Tag Archives: DeThi

Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2

Thời gian làm bài 150 phút.

Bài 1. (2,0 diểm)
a) Tìm $m$ để phương trình $\frac{x^{2}-(3 m+1) x+2 m^{2}+2 m}{x}=0$ có hai nghiệm $x_{1}, x_{2}$ phân biệt thỏa $\left(\sqrt{x_{1}-m}+\sqrt{x_{2}-m}\right)^{4}=(2 m-1)^{2}$
b) Giải hệ phương trình $\left\{\begin{array}{l}\sqrt{x^{2}-y}=z-1 \\ \sqrt{y^{2}-z}=x-1 \\ \sqrt{z^{2}-x}=y-1\end{array}\right.$
Bài 2. (1,5 diểm) Cho các số $x, y, z$ nguyên dương thỏa $x>y>z$.
a) Cho $(x ; y ; z)$ thỏa $y z+x(x+y+z)=2021$.
Tìm giá trị nhỏ nhất của biểu thức $A=(x-y)^{2}+(x-z)^{2}+(y-z)^{2}$
b) Chứng minh rằng nếu $y$ không nhỏ hơn trung bình cộng của $x$ và $z$ thì
$$
(x+y+z)(x y+y z+x z-2) \geq 9 x y z
$$
Bài 3. (2,0 diềm) Cho $x, y$ là các số nguyên không đồng thời bằng 0 sao cho $x^{3}+y$ và $x+y^{3}$ chia hết cho $x^{2}+y^{2}$.
a) Tìm $x, y$ nếu $x y=0$.
b) Chứng minh rằng $x y \neq 0$ thì $x, y$ là nguyên tố cùng nhau.
c) Tìm tất cả cặp số nguyên $(x, y)$ thỏa đề bài.
Bài 4. (3,0 diểm) Cho tam giác $A B C$ nhọn, có trực tâm $H ; A H$ cắt $B C$ tại $D$. Trên tia đối tia $D H$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $M B H$ cắt $A B$ tại $E$ cắt $B C$ tại $K$; đường tròn ngoại tiếp tam giác $M C H$ cắt $A C$ tại $F$ và $B C$ tại $L$.
a) Chứng minh $B E F C$ nội tiếp và $\angle E M A=\angle F M A$.
b) $M E$ cắt $C H$ tại $P, M F$ cắt $B H$ tại $Q$. Chứng minh $P Q$ vuông góc $O A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $A B C$.
c) $H K$ cắt $A C$ tại $U, H L$ cắt $A B$ tại $V$. Chứng minh $U V$ luôn song song với một đường thẳng cố định khi $M$ thay đổi.

Bài 5. (1,5 diểm) Trong một hội nghị Toán quốc tế có n người, mỗi người trong họ có thể nói được nhiều nhất 3 ngôn ngữ. Trong 3 người bất kì thì luôn có 2 người có thể nói chung một ngôn ngữ.
a) Cho $n \geq 9$, chứng minh răng cố một ngôn ngữ được nói bởi ít nhất 3 người.
b) Nếu $n=8$, diều kết luận của câu a) còn đúng không? Tại sao?

Đáp án có sau một tuần

 

Đề thi chuyên toán vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình bậc hai $x^{2}-(m+3) x+m^{2}=0$ trong đó $m$ là tham số sao cho phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$.
(a) Khi $m=1$. Chứng minh rằng ta có hệ thức $\sqrt[8]{x_{1}}+\sqrt[8]{x_{2}}=\sqrt{2+\sqrt{2+\sqrt{6}}}$
(b) Tìm tất cả các giá trị của $m$ sao cho $\sqrt{x_{1}}+\sqrt{x_{2}}=\sqrt{5}$
(c) Xét đa thức $P(x)=x^{3}+a x^{2}+b x$. Tìm tất cả các cặp số $(a, b)$ sao cho ta có hệ thức $P\left(x_{1}\right)=P\left(x_{2}\right)$ với mọi giá trị của tham số $m$.
Bài 2. (a) Cho $a, b$ là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức
$$
P=\frac{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}{1+a b}
$$
(b) Cho các số $x, y, z$ thỏa $|x| \leq 1,|y| \leq 1,|z| \leq 1$. Chứng minh rằng:
$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+\sqrt{1-z^{2}} \leq \sqrt{9-(x+y+z)^{2}}
$$
Bài 3. Cho tam giác $A B C$ nhọn có $A B=b, A C=c . M$ là một điểm thay đổi trên cạnh $A B$. Đường tròn ngoại tiếp tam giác $B C M$ cắt $A C$ tại $N$.
(a) Chứng minh rằng tam giác $A M N$ đồng dạng với tam giác $A C B$. Tính tỉ số $\frac{M A}{M B}$ để diện tích tam giác $A M N$ bằng $\frac{1}{2}$ diện tích tam giác $A C B$.
(b) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A M N$. Chứng minh rằng $I$ luôn thuộc một đường cố định.
(c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $M B C$. Chứng minh rằng đoạn thẳng $I J$ có độ dài không đổi.
Bài 4. Cho các số nguyên $a, b, c$ sao cho $2 a+b, 2 b+c, 2 c+a$ đều là các số chính phương.
(a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho $3 .$ Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27 .
(b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện $\left(^{*}\right)$ mà $(a-b)(b-c)(c-a)$ không chia hết cho 27 ?
Bài 5. Cho hình chữ nhật $A B C D$ có $A B=3, A D=4$.
(a) Chứng minh rằng từ 7 điểm bất kì trong hình chữ nhật $A B C D$ luôn tìm được hai điểm mà khoảng cách giữa chúng không lớn hơn $\sqrt{5}$
(b) Chứng minh khẳng định ở câu $\mathrm{a}$ ) vẫn còn đúng với 6 điểm bất kì nằm trong hình chữ nhật $A B C D$.

Đáp án

 

Đề thi chọn học sinh giỏi quốc gia 2021 – 2022

Ngày 1 (04/3/2022)

Bài 1 (5,0 điểm)

Cho $a$ là một số thực không âm và dãy số $(u_{n})$ được xác định bởi

$u_{1}=6, u_{n+1}=\dfrac{2n+a}{n} + \sqrt{\dfrac{n+a}{n} u_{n} + 4},  \,\, \forall n \geq 1.$

a) Với $a=0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn và tìm giới hạn đó.

b) Với mọi $a\geq 0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)

Tìm tất cả các hàm số $f: \left( 0; + \infty \right) \rightarrow \left( 0; + \infty \right)$ thỏa mãn

$f\left( \dfrac{f(x)}{x} + y \right) = 1+f(y), \,\, \forall x,y \in \left( 0; + \infty \right).$

Bài 3 (5,0 điểm)

Cho tam giác nhọn $ABC$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $BA, CA$ sao cho $BF = CE \,\, (E \ne B, F\ne C)$. Gọi $M, N$ tương ứng là trung điểm của $BE, CF$ và $D$ là giao điểm của $BF$ với $CE$.

a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $DBE, DCF$. Chứng minh rằng $MN$ song song với $IJ$.

b) Gọi $K$ là trung điểm của $MN$ và $H$ là trực tâm của tam giác $AEF$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)

Với mỗi cặp số nguyên dương $(n, m)$ thỏa mãn $n < m$, gọi $s(n,m)$ là số các số nguyên dương thuộc đoạn $[n;m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thỏa mãn đồng thời hai điều kiện sau:

i) $\dfrac{s(n,m)}{m-n} \geq \dfrac{s(1,m)}{m}$ với mọi $n = 1,2,…,m-1$;

ii) $2022^{m} + 1$ chia hết cho $m^{2}$.

 

Ngày 2 (05/3/2022)

Bài 5 (6,0 điểm)

Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022) = Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \ne 0 \, (p,q \in \mathbb{Z}$; $p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $| p | + n | q | \leq Q(n) – P(n)$ với mọi $n = 1, 2, …, 2021$.

Bài 6 (7,0 điểm)

Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_{i} \, (1\leq x_{i} \leq 6)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i \, (i=1,2,3,4).$

a) Tính số các bộ $(x_{1}, x_{2}, x_{3}, x_{4})$ có thể có.

b) Tính xác suất để có một số trong $x_{1}, x_{2}, x_{3}, x_{4}$ bằng tổng của ba số còn lại.

c) Tính xác suất để có thể chia $x_{1}, x_{2}, x_{3}, x_{4}$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)

Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ($B C$ không đi qua tâm $O$) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_{a}$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, \,L$ là giao điểm của $I_{a} D$ với $O I$ và $E$ là điềm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_{a} B C$ lấy điểm $M$ sao cho $I_{a} M$ song song với $A D,\, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.

Đáp án đề thi chọn đội dự tuyển trường PTNK năm 2020

Thời gian làm bài 120 phút

Đề bài.

Bài 1. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a^{4}+b^{4}+2}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}$, với $a, b \in \mathbb{R}$.
Bài 2. Tìm tất cả các hàm $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$thỏa mãn
$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y), \text { với mọi } x, y \in \mathbb{Q}^{+} .
$$
Bài 3. Cho $x_{1}, x_{2}, x_{3}, \ldots$ là dãy số nguyên thỏa mãn đồng thời hai điều kiện $1=$ $x_{1}<x_{2}<x_{3} \ldots$ và $x_{n+1} \leq 2 n$ với $n=1,2,3 \ldots$ Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Cho tam giác $A B C$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $A B$ sao cho $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$. Đường tròn tâm $M$ bán kính $M B$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $A D$ cắt $A C$ tại $N$. Chứng minh rằng $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.

Đáp án

Bài 1. Với mọi $x \in \mathbb{R}$, ta có
$$
x^{4}+1-\frac{2}{9}\left(x^{2}-x+1\right)^{2}=\frac{1}{9}(x+1)^{2}\left(7 x^{2}-10 x+7\right) \geq 0 .
$$
Vì thế nên ta có
$$
P \geq \frac{2}{9} \frac{\left(a^{2}-a+1\right)^{2}+\left(b^{2}-b+1\right)^{2}}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}=\frac{2}{9}\left(\frac{a^{2}-a+1}{b^{2}-b+1}+\frac{b^{2}-b+1}{a^{2}-a+1}\right) \geq \frac{4}{9} .
$$
Suy ra giá trị nhỏ nhất của $P$ là $\frac{4}{9}$, đạt được khi $a=b=-1$.

Bài 2. Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán. Đặt $f(1)=a>$ 0 , trong phương trình đề cho, thay $x=y=1$ ta có $f\left(a^{2}\right)=a^{3}$.
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^{2}, y$ bởi 1 và $x$ bởi $1, y$ bởi $c^{2}$ vào phương trình ấy, ta thu được
$$
a^{7}=f\left(a^{6}\right)=a^{5} .
$$
Chú $\hat{y} a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi 1 vào phương trình đề cho, ta có
$$
f\left(f(y)^{2}\right)=f(y) \text {, với mọi } y \in \mathbb{Q}^{+} \text {. }
$$
Lại thay $y$ bởi 1 vào phương trình đề cho, ta có
$$
f(x)^{2}=f\left(x^{2}\right), \text { với mọi } x \in \mathbb{Q}^{+} .
$$
Suy ra
$$
f(x)=f\left(f(x)^{2}\right)=f(f(x))^{2}=\ldots=f^{n+1}(x)^{2^{n}}, \text { với mọi } x \in \mathbb{Q}^{+},
$$
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q}^{+}$sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_{p}(f(q)) \neq 0$ thì ta có
$$
v_{p}(f(q))=v_{p}\left(f^{n+1}(q)^{2^{n}}\right)=2^{n} v_{p}\left(f^{n+1}(q)\right) \neq 0 .
$$
Trong đẳng thức trên, cho $n \rightarrow+\infty$ ta thấy điều vô lý. Suy ra $v_{p}(f(q))=0$ với mọi $q \in \mathbb{Q}^{+}, p \in \mathbb{P}$, hay $f(x) \equiv 1$.
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.

Bài 3. Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_{1}, x_{2}, \ldots, x_{k+1}$. Ta có $x_{1}=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_{q} \leq k$ thì ta có $q<k+1$ và
$$
1 \leq x_{1}<x_{1}<\cdots<x_{q} \leq k<x_{q+1}<\cdots<x_{k+1}<2 k \text {. }
$$
Nếu tồn tại $1 \leq j<i \leq k+1$ sao cho $x_{i}-x_{j}=k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số
$$
x_{1}+k, x_{2}+k, \ldots, x_{q}+k, x_{q+1}, \ldots, x_{k+1}
$$
là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2 k$, vô lí!

Từ đó suy ra với mọi $k$ nguyên dương, luôn tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Ta có $O B=O D, M B=M D$ nên dễ thấy $O M$ là phân giác ngoài của góc $A M D$, mà $O A=O D$ nên suy ra $O \in(A M D)$.

Gọi $N^{\prime}$ là giao điểm khác $A$ của $(A M D)$ và $A C$. Ta chứng minh $N$ trùng $N^{\prime}$. Thật vậy, ta có $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$ nên $\angle A M O$ tù, do đó nếu $N^{\prime}$ nằm ngoài tia $A C$ thì $N^{\prime}$ nằm khác phía $O$ so với $A M$ nên
$$
\angle A M O=\angle A N^{\prime} O=\angle C A O-\angle A O N^{\prime}<\angle C A O<90^{\circ},
$$
vô lý. Suy ra $N^{\prime}$ nằm trên tia $A C$, kéo theo $A O$ là phân giác trong góc $M A N^{\prime}$ nên $O M=O N^{\prime}$, mà $O A=O D$ nên $M N^{\prime}$ song song $A D$, suy ra $N$ trùng $N^{\prime}$.

Từ đó, dễ thấy $A M N D$ là hình thang cân nên $A N=M D=M B$, hơn nữa $N$ nằm trên tia $A C$ nên ta thu được
$$
\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}
$$
Ta có điều cần chứng minh.

Tài liệu tham khảo

[1] Nguyễn Tăng Vũ, Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển và đội tuyển PTNK 2008-2021

Đề thi học kì 1 lớp 10 chuyên toán PTNK năm 2016

Thời gian làm bài: 120 phút

Câu 1.
a) Giải phương trình $x^{2}-x+2-(x+2) \sqrt{x-1}=0$.
b) Tìm $m$ để hệ phương trình $\left\{\begin{array}{l}x+y+x y=m \\ x^{2}+y^{2}=m\end{array}\right.$ có nghiệm.

Câu 2. Cho hàm số $y=f(x)=-x^{2}+2 x+3(1)$.
a) Khảo sát và vẽ đồ thị hàm số (1).
b) Từ đồ thị hàm số $(1)$, suy ra đồ thị hàm số $y=g(x)=-x^{2}+2|x|+3$. Tìm $k$ để phương trình $g(x)=m^{3}-3 m^{2}+m$ có đúng 3 nghiệm.

Câu 3.
a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
$$
y=\sqrt{x+1}+\sqrt{1-x}-\frac{4}{3} \sqrt{1-x^{2}}
$$
b) Cho các số $a, b, c>0$. Chứng minh rằng
$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \geq \frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)
$$
Bài 4. Cho tam giác $A B C$ cân tại $A, \angle B A C=120^{\circ}$ nội tiếp đường tròn tâm $O$ bán kính $R . A O$ cắt $(O)$ tại $D .$
a) Chứng minh rằng với mọi $M$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M A} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$.
b) Tìm quỹ tích điểm $M$ sao cho $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M A} \cdot \overrightarrow{M D}=\frac{R^{2}}{4}$.
c) Xác định điểm $N$ trên cạnh $B D$ thỏa $P_{D /(A B N)}=R^{2}$.
d) $P$ là điểm thay đổi trên cạnh $B C .$ Gọi $\left(O_{1}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $B ;\left(O_{2}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $C .\left(O_{1}\right)$ và $\left(O_{2}\right)$ cắt nhau tại $Q$ khác $P$. Chứng minh đường thẳng $P Q$ đi qua một điểm cố định $T$. Tính $P_{T /(O)}$.
Kí hiệu $P_{M /(O)}$ là phương tích của $M$ đối với đường tròn $(O)$.

Đề thi học kì 1 lớp 10 chuyên toán trường PTNK năm 2014

Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.

Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$
Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$

Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?

Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017

Bài 1: Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:

$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2: Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn đồng thời các điều kiện:

i/ $f(mn)=f(m)f(n)\ \forall m,n \in \mathbb N^*$.

ii/ $f(m)+f(n)$ chia hết cho $m+n$ $\forall m,n \in \mathbb N^*$.

iii/ $f(2017)=2017^3$.

Bài 3. Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.

a/ Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.

b/ Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4. Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$.

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

Giải

Bài 1.

Theo bất đẳng thức Cauchy-Schwarz, ta có

$$ \sum \dfrac{x^4}{x^3+y^2+z^2} \ge \dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} $$

Cần chứng minh $\dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} \ge \dfrac{1}{7} $ hay

$$7 \left( x^2+y^2+z^2 \right)^2 \ge x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right).$$ Ta có ${{(xy+yz+zx)}^{2}}\ge 3xyz(x+y+z)=3xyz$ và

$${{x}^{3}}+{{y}^{3}}+{{z}^{2}}-3xyz=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)$$ nên ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz+1-3(xy+yz+zx)\le {{(xy+yz+zx)}^{2}}+1-3(xy+yz+zx).$

Đặt $q=xy+yz+zx$ thì vì ${{(x+y+z)}^{2}}\ge 3(xy+yz+zx)$ nên $q\le \frac{1}{3}.$ Ta đưa về

$$7{{(1-2q)}^{2}}\ge {{q}^{2}}+1-3q+2(1-2q)$$ hay

$$(1-3q)(4-9q)\ge 0.$$

Do $q\le \frac{1}{3}$ nên $q\le \frac{4}{9}$ và bất đẳng thức trên là đúng. Vậy ta có đpcm.

Bài 2.

Nhận xét rằng vai trò của số $2017$ trong bài toán là không cần thiết cho nên ta sẽ giải bài toán khi thay $2017$ bởi số nguyên dương $p$ bất kỳ. Từ điều kiện đầu tiên, ta có được $f(p^k)=p^{3k}$ với $k$ là số nguyên dương bất kỳ.

Trong điều kiện thứ hai, thay $n$ bởi $m$, ta có $f(m)$ là bội của $m$ với mỗi $m$ nguyên dương nên ta đặt $f(m)=m.g(m)$ ($g:\mathbb{N^{*}}\rightarrow \mathbb{N^{*}}$). Khi đó ta có các điều kiện sau:

i/ $g(mn)=g(m).g(n) \forall m,n \in\mathbb{N^{*}}$

ii/ $mg(m)+ng(n)$ là bội của $m+n$.

iii/ $g(p^{n})=p^{2n} \forall n\in \mathbb{N^{*}}$.

Đặt $h(m)=g(m)-m^2$ ($h:\mathbb{N^{*}}\rightarrow \mathbb{Z}$) và thay $n$ bởi $p^n$ tại ii), ta có $m.h(m)$ là bội của $m+p^n$. Chọn $n$ đủ lớn thì $h(m)=0$ với mỗi $m$ hay $f(m)=m^3$ với mỗi $m$ nguyên dương. Thử lại thoả mãn.

Vậy $f(m)=m^3$ là nghiệm hàm duy nhất.

Bài 3.

(a) Trước hết, ta có một kết quả quen thuộc sau.

Bổ đề: Gọi $A_1$, $B_1$ lần lượt là điểm chính giữa các cung $BC$, $AC$ không chứa $A$, $B$ của $(O)$. Khi đó $A$, $I$, $A_1$, $I_a$ thẳng hàng và $A_1$ là trung điểm của $II_a$. Tương tự đối với $B$, $I$, $B_1$, $I_b$.

Trở lại bài toán, theo bổ đề, phép vị tự tâm $I$, tỉ số $2$ biến $\Delta OA_1B_1$ thành $\Delta MI_aI_b$, do đó tam giác này cân tại $M$.

Mở ảnh

(b) Ta thực hiện chuyển đổi mô hình. Gọi $I_a$ là tâm bàng tiếp góc $A$ của tam giác $ABC$ thì $(O)$ chính là đường tròn Euler của tam giác $I_aI_bI_c$. Xét bổ đề sau:

Bổ đề: Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$. \medskip

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$. Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$. \medskip

Trở lại bài toán, ta áp dụng bổ đề trên cho đường thẳng $OI$ đi qua tâm đường tròn $(I_aI_bI_c)$ thì dễ dàng có $P \in (O).$

Bài 4.

Ta sẽ chứng minh quy nạp theo $m$ cho điều này. Trước hết ta phát biểu bổ đề: $A\Delta B=A\Delta C$ thì $B=C$.

Giả sử $B\neq C$, khi đó không giảm tổng quát giả sử giả sử $a$ là phần tử thỏa $a\in B$ và $a\notin C$. Ta có hai trường hợp như sau:

  •  Nếu $a\in A$ khi đó $a\notin (A\setminus B),a\notin (B\setminus A)\Rightarrow a\notin A\Delta B$. Nhưng lại có $a\in (A\setminus C)$ nên suy ra $a\in A\Delta C$ nên $A\Delta B\neq A\Delta C$, vô lý.
  •  Nếu $a\notin A$ thì chứng minh tương tự suy ra $a\notin A\Delta C$ và $a\in A\Delta B$ nên suy ra $A\Delta B\neq A\Delta C$. Như vậy ta suy ra $B=C$.

Bây giờ ta sẽ quy nạp theo $m$. Với $m=1$ thì ta có một tập thuộc $T$ là tập rỗng. Với $m=2$ và hai tập $A,B$ thì ta có hai tập thuộc $T$ là tập rỗng và $A\Delta B$ thỏa. Như vậy giả thiết đúng với $m=1,2$.

Giả sử giả thiết đúng với $m=k$ thì ta chứng minh nó đúng với $m=k+1$. Xét $m+1$ tập $A_1,A_2,\ldots,A_{m+1}$. Nếu với $m$ tập $A_1,A_2,\ldots,A_m$ mà số lượng tập tạo thành không nhỏ hơn $m+1$ thì khi đó ta thêm vào một tập $A_{m+1}$ thì giả thiết vẫn đúng. Do đó ta chỉ xét cho trường hợp $|T|=m$.

Khi đó, nếu ta thêm vào một tập $A_{m+1}$ thì ta sẽ thêm vào tập $T$ các tập hợp $A_{m+1}\Delta A_1,\ldots,A_{m+1}\Delta A_{m+1}$. Nếu các tập này trùng với $m$ tập đã có trong $T$ thì do $|T|=m$ nên theo nguyên lý Dirichlet tồn tại $i,j,1\leq i<j\leq m+1$ để $A_{m+1}\Delta A_i=A_{m+1}\Delta A_j$ và theo bổ đề ta có $A_i=A_j$, vô lý. Vậy trong $m+1$ tập đó chắc chắn có một tập khác với các tập trong $T$ và số phần tử của $T$ tăng lên ít nhất một đơn vị, tức là $|T|\geq m+1$.

Vậy giả thiết quy nạp là đúng và ta có đpcm.

Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021

Ngày thi thứ nhất. 

Bài 1. Tìm hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x f(y)+f(x))=f(x)+x y+x+1, \forall x, y \in \mathbb{R} .$

Bài 2. Cho dãy số $\left(u_{n}\right)$ thỏa $u_{1}=2, u_{2}=1$ và $u_{n+1}=\sqrt{\dfrac{u_{n} u_{n-1}}{n}}$ với mọi $n \geq 2$.
Xét dãy số $\left(v_{n}\right)$ xác định bởi $v_{n}:=u_{1}+u_{2}+\ldots+u_{n}, \forall n \geq 1$. Chứng minh dãy $\left(v_{n}\right)$ hội tụ.

Bài 3. Cho $p$ là số nguyên tố, $n$ là số nguyên dương thỏa $2<p<n$. Gọi $\mathrm{A}$ là tập hợp các đa thức $P(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ có tất cả các hệ số thuộc tập ${1 ; 2 ; \ldots ; n !}$ và $P(m)$ chia hết cho $p$ với mọi số nguyên dương $m$.

a) Chứng minh tổng $a_{1}+a_{p}+a_{2 p-1}+\ldots+a_{1+k(p-1)}$ chia hết cho $p$ với mọi $k=\left[\dfrac{n-1}{p-1}\right]$ (xem $a_{n}=1$ ), kí hiệu $[x]$ là phần nguyên của $x$.
b) Tính số phần tử của $\mathrm{A}$ theo $\mathrm{n}$ và $\mathrm{p}$.

Bài 4. Cho tam giác $\mathrm{ABC}$ có (I) là đường tròn nội tiếp. Một đường thẳng qua $\mathrm{A}$ cắt $(\mathrm{I})$ tại $\mathrm{M}, \mathrm{N}$. Gọi $\mathrm{T}$ là giao điểm của các tiếp tuyến với (I) tại $\mathrm{M}, \mathrm{N}$.

b) Chứng minh rằng nếu $\mathrm{AT} \parallel \mathrm{BC}$ thì $\mathrm{MN}$ đi qua trung điểm $\mathrm{K}$ của $\mathrm{BC}$.
c) Gọi $\mathrm{D}$ là tiếp điểm của (I) với $\mathrm{AB}$ và $\mathrm{E}$ là giao điểm của $\mathrm{DM}$ với $\mathrm{AC}$. Trên $\mathrm{EN}$ lấy điểm $\mathrm{F}$ thoả $\mathrm{TF}$ vuông góc $\mathrm{AI}$. Chứng minh rằng khi đường thẳng $\mathrm{AMN}$ thay đổi, giao điểm $\mathrm{P}$ của $\mathrm{MF}$ và $\mathrm{DN}$ thuộc một đường thẳng cố định.

Ngày thi thứ hai

Bài 5. Cho $n$ số thực $x_{1}, x_{2}, \ldots, x_{n}$ thỏa hiệu giữa số lớn nhất và số nhỏ nhất của chúng là 1 . Ta xây dựng
$$
y_{1}=x_{1}, y_{2}=\frac{x_{1}+x_{2}}{2}, \ldots, y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$
Gọi $M, m$ lần lượt là số lớn nhất và nhỏ nhất trong các số $y_1, y_2,\cdots,y_n$. \
Tìm giá trị lớn nhất của $M-n$.

Bài 6.  Cho tập $\mathrm{X}={1 ; 2 ; \ldots ; 20}$. Tập con $\mathrm{A}$ của $\mathrm{X}$ được gọi là tập “tránh 2 ” nếu với mọi $\mathrm{x}, \mathrm{y}$ thuộc $\mathrm{A}$ thì $|x-y|$ khác 2 . Tìm số các tập con “tránh 2 ” của $\mathrm{X}$ có 5 phần tử.

Bài 7. Cho tam giác $\mathrm{ABC}$ và điểm $\mathrm{D}$ trên cạnh $\mathrm{BC}$. Các đường tròn ( $\mathrm{ABD}$ ), ( $\mathrm{ACD}$ ) lần lượt cắt $\mathrm{AC}, \mathrm{AB}$ tại $\mathrm{E}, \mathrm{F}$. Gọi $\mathrm{I}$ là tâm đường tròn $(\mathrm{AEF})$.
a) Chứng minh ID vuông góc BC.
b) Gọi $\mathrm{H}$ là giao điểm của $\mathrm{ID}$ với $\mathrm{EF}$ và $\mathrm{K}$ là điểm thoả mãn $H B K=H C K=90^{\circ}$. Các đường tròn (IBK), (ICK) lần lượt cắt IC, IB tại M, N. Chứng minh tâm J của đường tròn (IMN) thuộc trung trực BC.

Bài 8.  Cho $p$ là số nguyên tố. Với mọi số nguyên a, đặt
$$
q:=1+a+a^{2}+\ldots+a^{p-1} .
$$
Chứng minh $(1-a)\left(1-a^{2}\right) \ldots\left(1-a^{p-1}\right)-p$ chia hết cho $q$.

 

Đáp án sẽ được đăng trong Tập san Star education số 7/2022

Đáp án đề thi chọn đội tuyển trường PTNK năm 2020

Ngày thi thứ nhất.

Bài 1. Với mỗi số nguyên dương $n$, tìm số thực $M_{n}$ lớn nhất sao cho với mọi số thực dương $x_{1}, x_{2}, \ldots, x_{n}$ thì ta đều có
$$
\sum_{k=1}^{n} \frac{1}{x_{k}^{2}}+\frac{1}{\left(\sum_{k=1}^{n} x_{k}\right)^{2}} \geq M_{n}\left(\sum_{k=1}^{n} \frac{1}{x_{k}}+\frac{1}{\sum_{k=1}^{n} x_{k}}\right)^{2}
$$

Bài 2. Cho 2021 số nguyên khác 0 . Biết rằng tổng của một số bất kỳ trong chúng với tích của tất cả 2020 số còn lại luôn âm.
(a) Chứng minh rằng với mọi cách chia 2021 số này thành hai nhóm và nhân các số cùng nhóm lại với nhau thì tổng của hai tích cũng luôn âm.
(b) Một bộ số thỏa mãn đề bài thì có thể có nhiều nhất mấy số âm?

Bài 3. Cho hai hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $g(2020)>0$ và với mọi $x, y \in \mathbb{R}$ thì $\left\{\begin{array}{l}f(x-g(y))=f(-x+2 g(y))+x g(y)-6 \\ g(y)=g(2 f(x)-y)\end{array}\right.$

(a) Chứng minh rằng $g$ là hàm hằng.

(b) Chứng minh rằng đồ thị $h(x)=f(x)-x$ nhận $x=1$ là trục đối xứng.

Bài 4. Cho tam giác $A B C$ nhọn, nội tiếp trong đường tròn $(O)$ có trực tâm $H$ và $A H, B H, C H$ cắt cạnh đối diện lần lượt tại $D, E, F$. Gọi $I, M, N$ lần lượt là trung điểm các cạnh $B C, H B, H C$ và $B H, C H$ cắt lại $(O)$ theo thứ tự tại các diểm $L, K$. Giả sử $K L$ cắt $M N$ ở $G$.
(a) Trên $E F$, lấy điểm $T$ sao cho $A T$ vuông góc với $H I$. Chứng minh rằng $G T$ vuông góc với $O H$.
(b) Gọi $P, Q$ lần lượt là giao điểm của $D E, D F$ và $M N$. Gọi $S$ là giao điểm của $B Q, C P$. Chứng minh rằng $H S$ di qua trung điểm của $E F$.

Ngày thi thứ hai.
Bài 5. Cho số nguyên dương $n>1$. Chứng minh rằng với mọi số thực $a \in\left(0 ; \frac{1}{n}\right)$ và mọi đa thức $P(x)$ có bậc $2 n-1$ thỏa mãn điều kiện $P(0)=P(1)=0$, luôn tồn tại các số thực $x_{1}, x_{2}$ thuộc $[0 ; 1]$ sao cho $P\left(x_{1}\right)=P\left(x_{2}\right)$ và $x_{2}-x_{1}=a$.

Bài 6. Giải phương trình sau trên $\mathbb{Z}^{+}:\left(x^{2}+3\right)^{3^{x+1}}\left[\left(x^{2}+3\right)^{3^{x+1}}+1\right]+x^{2}+y=x^{2} y$.

Bài 7 . Cho các số nguyên $n>k>t>0$ và $X={1,2, \ldots, n}$. Gọi $\mathcal{F}$ là họ các tập con có $k$ phần tử của tập hợp $X$ sao cho với mọi $F, F^{\prime} \in \mathcal{F}$ thì $\left|F \cap F^{\prime}\right| \geq t$. Giả sử không có tập con có $t$ phần tử nào chứa trong tất cả các tập $F \in \mathcal{F}$.
(a) Chứng minh rằng tồn tại một tập hợp $B \subset X$ sao cho $|B|<3 k$ và $|B \cap F| \geq t+1$ với mọi $F \in \mathcal{F}$.
(b) Chứng minh rằng $|\mathcal{F}|<C_{3 k}^{t+1} C_{n}^{k-t-1}$.

Bài 8. Cho tam giác $A B C$ nội tiếp trong $(O)$ với $B, C$ cố định và $A$ thay đổi trên cung lớn $B C$. Dựng hình bình hành $A B D C$ và $A D$ cắt lại $(B C D)$ ở $K$.
(a) Gọi $R_{1}, R_{2}$ lần lượt là bán kính đường tròn ngoại tiếp $(K A B),(K A C)$. Chứng minh rằng tích $R_{1} R_{2}$ không đổi.
(b) Ký hiệu $(T),\left(T^{\prime}\right)$ lần lượt là các đường tròn cùng đi qua $K$, tiếp xúc với $B D$ ở $B$ và tiếp xúc với $C D$ ở $C$. Giả sử $(T),\left(T^{\prime}\right)$ cắt nhau ở $L \neq K$. Chứng minh rằng $A L$ luôn đi qua một điểm cố định.

Hết