Đề thi thử của Star-Education năm 2019
Đề ôn thi vào lớp 10 Chuyên Toán – Đề số 2
Bài 1. (2 điểm)
a) Cho các số $a$, $b$, $c$ thỏa $2a + 3b + 6c = 0$. Chứng minh rằng phương trình $ax^2 + bx + c = 0$ luôn có nghiệm.
b) Giải hệ phương trình: $\left{ \begin{array}{l}
\left( {{x^4} + 1} \right)\left( {{y^4} + 1} \right) = 4xy\
\sqrt[3]{{x – 1}} – \sqrt {y – 1} = 1 – {x^3}
\end{array} \right.$
Bài 2. (2 điểm) Cho các số $a$, $b$, $c$ thỏa $a^3 + b^3 + c^3 – 3abc = 1$.
a) Chứng minh rằng trong 3 số $a, b, c$ có ít nhất một số dương.
b) Tìm giá trị nhỏ nhất của biểu thức $a^2+b^2+c^2$.
Bài 3. (1,5 điểm) Cho $n$ là số nguyên dương và $d_1$, $d_2$, $d_3$, $d_4$ là các ước nguyên dương nhỏ nhất của $n$ thỏa: $n = d_1^2 + d_2^2 + d_3^2 + d_4^2$
a) Chứng minh rằng $n$ chia hết cho $2$ nhưng không chia hết cho $4$
b) Tìm $n$.
Bài 4. (3 điểm) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ cố định, $A, B$ cố định, $C$ thay đổi trên cung lớn $AB$. Gọi $K$ là trung điểm $AB$; $D$ và $E$ là hình chiếu của $K$ trên $CA, CB$.
a) Tìm vị trí của $C$ để $DE$ lớn nhất.
b) $DE$ cắt $AB$ và $CO$ tại $N, M$. Chứng minh rằng đường tròn ngoại tiếp tam giác $CMN$ đi qua một điểm cố định.
c) $(CDE)$ và $(O)$ cắt nhau tại $F$ khác $A$. $NF$ cắt $(CDE)$ tại $G$. Chứng minh $G$ thuộc một đường thẳng cố định.
Kí hiệu $(CDE)$ là bán kính đường tròn ngoại tiếp tam giác $CDE$.
Bài 5. (1,5 điểm) Cho hình thang cân, người ta tô màu 4 cạnh và 2 đường chéo của hình bằng hai màu đỏ và xanh, trong đó mỗi màu tô 3 đoạn. Chứng minh có 3 đoạn thẳng được tô cùng màu có thể lập được một tam giác.
Đáp án chi dành cho các bạn đã đăng kí website tiết tại Đây
Đề ôn thi vào lớp 10 chuyên Toán năm 2022
Bài 1. (1,5 điểm)
a) Cho $a, b, c $ là các số thỏa mãn $ a^4 + b^4 + (a-b)^4 = c^4 + d^4 + (c-d)^4$. Chứng minh rằng [ a^2 + b^2 + (a-b)^2 = c^2 + d^2 + (c-d)^2 ]
b) Giải hệ phương trình $\left\{ \begin{matrix} x – \dfrac{1}{(x+1)^2}=\dfrac{y}{x+1}- \dfrac{1+y}{y} \hfill \cr \sqrt{8y+9} = (x+1)\sqrt{y} + 2 \end{matrix} \right.$
Bài 2. (1,5 điểm) Cho phương trình $2(m^2+1)x^2 – 8mx + 3m = 0$. ($m$ là tham số).
a) Tìm $m$ để phương trình có hai nghiệm phân biệt âm.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [2(x_1+x_2) – \sqrt{\dfrac{3}{x_1x_2}} = 2]
Bài 3. (1,5 điểm) Cho các số $x, y, z$ dương thỏa ${x^2} + {y^2} + {z^2} = xyz$. Chứng minh rằng:
a) $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \le 1\,\,$
b) $xy + yz + xz + 9 \ge 4\left( {x + y + z} \right)\,\,$
Bài 4. (1,5 điểm) Một số nguyên tố $p$ được gọi là số nguyên tố đẹp nếu tồn tại các số nguyên $a, b$ thỏa $a^2b+1$ chia hết cho $p$ thì $a^2+b$ cũng chia hết cho $p$.
a) Chứng minh rằng $5$ là số nguyên tố đẹp.
b) 7 có phải là số nguyên tố đẹp không? Tại sao?
Bài 5. (3 điểm) Cho đường tròn $(O)$ và dây cung BC cố định. $A$ là một điểm thay đổi trên cung lớn BC. Các đường phân giác trong góc $B, C$ cắt nhau tại $I$. Đường thẳng qua $I$ vuông góc với $IA$ cắt các cạnh AB, AC lần lượt tại $M, N$.
a) Tìm vị trí của $A$ để $BM.CN$ đạt giá trị lớn nhất.
b) Đường thẳng qua M song song IC cắt BC tại L; đường thẳng qua N song song IB cắt BC tại K. Chứng minh $MKLN$ nội tiếp. Xác định tâm ngoại tiếp của tứ giác.
c) Gọi $D$ là hình chiếu của $I$ trên $BC$. Chứng minh $\angle DPM = \angle IPN$ và $A, D, P$ thẳng hàng.
Bài 6. (1 điểm) Cho đa giác đều 26 đỉnh. Trên mỗi đỉnh ta viết các số từ tự nhiên từ 1 đến 12. Chứng minh rằng có 4 đỉnh tạo thành hình chữ nhật ABCD sao cho $a+ b= c+ d$ với $a, b, c, d$ là các số ghi trên các đỉnh $A, B, C, D$.
Đáp án dành cho các bạn đăng kí trên website -> here
Đề ôn thi THPTQG – Đề số 5
Đề số 4 – THPTQG
Đề ôn thi THPT QG – Đề số 3
Đề ôn thi THPQ QG – Đề số 2
[WpProQuiz 5] |
Đề ôn thi THPTQG – Đề số 1
Phương trình bậc nhất: $ax + b = 0$.
Giải và biện luận phương trình $ax + b = 0$.
- Nếu $a \neq 0$ thì phương trình có nghiệm duy nhất $x = \dfrac{-b}{a}$.
- Nếu $a = 0, b \neq 0$ thì phương trình vô nghiệm.
- Nếu $a = 0, b = 0$ thì mọi $x \in \mathbb{R}$ đều là nghiệm.
Ví dụ 1. Giải và biện luận phương trình $(m-1)x + 2m – 3 = 0$.
Ví dụ 2. Giải và biện luận phương trình $(m^2-3m + 2)x – m^2 +1 = 0$.
Ví dụ 3. Tìm $m$ để phương trình $\dfrac{3mx – 1}{x-m} =2 $ có nghiệm duy nhất.
Bài tập
Bài 1. Giải và biện luận các phương trình sau:
a) $(m^2-4m+2)x=m-2$
b) $m^2(x-1)=mx-1$
c) $m(x-m+3)=m(x-2)+6$
d) $m(mx-1)=4x+2$
Bài 2. Định $m$ để các phương trình sau vô nghiệm
a) $(4m^2-2)x=1+2m-x$
b) $(m+1)^2x-2=(4m+9)x-m$
c) $\dfrac{x-2}{x-3}=\dfrac{x}{x+m}$
d) $\dfrac{x+1}{x-m+1}=\dfrac{x}{x+m+2}$
Bài 3. Định $m$ để phương trình sau có nghiệm
a) $m^2(x-1)=4x-3m+2$
b) $\dfrac{2x+m}{x-1}-\dfrac{x+m-1}{x}=1$
c) $\dfrac{x+m}{x+3}=\dfrac{x}{x+1}$