Category Archives: Toán phổ thông

Tập hợp số nguyên

Tập hợp số nguyên
Ta đã biết $\mathrm{N}={0 ; 1 ; 2 ; 3 ; \ldots}$ là tập hợp số tự nhiên.
0 $\quad$

Các số tự nhiên khác 0 còn được gọi là các số nguyên dương. Số nguyên dương có thể được viết là: $+1 ;+2 ;+3 ; \ldots$ hoặc thông thường bỏ đi dấu “+” và chỉ ghi là: $1 ; 2 ; 3 ; \ldots$
Các số $-1 ;-2 ;-3 ; \ldots$ là các số nguyên âm.Số 0 không phải là số nguyên âm và cũng không phải là số nguyên dương.
Tập hợp gồm các số nguyên âm, số 0 và các số nguyên dương được gọi là tập hợp
số nguyên.

Kí hiệu là $\mathbb{Z}$.

Ta có $\mathbb{Z} = \{\cdots;-3;-2;-1;0;1;2;3;\cdots \}$.

Biểu diễn số nguyên trên trục số.

Số đối của một số nguyên

Hai số nguyên trên trục số nằm ở hai phía của điểm 0 và cách đều điểm 0 thì được gọi là hai số đối nhau.

Ví dụ 1. Số đối của 6 là – 6; số đối của – 2021 là 2021.

Chú ý. 

  • Số đối của một số nguyên âm là số nguyên dương;
  • Số đối của một số nguyên dương là số nguyên âm.
  • Số đối của 0 là 0.

Bài tập rèn luyện.

Bài 1. Dùng số nguyên thích hợp để diễn tả các tình huống sau:
a) Thưởng 5 điểm trong một cuộc thi đấu.
b) Bớt 2 điểm vì phạm luật.
c) Tăng 1 bậc lương do làm việc hiệu quả.
d) Hạ 2 bậc xếp loại do thi đấu kém.
Bài 2. Các phát biểu sau đúng hay sai?
a) $9 \in \mathbb{N}$
b) $-6 \in \mathbb{N}$
c) $-3 \in \mathbb{Z}$
d) $0 \in \mathbb{Z}$
e) $5 \in \mathbb{Z}$
g) $20 \in \mathbb{N}$.

Bài 3. Vẽ một đoạn của trục số từ $-10$ đến $10 .$ Biểu diễn trên đó các số nguyên sau đây:
$\begin{array}{llllll}+5 ; & -4 ; & 0 ; & -7 ; & -8 ; & 2 ;\end{array}$
3; $\quad 9$;
$-9 .$

Bài 4. Hãy vẽ một trục số rồi vẽ trên đó những điểm nằm cách điểm 0 hai đơn vị. Những điểm này biểu diễn các số nguyên nào?

Bài 5. Tìm số đối của các số nguyên sau: $-5 ;-10 ; 4 ;-4 ; 0 ;-100 ; 2021 .$

Tài liệu tham khảo

Chân trời Sáng tạo, Sách giáo khoa toán 6, NBX GD, Trần Nam Dũng (Chủ biên)

Bội chung – Bội chung nhỏ nhất

Bội chung. Một số là bội chung của hai hay nhiều số khi nó là bội của tất cả các số đó.

Kí hiệu bội chung của $a, b$ là BC(a, b).

Ví dụ 1. B(4) = {0, 4, 8, 12, 16, 20,…} và B(6) = {0, 6, 12, 18, 24, 30,…}

Thì BC(4,6) = {0, 12, 24, …}

Cách tìm bội chung của a và b

  • Tìm tập các bội của a là B(a), tìm bội của b là B(b)
  • Tìm các phần tử của của B(a) và B(b), ta được BC(a, b).

Bội chung nhỏ nhất. 

Bôi chung nhỏ nhất của hai hay nhiều số là số khác 0 nhỏ nhất trong tập các bội chung của nó.

Kí hiệu là BCNN(a,b).

Chú ý. Nếu $a \neq 1$ thì BCNN(a,1) = a và BCNN(a,b,1) = BCNN(a,b).

Ví dụ 2. Một lớp có không quá 42 học sinh. Nếu xếp hàng 4 hoặc hàng 6 thì vừa đủ. Nếu xếp hàng 5 thì thừa 1 em. Hỏi lớp đó có bao nhiêu học sinh?
Lời giải.
Số học sinh của lớp đó là bội chung của 4 và 6 .

Ta có $\mathrm{BCNN}(4,6)=12$ nên $\mathrm{BC}(4,6)={0 ; 12 ; 24 ; 36 ; 48 ; \ldots}$.
Vi số học sinh của lớp đó không quá 42 và là một số chia cho 5 dư 1 nên lớp đó có 36 học sinh.

Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  • Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Ví du 5: Tìm BCNN của 12,90 và 150 .
Lời giải.
– Phân tích mỗi số $12,90,150$ ra thừa số nguyên tố:
$$
12=2^{2} \cdot 3 ; 90=2 \cdot 3^{2} \cdot 5 ; 150=2 \cdot 3 \cdot 5^{2} .
$$
– Các thừa số nguyên tố chung và riêng là 2,3 và 5 .
– Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: $2^{2} \cdot 3^{2} \cdot 5^{2}$
Vậy $\operatorname{BCNN}(12,90,150)=2^{2} \cdot 3^{2} \cdot 5^{2}=900$.

Ứng dụng trong quy đổng mẫu các phân số

Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

  • Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.
  • Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).
  • Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

Ví dụ 6. Ta có thể quy đồng mẫu hai phân số $\frac{1}{6}$ và $\frac{5}{8}$ theo hai cách như sau:
Ta có: 48 là một bội chung của 6 và 8 ; Ta có: $\mathrm{BCNN}(6,8)=24$;

Do đó: $\quad 24: 6=4 ; 24: 8=3$.

$\frac{1}{6}=\frac{1.4}{6.4}=\frac{4}{24}$ và $\frac{5}{8}=\frac{5.3}{8.3}=\frac{15}{24}$.

 

Bài tập rèn luyện.

Bài 1. Tìm:
a) $\mathrm{BC}(6,14)$;
b) $\mathrm{BC}(6,20,30)$
c) $\mathrm{BCNN}(1,6)$
d) $\mathrm{BCNN}(10,1,12)$;
e) $\mathrm{BCNN}(5,14)$.
Bài 2. a) Ta có $\mathrm{BCNN}(12,16)=48$. Hãy viết tập hợp A các bội của 48 . Nhận xét về tập hợp $\mathrm{BC}(12,16)$ và tập hợp $\mathrm{A}$.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của $\mathrm{BCNN}(\mathrm{a}, \mathrm{b})$. Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30 ; $\quad$ ii. 42 và 60 ; $\quad$ iii. 60 và 150 ; $\quad$ iv. 28 và 35 .
Bài 3. Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
a) $\frac{3}{16}$ và $\frac{5}{24}$;
b) $\frac{3}{20} ; \frac{11}{30}$ và $\frac{7}{15}$

Bài 4. Chị Hoà có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hoà có bao nhiêu bông sen? Biết rằng chị Hoà có khoảng từ 200 đến 300 bông.

Ước chung lớn nhất

Ước chung

  • Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
  • Tập các ước chung của $a$ và $b$ kí hiệu ƯC(a,b). Ta có x thuộc ƯC(a,b) khi và chỉ khi $a \vdots x$ và $b \vdots x$.

Ví dụ 1. Ư(12) = {1, 2, 3, 4, 6, 12}, Ư(8) = {1, 2, 4, 8}

Thì ước chung của 12 và 8 là 1, 2, 4, kí hiệu ƯC(8,12) = {1, 2, 4}.

Cách tìm ước chung của $a$ và $b$.

  • Tìm tập các số là ước của $a$, tập các ước của $b$.
  • Tìm các phần tử của của hai tập trên ta được tập ước chung của $a$ và $b$.

Ví dụ 2. Tìm ước chung của 24 và 30.

Ta có Ư(24) = {1, 2, 3, 4, 6, 8, 12, 24}, Ư(30) = {1, 2, 3, 5, 6, 15, 30}

Khi đó ƯC(24,30) = {1, 2, 3, 6}.

Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của $a$ và $b$ là ƯCLN(a,b)

Ví dụ 3. ƯC(24,30) = {1, 2, 3, 6}, ƯCLN(24,30) = 6.

Ví dụ 4. Các bạn học sinh lớp 6 A đang lên kế hoạch làm sạch môi trường ở địa phương. Cả lớp có 12 bạn nữ và 18 bạn nam. Các bạn muốn chia lớp thành các nhóm nhỏ gồm cả nam và nữ sao cho số bạn nam và số bạn nữ được chia đều vào các nhóm. Có thể chia được nhiều nhất thành bao nhiêu nhóm học sinh? Khi đó, mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Lời giải.

  • Số nhóm được chia phải là ước của cả 12 và 18 .
  • Số nhóm được chia phải là nhiều nhất có thể. Vì vậy, số nhóm được chia là ước chung lớn nhất của 12 và 18 .

Ta có $\mathrm{U}^{\circ} \mathrm{CLN}(12,18)=6$. Do đó cần chia lớp thành 6 nhóm.

Số học sinh trong mỗi nhóm là $(12+18): 6=5$ (học sinh).

Vậy mỗi nhóm có 5 học sinh, gồm 2 nữ và 3 nam.

Cách tìm ước chung lớn nhất của $a, b$ bằng phân tích thành thừa số nguyên tố.

Muốn tìm U’CLN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.
    Tích đó là ƯCLN phải tìm.

Ví dụ 5. Tìm ước chung lớn nhất của 24 và 30.

Lời giải.

Ta có $24 = 2^3 \cdot 3$ và $30 = 2 \cdot 3 \cdot 5$.

Ta có ƯCLN (a, b) = 2 \cdot 3 = 6.

Định nghĩa. Hai số có ước chung lớn nhất bằng 1 được gọi là nguyên tố cùng nhau. 

Kí hiệu hai số $a, b$ nguyên tố cùng nhau là (a,b) = 1

Ứng dụng tối giản phân số. Khi rút gọn $\frac{90}{126}$, ta chia cả tử số và mẫu số cho
một ước chung của 90 và 126 để được phân số mới. Tiếp tục
quy trình đó đến khi không rút gọn cho đến khi
tử số và mẫu số của chúng không có ước chung nào khác 1
(tử số và mẫu số là hai số nguyên tố cùng nhau). Khi đó, ta
được một phân số tối giản.

Bài tập rèn luyện

Bài 1. Tìm:
a) $\mathrm{UCLN}(1,16)$;
b) $\operatorname{UCLN}(8,20)$
c) UCLN $(84,156)$;
d) UCLN $(16,40,176)$.
Bài 2. a) Ta có $\mathrm{U}^{\prime} \mathrm{CLN}(18,30)=6$. Hãy viết tập hợp A các ước của 6 . Nêu nhận xét về tập hợp UC $(18,30)$ và tập hợp $\mathrm{A}$.
b) Cho hai số a và b. Để tìm tập hợp $\mathrm{UC}(\mathrm{a}, \mathrm{b})$, ta có thể tìm tập hợp các ước của $\mathrm{U}^{\circ} \mathrm{CLN}(\mathrm{a}, \mathrm{b})$. Hãy tìm UCLN rồi tìm tập hợp các ước chung của:
i. 24 và 30 ;
ii. 42 và 98 ;
iii. 180 và 234 .
Bài 3. Rút gọn các phân số sau: $\frac{28}{42} ; \frac{60}{135} ; \frac{288}{180}$.
Bài 4. Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là $140 \mathrm{~cm}, 168 \mathrm{~cm}$ và $210 \mathrm{~cm}$. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

BÀI GIẢNG ƯỚC CHUNG LỚN NHẤT VÀ MỘT SỐ TÍNH CHẤT

Số nguyên tố – Hợp số

Định nghĩa. 

  • Số nguyên tố là số tự nhiên lớn hơn 1 có hai ước là 1 và chính nó/
  • Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước số.

Ví dụ 1. Số 17 là số nguyên tố, 18 là hợp số.

Chú ý. Số 0 và 1 không phải là số nguyên tố, cũng không phải là hợp số.

Phân tích một số là thừa số nguyên tố là viết số đó thành tích các thừa số nguyên tố.

Ví dụ 2. $12 = 2 \cdot 2 \cdot 3$ viết gọn là $12 = 2^2 \cdot 3$.

Chú ý:
– Mọi số tự nhiên lớn hơn 1 đều phân tích được thành tích các thừa số nguyên tố.
– Mỗi số nguyên tố chỉ có một dạng phân tích ra thừa số nguyên tố là chính số đó.
– Có thể thu gọn thành dạng lũy thừa.

Cách phân tích thành thừa số nguyên tố.

 

Bài tập có lời giải.

Bài 1. Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
a) 213 ;
b) 245 ;
c) 3737
d) 67 .

Lời giải


Bài 2.Lớp của bạn Hoàng có 37 học sinh. Trong một lần thi đồng diễn thể dục, các bạn lớp Hoàng muốn xếp thành các hàng có cùng số bạn để được một khối hình chữ nhật có ít nhất là hai hàng. Hỏi các bạn có thực hiện được không? Em hãy giải thích.

Lời giải

Bài 3.Hãy cho ví dụ về:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố. Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.

Lời giải

Bài 4.Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
a) 80 ;
b) 120 ;
c) 225 ;
d) 400 .

Lời giải

Bài 5.Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
a) 1024 ;
b) $242 ;$
c) 375 ;
d) 329 .

Lời giải

Bài 6. Cho số $\mathrm{a}=2^{3} .3^{2}$. 7. Trong các số $4,7,9,21,24,34,49$, số nào là ước của a?
Bình dùng một khay hình vuông cạnh $60 \mathrm{~cm}$ để xếp bánh chưng. Mỗi chiếc bánh chưng hình vuông có cạnh $15 \mathrm{~cm}$. Bình có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay này không? Giải thích.

Lời giải

Bài tập tự giải

Dấu hiệu chia hết cho 3, 9

Dấu hiệu chia hết cho 9. Các số có tổng các chữ số chia hết thì chia hết cho 9 và chỉ các số đó mới chia hết cho 9.

Ví dụ. Trong các số sau, số nào chia hết cho 9

a) 315, 216, 325, 871, 909

b) 126 + 324, 369 + 127

Dấu hiệu chia hết cho 3. Các số có tổng các chữ số chia hết thì chia hết cho 3 và chỉ các số đó mới chia hết cho 3.

Ví dụ. Trong các số sau, số nào chia hết cho 3.

a) 214, 327, 123, 457

b) 132 + 546, 216 + 829

Bài tập rèn luyện

Bài 1. Cho các số: $117 ; 3447 ; 5085 ; 534 ; 9348 ; 123$.
a) Em hãy viết tập hợp A gồm các số chia hết cho 9 trong các số trên.
b) Có số nào trong các số trên chỉ chia hết cho 3 mà không chia hết cho 9 không? Nếu có, hãy viết các số đó thành tập hợp $\mathrm{B}$.

Bài 2. Không thực hiện phép tính, em hãy giải thích các tổng (hiệu) sau có chia hết cho 3 hay không, có chia hết cho 9 hay không.
a) $1260+5306$;
b) $436-324$
c) $2.3 .4 .6+27$.
Bài 3. Bạn Tuấn là một người rất thích chơi bi nên bạn ấy thường sưu tầm những viên bi rồi bỏ vào 4 hộp khác nhau, biết số bi trong mỗi hộp lần lượt là $203,127,97,173$.
a) Liệu có thể chia số bi trong mỗi hộp thành 3 phần bằng nhau được không? Giải thích.
b) Nếu Tuấn rủ thêm 2 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?
c) Nếu Tuấn rủ thêm 8 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?

Dấu hiệu chia hết 2,5

Dấu hiệu chia hết cho 2. Các số có chữ số tận cùng là 0, 2, 4, 6, 8 (các chữ số chẵn) thì chia hết cho 2 và chỉ các số đó mới chia hết cho 2.

Ví dụ 1. Trong các số sau, số nào chia hết cho 2: 2012, 123, 311, 4024, 1998

Dấu hiệu chia hết cho 5. Các số có chữ số tận cùng là 0, 5 thì chia hết cho 5 và chỉ các số đó mới chia hết cho 5.

Ví dụ 2. Trong các số sau, số nào chia hết cho 5: 214, 315, 420, 611.

Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 25) Trong những số sau: $2023,19445,1010$, số nào:
a) chia hết cho $2 ?$
b) chia hết cho 5 ?
c) chia hết cho $10 ?$

Lời giải


Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 25)Không thực hiện phép tính, em hãy cho biết những tổng (hiệu) nào sau đây chia hết cho 2 , chia hết cho 5 .
a) $146+550$;
b) $575-40$
c) $3.4 .5+83$
d) $7.5 .6-35.4$

Lời giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 25) Lớp $6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}, 6 \mathrm{D}$ lần lượt có $35,36,39,40$ học sinh.
a) Lớp nào có thể chia thành 5 tổ có cùng số tổ viên?
b) Lớp nào có thể chia tất cả các bạn thành các đôi bạn học tập?

Lời giải

Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 25) Bà Huệ có 19 quả xoài và 40 quà quýt. Bà có thể chia số quả này thành 5 phần bằng nhau (có cùng số xoài, có cùng số quýt) được không?

Lời giải

Bài tập tự luyện

Lũy thừa của một số tự nhiên

1.Lũy thừa của một số tự nhiên

Lũy thừa bậc $\mathrm{n}$ của a, kí hiệu $\mathrm{a}^{\mathrm{n}}$, là tích của $\mathrm{n}$ thừa số $\mathrm{a}$.
$$
\mathrm{a}^{\mathrm{n}}=\underbrace{\mathrm{a} \cdot \mathrm{a} \ldots \ldots \mathrm{a}}_{\mathrm{n} \text { thừa số a }} \quad(\mathrm{n} \neq 0)
$$

  • Ta đọc $\mathrm{a}^{\mathrm{n}}$ là “a $m \tilde{u} \mathrm{n}$ ” hoặc “a lũy thừa n” hoặc “lũy thừa bậc $\mathrm{n}$ của a”.
  • Số a được gọi là cơ số, n được gọi là số $m \tilde{u}$. Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên luỹ thìa.
  • Đặc biệt, $\mathrm{a}^{2}$ còn được đọc là a bình phương hay bình phương của a và a $^{3}$ còn được đọc là a lập phương hay lập phương của a.
  • Quy ước: $\mathrm{a}^{1}=\mathrm{a}$.

Ví dụ 1. $10^4 = 10 \cdot 10 \cdot 10 \cdot 10$.

2.Tính chất.

a) Khi nhân hai luỹ thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
$$
a^{m} \cdot a^{n}=a^{m+n}
$$

a) Khi chia hai luỹ thừa cùng cơ số (khác 0 ), ta giữ nguyên cơ số và trừ các số mũ.
$$
\mathrm{a}^{\mathrm{m}}: \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}(\mathrm{a} \neq 0 ; \mathrm{m} \geq \mathrm{n})
$$
Quy ước: $\mathrm{a}^{0}=1$.

Ví dụ 2. 

a) $2^{10} = 2^7 \cdot 2^3$.

b) $3^5 = 3^7 : 3^2$.

3.Các ví dụ thực hành

Ví dụ 3. a) Viết các tích sau dưới dạng luỹ thừa:
$$
3.3 .3 ; \quad 6.6 .6 .6 .
$$
b) Phát biểu hoàn thiện các câu sau:
$3^{2}$ còn gọi là “3 …” hay “… của 3”; $5^{3}$ còn gọi là “5 …” hay “… của 5”.
c) Hãy đọc các luỹ thừa sau và chỉ rõ cơ số, số mũ: $3^{10} ; 10^{5}$.

Lời giải

 

 

Ví dụ 4. Viết các tích sau dưới dạng một luỹ thừa:  3^{3} \cdot 3^{4} ; 10^{4} \cdot 10^{3} ; \mathrm{x}^{2} \cdot \mathrm{x}^{5}$.

Lời giải

 

 

Ví dụ 5. a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$11^{7}: 11^{3}$ $11^{7}: 11^{7}$
$7^{2} \cdot 7^{4}$ $7^{2} \cdot 7^{4}: 7^{3}$
b) Cho biết mỗi phép tính sau đúng hay sai.
$$
\begin{array}{ll}
9^{7}: 9^{2}=9^{5} ; & 7^{10}: 7^{2}=7^{5} ; \
2^{11}: 2^{8}=6 ; & 5^{6}: 5^{6}=5 .
\end{array}
$$

Lời giải

 

 

4.Bài tập rèn luyện

Bài 1.(SGK CTST Toán 6 Tập 1 – Trang 18) a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$$
\begin{array}{lll}
5^{7} .5^{5} ; & 9^{5}: 8^{0} ; & 2^{10}: 64.16
\end{array}
$$
b) Viết cấu tạo thập phân của các số $4983 ; 54297 ; 2023$ theo mẫu sau:
$$
4983=4.1000+9.100+8.10+3
$$
$$
=4.10^{3}+9.10^{2}+8.10+3
$$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 18)Theo Tổng cục Thống kê, tháng 10 năm 2020 dân số Việt Nam được làm tròn là 98000000 người. Em hãy viết dân số Việt Nam dưới dạng tích của một số với một luỹ thừa của $10 .$

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 18)Biết rằng khối lượng của Trái Đất khoảng $600 \ldots 00$(21  số  0) tấn, khối lượng của Mặt Trăng khoảng
$7500 \ldots 00$(18 số  0) tấn.
a) Em hãy viết khối lượng Trái Đất và khối lượng Mặt Trăng dưới dạng tích của một số với một luỹ thừa của $10 .$
b) Khối lượng Trái Đất gấp bao nhiêu lần khối lượng Mặt trăng.

Chuyên đề: Biến đổi biểu thức

RÚT GỌN BIẾN ĐỔI BIỂU THỨC CHỨA CĂN THỨC

Chuyên đề này đề cập tới các bài toán rút gọn biểu thức, chứng minh các đẳng thức, tính toán biểu thức,…Đây là chuyên đề quan trọng, rèn luyện kĩ năng biến đổi đại số cho các em, là kĩ năng ta sẽ dùng sau này.

Kiến thức là toàn bộ chương căn bậc hai, các hằng đẳng thức và kĩ năng biến đổi đã học ở lớp 8.

Các bạn có thể xem trước các bài cơ bản ở đây.

Dạng 1. Tính toán rút gọn

Ví dụ 1. Đặt $x = \sqrt{2}+\sqrt{3}$.
a) Chứng minh rằng $x^4 – 10x^2 + 1 = 0$.
b) Tìm giá trị của biểu thức $P(x) = (x^6 – 11x^4 + 11x^2 + 1)^{2019}$.

Lời giải

 

 

 

 

 

 

 

Ví dụ 2.  Cho $x$ thỏa $x \geq 2$. Rút gọn biểu thức $$A = \dfrac{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} – 2}}{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} + 2}}$$

Lời giải

Ví dụ 3.

a) Chứng minh rằng với mọi số nguyên dương n ta có: $$1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} = {\left( {1 + \dfrac{1}{n} – \dfrac{1}{{n + 1}}} \right)^2}$$
b) Tính tổng $$S = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} + \cdots + \sqrt {1 + \dfrac{1}{{{{2021}^2}}} + \dfrac{1}{{{{2022}^2}}}} $$

Lời giải

Ví dụ 4. Rút gọn biểu thức: $$A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + \cdots + \dfrac{1}{{2019\sqrt {2018} + 2018\sqrt {2019} }}$$

Lời giải

Dạng 1. Chứng minh đẳng thức

Ví dụ 5. Cho $a, b \ge 0, a^2>b$. Chứng minh $$\sqrt{a+\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$ và $$\sqrt{a-\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$

Lời giải

Ví dụ 6. Cho $a, b >0, c \neq 0$. Chứng minh rằng:
$$ \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0 \Leftrightarrow \sqrt {a + b} = \sqrt {a + c} + \sqrt {b + c} $$

Lời giải

Ví dụ 7. Cho $xy + \sqrt {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} = a > 1$. Tính $S = x\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} $.

Lời giải

Ví dụ 8. Đặt $a_n = \sqrt[4]{2} + \sqrt[n]{4}, n = 2, 3…$. Chứng minh rằng $$ \dfrac{1}{a_5}+\dfrac{1}{a_6}+\dfrac{1}{a_{12}}+\dfrac{1}{a_{20}} = \sqrt[4]{8} $$

Lời giải

Ví dụ 9.  Chứng minh rằng nếu $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{{a + b + c}}$ thì với mọi số nguyên dương lẻ n ta có $\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} = \sqrt[n]{{a + b + c}}$.

Lời giải

Dạng 3. Hữu tỉ và vô tỉ

Ví dụ 10. 

a) Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

b) Cho $n$ và số tự nhiên và $m$ là số tự nhiên thỏa $n^2 < m < (n+1)^2$. Chứng minh $\sqrt{m}$ là một số vô tỉ.

Lời giải

Ví dụ 11. Chứng minh số
$A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}$ là một số nguyên.

Lời giải

Ví dụ 12. 

a) Chứng minh rằng nếu $a, b$ là các số hữu tỉ thỏa $a+b\sqrt{2} = 0$ thì $a = b= 0$.

b) Tìm các số $a, b$ hữu tỉ thỏa $\sqrt{a} +\sqrt{b} = \sqrt{2+\sqrt{3}}$.

 

Bài tập rèn luyện.

Bài 1. Với mọi $x \ge 2$. Chứng minh rằng $$\sqrt{\sqrt{x}+\sqrt{\dfrac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\dfrac{x^2-4}{x}}}=\sqrt{\dfrac{2x+4}{\sqrt{x}}}$$

Bài 2. Rút gọn $A=\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{(x+y)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{(x^2+y^2)^2}}}$

Bài 3. Cho $x,y<0$. Chứng minh $|\sqrt{xy}-\dfrac{x+y}{2}|+|\dfrac{x+y}{2}+\sqrt{xy}|=|x|+|y|.$
Bài 4. Cho các số $x,y,z>0$ và đôi một phân biệt. Chứng minh giá trị của $P$ không phụ thuôc vào $x,y,z$ với
$$P=\dfrac{x}{(\sqrt{x}-\sqrt{y})(\sqrt{x}-\sqrt{z})}+\dfrac{y}{(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{x})}+\dfrac{z}{(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})}.$$
Bài 5.  Cho $a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1$.

a) Chứng minh: $a^4-14a^2+9=0$.
b) Cho $f(x)=x^5+2x^4-14x^3-28x^2+9x+19$. Tính $f(a).$

Bài 6.  Cho $a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[38]{38-17\sqrt{5}}$ và $f(x)=(x^3+3x+2018)^{2018}$. Tính $f(a).$
Bài 7.  Cho $x=1+\sqrt[3]{2}+\sqrt[3]{4}$. Tính $x^5-4x^4+x^3-x^2-2x+2018.$

Bài 8. Cho $f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}, n \in \mathbb{N}^*$. Tính $f(1)+f(2)+…+f(2018)$. %NTK

Bài 9.  Cho $f(n)=\dfrac{2n+1+\sqrt{n(n+1)}}{\sqrt{n}+\sqrt{n+1}}$. Tính $f(1)+f(2)+…+f(n).$ %NTK
Bài 10. Cho $x,y,z >0$ thoả $xyz=4$. Tính giá trị biểu thức $$A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}.$$

Bài 11.  Cho các số dương $x,y,z$ thoả $\begin{cases} x+y+z=2&\\\sqrt{x}+\sqrt{y}+\sqrt{z}=2 \end{cases}$. Tính $$A=\sqrt{(1+x)(1+y)(1+z)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right).$$

Bài 12.  Cho các số $abc \ne 0$ thoả $a+b+c=0$. Chứng minh $$\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\big|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\big|$$

Bài 13.  Cho $a,b,c>0$ thoả $a\sqrt{1-b^2}+b\sqrt{1-c^2}+c \sqrt{1-a^2}=\dfrac{3}{2}.$\ Chứng minh $a^2+b^2+c^2=\dfrac{3}{2}.$
Bài 14.  Tìm tất cả các số thực $a,b,c$ thoả $\sqrt[3]{a-b}+\sqrt[3]{b-c}+\sqrt[3]{c-a}=0.$ %105-38
Bài 15. Cho các số $a_1, a_2,…,a_n$ thoả $a_1=1, a_{n+1}=\dfrac{\sqrt{3}+a_n}{1-\sqrt{3}a_n}$. Tính $a_{2020}$.
Bài 16.  Chứng minh rằng nếu $\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a$ thì $$\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2} $$

Phép cộng trừ số tự nhiên

1.Tính chất của phép cộng và phép nhân

a) Giao hoán

$$a+b = b+a$$

$$a\cdot b = b\cdot a$$

b) Kết hợp

$$a+(b+c) = (a+b)+c$$

$$a\cdot (b\cdot c) = (a\cdot b) \cdot c$$

c) Tính chất phân phối của phép nhân và phép cộng

$$a \cdot (b+c) = a\cdot b + a \cdot c$$

d) Tính chất cộng với 0 và nhân với 1.

$$a + 0 = a$$

$$a \cdot 1 = a$$

2.Phép trừ 

Nếu có số tự nhiên $\mathrm{x}$ thoả mãn $\mathrm{b}+\mathrm{x}=\mathrm{a}$, ta có phép trừ $\mathrm{a}-\mathrm{b}=\mathrm{x}$ và gọi $\mathrm{x}$ là hiệu của phép trừ số $a$ cho số $\mathrm{b}$, $a$ là số bị trừ, $\mathrm{b}$ là số trừ.

Ta cũng có $$ a\cdot (b-c) = a \cdot b – a\cdot c$$

3.Phép chia 

Tương tự với $\mathrm{a}, \mathrm{b}$ là các số tự nhiên, $\mathrm{b} \neq 0$, nếu có số tự nhiên $\mathrm{x}$ thoả $\operatorname{mãn} \mathrm{bx}=\mathrm{a}$, ta có phép chia $\mathrm{a}: \mathrm{b}=\mathrm{x}$ và gọi a là số bị chia, $\mathrm{b}$ là số chia, $\mathrm{x}$ là thương của phép chia số a cho số $\mathrm{b}$.

4.Các ví dụ

Ví dụ 1. Có thể thực hiện phép tính sau như thế nào cho hợp lí?
$$
T=11 \cdot(1+3+7+9)+89 \cdot(1+3+7+9)
$$
Có thể tính nhanh tích của một số với 9 hoăc 99 như sau:
$$
\begin{aligned}
&67.9=67 \cdot(10-1)=670-67=603 \
&346.99=346 \cdot(100-1)=34600-346=34254 .
\end{aligned}
$$
Tính: 1234.9; $1234.99 .$

Giải

Ví dụ 2. Nhóm bạn Lan dự định thực hiện một kế hoạch nhỏ với số tiền cẩn có là 200000 đồng. Hiện tại các bạn đang có 80000 đổng. Các bạn thực hiện gây quỹ thêm bằng cách thu lượm và bán giấy vụn, mỗi tháng được 20000 đổng.
a) Số tiền các bạn còn thiếu là bao nhiêu?
b) Số tiền còn thiếu cần phải thực hiện gây quỹ trong mấy tháng?

Giải

Ví dụ 3. Mẹ có 30 cái bánh muốn chia đều cho 3 anh em, mỗi người có số bánh bằng nhau, hỏi mẹ có chia được không và mỗi người được bao nhiêu cái bánh.

Giải

 

5.Bài tập rèn luyện

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 15)Tính một cách hợp lí:
a) $2021+2022+2023+2024+2025+2026+2027+2028+2029$;
b) $30.40 .50 .60$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 15)Bình được mẹ mua cho 9 quyển vở, 5 cái bút bi và 2 cục tẩy. Giá mỗi quyển vở là 4900 đồng; giá mỗi cái bút bi là 2900 đồng; giá mỗi cục tẩy là 5000 đồng. Mẹ Bình đã mua hết bao nhiêu tiền?

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 15) Một chiếc đồng hồ đánh chuông theo giờ. Đúng 8 giờ, nó đánh 8 tiếng “boong”; đúng 9 giờ, nó đánh 9 tiếng “boong”, $\ldots$ Từ lúc đúng 8 giờ đến lúc đúng 12 giờ trưa cùng ngày, nó đánh bao nhiêu tiếng “boong”?

Bài 4. Nhà bạn Si có nuôi 20 con thỏ, ba Si làm được 4 cái chuồng để nuôi thỏ, và nhốt các con thỏ này vào chuồng sao cho mỗi chuồng có số thỏ bằng nhau, hỏi ba Si có làm được không và mỗi chuồng nhốt được bao nhiêu thỏ?

Bài 5*. Trong một đợt ôn tập có 15 ngày trước kì thi, ngày thứ nhất bạn Bảo Nguyên làm được 5 bài toán, ngày thứ hai làm được 6 bài toán, cứ tiếp tục như vậy đến ngày thứ 15.

a) Hỏi ngày thứ 15 bạn Bảo Nguyên làm được bao nhiêu bài?

b) Tổng số bài toán bạn Bảo Nguyên làm là bao nhiêu?

Tài liệu tham khảo.

CTST, Toán 6, NXB GD, Trần Nam Dũng (CB)

Tập hợp số tự nhiên

1.Tập hợp $N, N^*$.

Các số $0 ; 1 ; 2 ; 3 ; \ldots$ là các số tự nhiên. Người ta kí hiệu tập hợp các số tự nhiên là $\mathbb{N}$.
$$
\mathbb{N}=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; \ldots\}
$$
Tập hợp các số tự nhiên khác 0 được kí hiệu là $N^*$.

$$N^* = \{1, 2, 3, \cdots, \}$$

2.Thứ tự trong tập số tự nhiên

Trong hai số tự nhiên a và b khác nhau, có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b ta viết $\mathrm{a}<\mathrm{b}$ (a nhỏ hơn b). Ta cũng nói số b lớn hơn số a và viết $\mathrm{b}>\mathrm{a}$.

Khi biểu diễn trên tia số nằm ngang có chiều mũi tên đi từ trái sang phải, nếu $\mathrm{a}<\mathrm{b}$ thì điểm a nằm bên trái điểm b.
Ta viết $\mathrm{a} \leq \mathrm{b}$ đề chi $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{a}=\mathrm{b}, \mathrm{b} \geq \mathrm{a}$ để chỉ $\mathrm{b}>$ a hoặc $\mathrm{b}=\mathrm{a}$.
Mỗi số tự nhiên có một số liền sau cách nó một đơn vị.

Nếu b liền sau a thì a cũng được gọi là liền trước b.

Ví dụ 1.

a) Số liền sau số 4 là số 5, số liền trước số 4 là số 3.

b) Giữa hai số 2021 và 2022 thì không có số tự nhiên nào, tức là không có số tự nhiên nào vừa lớn hơn 2021 vừa nhỏ hơn 2022.

Chú ý.

a) Nếu $a < b$ và $b < c$ thì $a < c$.

b) Nếu $a < b$ thì $a \leq b -1$.

3.Cách ghi số tự nhiên

  • Kí hiệu $\overline{a b}$ chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a $(a \neq 0)$, chữ số hàng đơn vị là b. Ta có:
    $$
    \overline{a b}=a \times 10+b
    $$
    Kí hiệu abc chi số tự nhiên có ba chữ số, chữ số hàng trăm là a $(a \neq 0)$, chữ số hàng chục là b, chữ số hàng đơn vị là c. Ta có:
    $$
    \overline{\mathrm{abc}}=\mathrm{a} \times 100+\mathrm{b} \times 10+\mathrm{c}
    $$

4.Hệ số La Mã

5. Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 12) Chọn kí hiệu thuộc $(\in)$ hoặc không thuộc $(\notin)$ thay cho mỗi dấu $?$.
a) 15 ? $\mathbb{N}$;
b) 10,5 ? $\mathbb{N}^{*}$;
c) $\frac{7}{9}$ ? $\mathbb{N}$;
d) 100 ? $\mathbb{N}$.

Giải

Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 12) Trong các khẳng định sau, khẳng định nào là đúng, khẳng định nào là sai?
a) $1999>2003$;
b) 100000 là số tự nhiên lớn nhất;
c) $5 \leq 5$;
d) Số 1 là số tự nhiên nhỏ nhất.

Giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 12)  Biểu diễn các số $1983 ; 2756 ; 2023$ theo mẫu $1983=1 \times 1000+9 \times 100+8 \times 10+3$.

Giải

Bài 4. Tìm các số tự nhiên sau:

a) Số liền trước số 5

b) Số liền sau số 6

c) Số liền sau số 2018.

d) Lớn hơn 2000 và nhỏ hơn 2005.

Giải

Bài 5. Tìm số tự nhiên có hai chữ số mà tổng các chữ số bằng 17.

Giải

Bài 6. Tìm số tự nhiên có ba chữ số mà tổng các chữ số bằng 2.

Giải

6. Bài tập rèn luyện

Bài 1. Tìm các số tự nhiên sau:

a) Số liền sau 2001

b) Số liền sau 221

c) Lớn hơn 14 và nhỏ hơn 20.

Bài 2. Tìm các số tự nhiên có hai chữ số sao cho khi viết theo thứ tự ngược lại thì lớn hơn số ban đầu 72 đơn vị.

Bài 3. Tìm số tự nhiên biết rằng tổng của nó và số liền sau bằng 2021.

Tài liệu tham khảo.

Bộ sách Chân Trời Sáng Tạo, Toán lớp 6, NXBGD, Trần Nam Dũng (Chủ biên)