[WpProQuiz 12] |
[WpProQuiz 12] |
Bài 1. (1,5 điểm)
a) Cho $a, b, c $ là các số thỏa mãn $ a^4 + b^4 + (a-b)^4 = c^4 + d^4 + (c-d)^4$. Chứng minh rằng [ a^2 + b^2 + (a-b)^2 = c^2 + d^2 + (c-d)^2 ]
b) Giải hệ phương trình $\left\{ \begin{matrix} x – \dfrac{1}{(x+1)^2}=\dfrac{y}{x+1}- \dfrac{1+y}{y} \hfill \cr \sqrt{8y+9} = (x+1)\sqrt{y} + 2 \end{matrix} \right.$
Bài 2. (1,5 điểm) Cho phương trình $2(m^2+1)x^2 – 8mx + 3m = 0$. ($m$ là tham số).
a) Tìm $m$ để phương trình có hai nghiệm phân biệt âm.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [2(x_1+x_2) – \sqrt{\dfrac{3}{x_1x_2}} = 2]
Bài 3. (1,5 điểm) Cho các số $x, y, z$ dương thỏa ${x^2} + {y^2} + {z^2} = xyz$. Chứng minh rằng:
a) $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \le 1\,\,$
b) $xy + yz + xz + 9 \ge 4\left( {x + y + z} \right)\,\,$
Bài 4. (1,5 điểm) Một số nguyên tố $p$ được gọi là số nguyên tố đẹp nếu tồn tại các số nguyên $a, b$ thỏa $a^2b+1$ chia hết cho $p$ thì $a^2+b$ cũng chia hết cho $p$.
a) Chứng minh rằng $5$ là số nguyên tố đẹp.
b) 7 có phải là số nguyên tố đẹp không? Tại sao?
Bài 5. (3 điểm) Cho đường tròn $(O)$ và dây cung BC cố định. $A$ là một điểm thay đổi trên cung lớn BC. Các đường phân giác trong góc $B, C$ cắt nhau tại $I$. Đường thẳng qua $I$ vuông góc với $IA$ cắt các cạnh AB, AC lần lượt tại $M, N$.
a) Tìm vị trí của $A$ để $BM.CN$ đạt giá trị lớn nhất.
b) Đường thẳng qua M song song IC cắt BC tại L; đường thẳng qua N song song IB cắt BC tại K. Chứng minh $MKLN$ nội tiếp. Xác định tâm ngoại tiếp của tứ giác.
c) Gọi $D$ là hình chiếu của $I$ trên $BC$. Chứng minh $\angle DPM = \angle IPN$ và $A, D, P$ thẳng hàng.
Bài 6. (1 điểm) Cho đa giác đều 26 đỉnh. Trên mỗi đỉnh ta viết các số từ tự nhiên từ 1 đến 12. Chứng minh rằng có 4 đỉnh tạo thành hình chữ nhật ABCD sao cho $a+ b= c+ d$ với $a, b, c, d$ là các số ghi trên các đỉnh $A, B, C, D$.
Đáp án dành cho các bạn đăng kí trên website -> here
[WpProQuiz 5] |
Dưới đây là một số bài tập ôn thi học kì 1 lớp 9, môn hình học với lời giải chi tiết được thực hiện bởi thầy Nguyễn Phi Hùng – Giáo viên Trường Phổ thông Năng khiếu. Nếu có gì sai sót comment dưới nhé.
Các bạn hãy share cho mọi người cùng tiếp cận được tài liệu này. Cảm ơn.
Đề tham khảo HK1 quận 1, Sài Gòn, năm học 2018-2019 [pdf]
Link xem bài – > LOI-GIAI-CAC-BAI-HINH-DE-NGHI-HK1
Bài 1. (Toán chung) Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$
Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.