phần tử nhỏ nhất, đặt là $r$, ta có $q$ để $r = a-bq$. Ta chứng minh $0 \leq r \leq b-1$.

Rõ ràng $r \in A$ nên $r \geq 0$.

Ở ý còn lại, ta giả sử $r \geq b$, khi đó $r-b = a-bq-b = a-b(q+1) \geq 0$ và $r-b < r$, do đó $r-b$ thuộc $A$ và nhỏ hơn $r$,  mâu thuẫn với $r$ là số nhỏ nhất thuộc $A$.

Giả sử tồn tại cặp $q’, r’$ thỏa đề bài. Khi đó $a = bq+r = bq’+r’$

suy ra $r-r’ = b(q’-q)$ chia hết cho $b$ mà $|r-r’| \leq b-1$, do đó $r-r’=0$, và $q-q’=0$. Ta có điều cần chứng minh.

Ví dụ 3. Cho $a, b$ là hai số nguyên dương, gọi $d$ là ước chung lớn nhất của $a$ và $b$. Chứng minh rằng tồn tại các số nguyên $x, y$ thỏa $$d = x\cdot a + y \cdot b$$

Lời giải. Ý tưởng tương tự như bài trên, xét tập các tổ hợp tuyến tính dương của $a, b$ có dạng $xa + yb$,

Đặt T = ${xa + yb| x,y \in Z, xa +yb >0}$. Rõ ràng $T$ khác rỗng và là tập con của tập các số tự nhiên nên có phần tử nhỏ nhất, đặt là $e$.
Khi đó T có phần tử nhỏ nhất, ta đặt $e = xa + yb$.
Giả sử $a = ek +r$, với $ 0 \leq r < e$ , suy ra $r = a – ek = a – (xa +yb).k = a(1 – xk) + b. yk$.

  • Nếu $r >0$ thì $r \leq e$ mâu thuẫn vì $e$ là phần tử nhỏ nhất của $T$.
  • Vậy $r =0$ suy ra $e|a$. Chứng minh tương tự ta có $e|b$ do đó $e|d$.
  • Mặt khác $d|a, d|b$ suy ra $d|(xa + yb)$ hay $d|e$. Từ đó ta có $d = e$.

Ví dụ 4. Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

Lời giải. Việc chứng minh $\sqrt{2}$ là số vô tỉ có nhiều cách, nhìn chung đều sử dụng phản chứng, và tính chất số học, lần này ta trình bày với phản chứng kết hợp với đại lượng cực biên.

Giả sử $\sqrt{2}$ không là số vô tỉ, tức là $\sqrt{2} = \dfrac{a}{b}$ trong đó $a, b$ là các số nguyên dương, suy ra $b\sqrt{2} = a$ là số nguyên dương.

Đặt $A = \{n| n, n\sqrt{2} \in \mathbb{N}\}$. Rõ ràng, $A$ khác rỗng là con của tập các số nguyên dương, nên có phần tử nhỏ nhất, đặt là $k$.

Ta có $k, k\sqrt{2}$ nguyên dương, suy ra $k(\sqrt{2}-1)$ nguyên dương.

Và $k(\sqrt{2}-1)\sqrt{2} = 2k – k\sqrt{2}$ cũng nguyên dương.

Do đó $k(\sqrt{2}-1)$ thuộc $A$ và $0 < k(\sqrt{2}-1) < k$ vô lí vì $k$ là nhỏ nhất.

Ví dụ 5. Chứng minh rằng không tồn tại các số nguyên dương $x, y, z, t$ sao cho $$x^2+y^2=3(z^2+t^2)$$

Lời giải. Giả sử tồn tại bộ 3 số nguyên dương thỏa đề bài, ta chọn bộ thỏa $x^2+y^2$ nhỏ nhất. Khi đó $x^2+y^2$ chia hết cho 3, suy ra $x, y$ đều chia hết cho $3$, khi đó $x= 3x’, y=3y’$, suy ra $z^2+t^2 = 3(x’^2+y’^2)$, thì bộ $(z,t,x’,y’)$ cũng thỏa đề bài, nhưng $z^2 +t^2 < x^2+y^2$. Mâu thuẫn.

Do đó phương trình không có nghiệm trong tập các số nguyên dương.

(Hết phần 1)

Tài liệu tham khảo. 

[1] Giải toán bằng phương pháp Đại lượng cực biên – Nguyễn Hữu Điển

[2] Problems Solving Strategies –

Phương pháp chứng minh phản chứng (P2)

Bài 1. 

Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:

a/ Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?

b/ Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a/ Giả sử tồn tại cách ghi thỏa mãn. Khi đó, gọi 2 số kề với 1 là a và b.

Theo giả thiết, ta có:

$\left\{\begin{array}{l} 1 + a \geqslant 17  \\1 + b \geqslant 17  \end{array} \right. \Rightarrow \left\{\begin{array}{l}  a \geqslant 16 \\ b \geqslant 16 \end{array} \right. \Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách ghi thỏa mãn.

b/ Giả sử tồn tại cách ghi thỏa mãn.

Khi đó, ta tách số 16 ra và chia 15 số còn lại thành 5 bộ 3 số kề nhau. Và tổng của 16 số này phải lớn hơn hoặc bằng: $16+5\cdot 25=141$

Mà $1+2+3+\cdots 16=136 \Rightarrow $ Mâu thuẫn

Vậy không tồn tại cách ghi thỏa mãn.

Bài 2. 

Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau: $-5, -4, -3, 3, 4, 5$.

Lời giải

Giả sử có cách xếp thỏa mãn.

Xét các số $0,1,2,8,9$ không thể đứng kề nhau và có đúng 10 số nên 5 số còn lại phải đứng xen kẽ với 5 số $0,1,2,8,9$.

Xét số 7:

Khi đó hai số kề số 7 phải thuộc tập hợp $\left\{0,1,2,8,9\right\}$

Mà theo giả thiết 2 đỉnh kề nhau bất kì nhận một trong các giá trị – 3, – 4, – 5, 3, 4 hoặc 5 nên 2 số kề nhau với 7 đều bằng 2 $\Rightarrow$ Mâu thuẫn.

Vậy không có cách xếp nào thỏa mãn.

Bài 3. 

Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Lời giải

Giả sử tồn tại tam giác đều có các đỉnh là các điểm nguyên.

Xét hình chữ nhật có các đỉnh là các điểm nguyên, sao cho đỉnh của tam giác đều thuộc cạnh của hình chữ nhật. Khi đó dễ dàng suy ra diện tích tam giác đều là số hữu tỷ.

Ta có diện tích tam giác đều $S=\dfrac{a^{2} \sqrt{3}}{4}$ với $a^2=x^2+y^2$ là số nguyên, $\sqrt{3}$ là số vô tỷ

Do đó, S là số vô tỉ $\Rightarrow$ Mâu thuẫn $\Rightarrow$ đpcm.

Bài 4. 

Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải

Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra.

Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$

Nhận thấy rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.

Ta có số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$.

Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.

Cả 50 và 60 đều không chia hết cho 11 $\Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Bài 5. 

Mỗi phần tử của bảng vuông $ 25 \times 25 $ hoặc là $ + 1 $ hoặc $ -1 $. Gọi $ a_{i} $ là tích của tất cả các phần tử của hàng thứ $ i $ và $ b_{j} $ là tích của tất cả các phần tử của cột thứ $ j $. Chứng minh rằng $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} \neq 0 $

Lời giải

Giả sử $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} = 0 $.

Vì mỗi ô vuông chứa -1 hoặc 1 nên $a_i,b_i\in \left\{1,-1\right\}$

Do đó trong 50 tích $a_i,b_i\quad (i=\overline{1,25})$ sẽ có 25 tích có giá trị -1 và 25 tích có giá 1.

Khi thay thế một phần tử -1 trong bảng bằng 1 thì số các tích ngang dọc có giá trị -1 sẽ tăng 2 hoặc giảm 2 hoặc không thay đổi. Như vậy số các tích $a_i,b_i$ có giá trị -1 luôn là số lẻ (1)

Ta sẽ tiếp tục thay thế các phần tử -1 trong bảng bằng 1 cho đến khi tất cả các phần tử trong bảng đều bằng 1 thì khi đó số các tích ngang dọc $a_i,b_i$ có giá trị -1 là 0 $\Rightarrow$ Mâu thuẫn với (1) $\Rightarrow$ đpcm.

Bài tập số chính phương – Lớp 9

Bài 1. Chứng minh rằng

a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.

Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.

Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.

Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.

Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.

Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.

Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.

Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.

Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.

Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.

Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.

Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.

Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.

a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$

a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?

Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.

 

Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.

 

Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.

Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.

Bài  21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.

Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.

Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.

Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.

Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)

a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.

 

 

Các bài toán tổ hợp trong kì thi Junior Bankan – P1

Lê Phúc Lữ – Phạm Khánh Vĩnh

(Bài viết trích từ Tập san Star Education – Số 5)

Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?

Lời giải

Câu trả lời là phủ định.
Giả sử tồn tại các số thỏa mãn đề bài thì vì chúng có số dư đôi một khác nhau nên sẽ có đầy đủ các số dư $0,1,2,3,\ldots ,15$. Điều này có nghĩa là trong đó, có $8$ số chẵn và $8$ số lẻ. Suy ra, ba chữ số $a,b,c$ để tạo thành các số đã cho không thể có cùng tính chẵn lẻ. Ta có hai trường hợp:

  • Trong các số $a,b,c$, có hai số chẵn là $a,b$ và số $c$ lẻ. Ta có tất cả $9$ số lẻ tạo thành từ các chữ số này là:
    $aac,abc,acc,bac,bbc,bcc,cac,cbc,ccc$.
    Gọi ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{9}}$ là số có hai chữ số tạo thành bằng cách xóa đi chữ số cuối từ dãy trên.
    Rõ ràng số $\overline{{{a}_{i}}k}$ và $\overline{{{a}_{j}}k}$ với $i\ne j$ khác số dư với nhau theo modulo $16$ nếu như hiệu của chúng không chia hết cho $16$, suy ra ${{a}_{i}}-{{a}_{j}}$ không chia hết cho $8.$ Tuy nhiên, ta lại có đến $9$ số nên điều này không thể xảy theo nguyên lý chuồng bồ câu.
  • Trong các số $a,b,c$, có hai số lẻ là $a,b$ và số $c$ chẵn: cũng dẫn đến mâu thuẫn tương tự.

Vậy không tồn tại các số thỏa mãn đề bài.

Bài 2: (JBMO 2000)

Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?

 

Lời giải

Gọi số nam là $2n$, số nữ là $n$ và tổng số vận động viên là $3n.$ Tổng số trận đấu là

$\frac{3n(3n-1)}{2}.$ \medskip

 

Theo giả thiết thì số trận thắng bởi nam là $$\frac{5}{12}\cdot \frac{3n(3n-1)}{2}=\frac{5n(3n-1)}{8}.$$

Số trận đấu giữa các nam là $\frac{2n(2n-1)}{2}=n(2n-1)$ và rõ ràng số trận này không vượt quá số trận thắng của các nam.

Suy ra $$\frac{5n(3n-1)}{8}\ge n(2n-1)\Leftrightarrow n\le 3.$$ Mặt khác, $5n(3n-1)$ phải chia hết cho $8$ nên $n=3.$ Do đó, số vận động viên của giải đấu là $9.$

Bài 3: (JBMO 2006)

Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:

 

  •  Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
  •  Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.

Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?

 

Lời giải

Với mọi bảng kích thước $2n\times 2n,$ tổng số ô bị xóa đi là $$2\times 2\times (1+2+3+\cdots +n-1)=2n(n-1).$$

Bảng sẽ còn lại ${{(2n)}^{2}}-2n(n-1)=2n(n+1)$ ô, tức là phủ được tối đa $n(n+1)$ ô vuông.

Không có mô tả.

 

Với $n=1,2,3,4,$ ta có thể kiểm tra trực tiếp được rằng kết quả lần lượt sẽ là $2,6,12,20$ bởi khi đó ta có thể phủ kín toàn bộ bảng. Còn với $n\ge 4$, ta xét hai trường hợp:

 

  • Nếu $n$ lẻ, khi đó ta chia bảng $2n\times 2n$ đã cho thành $4$ hình vuông nhỏ thì rõ ràng, mỗi hình sẽ có $\frac{n(n+1)}{2}$ ô còn trống. Tiếp theo, ta tô màu theo dạng bàn cờ cho bảng này (ô ở góc thì tô đen), ta sẽ có tất cả $\frac{{{(n+1)}^{2}}}{4}$ ô đen và $\frac{{{n}^{2}}-1}{4}$ ô trắng. Rõ ràng mỗi hình chữ nhật khi đặt lên bảng sẽ chứa một ô đen và một ô trắng nên số cặp ô trắng – đen tối đa trong hình vuông con là $\frac{{{n}^{2}}-1}{4}$, và tương ứng sẽ có tối đa $$4\cdot \frac{{{n}^{2}}-1}{4}={{n}^{2}}-1$$ hình chữ nhật $1\times 2,2\times 1$ phủ được trên bảng.

Ngoài ra, giữa các hình vuông con cạnh nhau, ta còn có hai ô màu đen cạnh nhau nên ta có thể lát thêm vào đó tổng cộng $4$ hình chữ nhật nữa, tổng cộng là ${{n}^{2}}-1+4={{n}^{2}}+3$.

  •  Nếu $n$ chẵn, bằng cách tương tự trên, ta phủ được hình bởi tối đa ${{n}^{2}}+4$ ô.

Tóm lại,

  •  Với $n=1,2,3,4$, đáp số lần lượt là $2,6,12,20.$
  •  Với $n>4$ và $n$ lẻ thì đáp số là ${{n}^{2}}+3.$
  •  Với $n>4$ và $n$ chẵn thì đáp số là ${{n}^{2}}+4.$

Bài 4: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Không có mô tả.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Không có mô tả.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 5: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 6:

(JBMO 2010)

Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.

 

Không có mô tả.

 

Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.

 

Lời giải

Câu trả lời là $0$ hoặc $3.$

Gọi $x$ là số viên gạch chữ $L$ và $y$ là số viên gạch hình vuông $2\times 2.$ Đánh dấu chéo $20$ hình vuông của hình chữ nhật như sơ đồ bên dưới.

Không có mô tả.

Rõ ràng mỗi viên gạch sẽ chứa không quá một dấu chéo. Suy ra $x+y\ge 20.$

Ngoài ra ta cũng có $3x+4y=63.$

Từ đó suy ra $y\le 3$ và $y$ chia hết cho $3$, dựa theo điều kiện thứ hai.

Do đó $y=0$ hoặc $y=3.$ Dưới đây là các cách lát thỏa mãn điều kiện đó.

Không có mô tả.

Bài 7: (JBMO 2013)

Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:

 

  •  Alice chọn $n$ số thực, không nhất thiết phân biệt.
  •  Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
  •  Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.

Hỏi Bob có thể có cách chắc chắn thắng hay không với

 

  •  $n=5?$
  •  $n=6?$
  •  $n=8?$

 

 

Lời giải

1) Câu trả lời là khẳng định.

 

Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e$. Rõ ràng mỗi số xuất hiện trong các tổng đúng $4$ lần nên bằng cách cộng tất cả $10$ tổng và chia hết quả cho $4$, Bod sẽ thu được

$a+b+c+d+e.$

Trừ đi tổng lớn nhất và nhỏ nhất, Bob sẽ thu được số lớn thứ ba là $c.$ Tiếp tục trừ $c$ vào tổng lớn thứ nhì, chính là $c+e$ thì Bob thu được $e.$ Trừ $e$ vào tổng lớn nhất, Bob thu được $d$. Bằng cách tương tự, Bob sẽ tìm ra được các giá trị $a,b.$ \medskip

 

2) Câu trả lời là khẳng định. Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e\le f.$ Tương tự trên, ta cũng tính được tổng $S$ các số của bộ. Trừ $S$ cho tổng lớn nhất và nhỏ nhất, ta thu được tổng $c+d.$ \medskip

 

Trừ $S$ cho tổng lớn nhì và tổng nhỏ nhất, ta được $c+e.$ Trừ $S$ cho tổng lớn nhất và tổng nhỏ nhì, ta được $b+d.$

Từ đây suy ra $a+c=S-(b+d)-(e+f)$, trong đó ta biết $e+f$ vì đó là tổng lớn nhất.

Lúc bấy giờ, Bob đã tìm được ba tổng $a+b,a+c,b+c$ nên sẽ tính được $T=a+b+c$ và dễ dàng tìm được $a,b,c.$ Tương tự, Bob có thể tìm được $d,e,f.$ \medskip

 

3) Câu trả lời là phủ định.

Ta thấy rằng có hai bộ tám số là $1,5,7,9,12,14,16,20$ và $2,4,6,10,11,15,17,19$ đều cho cùng $28$ tổng theo đôi một giống nhau nên chắc chắn rằng Bob không thể biết được bộ mà Alice đã chọn.

 

Bài 8: (JBMO 2014)

Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?

 

Lời giải

Ta gọi các giá trị $s$ để cho người $A$ có chiến thuật thắng là vị trí thắng và các vị trí còn lại là vị trí thua. Ta cần tìm số lượng vị trí thua.

Giả sử có $k$ vị trí thua thuộc tập hợp $$X=\{{{s}_{1}},{{s}_{2}},{{s}_{3}},\ldots ,{{s}_{k}}\}.$$

Trước hết, ta thấy rằng mỗi bội của $n$ là vị trí thắng (vì người $A$ có thể lấy tất cả các viên sỏi ở ngay lần đi đầu tiên). Khi đó, nếu có ${{s}_{i}}\equiv {{s}_{j}}(\bmod n)$ và ${{s}_{i}}>{{s}_{j}}$ thì ở lượt đi đầu tiên, $A$ bốc ${{s}_{i}}-{{s}_{j}}$ viên sỏi (vì số này chia hết cho $n$). Nhưng lúc đó, còn lại ${{s}_{j}}$ viên sỏi và đây là vị trí thua của $B$ nên sẽ là vị trí thắng của $A$, mâu thuẫn.

Do đó, tất cả các số trong $X$ đều không đồng dư với nhau theo modulo $n$ hay $k=\left| X \right|\le n-1.$ \medskip

 

Ta sẽ chứng minh rằng $k=n-1.$ Thật vậy,

Để có được điều đó, ta sẽ chỉ ra rằng ở mỗi lớp thặng dư khác $0$ của $n$, luôn có một vị trí thua bằng phản chứng. Giả sử rằng tồn tại $r\in \{1,2,3,\ldots ,n-1\}$ sao cho $mn+r$ là vị trí thắng với mỗi số nguyên dương $m.$ Gọi $u$ là vị trị thua lớn nhất (nếu $k>0$) hoặc $0$ (nếu $k=0$).

Đặt $s$ là bội chung nhỏ nhất của tất cả các số nguyên dương từ $2$ đến $u+n+1.$ Khi đó, tất cả các số $s+2,s+3,\ldots ,s+u+n+1$ đều là hợp số. \medskip

 

Xét số nguyên dương ${m}’$ thỏa mãn

$s+u+2\le {m}’n+r\le s+u+n+1$.

Để ${m}’n+r$ là vị trí thắng thì phải có số tự nhiên $p$ là $1$, là số nguyên tố hoặc là bội của $n$ sao cho hiệu ${m}’n+r-p$ sẽ là vị trí thua, là $0$ hoặc là một số nhỏ hơn hoặc bằng $u.$ Chú ý rằng

$$s+2\le {m}’n+r-u\le p\le {m}’n+r\le s+u+n+1$$

nên $p$ phải là hợp số, chứng tỏ $p$ chỉ có thể là bội của $n$ (theo giả thiết của đề bài). \medskip

 

Đặt $p=qn$ thì ${m}’n+r-q=({m}’-q)n+r$ cũng sẽ là một vị trí thắng khác; tuy nhiên, theo nguyên lý trò chơi thì không thể đi từ vị trí thằng này đến vị trí thắng khác được. Điều mâu thuẫn này cho thấy không thể xảy ra trường hợp toàn bộ các số dạng $mn+r$ là vị trí thắng. \medskip

 

Từ đây ta suy ra rằng có ít nhất $n-1$ vị trí thua nên từ các điều trên, ta thấy có đúng $n-1$ vị trí thua hay có $n-1$ vị trí mà người $B$ có chiến lược để thắng.

Bài 9: (JBMO 2015)

Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:

 

 

Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip

 

Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip

 

Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.

 

Lời giải

Ta sẽ chứng minh rằng $A$ sẽ thắng nếu $k=1,2,3$ và $B$ thắng nếu $k=4.$ Suy ra giá trị nhỏ nhất của $k$ là $4.$ \medskip

 

1) Nếu $k=1$ thì người chơi $A$ sẽ đánh dấu ô ở góc trên bên trái và đặt các khối như bên dưới

 

Không có mô tả.

 

Khi đó, rõ ràng $A$ thắng. \medskip

 

2) Nếu $k=2$ thì vẫn tương tự trên, $A$ đánh dấu vào ô ở góc trên bên trái. Khi đó, cho dù $B$ đánh dấu ô nào đi nữa thì $A$ cũng sẽ có cách đặt tương tự như trên, thiếu đi nhiều nhất là $2$ ô thuộc cùng khối vuông chữ $L$ với ô mà $B$ chọn. Điều này chứng tỏ $A$ vẫn thắng. \medskip

 

3) Nếu $k=3$ thì cũng tương tự, ở lượt sau, $A$ đánh dấu vào ô cùng khối chữ $L$ với ô mà $B$ đã đánh dấu. Khi đó, $A$ vẫn thắng. \medskip

 

4) Với $k=4$, ta sẽ chứng minh rằng $B$ sẽ luôn có chiến lược thắng cho dù $A$ đi thế nào đi nữa. Rõ ràng còn lại $21$ ô nên $A$ phải chọn cách đánh dấu sao cho có thể đặt được toàn bộ $7$ khối vuông chữ $L$ (vì nếu không thì sẽ còn lại ít nhất $3$ ô chưa được đặt). \medskip

 

Giả sử trong lượt đầu tiên, $A$ không chọn ô nào trong hàng cuối (vì nếu có thì ta xoay ngược bảng lại và lập luận tiếp một cách tương tự). Khi đó, $B$ sẽ chọn ô số $1$ như bên dưới.

Không có mô tả.

 

  •  Nếu trong lượt tiếp theo, $A$ không chọn ô nào trong các ô $2,3,4$ thì $B$ chọn ô số $3.$ Khi đó, rõ ràng ô số $2$ sẽ không thể đặt lên bởi bất cứ khối chữ $L$ nào và $B$ chiến thắng.
  •  Nếu trong lượt tiếp theo, $A$ chọn ô số $2$ thì $B$ chọn ô số $5$, dẫn đến ô số $3$ không thể đặt lên bởi khối $L$ nào.
  •  Nếu trong lượt tiếp theo, $A$ chọn một trong hai ô $3$ hoặc $4$ thì $B$ chọn ô còn lại, kết quả tương tự trên, ô số $2$ cũng sẽ không thể tiếp cận.

Vậy nói tóm lại, $k=4$ là giá trị nhỏ nhất cần phải tìm.

Bài 10: (JBMO 2016)

Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.

 

Lời giải

Ta sẽ chứng minh rằng số giá phân biệt lớn nhất là $60.$ Ta có nhận xét sau: \medskip

 

Nhận xét:  Trong mỗi bảng tốt, mỗi hàng chứa đúng hai số trong các số hoặc mỗi cột chứa đúng hai số trong các số. \medskip

 

Thật vậy, ta thấy mỗi hàng của bảng đều chứa ít nhất hai số (vì nếu chứa toàn bộ là một số thì mâu thuẫn với giả thiết). Khi đó, nếu toàn bộ các hàng đều chứa hai số thì nhận xét đúng. \medskip

 

Giả sử ngược lại là có hàng $R$ chứa ít nhất ba số trong bốn số của bảng là $x,y,z,t$. Khi đó, các số đó phải có nằm ở vị trí liên tiếp nào đó trên hàng, giả sử là $x,y,z$ liên tiếp. Theo giả thiết thì trong mỗi bảng $2\times 2$, ta đều có đủ bốn giá trị nên trong hàng phía trên và phía dưới của $R$ phải chứa $z,t,x$ theo đúng thứ tự đó, và tương tự là $x,y,z$. Ta có bảng như bên dưới

 

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

 

Điền thêm các ô còn lại, dễ thấy rằng các cột đều chứa đúng hai số. Nhận xét được chứng minh. \medskip

 

Không mất tính tổng quát, ta có thể giả sử mỗi hàng của bảng đều có đúng hai số (nếu không thì có thể xoay bảng lại). Nếu không xét hàng đầu tiên và cột đầu tiên, ta sẽ có bảng $4\times 4$ mà trong đó, mỗi số trong $x,y,z,t$ đều xuất hiện $4$ lần nên tổng các số trong bảng này là $4(x+y+z+t).$

Do đó, ta chỉ cần tính xem có bao nhiêu cách khác nhau để đặt các số lên hàng đầu tiên ${{R}_{1}}$ và cột đầu tiên ${{C}_{1}}.$ Gọi $a,b,c,d$ là số lần xuất hiện của các số $x,y,z,t$ thì khi đó, tổng tất cả các số của bảng sẽ là

$$4(x+y+z+t)+xa+yb+zc+td.$$

Nếu hàng $1-3-5$ chứa các số $x,y$ với $x$ ở vị trí đầu tiên của hàng $1$ thì các hàng $2-4$ sẽ chứa các số $z,t$ (theo giả sử ở trên). Khi đó, ta có

$a+b=7$ và $a\ge 3,b\ge 2$,

$c+d=2$ và $c\ge d.$ \medskip

 

Khi đó $(a,b)=(5,2),(4,3)$ tương ứng với $(c,d)=(2,0),(1,1).$ Suy ra $(a,b,c,d)$ sẽ nhận các bộ là $$(5,2,2,0),(5,2,1,1),(4,3,2,0),(4,3,1,1).$$

Tổng số hoán vị của các bộ là $$\frac{4!}{2!}+\frac{4!}{2!}+4!+\frac{4!}{2!}=60.$$

Bằng cách chọn $x={{10}^{3}},y={{10}^{2}},z=10,t=1$ thì dễ thấy rằng các tổng tương ứng với mỗi hoán vị của bộ số trên đều phân biệt, nghĩa là giá của các bảng đều phân biệt. Vậy số lượng giá tối đa là $60.$

Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:

Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$

Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?

Phương trình vô tỉ – Phương pháp nhân chia lượng liên hợp

Phương pháp nhân lượng liên hợp được sự dụng khi phương trình có độ phức tạp cao, lệch bậc nhiều ở các biểu thức chứa căn và nghiệm của phương trình thường dễ đoán và có ít nghiệm.
Nội dung phương pháp là ta phải đoán được nghiệm, thêm bớt (tách) và nhóm các số hạng phù hợp và nhân chia với biểu thức liên hợp để xuất hiện nhân tử. Ta xét các ví dụ sau.
Ví dụ 1
Giải phương trình:
$$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$$

Lời giải

Ta có

$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \sqrt{3x^2-5x+1}-\sqrt{3(x^2-x-1)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}$
$\Leftrightarrow
-(x-2)\left[ \dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}+\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\right] =0$
$\Leftrightarrow x=2.$

(Rõ ràng biểu thức trong ngoặc “[]” là dương)
Thử lại ta thấy $x=2$ thoả mãn.
Vậy $x=2$ là nghiệm của phương trình.

Ta có bước thử lại vì chưa đặt điều kiện của phương trình.

Ví dụ 2 Giải phương trình $$\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}$$

Lời giải
Điều kiện $x \ge \sqrt[3]{2}$.

$\sqrt[3]{x^2-1}-2+x-3=\sqrt{x^2-2}-5$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^1-1)^2}+2\sqrt[]{x^2-1}+4}]=\dfrac{(x-3)(x^2+3x+9)}{\sqrt{x^3-2}+5}$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}- \dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}]=0$
$\Leftrightarrow x=3.$

Vì $$1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}=1+\dfrac{x+2}{(\sqrt[3]{x^2-1}+1)^2+3}<2<\dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}.$$
Vậy phương trình có nghiệm duy nhất $x=3.$

Ví dụ 3 Giải phương trình $\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1.$

Lời giải
Điều kiện $2 \le x \le 4$.
Khi đó

$\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1$
$\Leftrightarrow \sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3$
$\Leftrightarrow \dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{x-3}{\sqrt{4-x}+1}=(x-3)(2x+1)$
$\Leftrightarrow (x-3)[\dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1}-(2x+1)]=0$
$\Leftrightarrow x=3.$

$\dfrac{1}{\sqrt{x-2}+1} \le 1$
$\dfrac{1}{\sqrt{4-x}+1} \ge \dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1 $
$\Rightarrow \dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1} \le 2-\sqrt{2}.$
Và $2x+1 \ge 5 $ (do \ x \ge 2$
$
Vậy phương trình có nghiệm duy nhất $x=2.$

Ví dụ 4 Giải phương trình $x^2+x-1=(x+2)\sqrt{x^2-2x+2}$.

Lời giải
Ta có

$x^2+x-1=(x+2)\sqrt{x^2-2x+2}$
$\Leftrightarrow x^2-2x-7+3(x+2)-(x+2)\sqrt{x^2-2x+2}=0$
$\Leftrightarrow x^2-2x-7+(x+2)(3-\sqrt{x^2-2x+2})=0$
$\Leftrightarrow x^2-2x-7-\dfrac{(x+2)(x^2-2x-7)}{\sqrt{x^2-2x+2}+3}=0$
$\Leftrightarrow (x^2-2x-7)(1-\dfrac{x+2}{\sqrt{x^2-2x+2}+3})=0$
$\Leftrightarrow (x^2-2x-7)[\dfrac{\sqrt{(x-1)^2+1}-(x-1)}{\sqrt{x^2-2x+2}+3}]=0$
$\Leftrightarrow x^2-2x-7=0$
$\Leftrightarrow x=1 \pm \sqrt{7}.$
Vậy phương trình có nghiệm $x=1 \pm \sqrt{7}$.

Bài tập rèn luyện

Bài tập 1 Giải các phương trình sau:

a) $\sqrt{2x-3}-\sqrt{x}=2x-6$
b) $\sqrt{x+1}+1=4x^2+\sqrt{3x}$
c) $\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}$

d) $\dfrac{2x^2}{(3-\sqrt{9+2x})^2}=x+21$
e) $9(x+1)^2=(3x+7)(1-\sqrt{3x+4})^2$

Bài tập 2 Giải các phương trình sau:

a) $\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$
b) $\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x} =2 \sqrt{3}$
c) $\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}$
d) $x^2-4x-2+\sqrt{x^2-4x+7}+\sqrt{5x-6}=0$
e) $3 \sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}$

Bài tập 3 Giải các phương trình sau:

a) $\sqrt{2x^2-x+3}-\sqrt{21x-17}+x^2-x=0$
b) $x(x+1)(x-3)+3=\sqrt{4-x}+\sqrt{1+x}$
c) $\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5$
d) $\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+|x|+|x-1|$

Bài tập 4 Giải các phương trình sau

a) $\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1$
b) $3x^2-8x+3=3\sqrt{x+1}$
c) $2x^2-x-2=\sqrt{5x+6}$
d) $\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1$

Tỉ số lượng giác – P3

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, BC= 5$.
Tính $\sin ABC, \cos ABC, \tan ABC, \cot ABC$.
Lời giải.
Ta có $AC = \sqrt{BC^2-AB^2} = \sqrt{5^2-3^2} = 4$.
Khi đó $\sin ABC = \dfrac{AC}{BC} = \dfrac{4}{5}$
Và $\cos ABC = \dfrac{AB}{BC} = \dfrac{3}{5}$;
$\tan ABC = \dfrac{AC}{AB} = \dfrac{4}{3}$;
$\cot ABC = \dfrac{AB}{AC} = \dfrac{3}{4}$.

Bài 2. 
Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 12$.
a) Tính $\sin ABC$.
b) Vẽ đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải.
a) Gọi $M$ là trung điểm cạnh $BC$, ta có $AM \bot BC$.
$MB = \dfrac{1}{2}BC = 6$, suy ra $AM = \sqrt{AB^2-BM^2} = 8$.
$\sin ABC = \dfrac{AM}{AB} = \dfrac{8}{10} = \dfrac{4}{5}$.
b)
Vẽ đường cao $BK$.
Ta có $\triangle CKB \backsim \triangle CMA$, suy ra $\dfrac{BK}{AM} = \dfrac{CB}{AC} \Rightarrow BK = \dfrac{AM\cdot BC}{AC} = \dfrac{48}{5}$.
Khi đó $\sin BAC = \dfrac{BK}{AB} =\dfrac{48}{50} = \dfrac{24}{25}$.

Bài 3. 
Cho tam giác $ABC$ vuông tại $A$ có $AC = 2, \sin ABC = \dfrac{1}{3}$. Tính $AB$.
Lời giải.
Ta có $\sin ABC = \dfrac{AC}{BC} = \dfrac{1}{3}$, suy ra $BC = 3AC = 6$.\
Từ đó $AB = \sqrt{BC^2-AC^2} =\sqrt{6^2-2^2} =4\sqrt{2}$.
\end{multicols}

Bài 4. 
Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.

Lời giải.

Ta có $AB^2 +AC^2 = 1 +3 = 4 = BC^2$, suy tam giác $ABC$ vuông tại $A$, vậy $\angle BAC = 90^\circ$.\
Ta có $\sin ABC = \dfrac{AC}{BC}= \dfrac{\sqrt{3}}{2}$, suy ra $\angle ABC = 60^\circ$.\
Và $\angle ACB = 180^\circ – \angle BAC – \angle ABC = 30^\circ$.

Bài 5. 
Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.

a)Tính độ dài các cạnh của tam giác $ABC$.
b) Dựng đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải. 
a)  $AB .\sin ABC = AH \Leftrightarrow AB \sin 60^\circ = \sqrt{3} \Leftrightarrow AB \dfrac{\sqrt{3}}{2} = \sqrt{3}$, suy ra $AB = 2$.
Tam giác $AHC$ vuông cân, suy ra $AC = \sqrt{2}AH = \sqrt{6}$.
$BH = \sqrt{AB^2-AH^2} = 1, CH = AH = \sqrt{3}$.
Suy ra $BC = 1 + \sqrt{3}$.
b) a có $BK = BC\cdot \sin BCK = (1+\sqrt{3})\sin 45^\circ = \dfrac{1+\sqrt{3}}{\sqrt{2}} = \dfrac{\sqrt{6}+\sqrt{2}}{2}$.
Suy ra $\sin BAC = \dfrac{BK}{AB} = \dfrac{1+\sqrt{3}}{2\sqrt{2}} = \dfrac{\sqrt{2}+\sqrt{6}}{4}$.

Bài 6. Cho hình thoi $ABCD$ có cạnh $AB = 5$, biết $\cot ABD = \dfrac{3}{4}$.

a) Tính $\dfrac{{AC}}{{BD}}$;
b) Tính $AC, BD$.

Lời giải.

a) $\tan ABD=\dfrac{AO}{BO}=\dfrac{4}{3} \Rightarrow AO=\dfrac{4}{3}BO$.
Áp dụng định lí Pitago trong tam giác vuông $AOB$:$AO^2+BO^2=AB^2=5^2=25$.
Khi đó ta có hệ: $AO=\dfrac{4}{3}BO; AO^2+BO^2=25$

$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
\left( \dfrac{4}{3}BO\right)^2+BO^2=25\
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
BO^2=9
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=4\\
BO=3
\end{array} \right.$
Vậy $\dfrac{AC}{BD}=\dfrac{2AO}{2BO}=\dfrac{4}{3}$
b) $AC=2AO=2\cdot 4=8 \quad \text{và} \quad BD=2BO=2\cdot 3=6$.

Bài 7. Cho hình thang $ABCD$ cân có $AB$ là đáy nhỏ và $\angle ADC = 60^\circ$. Đặt $AD = a, AB = b$. Vẽ đường cao $AH$.

a) Tính $AH, DH$ theo $a$.
b) Tìm $a, b$ biết chu vi hình thang bằng 10 và diện tích bằng $3\sqrt 3 $.

Lời giải.

a) $\cos\angle ADH=\dfrac{DH}{AD} \Rightarrow DH=AD.\cos\angle ADH =a.\cos60^\circ=\dfrac{a}{2}$
$\sin \angle ADH=\dfrac{AH}{AD} \Rightarrow AH=AD.\sin \angle ADH=a.\sin 60^\circ=\dfrac{a\sqrt{3}}{2}$
b) Kẻ dường cao $BE$
Do $ABCD$ là hình thang cân nên $AD=BC=a$. $ABEH$ là hình chữ nhật nên $AB=EH=b$
Tính tương tự câu a) ta có $BE=\dfrac{a\sqrt{3}}{2}$ và $EC=\dfrac{a}{2}$
Khi đó $DC=DH+HE+EC=a+b$
Dựa vào chu vi và diện tích hình thang ta có hệ phương trình sau:
$\left\{ \begin{array}{l}
b+a+\left(a+b\right)+a=10\\
\dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.\left(b+a+b\right)=3\sqrt{3}
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
3a+2b=10\\
a\left( a+2b \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a\left( a+10-3a \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
-2a^2+10a-12=0
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a=2 \quad \text{hay} \quad a=3
\end{array} \right.$
Vậy $(a;b)$ là $(2;2)$ và $(3; \dfrac{1}{2})$.

 

Hệ thức lượng trong tam giác vuông – Chứng minh đẳng thức P2

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $BC = 3\sqrt{5}$, hình vuông $ADEF$ có $D$ thuộc $AB$, $E$ thuộc $BC$ và $F$ thuộc $AC$. Biết hình vuông có cạnh 2, tính độ dài các cạnh $AB, AC$ (giả sử $AB < AC$).
Lời giải. Đặt $BD = x, CF = y$, vì $AB < AC$ nên $x < y$.
Ta có $\triangle BDE \backsim \triangle EFC \Rightarrow BD \cdot CF = ED \cdot EF = 4$.
Mặt khác $AB^2 + AC^2 = BC^2 \Rightarrow (x+2)^2+(y+2)^2 = 45 \Rightarrow (x+y)^2 + 4(x+y) -45 = 0 \Rightarrow x+y = 5$.
Suy ra $x(5-x) = 4$, giải ra được $x = 1, y = 4$.
Từ đó suy ra $AB = 3, AC = 6$.

Bài 2. Cho tam giác $ABC$ nhọn trung tuyến $AM$. \begin{enumerate}
a) Chứng minh rằng $4AM^2 + BC^2=2(AB^2+AC^2)$.
b) Vẽ trung tuyến $BN$. Tìm điều kiện về độ dài các cạnh của tam giác $ABC$ để $AM \bot AN$.
Lời giải.
a) Gọi $H$ là chân đường cao kẻ từ $A$, giả sử $H$ nằm giữa $B$ và $M$. Ta có:

$AB^2 + AC^2 = 2AH^2 + BH^2 + CH^2$
$= 2AH^2 + (BM – HM)^2 + (CM + HM)^2 $
$= 2AH^2 + 2HM^2 + 2BM^2 = 2AM^2 + \dfrac{BC^2}{2}$

b) Gọi $G$ là trọng tâm tam giác: $GM=\dfrac{1}{3}AM,GB=\dfrac{2}{3}BN$. Ta có $AM\perp BN$ khi và chỉ khi:\

$GM^2 + GB^2 = BM^2$
$\Leftrightarrow \dfrac{1}{9}AM^2 + \dfrac{4}{9}BN^2 = \dfrac{1}{4}BC^2$
$\Leftrightarrow \dfrac{1}{9} \left( \dfrac{AB^2 + AC^2}{2} – \dfrac{BC^2}{4} \right) + \dfrac{4}{9}\left(\dfrac{AB^2 + BC^2}{2} – \dfrac{AC^2}{4}\right) = \dfrac{BC^2}{4}$
$\Leftrightarrow 5AB^2 = AC^2 + BC^2$

Bài 3. Cho tam giác $ABC$, hai đường phân giác $BD$ và $CE$ cắt nhau tại $I$ thỏa mãn $BD\cdot CE = 2\cdot BI\cdot CI$. Tam giác $ABC$ là tam giác gì? vì sao?
Lời giải.

Đặt $ BC = a, CA = b, AB = c $. Ta có, $ AI $ là phân giác trong $ \triangle ABD $\
Suy ra:
$ \dfrac{BI}{c} = \dfrac{DI}{AD} = \dfrac{BD}{c + AD} \Rightarrow \dfrac{BI}{BD} = \dfrac{c}{c+ AD} $
Chứng minh tương tự
$ \dfrac{CD}{CE} = \dfrac{b}{b + AE} $
Như vậy điều cần chứng minh tương đương với

$\dfrac{BI}{BD} \cdot \dfrac{CI}{CE} = \dfrac{1}{2} \Leftrightarrow \dfrac{bc}{(c + AD)(b + AE)} = \dfrac{1}{2}$
$\Leftrightarrow bc = AD\cdot b + AE\cdot c + AD\cdot AE \qquad (*)$

Mặt khác, trong tam giác $ ABC $ ta có
$ BD $ là phân giác $ \angle ABC$ ta có $\dfrac{AD}{c} = \dfrac{CD}{a} = \dfrac{b}{a + c} \Rightarrow AD = \dfrac{bc}{a + c}$
$ CD $ là phân giác $ \angle ACB$ ta có \dfrac{AE}{b} = \dfrac{BE}{a} = \dfrac{c}{a + b} \Rightarrow AE = \dfrac{bc}{a + b}$
Do đó (*) tương đương với

$bc = \dfrac{b^2c}{a + c} + \dfrac{bc^2}{a + b} + \dfrac{b^2c^2}{(a+b)(a+c)}$
$\Leftrightarrow a^2 = b^2 + c^2$

Vậy tam giác $ ABC$ vuông tại $ A $.

Bài 4. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm thay đổi bên trong tam giác. Gọi $D, E, F$ lần lượt là hình chiếu vuông góc của $M$ trên các cạnh $BC, AC, AB$. Tìm giá trị nhỏ nhất của biểu thức: $P = AF^2 + BD^2 + CE^2$.
Lời giải.
Ta có $AM^2 = AF^2 + MF^2 = AE^2 + ME^2$. Suy ra $AF^2 – AE^2 = ME^2 – MF^2$.
Tương tự $BD^2 – BF^2 = MF^2 – MD^2, CE^2 – CD^2 = MD^2 -MD^2$.
Khi đó $AF^2 -AE^2 + BD^2 – BF^2 + CE^2-CE^2 = 0 \Leftrightarrow AF^2 +DB^2 + CE^2 = AE^2+BF^2+CE^2$.
Mặt khác $AF^2 + BF^2 \geq \dfrac{(AF+BF)^2}{2} = \dfrac{a^2}{4}$.
Tương tự thì $BD^2 +CD^2 \geq \dfrac{a^2}{2}$ và $CE^2+AE^2 \geq \dfrac{a^2}{2}$.
Do đó $P =AF^2 + BD^2 + CE^2 \geq \dfrac{3a^2}{4}$.
Đẳng thức xảy ra khi $D, E, F$ lần là trung điểm của $BC, AC, AB$.
Vậy $P_{min} = \dfrac{3a^2}{4}$.

Bài 5. Cho hình vuông $ABCD$ cạnh $a$. Các điểm $M, N$ lần lượt thay đổi trên cạnh $BC, CD$ sao cho $\angle MAN = 45^\circ$. Chứng minh chu vi tam giác $CMN$ không đổi và tìm giá trị lớn nhất của diện tích tam giác $CMN$.

Trên tia đối của tia $DC$ lấy điểm $K$ sao cho $\angle KAN = \angle MAN = 45^\circ$.
Do $\angle KAD+\angle DAN =45^\circ \quad \text{và} \quad \angle DAN+\angle MAB =45^\circ \quad \text{nên} \quad \angle KAD =\angle MAB$
$\Rightarrow \triangle KAD =\triangle MBA$(ch-cgv) $\Rightarrow AK=AM \quad \text{và} \quad KD=BM$
Khi đó $\triangle KAN=\triangle MAN$(c-g-c) $\Rightarrow MN=KN$
Ta có:
$P_{\triangle CMN}=MN+MC+NC=KN+MC+NC
=KD+DN+NC+MC=BM+MC+NC+ND=DC+CB=2a$.
Vậy chu vi của $\triangle CMN$ luôn không đổi và bằng $2a$
Đặt $MC=x,NC=y$
$P_{\triangle CMN}=MN+MC+NC=x+y+\sqrt{x^2+y^2}=2a$
Áp dụng bất đẳng thức Cauchy:
$2a=x+y+\sqrt{x^2+y^2}\ge 2\sqrt{xy}+ \sqrt{2xy}=\left(\sqrt{2}+2\right)\sqrt{xy} \Rightarrow xy\le \dfrac{4a^2}{(\sqrt{2}+2)^2}$
$S_{\triangle CMN}=\dfrac{1}{2}xy\le \dfrac{1}{2}.\dfrac{4a^2}{6+4\sqrt{2}}=\dfrac{a^2}{\sqrt{2}+3}$

Bài 6. Cho $\triangle A B C$ vuông ờ $A, A H \perp B C, H \in B C . H E \perp A C$,
$H F \perp A B$
\begin{enumerate}
a) Chứng minh rằng $H A^{3}=B F \cdot C E \cdot B C$.
b) Chứng minh rằng $\sqrt[3]{B F^{2}}+\sqrt[3]{C E^{2}}=\sqrt[3]{B C^{2}}$.
c) Gọi $M, N$ là hình chiếu của $E, F$ lên $B C$.
Chứng minh rằng $\sqrt{M C}+\sqrt{N B}=\sqrt{B C}$.
d) Chứng minh rằng $\sqrt[3]{N B \cdot N F}+\sqrt[3]{M C \cdot M E}=\sqrt[3]{A B \cdot A C}$.

Bài 7. Cho tam giác $ABC$ vuông tại $A$, $M$ là điểm thuộc cạnh $BC$ thỏa $MA^2 = MB \cdot MC$. Chứng minh rằng $M$ là trung điểm của $BC$ hoặc $M$ là chân đường cao từ $A$ đến $BC$.

Hệ thức lượng trong tam giác – Chứng minh đẳng thức

Dạng 2. Chứng minh đẳng thức hình học

Ví dụ 1. Cho hình thoi $ABCD$ có $\angle A = 120^\circ$. Tia $Ax$ tạo với $AB$ một góc $\angle BAx = 15^\circ$ và cắt cạnh $BC$ tại $M$, cắt đường thẳng $CD$ tại $N$.
Chứng minh rằng $$\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$$
Lời giải.

Vẽ tia $Ay$ vuông góc với $AM$,$Ay$ cắt cạnh $CD$ tại $P$. Suy ra $\angle PAD= 15^\circ$.
Ta có $\triangle ADP=\triangle ABM$(g-c-g), suy ra $AP=AM$.
Vẽ đường cao $AH$ của tam giác $PAN$. Áp dụng hệ thức lượng trong tam giác vuông $PAN$:
$$\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$$
Khi đó $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$. (1)
Mặt khác trong tam giác vuông $ADH$:\
$\dfrac{AH}{AD}=\sin D\Rightarrow AH=AD\cdot \sin D=AB\cdot \sin60^\circ=\dfrac{\sqrt{3}}{2}AB.$ (2)
Từ (1) và (2) ta có được $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$.

Ví dụ 2. Qua điểm $D$ trên cạnh huyền $BC$ của tam giác vuông $ABC$ ta kẻ các đường vuông góc $DH$ và $DK$ lần lượt xuống các cạnh $AB$ và $AC$.\ Chứng minh hệ thức: $DB\cdot DC = HA\cdot HB + KA\cdot KC$.

Lời giải.

Ta có $AHDK$ là hình chữ nhật nên $AH = DK, AK = DH$.
Ta có $BC^2 = AB^2 + AC^2 \Leftrightarrow (DB + DC)^2 = (AH+BH)^2 + (AK + CK)^2 \Leftrightarrow DB^2 + DC^2 + 2DC \cdot DB = AH^2 + BH^2 + 2 AH \cdot BH + AK^2 + CK^2 + 2AK \cdot CK$. (1)
Mà $DB^2 = BH^2 + HD^2 = BH^2 + AK^2$ và $DC^2 = DK^2 + CK^2 = AH^2 + CK^2$. (2)
Từ (1) và (2) ta có $DB \cdot DC = AH \cdot HB + AK \cdot KC$.

Ví dụ 3. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $E, F$ lần lượt là hình chiếu vuông góc của $H$ trên $AB, AC$. Chứng minh rằng:

a) $AH^3 = BC\cdot BE\cdot CF$.
b) $\sqrt[3]{BE^2} + \sqrt[3]{CF^2} = \sqrt[3]{BC^2}$.
Lời giải.


a) Áp dụng hệ thức lượng trong tam giác vuông $BHA$ và $AHC$:
$$BH^2=BE\cdot AB \quad \text{và} \quad HC^2=CF\cdot AC$$
Nhân hai vế đẳng thức với nhau ta được:
$BH^2\cdot HC^2=BE\cdot CF\cdot AB\cdot AC
\Rightarrow \left(HB\cdot HC\right)^2=BE\cdot CF\cdot AB\cdot AC \quad (1)$.
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$HB\cdot HC=AH^2 \quad \text{và} \quad AB\cdot AC=AH\cdot BC$.
Khi đó (1) trở thành:$AH^4=BE\cdot CF\cdot AH\cdot BC$ hay $AH^3=BE\cdot CF\cdot BC$(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông $ABH$ ta có $BE\cdot AB=HB^2$ hay $BE=\dfrac{BH^2}{AB}$, do đó:
$$\dfrac{BE^2}{BC^2}=\dfrac{BH^4}{AB^2\cdot BC^2}=\dfrac{BH^4}{\left(BH\cdot BC\right)\cdot BC^2}=\left(\frac{BH}{BC}\right)^3$$
Lấy căn bậc ba hai vế ta được $\sqrt[3]{\dfrac{BE^2}{BC^2}}=\dfrac{BH}{BC}\quad (1)$
Chứng minh tương tự ta được $\sqrt[3]{\dfrac{CF^2}{BC^2}}=\dfrac{CH}{BC}\quad (2)$
Lấy (1)+(2) ta được đpcm.\

Ví dụ 4. Cho tam giác $ABC$ nhọn và $H$ là trực tâm. Chứng minh rằng

$$AB^2 + CH^2 = AC^2 + BH^2 = AH^2 + BC^2$$

Lời giải.

Gọi $D$ là chân đường cao hạ từ $A$.
Ta có $AB^2 = BD^2 + AD^2$ và $CH^2 = CD^2 + DH^2$, suy ra $AB^2 +CH^2 = BD^2+AD^2+CD^2+DH^2$. (1)
tương tự thì $AC^2 = AD^2 + CD^2$, $BH^2 = BD^2+DH^2$, suy ra $AC^2+BH^2=AD^2+CD^2+BD^2+DH^2$. (2)
Từ (1) và (2) ta có $AB^2 + CH^2 = AC^2+BH^2$.
Chứng minh tương tự cho đẳng thức còn lại.

Ví dụ 5. Cho tam giác $ABC$ vuông tại $A$ có đường cao $AH$, đường trung tuyến $BM$, đường phân giác $CD$ đồng quy tại $O$.

a) Chứng minh rằng $BH = AC$.
b) Cho biết $BC = x$ . Tính độ dài $AB, AC$ theo $x$.
Lời giải. 


a) Gọi $E$ là điểm đối xứng của $O$ qua $M$. Khi đó tứ giác $AECO$ là hình bình hành nên $CE\parallel AO$.
Áp dụng định lí Ta-lét trong tam giác $BEC$ có $OH\parallel EC$:
$$\dfrac{BH}{BC}=\dfrac{OH}{CE}$$
$CO$ là đường phân giác của $\triangle ACH$ nên:
$$\dfrac{OH}{OA}=\dfrac{CH}{CA}$$
Từ hai đẳng thức trên và $CE=OA$(AECO là hình bình hành) ta có:
$$\dfrac{BH}{BC}=\dfrac{CH}{AC} \Leftrightarrow BH\cdot AC=CH\cdot BC$$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$ ta được $AC^2=CH\cdot CB$
Từ đó suy ra $BH=AC$(đpcm)
b) Ta có $AC^2=CH\cdot CB=\left(CB-BH\right)\cdot CB=\left(x-AC\right)x$. Suy ra:
$$AC^2+2AC\cdot \dfrac{x}{2}+\dfrac{x^2}{4}=\dfrac{5x^2}{4} \Leftrightarrow \left(AC+\dfrac{x}{2}\right)^2=\left(\dfrac{x\sqrt{5}}{2}\right)^2$$
Vậy $ AC = \left(\dfrac{\sqrt{5} – 1}{2}\right)x $, $ AB = \sqrt{x^2 – AC^2} = x\sqrt{\dfrac{\sqrt{5} – 1}{2}}$

Ví dụ 6. Cho tam giác $ABC$ vuông cân tại $A$, đường trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc của $C$ trên $BM$, $H$ là hình chiếu vuông góc của $D$ trên $AC$. Chứng minh rằng $AH = 3HD$.

Lời giải.

Cách 1. Đặt $AM=x$, tính được $MC = AM = x$, $AC = 2x = AB$.
Áp dụng định lý Pythagoras trong tam giác vuông $BAM$:
$BM=\sqrt{AB^2+AM^2}=\sqrt{\left(2x\right)^2+\left(x\right)^2}=x\sqrt{5}$
$\triangle BAM \backsim \triangle CDM $(g-g) $\Rightarrow \dfrac{AB}{DC}=\dfrac{MA}{MD}=\dfrac{BM}{CM}=\dfrac{\sqrt{5}x}{x}=\sqrt{5}$
$\Rightarrow MD=\dfrac{AM}{\sqrt{5}}=\dfrac{x}{\sqrt{5}}$
Áp dụng hệ thức lượng trong tam giác vuông $MDC$:
$MD^2=MH\cdot MC \Rightarrow MH=\dfrac{MD^2}{MC}=\dfrac{\dfrac{x^2}{5}}{x}=\dfrac{x}{5}$.
Áp dụng định lí Pythagoras trong tam giác vuông $MHD$:
$HD=\sqrt{MD^2-MH^2}=\sqrt{\left(\dfrac{x}{\sqrt{5}}\right)^2-\left(\dfrac{x}{5}\right)^2}=\dfrac{2}{5}x$.
Mà $AH=AM+MH=x+\dfrac{x}{5}=\dfrac{6}{5}x$
Vậy $AH=3HD$(đpcm)
Cách 2. Gọi $I$ là trung điểm $BC$, $AI$ cắt $BM$ tại $G$ thì $G$ là trọng tâm tam giác $ABC$, suy ra $AI = 3GI = IB = IC$.
Ta có $\triangle MAB \backsim MDC$, suy $MA \cdot MC = MB \cdot MD$, suy ra $\triangle MAD \backsim \triangle MBC$, suy ra $\angle MAD = \angle MBC = \angle GBI$.
Khi đó $\triangle DAH \backsim \triangle GBI$, suy ra $\dfrac{AH}{DH} = \dfrac{IB}{GI} = 3$ hay $AH = 3DH$.

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, $BM$ và $CN$ là các đường phân giác góc $B$ và $C$.

a)Cho $AB = 3, AC = 4$. Tính độ dài $BN, CM$ và $MN$.
b) Đặt $AB = c, AC = b$. Tính $CM, BN$ theo $b$ và $c$.
c) Chứng minh rằng $\dfrac{{AC}}{{MA}}\cdot \dfrac{{AB}}{{NA}} \ge 3 + 2\sqrt 2 $

Lời giải.

a) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{4}{5}$. Kết hợp với $NA+NB=3$ ta sẽ tính được $NA=\dfrac{4}{3}$ và $BN=\dfrac{5}{3}$
Tính tương tự ta được $AM=\dfrac{3}{2},MC=\dfrac{5}{2}$
Áp dụng định lí Pythagoras trong tam giác vuông $AMN$:
$$MN=\sqrt{AM^2+AN^2}=\sqrt{\left(\dfrac{4}{3}\right)^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{\sqrt{145}}{6}$$
b) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{c^2+b^2}$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{b}{\sqrt{b^2+c^2}}$. Kết hợp với $NA+NB=c$ ta sẽ tính được $BN=\dfrac{c\sqrt{b^2+c^2}}{b+\sqrt{b^2+c^2}}$
Tính tương tự ta được $MC=\dfrac{b\sqrt{b^2+c^2}}{c+\sqrt{b^2+c^2}}$
c) Do $BM$ là tia phân giác của $\angle ABC$ nên $\dfrac{MC}{MA}=\dfrac{BC}{AB}$
Do $CN$ là tia phân giác của $\angle ACB$ nên $\dfrac{NB}{NA}=\dfrac{BC}{AC}$
$\dfrac{AC}{MA}.\dfrac{AB}{NA}=\left(1+\dfrac{MC}{MA}\right)\left(1+\dfrac{NB}{NA}\right)$
$=\left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right)$
$=1+\dfrac{BC}{AC}+\dfrac{BC}{AB}+\dfrac{BC^2}{AB.AC} $
$\ge 1+2\sqrt{\dfrac{BC^2}{AB.AC}}+\dfrac{BC^2}{AB.AC}$

$=\left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2$
Ta có $AB.AC\le \dfrac{AB^2+AC^2}{2}=\dfrac{BC^2}{2}$

$\Rightarrow \dfrac{BC^2}{AB.AC}\ge 2$
Vậy $\dfrac{AC}{MA}.\dfrac{AB}{NA}\geq \left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2 \ge \left(\sqrt{2}+1\right)^2=3+2\sqrt{2}$

Bài tập rèn luyện

Bài 1. Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, AB = AD = a, CD = 2a$.

a) Chứng minh $BC = a\sqrt{2}$.
b) Vẽ $DH$ vuông góc với $AC$. Chứng minh $AH \cdot AC = a^2$.
c) $BH$ cắt $CD$ tại $K$. Chứng minh $BK \cdot BH =2a^2$.

Bài 2. Cho tam giác $ABC$ khác tam giác tù. Gọi $G$ là trọng tâm tam giác. Chứng minh rằng nếu $$AG^2 = \dfrac{1}{9}(AB^2+AC^2) $$
thì tam giác $ABC$ vuông.

Bài 3. Cho tam giác $ABC$ có các đường cao $AD, BE, CF$. Chứng minh rằng nếu

$$ \dfrac{1}{AD^2} = \dfrac{1}{BE^2} + \dfrac{1}{CF^2}$$

thì tam giác $ABC$ vuông tại $A$.

Bài 4. Cho tam giác $\triangle A B C, \angle A=90$, đường phân giác $AD$. Chưmg minh rằng
$$
\dfrac{\sqrt{2}}{A D}=\dfrac{1}{A B}+\dfrac{1}{A C}
$$

Bài 5. Cho tam giác $ABC$ có $M$ là trung điểm $BC$.

a) Chứng minh rằng $BC^2 +4AM^2 = 2(AB^2 +AC^2)$.

b) Gọi $N$ là trung điểm $AC$. Chứng minh $AM$ vuông góc $BN$ khi và chỉ khi $AC^2+BC^2 = 5AB^2$.

Số hữu tỉ – Vô tỉ

Số hữu tỉ – Số vô tỉ

(Bài viết dành cho các em trung học cơ sở)

Trong bài viết nhỏ này tôi xin giới thiệu một số bài toán liên quan đến các tập hợp số hữu tỉ và vô tỉ, một số trong đó đã xuất hiện trong các kì thi tuyển sinh vào 10 hay các kì thi học sinh giỏi.
Đầu tiên ta xem lại một số khái niệm và tính chất quan trọng.

Định nghĩa. Tập hợp các số có dạng $\dfrac{p}{q}$ trong đó $p, q$ là các số nguyên, $q \neq 0$ được gọi là số hữu tỉ. Kí hiệu là $\mathbb{Q}$. Tập số nguyên là tập con của tập các số hữu tỉ.
Tập hợp các số không phải là số vô tỉ được gọi là số vô tỉ, kí hiệu là $I$.

Tính chất 1. Ta có một số tính chất sau của số vô tỉ và hữu tỉ.

  • Tổng hiệu tích thương của hai số hữu tỉ là hữu tỉ.
  • Tổng, tích, thương của một số hữu tỉ và vô tỉ là một số vô tỉ

Việc chứng minh một số là số hữu tỉ hay vô tỉ chủ yếu dựa vào các định nghĩa trên, trong đó việc chứng minh một số là số vô tỉ hầu hết là sử dụng phương pháp chứng minh phản chứng.
Ta bắt đầu với bài toán cơ bản sau:
Ví dụ 1.
a) Chứng minh $\sqrt{2}$ là một số vô tỉ.
b) Chứng minh $\sqrt{2}+\sqrt{3}$ là một số vô tỉ.

Lời giải.

Ta sử dụng phương pháp chứng minh là phản chứng.

a) Giả sử $\sqrt{2}$ là số hữu tỉ, tức là tồn tại $\dfrac{p}{q}$ trong đó $p, q \in \mathbb{Z},(p,q) = 1, q \neq 0$ và $\sqrt{2}=\dfrac{p}{q}$.
Khi đó ta có $p^2 = 2q^2$, suy ra $p^2$ chia hết cho $2$ mà $2$ nguyên tố nên $p$ chia hết cho $2$, $p = 2k$.
Suy ra $q^2 = 2k^2$, lí luận tương tự thì $q$ chia hết cho $2$, do đó $(p, q) \neq 1$ (mâu thuẫn).
Vậy điều giả sử sai, $\sqrt{2}$ là số vô tỉ.
b) Giả sử $\sqrt{2}+\sqrt{3} = a$ hữu tỉ, suy ra $\sqrt{6} = \dfrac{a^2-5}{2}$ hữu tỉ. Chứng minh tương tự trên ta cũng suy ra điều vô lí.

Từ bài toán trên ta có thể chứng minh bài toán tổng quát sau:

Ví dụ 2. Cho $n$ là số tự nhiên nếu $\sqrt{n}$ không là số tự nhiên thì $\sqrt{n}$ là số vô tỉ.

Lời giải.

Giả sử $\sqrt{n}$ không phải vô tỉ và không phải số nguyên, suy ra $\sqrt{n} = \dfrac{p}{q}$ trong đó $(p,q) =1, q > 1$.
Tương tự ta có $p^2 = nq^2$. Do $q > 1$ nên có ước nguyên tố, giả sử $r$ là một ước nguyên tố của $q$, suy ra $p^2$ chia hết cho $r$, suy ra $p$ chia hết cho $r$, khi đó $(p,q) \neq 1$ (vô lí).
Vậy căn của một số nguyên là một số nguyên hoặc là một số vô tỉ.
\

Đặt $\sqrt{2} = x$, ta có $x^2 = 2 \Leftrightarrow x^2 – 2 = 0$, đến đây ta thấy $\sqrt{2}$ là một nghiệm của phương trình $x^2-2 = 0$. Ta có thể chứng minh phương trình $x^2 -2=0$ không có nghiệm hữu tỉ, từ đó suy ra $\sqrt{2}$ không là số hữu tỉ. Tất nhiên việc chứng minh này không khác mấy chứng minh trên. Tuy nhiên với các nhìn khác, ta có bài toán sau:

Ví dụ 3. Cho phương trình với các hệ số nguyên $a_0, a_1, \cdots, a_n$: $$a_nx^n + a_{n-1}x^{n-1}+\cdots+a_1x + a_0 = 0$$
Khi đó nếu $\dfrac{p}{q}$ với $(p,q)=1$ là một nghiệm hữu tỉ của phương trình thì $p|a_0, q|a_n$.Đặt biệt nếu $a_n=1$ thì nếu phương trình có nghiệm hữu tỉ thì nghiệm là số nguyên.

Lời giải

Thế $\dfrac{p}{q}$ vào phương trình và qui đồng, ta có $$a_np^n+a_{n-1}qp^{n-1}+\cdots+a_1q^{n-1}p + a_0q^n = 0$$
Khi đó $a_np^n$ chia hết cho $q$, suy ra $a_n$ chia hết cho $q$, tương tự thì $a_0$ chia hết cho $p$.

Cũng tương tự, ta có bài toán sau:
Ví dụ 4. Cho phương trình $ax^2 + bx + c = 0$, trong đó $a, b, c$ là các số tự nhiên lẻ. Chứng minh rằng phương trình không có nghiệm hữu tỉ.
Lời giải.

Giả sử $\dfrac{p}{q}, (p,q)=1$ là một nghiệm hữu tỉ của phương trình trên. Khi đó ta có $p|c, q|a$, suy ra $p, q$ đều lẻ. Mặt khác ta có $ap^2 + bpq+ cq^2 = 0$. Vế trái là một số lẻ nên vô lí. Vậy phương trình không có nghiệm hữu tỉ.

Sử dụng bài toàn 3 ta có thể chứng minh $\sqrt{2} + \sqrt{6}$ là số vô tỉ theo một các khác. Bằng cách chứng minh $a = \sqrt{2}+\sqrt{6}$ là nghiệm của phương trình bậc 4: $x^4 – 10x^2 – 1 = 0$, và dễ thấy phương trình trên không có nghiệm hữu tỉ nên $\sqrt{2}+\sqrt{6}$ là số vô tỉ.

Sau đây ta đi tới một số bài toán khác cũng liên quan đến số hữu tỉ và vô tỉ.
Ví dụ 5. Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.
Lời giải.

a) Ta có $xy, yz \in \mathbb{Q}$, suy ra $\dfrac{x}{z} \in \mathbb{Q}$.
Mà $xz \in \mathbb{Q}$ suy ra $x^2 \in \mathbb{Q}$.
Tương tự ta cũng có $y^2, z^2 \in \mathbb{Q}$.
b) Ta có $x(x^3+y^3+z^3) = (x^2)^2 + (xy)y^2 + (xz)z^2 \in \mathbb{Q}$. Suy ra $x \in \mathbb{Q}$.
Tương tự ta cũng có $y, z \in \mathbb{Q}$.

Chú ý. Với cách giải trên ta chấp nhận không thể xảy ra $x^3+y^3+z^3 = 0$ vì phương trình này không có nghiệm nguyên hay nghiệm hữu tỷ.

Ví dụ 6. Tìm tất cả các số tự nhiên $a, b$ sao cho $$\dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}
$$ là số hữu tỉ.
Lời giải.
Đặt $x = \dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}$ là số nguyên.
Suy ra $\sqrt{a} – x\sqrt{b} = x\sqrt{3}-\sqrt{2}$
Bình phương hai vế ta có $a +x^2b -2x\sqrt{ab} = 3x^2+2-2x\sqrt{6} \Rightarrow a+x^2b-3x^2-2 = 2x(\sqrt{ab}-\sqrt{6})$.
Suy ra $\sqrt{ab}-\sqrt{6} = y \in \mathbb{Q}$.
Khi đó $ab = 6+y^2 – 2y\sqrt{6}$.
Vì $\sqrt{6}$ là số vô tỉ nên đẳng thức xảy ra khi và chỉ khi $y = 0$ và $ab=6$.
Ta xét các trường hợp sau:

  • $a = 1, b = 6 \Rightarrow x = \dfrac{1}{\sqrt{6}}$ vô tỉ.
  • $a = 2, b = 3 \Rightarrow x= \dfrac{\sqrt{2}}{\sqrt{3}}$.
  • $a = 3, b = 2 \Rightarrow x = 1$.
  • $a = 6, b = 1 \Rightarrow x = \sqrt{2}$ vô tỉ.

Vậy $a = 3, b = 2$ là số cần tìm.

Ví dụ 7. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Lời giải.
Đặt $a = x+\dfrac{1}{y} (1), b = y + \dfrac{1}{z} (2), c = z+\dfrac{1}{x} (3)$.
Từ (1) ta có $y = \dfrac{1}{a-x}, z = \dfrac{1}{b-y} = \dfrac{a-x}{ab-1-bx}$. Thế vào (3) ta có:
$\dfrac{a-x}{ab-1-bx}+\dfrac{1}{x} = c \Leftrightarrow (bc-1)x + (a-b+c-abc)x + ab – 1 = 0$ (4).
Nếu $bc = 1$ thì $b = 1, c = 1$ suy ra $a = 1$. Khi đó $3 = x + \dfrac{1}{x} + y +\dfrac{1}{y} + z + \dfrac{1}{z} \geq 6$ (vô lý)
Nếu $bc \neq 1$, khi đó ta xem (4) như phương trình bậc hai có nghiệm hữu tỷ $x$, khi đó $\Delta = (a-b+c-abc)^2 – 4(bc-1)(ab-1) = (abc-a-b-c)^2 – 4$ là số chính phương.
Đặt $t = abc-a-b-c$ ta có $t^2-4 = k^2$, giải ra được $ t = 2$ hoặc $t = -2$.

$0=abc-a-b-c +2 = a(bc-1) – b-c+2 \geq bc-b-c+1 = (b-1)(c-1)$. Suy ra $b = c=1$ (vô lý).
$0=abc-a-b-c-2 \geq (b-1)(c-1) – 4\Rightarrow (b-1)(c-1) \leq 4$.
Nếu $(b-1)(c-1) = 4$ thì $b = 2, c=5$; $b = 3, c=3$; $b=5, c=2$. Trong các trường hợp này thì $a=1$.
Nếu $ a= 1, b = 2, c = 5$ giải được $(x, y, z) = (\dfrac{1}{3}, \dfrac{3}{2},2)$.
Nếu $a = 1, b = 3, c = 3$ thì $(x, y, z) = (\dfrac{1}{2},2,1)$.
Nếu $a = 1, b = 5, c = 2$ thì $(x, y, z) = (\dfrac{2}{3}, 3,2)$.
Nếu $(b-1)(c-1) = 3 \Rightarrow bc= b+c +2 = abc-a = a(bc-1) \Rightarrow bc-1|bc \Rightarrow bc = 1, a = 1$. (loại)
Khi $(b-1)(c-1) =2 \Rightarrow a = b = c = 2$, giải ra được $(x, y, z) = (1, 1, 1)$.

Trên đây là một số bài toán liên quan đến số hữu tỉ, vô tỉ, hi vọng các em có thêm kinh nghiệm để làm bài trong các tình huống này. Sau đây là một số bài tập rèn luyện.

Bài 1.  Tìm một đa thức hệ số nguyên nhận $\alpha = 2 + \sqrt[3]{2} + \sqrt[3]{4}$ làm nghiệm. Chứng minh $\alpha$ là số vô tỷ.
Bài 2.  Cho các số $a, b$ sao cho $a – \sqrt{ab}$ và $b-\sqrt{ab}$ đều là các số hữu tỉ. Chứng minh rằng $a, b$ cũng là các số hữu tỉ.
Bài 3. Ta nói các căp số $(\mathrm{a}, \mathrm{b}) a \neq b$, là có tính chất $\mathrm{P}$ nếu $a^{2}+b \in Q$ và $b^{2}+a \in \mathbb{Q}$.
Chứng minh rằng:
a) Các số $a=\dfrac{1+\sqrt{2}}{2}, b=\dfrac{1-\sqrt{2}}{2}$ là các số yô tỷ có tính chất $\mathrm{P}$.
b) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $a+b \in \mathbb{Q} \backslash{1}$ thì $a, b$ à các số hũu tỷ.
c) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $\dfrac{a}{b} \in \mathbb{Q}$ thì $\mathrm{a}, \mathrm{b}$ là các số hũu tỷ.
Bài 4.  Với mỗi số hữu tỷ $q$ đặt $V_q = {x \in \mathbb{Q}|x^3-2015x =q}$.

a)Tìm $q$ sao cho $V_q$ có là tập rỗng và $V_q$ có đúng một phần tử.
b) Gọi $S(V_q)$ là số phần tử của $V_q$, tìm tất cả các giá trị của $S(V_q)$.
Bài 5.
a) Cho số thực $x$ thỏa $x^2+x$ và $x^3+2x$ là số hữu tỷ. Chứng minh $x$ cũng là số hữu tỷ.
b) Chứng minh rằng tồn tại số vô tỷ $x$ sao cho $x^2+x$ và $x^3-2x$ là hữu tỷ.

Hết