Tag Archives: DeThi

Đề thi chọn đội tuyển PTNK năm học 2010-2011

Ngày thi thứ 1

Bài 1.  Giải hệ phương trinh: $\left\{\begin{array}{l}\frac{5(x+y)}{x+y+6 x y}+\frac{6(x+z)}{x+z+5 x z}=4 \\ \frac{6(z+y)}{z+y+4 z y}+\frac{4(x+y)}{x+y+6 x y}=5 \\ \frac{4(x+z)}{x+z+5 x y}+\frac{5(y+z)}{y+z+4 y z}=6\end{array}\right.$

Bài 2.  Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn

$f(|x|+y+f(y+f(y)))=3 y+|f(x)|$ với mọi $x, y \in \mathbb{R}$

Bài 3.  Cho $p$ là số nguyên tố lẻ và $n=2 p+r$ với $r \in{0,1,2, \ldots, p-1} .$ Đặt $X={1,2, \ldots, n}$. Ánh xạ $f: X \rightarrow X$ được gọi là có tính chất $P$ nếu $f$ không phải là ánh xạ đồng nhất và $f(f \ldots(f(f(k))) \ldots)=k$ (ánh xạ hợp plần) với mọi $k \in X .$ Đạt $A_{f}={k \in X \mid f(k)=k}$.

  1. Chứng minh rằng nếu $f$ có tính chất P thì $\left|A_{f}\right| \equiv r(\bmod p)$.
  2. Gọi $d$ là số các ánh xạ $ f$ có tính chất $P$. Chứng minh rằng $d$ không là ước số của n!.

Bài 4.  Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ có $A$ cố định và $B, C$ thay đổi trên $(O)$ sao cho $B C$ luôn song song với một đường thẳng cố định. Các tiếp tuyến của $(O)$ tại $B$ và $C$ cắt nhau tại $K$. Gọi $M$ là trung điểm $B C, N$ là giao điểm của $A M$ với $(O)$. Chứng minh rằng đường thẳng $K N$ luôn đi qua một điểm cố định.

Ngày thi thứ 2

Bài 5.  Cho $a, b, c$ là độ dài các canh của một tam giác. Chứng minh rằng $(2 a+2 b-c)(2 b+2 c-a)(2 a+2 c-b)>25 a b c$

Bài 6.  Cho dãy số $u_{n}$ thỏa mãn $u_{1}=\sqrt{2}, u_{n+1}=\frac{2 u_{n}^{2}+5 u_{n}+5}{2 u_{n}+4}, n \geq 1$. Tính giới hạn sau $\lim \frac{u_{n}^{2}-3 u_{n}+5}{3 n^{2}+4 n-1}$.

Bài 7.  Xét số tự nhiên $n>1$. Bắt đầu từ bộ số $1,2, \ldots, 2 n-1,2 n$ ta thực hiện phép biến đổi sau: chọn hai số $a, b$ bát kì sao $a-b>1$, xóa hai số này và thay bởi hai số $a-1$ và $b+1$. Với bộ số mới này ta lại tiếp tục thực hiện phép biến đổi tương tự.

  1. Chứng minh rằng ta sẽ đạt đến trạng thái dừng, tức là không thể thực hiện phép biến đổi như vậy được nữa.
  2. Gọi $k$ là số lần phép biến đổicần thực hiện để đạt đến trang thái dừng. Tìm giá trị nhỏ nhất và lớn nhất của $k$.

Bài 8.  Cho đường tròn $\left(\gamma_{1}\right)$ dường kính $A B$ và đường tròn $\left(\gamma_{2}\right)$ tâm $A$ cắt $\left(\gamma_{1}\right)$ tai $C$ và $D$. Điểm $M$ thay đổi trên cung $C D$ (nằm bên trong $\left.\left(\gamma_{1}\right)\right)$ của $\left(\gamma_{2}\right)$, $B M$ cắt $\left(\gamma_{2}\right)$ tại $N$ (N khác $M$ và B). Tìm giá trị nhỏ nhất của $\frac{N C+N D}{N M}$.

Lời giải

Bài 1. Đặt $u=\frac{x+y}{x+y+6xy},v=\frac{y+z}{y+z+4yz},w=\frac{z+x}{z+x+5zx}$ thì ta có hệ
$$\left\\{ \begin{aligned}
& 5u+6w=4 \\\\
& 6v+4u=5 \\\\
& 4w+5v=6 \\\\
\end{aligned} \right.\Leftrightarrow \left\\{ \begin{aligned}
& 8u=1 \\\\
& 4v=3 \\\\
& 16w=9 \\\\
\end{aligned} \right..$$
Suy ra
$$\left\\{ \begin{aligned}
& 7(x+y)=6xy \\\\
& 3(y+z)=12yz \\\\
& 7(z+x)=45zx \\\\
\end{aligned} \right.\Leftrightarrow \left\\{ \begin{aligned}
& a+b=\frac{6}{7} \\\\
& b+c=12 \\\\
& c+a=\frac{45}{7} \\\\
\end{aligned} \right.,$$ trong đó $a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}.$
Giải hệ trên, ta thu được $a=-\frac{33}{14},b=\frac{45}{14},c=\frac{123}{14}$ nên $(x,y,z)=\left( -\frac{14}{33},\frac{14}{45},\frac{14}{123} \right).$

Bài 2.

Dễ thấy $f$ toàn ánh. Giả sử $f(a)=0$ và thay $x=0,y=a,$ ta có
$$0=3a+\left| f(0) \right|.$$
Suy ra $a$ tồn tại duy nhất và $a=-\frac{1}{3}\left| f(0) \right|\le 0.$ Lại thay $x=y=a,$ ta có $f(0)=3a\le 0.$
Lại thay $x=-a,y=a$ thì chú ý rằng $\left| -a \right|+a=0$, ta có $f(0)=3a+\left| f(-a) \right|$ nên $f(-a)=0$, điều này kéo theo $a=-a$ hay $a=0$ (do tính duy nhất ở trên). \medskip

Thay $y=0$ thì $f(\left| x \right|)=\left| f(x) \right|$ nên $f(x)\ge 0,\forall x\ge 0.$
Xét $x>0$ và $y=-\frac{f(x)}{3}$, ta có $f\left( x-\frac{f(x)}{3}+f\left( -\frac{f(x)}{3}+f\left( -\frac{f(x)}{3} \right) \right) \right)=0$ nên
$$-\frac{f(x)}{3}+f\left( -\frac{f(x)}{3}+f\left( -\frac{f(x)}{3} \right) \right)=-x$$ với mọi $x>0.$
Trong đề bài, thay $x=0$ thì $f(y+f(y+f(y)))=3y$. Thay $y\to -\frac{f(x)}{3}$ thì
$f\left( -\frac{f(x)}{3}+f\left( -\frac{f(x)}{3}+f\left( -\frac{f(x)}{3} \right) \right) \right)=-f(x)$.
So sánh hai đẳng thức trên, ta có $f(-x)=-f(x),\forall x>0$ nên $f$ là hàm số lẻ. \medskip

Từ tính chất hàm số lẻ, ta có $f\left( \frac{f(x)}{3}+f\left( \frac{f(x)}{3}+f\left( \frac{f(x)}{3} \right) \right) \right)=f(x)$ với mọi $x>0.$
Trong đề bài, xét $x\ge 0$ và $y\to \frac{f(y)}{3}$, ta có
$$f\left( x+\frac{f(y)}{3}+f\left( \frac{f(y)}{3}+f\left( \frac{f(y)}{3} \right) \right) \right)=f(y)+f(x)$$ hay
$f(x+y)=f(x)+f(y)$ với mọi $x,y>0.$
Vì $f$ cộng tính trên ${{\mathbb{R}}^{+}}$ nên ta có $f(x)=ax,\forall x>0.$ Lại do tính chất hàm lẻ, ta suy ra $f(x)=ax,\forall x\in \mathbb{R}.$ Thay vào đề bài, ta có $a=1.$ \medskip

Vậy tất cả các hàm số cần tìm là $f(x)=x.$

Bài 3.

a) Ta có
$$\left | A_{f} \right |\equiv r \pmod{p} \Leftrightarrow \left | X\setminus A_{f} \right | \text{ chia hết cho } p.$$
Điều này tương đương số phần tử của tập hợp $B= \left \\{ k\in X|f(k)\neq k \right \\}$ là bội của $p.$
Đặt $f_{m}(x)$ là ánh xạ hợp $m$ lần. Xét $x\in B$ thì cũng có các số $f(x),f_{2}(x),\ldots, f_{p-1}(x)\in B$. Thật vậy, \medskip

Gỉa sử tồn tại $1<m<p$ sao cho $f_{m}(x) =x$ với số $x \in B$ nào đó, ta chọn $m$ là số nhỏ nhất như thế. Vì $p$ nguyên tố lẻ nên $p$ không chia hết cho $m.$ Do vậy tồn tại số $t$ sao cho $0<p-tm<m$. Lại có $$f_{m}(x) =x\Rightarrow f_{tm}(x)=x\Rightarrow f_{p-tm}(x)=f_{p}(x)=x$$ (mâu thuẫn với tính nhỏ nhất của $m$). Vì thế nên với mọi $m$ mà $1<m<p $ thì $f_{m}(x)\neq x$. Từ đó suy ra với mọi $1<k<l<p$ thì $f_{k}(x)\neq f_{l}(x) $, tức là $x,f(x),f_{2}(x),\ldots, f_{p-1}(x) $ là $p$ số khác nhau thuộc $B.$ \medskip

Xét số $y \in B$ và $y$ khác tất cả $p$ số ở trên. Khi đó, ta cũng sẽ có $y$ sinh ra một bộ $p$ số phân biệt mới. Giả sử rằng có $f_{i}(x)=f_{j}(y)$ với $i<j$ nào đó thì sẽ có $f_{p+i-j}(x)=f_{p}(y)=y $, mâu thuẫn. Suy ra trong $B$ sẽ có $1$ hoặc $2$ bộ $p$ số rời nhau, chứng tỏ rằng số phần tử của $B$ chia hết cho $p.$ Suy ra đpcm. \medskip

(b) Từ đây ta thấy rằng để đếm số ánh xạ $f$ có tính chất $\mathcal{P},$ trước hết, ta chọn ra $r$ hoặc $p+r$ vị trí cố định. Ta xét hai trường hợp như sau:

Nếu $\left| A_f \right|=p+r$ thì có $C_n^{p+r}$ cách chọn ra các số này, còn lại $p$ số thì $f$ phải là song ánh trên tập con đó. Do đó trong trường hợp này có $p!C_n^{p+r}$ cách.
Nếu $\left| A_f \right|=r$ thì tương tự trên, ta cũng đếm được $(p!)^2C_n^rC_{2p}^p$.

Từ đó suy ra số ánh xạ tính chất $\mathcal{P}$ là $$d=p!C_{n}^{p+r}+{{(p!)}^{2}}C_{n}^{r}C_{2p}^{p}.$$ Ta sẽ chứng minh số này không là ước của $n!.$ Ta viết số $d$ dưới dạng khai triển
$$d=p!\frac{n!}{(p+r)!p!}+{{(p!)}^{2}}\frac{n!}{r!(2p)!}\cdot \frac{(2p)!}{{{(p!)}^{2}}}=\frac{n!}{(p+r)!}+\frac{n!}{r!}.$$
Đặt $(p+r)!=k\cdot {{(r!)}^{2}}$ với $k=\frac{(p+r)!}{{{(r!)}^{2}}}=\frac{p!}{r!}\cdot \frac{(p+r)!}{p!r!}=\frac{p!}{r!}C_{p+r}^{r}\in \mathbb{Z}$. Khi đó, ta viết lại
$$\frac{n!}{d}=\frac{r!(p+r)!}{r!+(p+r)!}=\frac{k\cdot {{(r!)}^{3}}}{(1+k\cdot r!)\cdot r!}=\frac{k\cdot {{(r!)}^{2}}}{k\cdot r!+1}.$$
Dễ thấy số này không thể nguyên vì $k\cdot r!+1$ nguyên tố cùng nhau với $k\cdot {{(r!)}^{2}}$. Từ đó ta có $d$ không là ước của $n!.$

Bài 4. Giả sử $KN$ cắt $(O)$ tại $I$ thì tứ giác $BNCI$ điều hòa.

Do đó $A(BC,NI)=-1,$ mà $AN$ chia đôi $BC$ nên $AI\parallel BC,$ tức là $AI$ có phương cố định. Từ đó ta thấy $I$ là điểm cố định cần tìm.

Bài 5. Đặt $a+b-c=x,b+c-a=y,c+a-b=z$ thì $x,y,z>0.$ Ta đưa về bất đẳng thức
$$\left( 4\cdot \frac{x}{y+z}+1 \right)\left( 4\cdot \frac{y}{z+x}+1 \right)\left( 4\cdot \frac{z}{x+y}+1 \right)>25.$$
Không mất tính tổng quát, giả sử $0<x\le y\le z.$ Đặt $S=x+y+z.$ Ta đưa về
$$(S+3x)(S+3y)(S+3z)>25(S-x)(S-y)(S-z).$$
Khai triển và rút gọn, ta được
$${{S}^{3}}-4S(xy+yz+zx)+13xyz>0.$$
Chú ý rằng $${{S}^{3}}-4S(xy+yz+zx)=S({{S}^{2}}-4(xy+yz+zx))=S({{(x+y-z)}^{2}}-4xy)$$ nên ta đưa về $S{{(x+y-z)}^{2}}+xy(13z-4S)>0$.
Bất đẳng thức cuối đúng vì $13c-4S=9z-4(x+y)>0.$

Bài 6.

Lời giải. Ta thấy rằng $u_{n}>0, \forall n$ và $u_{n+1}-u_{n}=\frac{u_{n}+5}{2\left(u_{n}+2\right)}>0$ nên dãy tăng. Giả sử dãy bị chặn trên thì nó hội tụ về $L>0$, suy ra
$$
L=\frac{2 L^{2}+5 L+5}{2 L+4} \Leftrightarrow L=-5
$$
vô lý. Suy ra $\lim_{n \rightarrow+\infty} u_{n}=+\infty$. Từ đó, ta được
$$
\lim_{n \rightarrow+\infty}\left(u_{n+1}-u_n\right)=\lim_{n \rightarrow+\infty} \frac{u_n+5}{2\left(u_n+2\right)}=\frac{1}{2}
$$
nên theo định lý Stolz, ta suy ra $\lim_{n \rightarrow+\infty} \frac{u_n}{n}=\frac{1}{2}$ và $\lim_{n \rightarrow+\infty} \frac{u_n}{n^2}=0 .$ Do đó, trong biểu thức cần tính giới hạn, chia tử và mẫu cho $n^2$ rồi áp dụng kết quả trên, ta có
$$
\lim_{n \rightarrow+\infty} \frac{u_n^2-3 u_n+5}{3 n^2+4n-1}=\lim _{n \rightarrow+\infty} \frac{\left(\frac{u_n}{n}\right)^{2}-\frac{3 u_n-5}{n^2}}{3+\frac{4}{n}-\frac{1}{n^2}}=\left(\frac{1}{2}\right)^{2} \cdot \frac{1}{3}=\frac{1}{12}
$$

Bài 7.

(a) Xét đại lượng $S$ là tổng bình phương các số thu được sau mỗi thao tác biến đổi. \medskip

Ta thấy rằng từ $(a,b)$ với $a-b>1,$ ta đưa về bộ $(a-1,b+1)$ thì tổng trên thay đổi một lượng là
${{a}^{2}}+{{b}^{2}}-{{(a-1)}^{2}}-{{(b+1)}^{2}}=2(a+b-1)>0.$
Do đó, tổng $S$ giảm ngặt, và rõ ràng $S$ phải luôn dương nên thao tác trên chỉ thực hiện được trong hữu hạn lần.
\medskip

(b) Rõ ràng tổng trên không đổi khi không còn cặp số $a,b$ nào mà $a-b>1.$ Điều này đồng nghĩa với việc các số thu được trong trạng thái cuối chỉ nhận hai giá trị liên tiếp nào đó. Ta thấy rằng tổng các số đã cho luôn không đổi và là $1+2+\cdots +2n=n(2n+1).$ \medskip

Giả sử cuối cùng, ta có $x$ số $m$ và $y$ số $m+1$ thì
$$\left\\{ \begin{aligned}
& x+y=2n \\\\
& mx+(m+1)y=n(2n+1) \\\\
\end{aligned} \right..$$
Suy ra $2mn+y=2{{n}^{2}}+n\Rightarrow n|y.$ Tuy nhiên, nếu $y\in \{0,2n\}$ thì vô lý vì vế phải không chia hết cho $2n.$ Do đó $x=y=n$ và $m=n,$ tức là ở trạng thái cuối, ta còn $n$ số $n$ và $n+1.$

  • Tổng bình phương của chúng là $S=n\cdot {{n}^{2}}+n\cdot {{(n+1)}^{2}}=n(2{{n}^{2}}+2n+1).$
  • Tổng bình phương ban đầu là ${{S}_{0}}={{1}^{2}}+{{2}^{2}}+\cdots +{{(2n)}^{2}}=\frac{n(2n+1)(4n+1)}{3}.$

Suy ra ${{S}_{0}}-S=\frac{2}{3}({{n}^{3}}-n).$ \medskip

(b) Để thực hiện được nhiều lần nhất thì giá trị giảm đi ở mỗi lần phải ít nhất. Theo câu a) thì giá trị đó sẽ là $2(a+b-1)\ge 2.$ \medskip

Suy ra số lần nhiều nhất sẽ là $\frac{1}{3}({{n}^{3}}-n)$. Để thực hiện được điều này, ta sẽ cố gắng trong mỗi thao tác tạo ra nhiều giá trị nhất có thể và đồng thời làm giảm số lượng các giá trị ở hai biên đi. Từ đó ta được ${{k}_{\max }}=\frac{1}{3}({{n}^{3}}-n).$ \medskip

Để thực hiện được ít lần nhất, ta sử dụng ý tưởng tham lam, mỗi lần, ta sẽ chọn các cặp số nằm về hai phía của $n,n+1.$ Khi đó, giá trị của các số $1,2,\ldots ,n-1$ sẽ dần dần được tăng lên, trong khi giá trị của các số $n+2,n+3,\ldots ,2n$ dần dần sẽ giảm đi. Tổng khoảng cách từ các số nhỏ hơn $n$ đến $n$ là $1+2+\cdots +n-1=\frac{n(n-1)}{2}$. Tương tự thì tổng khoảng cách các số lớn hơn $n+1$ đến $n+1$ cũng là $\frac{n(n-1)}{2}$. Ta thấy mỗi lần thao tác thì các số này sẽ thu hẹp khoảng cách đúng $2$ đơn vị nên số lần thao tác tối thiểu phải là $\frac{1}{2}\left( \frac{n(n-1)}{2}+\frac{n(n-1)}{2} \right)=\frac{n(n-1)}{2}.$ \medskip

Để đạt được giá trị này, mỗi lần, ta chỉ cần chọn các cặp số có dạng $(t,2n+1-t)$ với $1\le t\le n-1$ là được. Suy ra ${{k}_{\min }}=\frac{n(n-1)}{2}.$

Bài 8.

Theo định lý Ptolemy cho tứ giác $BCND$ nội tiếp trong ${{\gamma }_{1}}$ thì
$$BC\cdot ND+BD\cdot NC=BN\cdot CD.$$
Vì $AC=AD$ nên $BC=BD=m$ và $CD=n$ là các giá trị cố định.

Ta có
$$m(NC+ND)=n\cdot BN\Rightarrow NC+ND=\frac{n}{m}\cdot BN.$$
Suy ra $\frac{NC+ND}{MN}=\frac{n}{m}\cdot \frac{BN}{MN}.$ Ta đưa về tìm giá trị nhỏ nhất của $\frac{BN}{MN}.$ \medskip

Xét phương tích từ $B$ đến ${{\gamma }_{2}}$ thì $BM\cdot BN=BK\cdot BA=c$ là hằng số nên
$(BN-MN)BN=c$.
Do đó $\frac{MN}{BN}=1-\frac{c}{B{{N}^{2}}}$ nên
$$\frac{BN}{MN}\min \Leftrightarrow \frac{MN}{BN}\max \Leftrightarrow \frac{c}{B{{N}^{2}}}\min \Leftrightarrow B{{N}^{2}}\max .$$
Dễ thấy $\max BN=AB$, xảy ra khi $N\equiv A$ hay $M\equiv K.$ Khi đó $\frac{NC+ND}{MN}=\frac{AC+AD}{AK}=2$ chính là giá trị nhỏ nhất cần tìm.

Đáp án thi chọn Đội Tuyển thi Quốc Gia của trường PTNK năm học 2015 – 2016

Ngày thứ 1

Bài 1. Cho tập hợp
$$
A=\{n \in \mathbb{N} \mid 1 \leq n \leq 2015,(n, 2016)=1\}
$$
Hỏi có bao nhiêu số nguyên $a \in A$ sao cho tồn tại số nguyên b mà $a+2016 b$ là số chính phương?

Bài 2. Cho $a, b, c, d$ là các số thực thỏa mãn điều kiện
$$
a^{2} \leq 1, a^{2}+b^{2} \leq 5, a^{2}+b^{2}+c^{2} \leq 14, a^{2}+b^{2}+c^{2}+d^{2} \leq 30
$$
1. Chúng minh rằng $a+b+c+d \leq 10$.
2. Chứng minh rằng $a d+b c \leq 10$.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn điều kiện
$$
f(x-2 f(y))=5 f(x)-4 x-2 f(y)
$$
với mọi $x, y \in \mathbb{R}$.

Bài 4. Cho đường tròn $k$ và các điểm $B, C$ thuộc đường tròn, không phải là đường kính; I là trung điểm $B C$. Điểm $A$ di động trên cung lớn $B C$ của $k$. Gọi $i_{1}$ là đường tròn qua $I$ và tiếp xúc với $A B$ tại $B ; i_{2}$ là đường tròn qua $I$ và tiếp xúc với $A C$ tại $C$. Các đường tròn $i_{1}, i_{2}$ cắt nhau tại $D$ (khác $I$ ).
1. Chứng minh rằng đường tròn ngoại tiếp tam giác AID luôn đi qua một điểm cố định.
2. Gọi $K$ là trung điểm $A D$, $E$ là tâm đường tròn qua $K$ và tiếp xúc với $A B$ tại $A, F$ là tâm đường tròn qua $K$ và tiếp xúc với AC tại $A$. Chứng minh rằng góc EAF có số đo không đổi.

Ngày thứ 2

Bài 5. Dãy số $\left(x_{n}\right)$ được xác định bởi công thức $x_{n}=\frac{1}{n \cos \frac{1}{n}}$ với mọi $n \geq 1$. Tính giới hạn sau
$$\lim \frac{x_{1}+x_{3}+x_{5}+\cdots+x_{2 n-1}}{x_{2}+x_{4}+x_{6}+s+x_{2 n}}$$

Bài 6. Tim các giá trị của $b$ sao cho tồn tại a để hệ phương trình sau có nghiệm $(x, y)$
$$
\left\{\begin{array}{l}
(x-1)^{2}+(y+1)^{2}=b \\y=x^{2}+(2 a+1) x+a^{2}
\end{array}\right.
$$

Bài 7. Cho n là số nguyên dương, $n \geq 2$ và $X={1,2,3, \ldots, n}$. Gọi $A_{1}, A_{2}, \ldots, A_{m}$ và $B_{1}, B_{2}, \ldots, B_{m}$ là hai dãy các tập con khác rỗng của $X$ thỏa mãn điều kiện: Với mỗi $i, j \in{1,2,3, \ldots, n}, A_{i} \cap B_{j}=\varnothing$ nếu và chỉ nếu $i=j$.
1. Chúng minh rằng với mỗi hoán vị $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ của $X$, có không quá một cặp tập hợp $\left(A_{i}, B_{i}\right)$ với $i=1,2,3, \ldots, n$ sao cho nếu $x_{k} \in A_{i}$ và $x_{l} \in B_{i}$ thì $k<l$.
2. Gọi $a_{i}, b_{i}$ lần lượt là số phần tử của tập hợp $A_{i}, B_{i}$ với $i=1,2,3, \ldots, m$. Chúng minh rằng
$$
\sum_{i=1}^{m} \frac{1}{C_{a_{i}+b_{i}}^{a_{i}}} \leq 1
$$

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn tâm $O$. Đường tròn tâm $I$ đi qua $B$, $C$ lần lượt cắt các tia $B A$, CA tại $E, F$.
1. Giả sử các tia $B F, C E$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(A E F)$. Chứng minh rằng $O T$ || ID.
2. Trên BF, CE lần lượt lấy các điểm $G, H$ sao cho $A G \perp C E, A H \perp B F$. Các đường tròn $(A B F),(A C E)$ cắt $B C$ tai $M, N$ (khác $B, C)$ và cắt EF tại $P, Q$ (khác $E, F)$. Gọi $K$ là giao điểm của $M P, N Q$. Chứng minh rằng DK vuông góc với GH.

Giải

Bài 1.

Cho $n$ là số nguyên dương lớn hơn 1 , ta quy ước gọi một số nguyên dương a được gọi là thặng dư chính phương theo modulo $n$ nếu $(a, n)=1$ và tồn tại số nguyên $x$ sao cho $a \equiv x^{2}(\bmod n)$. Trong bài này, dể dơn giản, ta quy ước xét các thặng dư chính phưong nhỏ hơn $n$.
Đặt $s(n)$ là số các số nhỏ hơn $n$ và là thặng dư chính phương theo modulo n. Ta sễ chứng minh hai bổ dề dưới đây:
Bổ đề 1: Cho $p$ là số nguyên tố và $k$ là số nguyên dưong. Khi đó:
1. Nếu $p=2$ thì $s\left(2^{k}\right)=2^{\max (k-3,0)}$.
2. Nếu $p>2$ thì $s\left(p^{k}\right)=\frac{p^{k}-p^{k-1}}{2}$.
Bổ đề $2: s(n)$ là hàm nhân tính.
Thật vậy,
Trước hết, ta biết rằng $s(p)=\frac{p-1}{2}$ với $p$ là số nguyên tố lẻ. Ta sẽ tính $s\left(p^{k}\right)$ với $k \in \mathbb{Z}^{+}$.
Xét một thặng dư chính phương $a$ của $p$, khi đó tồn tại $x$ sao cho
$$
a \equiv x^{2}(\bmod p)
$$
Dặt $a=x^{2}+p q$ thì hiển nhiên
$$
a \equiv x^{2}+p q\left(\bmod p^{k}\right) \Leftrightarrow a-p q \equiv x^{2}\left(\bmod p^{k}\right)
$$
và khi đó, ta có $p^{k-1}$ cách chọn $q$ để các số $a-p q$ là các thặng dư chính phưong $\bmod p^{k}$.
Suy ra
$$
s\left(p^{k}\right)=p^{k-1} s(p)=\frac{p^{k}-p^{k-1}}{2}
$$
Xét số nguyên tố $p=2$, với $k=1,2,3$, dể dàng kiểm tra được $s\left(2^{k}\right)=1$.
Ta xét $k \geq 4$, tưong tự trên, ờ bước chọn $q$, ta chỉ có 2 cách nên $s\left(2^{k}\right)=$ $2 s\left(2^{k-1}\right)$. Từ đó bằng quy nạp, ta có được
$$
s\left(2^{k}\right)=2^{k-3}, k \geq 4
$$
Tiếp theo, xét hai số $a, b$ nguyên dương và $(a, b)=1 .$ Gọi $A$ là tập họp các thặng dư chính phương theo modulo $a b$ và $B$ là tập hợp các số là thặng dư chính phưong chung của $a, b$.
Nếu $x \in A$ thì tổn tại $y$ sao cho $x \equiv y^{2}(\bmod a b)$. Rō ràng khi đó,
$$
x \equiv y^{2} \quad(\bmod a), x \equiv y^{2} \quad(\bmod b)
$$

(chú ý rằng nếu $x>a$, ta có thể chọn $x^{\prime}$ sao cho $x^{\prime}<a$ và $x \equiv x^{\prime}(\bmod a)$; tương tự với $b$ ). Do đó, $x \in B$, tức là $x \in A \Rightarrow x \in B$ nên $|A| \leq|B|$.
Tiếp theo, xét $x \in B$. Khi đó tồn tại $r, s$ sao cho $x \equiv r^{2}(\bmod a), x \equiv s^{2}$ $(\bmod b)$. Theo định lý thặng dư Trung Hoa, tổn tại số nguyên $z$ sao cho
$$
z \equiv r(\bmod a), z \equiv s(\bmod b)
$$
Khi đó
$$
x \equiv z^{2} \quad(\bmod a), x \equiv z^{2} \quad(\bmod b)
$$
nên
$$
x-z^{2}: a b \text { hay } x \equiv z^{2}(\bmod a b)
$$
Do đó: $x \in A$, tức là $x \in B \Rightarrow x \in A$ nên $|A| \geq|B|$.
Từ đây ta có
$$
|A|=|B| \text { hay } s(a) s(b)=s(a b)
$$
Vậy $s(n)$ là hàm nhân tính.
Các bổ đề đều được chứng minh.
Trở lại bài toán, ta thấy rằng
$$
2016=2^{5} \cdot 3^{2} \cdot 7
$$
Rō ràng bài toán yêu cầu đếm số thặng dư chính phương theo modulo 2016. Theo bổ dề 2 thì
$$
s(2016)=s\left(2^{5}\right) s\left(3^{2}\right) s(7)
$$
Theo bổ đề 1 thì
$$
s\left(2^{5}\right)=2^{2}=4, s\left(3^{2}\right)=\frac{3^{2}-3}{2}=3, s(7)=\frac{7-1}{2}=3
$$
Do đó, số các số $a$ cần tìm là $4 \cdot 3 \cdot 3=36$.

Bài 2.

1) Dự đoán dấu bằng xảy ra khi $a=1, b=2, c=3, d=4$ nên ta có các đánh giá sau
$$
\left\{\begin{array}{l}
a^{2}+1 \geq 2 a \\
b^{2}+4 \geq 4 b \\
c^{2}+9 \geq 6 c \\
d^{2}+16 \geq 8 d
\end{array}\right.
$$
Do đó, ta có
$$
\begin{aligned}
&24(a+b+c+d) \leq 3\left(d^{2}+16\right)+4\left(c^{2}+9\right)+6\left(b^{2}+4\right)+12\left(a^{2}+1\right) \\
&=3 d^{2}+4 c^{2}+6 b^{2}+12 a^{2}+120 \\
&=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\left(a^{2}+b^{2}+c^{2}\right)+2\left(a^{2}+b^{2}\right)+6 a^{2}+120 \\
&\leq 3 \cdot 30+14+2 \cdot 5+6 \cdot 1+120=240
\end{aligned}
$$
Suy ra $a+b+c+d \leq 10$.
2) Ta có:
$$
16 a^{2}+d^{2} \geq 8 a d \text { và } 9 b^{2}+4 c^{2} \geq 12 b c
$$
Từ đó suy ra
$$
\begin{aligned}
&24(a d+b c) \leq 3\left(16 a^{2}+d^{2}\right)+2\left(9 b^{2}+4 c^{2}\right) \\
&=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+5\left(a^{2}+b^{2}+c^{2}\right)+10\left(a^{2}+b^{2}\right)+30 a^{2} \\
&\leq 3 \cdot 30+5 \cdot 14+10 \cdot 5+30 \cdot 1=240
\end{aligned}
$$
Suy ra $a d+b c \leq 10$.

Bài 3.

Goi $(*)$ là điều kiện đề bài cho. Trong $(*)$, thay $x=y=0$, ta có
$$
f(-2 f(0))=3 f(0)
$$
Đặt $f(0)=a$ thì $f(-2 a)=3 a$. Trong $(*)$, thay $x=0$ và $y=-2 a$, ta có
$$
f(-2 f(-2 a))=5 a-2 f(-2 a) \Leftrightarrow f(-6 a)=-a
$$

Trong $(*)$, thay $x=-2 a, y=-6 a$, ta có
$$
\begin{aligned}
&f(-2 a-2 f(-6 a))=5 f(-2 a)-4 x-2 f(-6 a) \\
&\Leftrightarrow f(0)=15 a+8 a+2 a \\
&\Leftrightarrow a=25 a \\
&\Leftrightarrow a=0
\end{aligned}
$$
Do đó $f(0)=0$.
Trong $(*)$, thay $y=0$, ta có
$$
f(x)=5 f(x)-4 x \Leftrightarrow f(x)=x
$$
Thử lại ta thấy thỏa.
Vậy hàm số cần tìm chính là
$$
f(x)=x, \forall x \in \mathbb{R}
$$

Bài 4.

1) Gọi $O$ là tâm của đường tròn $k$. Không mât tính tống quát, giả sử tia $\Lambda D$ nằm giữa hai tia $A O, A B$, các trường hợp còn lại tương tự.
Ta có:
$$
\angle I D B=\angle A B C, \angle I D C=\angle A C B
$$
nên
$$
\angle B A C+\angle B D C=\angle B A C+\angle A B C+\angle A C B=180^{\circ}
$$

Do đó, tứ giác $A B D C$ nội tiếp hay $D \in(O)$. Ta thấy
$$
\begin{aligned}
&\angle D A O+\angle O I D \\
&=\angle B A C-(\angle D A B+\angle O A C)+360^{\circ}-\left(90^{\circ}+\angle D I C\right) \\
&=\angle B A C-\left(\angle I C D+90^{\circ}-\angle A B C\right)+270^{\circ}-\angle D I C \\
&=\angle B A C+\angle A B C-(\angle I C D+\angle D I C)+180^{\circ} \\
&=\left(180^{\circ}-\angle A C B\right)-\left(180^{\circ}-\angle I D C\right)+180^{\circ} \\
&=\angle I D C-\angle A C B+180^{\circ}=180^{\circ}
\end{aligned}
$$

Do đó, AOID nội tiếp hay đường tròn $(A I D)$ di qua $O$ cố định.
2) Ta có:
$$
\angle E A C=90^{\circ}-\angle B A C, \angle F A B=90^{\circ}-\angle B A C
$$
nên
$$
\angle E A F=180^{\circ}-2 \angle B A C+\angle B A C=180^{\circ}-\angle B A C
$$
Do đó, góc $\angle E A F$ có số đo không đổi.

Bài 5.

Trước hết, ta chứng minh bổ đề sau:
Giá trị của biểu thức
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$
tiến tới vô cực khi $n \rightarrow+\infty$. Thật vậy,
Xét hàm số $f(x)=\ln (1+x)-x$ với $x>0$. Ta có
$$
f^{\prime}(x)=\frac{1}{1+x}-1<0
$$
nên đây là hàm nghịch biến, suy ra $f(x)<f(0)=0$ hay $\ln (1+x)<$ $x, \forall x>0$. Thay $x$ bởi $\frac{1}{n}$, ta được
$$
\ln \left(1+\frac{1}{n}\right)<\frac{1}{n} \Leftrightarrow \frac{1}{n}>\ln (1+n)-\ln n
$$
Do đó,
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}++\frac{1}{n}>\ln 2-\ln 1+\ln 3-\ln 2+\cdots+\ln (n+1)-\ln n=\ln (n+1)
$$
Vì $\ln (n+1) \rightarrow+\infty$ khi $n \rightarrow+\infty$ nên
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \rightarrow+\infty
$$
Trở lại bài toán, đặt
$$
y_{n}=\frac{x_{1}+x_{3}+x_{5}+\cdots+x_{2 n-1}}{x_{2}+x_{4}+x_{6}+\cdots+x_{2 n}}
$$
với $n \geq 1$. Ta thấy vì $\frac{1}{n} \in\left(0 ; \frac{\pi}{2}\right)$ nên $\cos \frac{1}{n}>0$, suy ra
$$
x_{n}=\frac{1}{n \cos \frac{1}{n}}>0, n \geq 1
$$

Xét hàm số $f(t)=\frac{t}{\cos t}$ với $t \in\left(0 ; \frac{\pi}{2}\right)$ thì $f^{\prime}(t)=\frac{\cos t+t \sin t}{\cos ^{2} t}>0$ nên đây là hàm đồng biến. Chú ý rằng $x_{n}=f^{2}\left(\frac{1}{n}\right)$, mà $\frac{1}{n}$ là dãy giảm nên $x_{n}$ cũng là dãy giảm.
Suy ra $x_{1}>x_{2}, x_{3}>x_{4}, \ldots, x_{2 n-1}>x_{2 n}$ nên $y_{n}>1$
Ngoài ra, ta cũng có $x_{3}<x_{2}, x_{5}<x_{4}, \ldots, x_{2 n-1}<x_{2 n-2}$ nên
$$
\begin{aligned}
y_{n}<& \frac{x_{1}+\left(x_{2}+x_{4}+\cdots+x_{2 n-2}\right)}{x_{2}+x_{4}+\cdots+x_{2 n}}=\\
& 1-\frac{x_{1}-x_{2 n}}{x_{2}+x_{4}+\cdots+x_{2 n}}<1-\frac{x_{1}}{x_{2}+x_{4}+\cdots+x_{2 n}}
\end{aligned}
$$
Dễ thấy rằng
$$
x_{2}+x_{4}+\cdots+x_{2 n}=\sum_{i=1}^{n} \frac{1}{2 i \cos \frac{1}{2 i}} \geq \sum_{i=1}^{n} \frac{1}{2 i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i}
$$
Theo bổ đề trên thì $\sum_{i=1}^{n} \frac{1}{i}$ tiến tới vô cực nên
$$
\lim \left(x_{2}+x_{4}+\cdots+x_{2 n}\right)=+\infty
$$
Do dó
$$
\lim \left(1-\frac{x_{1}}{x_{2}+x_{4}+\cdots+x_{2 n}}\right)=1-0=1
$$
Theo nguyên lý kẹp, ta có $\lim x_{n}=1$.

Bài 6.

Đặt $X=x-1, Y=y+1$, thay vào, ta có
$$
\begin{aligned}
&\left\{\begin{array}{l}
X^{2}+Y^{2}=b \\
Y-1=(X+1)^{2}+(2 a+1)(X+1)+a^{2}
\end{array}\right. \\
&\Leftrightarrow\left\{\begin{array}{l}
X^{2}+Y^{2}=b \\
Y=X^{2}+(2 a+3) X+a^{2}+2 a+3
\end{array}\right.
\end{aligned}
$$
Ta đưa về tìm điều kiện của $b$ để tồn tại $a$ mà hệ trên có nghiệm $(X, Y)$. Do
$$
Y-(X+2)=X^{2}+2(a+1) X+(a+1)^{2}=(X+a+1)^{2} \geq 0
$$

nên $Y \geq X+2$. Suy ra $Y-X \geq 2>0$, tức là $(X-Y)^{2} \geq 4$. Ta có
$$
b=X^{2}+Y^{2}=\frac{(X-Y)^{2}+(X+Y)^{2}}{2} \geq \frac{(Y-X)^{2}}{2} \geq 2
$$
Mặt khác, với $b \geq 2$, nếu chọn $X=-(a+1)$ thì có $Y=X+2=1-a$. Khi đó, ta có
$$
X^{2}+Y^{2}=(a+1)^{2}+(a-1)^{2}=2\left(a^{2}+1\right)=b
$$
Như thế, với $a$ thỏa mãn $2\left(a^{2}+1\right)=b$ thì hệ có nghiệm là
$$
(X, Y)=(-a-1,1-a)
$$
Dễ dàng thấy rằng do $b \geq 2$ nên luôn tồn tại $a$ như thế.
Vậy các giá trị cần tìm của $b$ là $b \geq 2$.

Bài 7.

1) Giả sử ngược lại, tồn tại 2 cặp $\left(A_{i}, B_{i}\right)$ và $\left(A_{j}, B_{j}\right)$ thỏa mãn điểu kiện đề bài đã cho.
Vì $i \neq j$ nên theo giả thiết,
$$
\left|A_{i} \cap B_{j}\right| \geq 1,\left|A_{j} \cap B_{i}\right| \geq 1
$$
Đặt $x_{r} \in A_{i} \cap B_{j}, x_{s} \in A_{j} \cap B_{i}$ với $1 \leq r, s \leq n$ thì:
– Do $x_{r} \in B_{j}$ nên với mọi $x_{k} \in A_{j}$, ta đều có $k<r$.
– Do $x_{r} \in A_{i}$ nên với mọi $x_{k} \in B_{i}$, ta đều có $k>r$.

Từ đây suy ra
$$
A_{j} \subset\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}, B_{i} \subset\left\{x_{r+1}, x_{r+2}, \ldots, x_{n}\right\}
$$
Điều này cho thấy $A_{j} \cap B_{i}=\varnothing$, mâu thuẫn với giả thiết.
Vậy tồn tại không quá 1 cặp $\left(A_{i}, B_{i}\right)$ thỏa mãn điều kiện đã cho.
2) Gọi $T$ là tập hợp các cách chọn hai dãy
$$
A_{1}, A_{2}, \ldots, A_{m} \text { và } B_{1}, B_{2}, \ldots, B_{m}
$$
thỏa mãn điều kiện là: với mỗi $i, j \in\{1,2,3, \ldots, n\}, A_{i} \cap B_{j}=\varnothing$ nếu và chỉ nếu $i=j$.
Gọi $T_{i} \subset T$ là các cách chọn sao cho sao cho cặp $\left(A_{i}, B_{i}\right)$ thỏa mãn điều kiện là: cặp $\left(A_{i}, B_{i}\right)$ với $i=1,2,3, \ldots, n$ sao cho nếu $x_{k} \in A_{i}$ và $x_{l} \in B_{i}$ thì $x_{k}<x_{l}$ (ở đây ta xét thứ tự ban đầu của các phần tử của $X$ ). (*)
Theo câu 1) thì $T_{i} \cap T_{j}=\varnothing$ với $i \neq j$ nên ta có
$$
\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{m}\right|=\left|T_{1} \cup T_{2} \cup \ldots \cup T_{m}\right| \leq T
$$
Tiếp theo, với $1 \leq i \leq m$, xét một tập hợp $S \subset X$ và $|S|=a_{i}+b_{i}$. Khi đó, tương ứng với $S$, có đúng 1 cách chọn $\left(A_{i}, B_{i}\right)$ thỏa mãn tính chất $(*)$ – tức là $A_{i}$ sẽ nhận $a_{i}$ số nhỏ nhất trong tập $S, B_{i}$ là lấy phần còn lại.
Trong khi đó, nếu không có điều kiện $(*)$, ta có thể chọn tùy ý $C_{a_{i}+b_{i}}^{a_{i}}$ phần tử trong $S$ và $A$ và số còn lại cho $B$.
Do đó, ta có
$$
\left|T_{i}\right|=\frac{|T|}{C_{a_{i}}^{a_{i}}+b_{i}}
$$
với $i=1,2, \ldots, m$. Từ đây suy ra
$$
\sum_{i=1}^{m} \frac{|T|}{C_{a_{i}+b_{i}}^{a_{i}}} \leq|T| \Leftrightarrow \sum_{i=1}^{m} \frac{1}{C_{a_{i}+b_{i}}^{a_{i}}} \leq 1
$$
Ta có đpcm.

Bài 8.

1) Giả sử $E F$ cắt $B C$ ở $L$ và $(T),(O)$ cắt nhau tại $J$ khác $A$. Suy ra $A J$ chính là trục đẳng phương của $(T),(O)$. Do đó $O T \perp A J$.
Khi đó,
$$
L B \cdot L C=L E \cdot L F
$$
nên $L$ thuộc trục đẳng phương của $(T),(O)$. Suy ra $A, J, L$ thẳng hàng. Theo định lý Brocard cho tứ giác $B E F C$ nội tiếp trong đường tròn $(I)$ thì $I$ chính là trực tâm của tam giác $A D L$.
Vì thế nên ID $\perp A L$, mà $O T \perp A J$ nên $I D \| O T$.

2) Dễ dàng thấy rằng $D$ là trực tâm của tam giác $A G H$ nên $A D \perp G H$. Ta sẽ chứng minh rằng $A, D, K$ thẳng hàng.

Ta có $D B \cdot D F=D E \cdot D C$ nên $D$ có cùng phương tích tới 2 đường tròn $(A B F),(A E C)$. Suy ra $A D$ chính là trục đẳng phương của 2 đường tròn này.

Bằng biến đổi các góc nội tiếp, ta thấy rằng
$$
\angle M P Q=\angle M B F=\angle C E F=\angle C N Q
$$
Suy ra $M N P Q$ nội tiếp, dẫn đến $K M \cdot K P=K N \cdot K Q$, tức là $K$ cũng có cùng phương tích tới 2 đường tròn $(A B F),(A E C)$.
Từ đó suy ra $A, D, K$ thẳng hàng. Do đó, $D K$ vuông góc với $G H$.

Đề thi chọn đội tuyển trường Phổ thông Năng khiếu năm học 2020-2021

Ngày thi thứ nhất

Bài 1 . Với mỗi số nguyên dương $n$, tìm số thực $M_{n}$ lớn nhất sao cho với mọi số thực dương $x_{1}, x_{2}, \ldots, x_{n}$ thì ta đều có
$$
\sum_{k=1}^{n} \frac{1}{x_{k}^{2}}+\frac{1}{\left(\sum_{k=1}^{n} x_{k}\right)^{2}} \geq M_{n}\left(\sum_{k=1}^{n} \frac{1}{x_{k}}+\frac{1}{\sum_{k=1}^{n} x_{k}}\right)^{2}
$$
Bài 2. Cho 2021 số nguyên khác 0 . Biết rằng tổng của một số bất kỳ trong chúng với tích của tất cả 2020 số còn lại luôn âm.
(a) Chứng minh rằng với mọi cách chia 2021 số này thành hai nhóm và nhân các số cùng nhóm lại với nhau thì tổng của hai tích cũng luôn âm.
(b) Một bộ số thỏa mãn đề bài thì có thể có nhiều nhất mấy số âm?

Bài 3. Cho hai hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $g(2020)>0$ và với mọi
$$
x, y \in \mathbb{R} \text { thì }\left\{\begin{array}{l}
f(x-g(y))=f(-x+2 g(y))+x g(y)-6 \
g(y)=g(2 f(x)-y)
\end{array}\right.
$$
(a) Chứng minh rằng $g$ là hàm hằng.
(b) Chứng minh rằng đồ thị $h(x)=f(x)-x$ nhận $x=1$ là trục đối xứng.

Bài 4 . Cho tam giác $A B C$ nhọn, nội tiếp trong đường tròn $(O)$ có trực tâm $H$ và $A H, B H, C H$ cắt cạnh đối diện lần lượt tại $D, E, F$. Gọi $I, M, N$ lần lượt là trung điểm các cạnh $B C, H B, H C$ và $B H, C H$ cắt lại $(O)$ theo thứ tự tại các điểm $L, K$. Giả sử $K L$ cắt $M N$ ở $G$.
(a) Trên $E F$, lấy điểm $T$ sao cho $A T$ vuông góc với $H I$. Chứng minh rằng $G T$ vuông góc với $O H$.
(b) Gọi $P, Q$ lần lượt là giao điểm của $D E, D F$ và $M N$. Gọi $S$ là giao điểm của $B Q, C P$. Chứng minh rằng $H S$ đi qua trung điểm của $E F$.

 

Ngày thi thứ hai

Bài 5. Cho số nguyên dương $n>1$. Chứng minh rằng với mọi số thực $a \in\left(0 ; \frac{1}{n}\right)$ và mọi đa thức $P(x)$ có bậc $2 n-1$ thỏa mãn điều kiện $P(0)=P(1)=0$, luôn tồn tại các số thực $x_{1}, x_{2}$ thuộc $[0 ; 1]$ sao cho $P\left(x_{1}\right)=P\left(x_{2}\right)$ và $x_{2}-x_{1}=a$

Bài 6. Giải phương trình sau trên $\mathbb{Z}^{+}:\left(x^{2}+3\right)^{3^{x+1}}\left[\left(x^{2}+3\right)^{3^{x+1}}+1\right]+x^{2}+y=x^{2} y$.

Bài 7. Cho các số nguyên $n>k>t>0$ và $X={1,2, \ldots, n}$. Gọi $\mathcal{F}$ là họ các tập con có $k$ phần tử của tập hợp $X$ sao cho với mọi $F, F^{\prime} \in \mathcal{F}$ thì $\left|F \cap F^{\prime}\right| \geq t$ Giả sử không có tập con có $t$ phần tử nào chứa trong tất cả các tập $F \in \mathcal{F}$.
(a) Chứng minh rằng tồn tại một tập hợp $B \subset X$ sao cho $|B|<3 k$ và $|B \cap F| \geq t+1$ với mọi $F \in \mathcal{F}$.
(b) Chứng minh rằng $|\mathcal{F}|<C_{3 k}^{t+1} C_{n}^{k-t-1}$.

Bài 8. Cho tam giác $A B C$ nội tiếp trong $(O)$ với $B, C$ cố định và $A$ thay đổi trên cung lớn $B C$. Dựng hình bình hành $A B D C$ và $A D$ cắt lại $(B C D)$ ở $K$.
(a) Gọi $R_{1}, R_{2}$ lần lượt là bán kính đường tròn ngoại tiếp $(K A B),(K A C)$. Chứng minh rằng tích $R_{1} R_{2}$ không đổi.
(b) Ký hiệu $(T),\left(T^{\prime}\right)$ lần lượt là các đường tròn cùng đi qua $K$, tiếp xúc với $B D$ ở $B$ và tiếp xúc với $C D$ ở $C$. Giả sử $(T),\left(T^{\prime}\right)$ cắt nhau ở $L \neq K$ Chứng minh rằng $A L$ luôn đi qua một điểm cố định.

Hết

Lời giải

Đề thi chọn đội Dự Tuyển PTNK năm học 2020-2021

Kì thi chọn Dự tuyển trường Phổ thông Năng khiếu tham dự kì thi 30/04 được tổ chức vào tháng 01 năm 2021, đề gồm 4 bài, làm trong 120 phút.

Đề bài

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $$P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$$

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Đáp án đề thi chuyên Toán thi vào trường Phổ thông Năng khiếu năm 2021

ĐỀ BÀI

Bài 1. (1.5 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. $

a) Giải hệ với $m=7$
b) Tìm $m$ sao cho hệ có nghiệm $(x,y)$

Bài 2. (1.5 điểm) Cho $M=\dfrac{1}{a}+ \dfrac{1}{b} + \dfrac{1}{c}$, $N=\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}$, $K=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$

a) Chứng minh nếu $MK=\dfrac{a^2+b^2+c^2}{abc}$ thì $N=0$
b) Cho $M=K=4$, $N=1$. Tính tích $abc$.

Bài 3. (1.5 điểm) Cho dãy $n$ số thực $x_1; x_2; \ldots ; x_n$ ($n \ge 5$) thỏa: $x_1 \le x_2 \le \ldots \le x_n$ và $x_1 + x_2 + \ldots x_n =1$

a) Chứng minh nếu $x_n \ge \dfrac{1}{3}$ thì $x_1 + x_2 \le x_n$
b) Chứng minh nếu $x_n \le \dfrac{2}{3}$ thì tìm được số nguyên dương $k <n$ sao cho

$$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3}$$

Bài 4. (1.5 điểm)

a) Tìm tất cả các số tự nhiên $n$ sao cho $(2n+1)^3 + 1 $ chia hết cho $2^{2021}$
b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\dfrac{2n+2}{p}$ và $\dfrac{4n^2+2n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. (3 điểm)  Cho tam giác $ABC$ vuông tại $A$. Các điểm $E$, $F$ lần lượt thay đổi trên các cạnh $AB$, $AC$ sao cho $EF\parallel BC$. Gọi $D$ là giao điểm của $BF$ và $CE$, $H$ là hình chiếu của $D$ lên $EF$. Đường tròn $(I)$ đường kính $EF$ cắt $BF$, $CE$ tại $M$, $N$. ($M$ khác $F$, $N$ khác $E$)

a) Chứng minh $AD$ và đường tròn ngoại tiếp $\triangle HMN$ cùng đi qua tâm $I$ của đường tròn tâm $I$.
b) Gọi $K$, $L$ lần lượt là hình chiếu vuông góc của $E$, $F$ lên $BC$ và $P$, $Q$ tương ứng là giao điểm của $EM$, $FN$ với $BC$. Chứng minh tứ giác $AEPL$, $AFQK$ nội tiếp và $\dfrac{BP \cdot BL}{CQ \cdot CK}$ không đổi khi $E$, $F$ thay đổi.
c) Chứng minh nếu $EL$ và $FK$ cắt nhau trên đường tròn $(I)$ thì $EM$ và $FN$ cắt nhau trên đường thẳng $BC$.

Bài 6. (1 điểm) Cho $N$ tập hợp ($N \ge 6$), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b$, $c$, $\ldots$, $x$, $y$, $z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.  Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.
b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.  Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

HẾT

Bình luận chung Đề bài nhìn chung vừa dài và khó, có nhiều ý, đầy đủ các phần đại số, số học, hình học và tổ hợp. Có 3 bài đại số, 1 bài số học, 1 bài hình và 1 bài tổ hợp. Đại số chiếm $50\%$ tổng số bài.

  •  Các bài học sinh chuyên toán có thể lấy điểm được ở bài 1, 2 và bài 5a.
    Các câu mức phân loại là 3a, 4a, 5b. Nếu làm chắc các câu trên nhiều khả năng sẽ đậu.
  • Những câu khó là 3b, 4b 5c, 6b, các kĩ thuật khó đối với học sinh cấp 2, đặc biệt là 3b và 4b.
  •  Đề năm nay nhìn chung khó, các bạn làm được từ 5 điểm trở lên có hy vọng đậu vào chuyên toán, còn điểm cao tầm 9, 10 tôi nghĩ là rất khó đạt, phải thực sự có năng khiếu và làm bài chắc tay mới đạt được.

Bài 1.

a) (0.75 điểm) $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. \quad (1) $

ĐKXĐ: $x \ge 2$, $y\ge 1$

Đặt $u = \sqrt{x-2}, v = \sqrt{y-1}$ ta có $u, v \geq 0$ và $u+v = 2, u^2+v^2=4$.

Giải ra được $u = 2, v=0$ hoặc $u = 0, v=2$. Từ đó có nghiệm $(x;y)$ là $(2;5), (6;1)$.

b) (0.75 điểm)

Đặt $u=\sqrt{x-2}$, $v= \sqrt{y-1}$ ($u, v \ge 0)$

Hệ phương trình trở thành: $\left\{ \begin{array}{l}
u+v=2 \\
u^2 + v^2 =m-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
u+v=2 \\
2u^2 – 4u +7-m=0 \quad (2)
\end{array} \right. $

Để hệ $(1)$ có nghiệm khi và chỉ khi $(2)$ phải có 2 nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:

$\left\{ \begin{array}{l}
\Delta ‘ \ge 0 \\
S \geq 0 \\
\left( x_1 -2 \right) \left( x_2 -2 \right) \geq 0 \\
S \le 4
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
m \ge 5 \\
m \le 7
\end{array} \right. $

Vậy $5 \le m \le 7$ thì hệ đã cho có nghiệm $(x,y)$

 

Bài 2.

a) $MK=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0 .$

$M K =\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

$+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$
$=\dfrac{1}{b+c}+\dfrac{b}{a(c+a)}+\dfrac{c}{a(a+b)}$

$+\dfrac{a}{b(b+c)}+\dfrac{1}{c+a}+\dfrac{c}{b(a+b)}+$

$+\dfrac{a}{c(b+c)}+\dfrac{b}{c(c+a)}+\dfrac{1}{a+b}$
$=N+\dfrac{b}{c+a}(\dfrac{1}{a}+\dfrac{1}{c})$

$+\dfrac{c}{a+b}(\dfrac{1}{a}+\dfrac{1}{b})+\dfrac{a}{b+c}(\dfrac{1}{b}+\dfrac{1}{c})$
$= N+\dfrac{b}{ac}+\dfrac{c}{ab}+\dfrac{a}{bc}= N+\dfrac{a^2+b^2+c^2}{abc}$

Mà $M K=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} $

$\Rightarrow N+\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$

$\Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$MK=N+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow 16=1+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow a^{2}+b^{2}+c^{2}=15abc$
$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c (*)$

Ta có:

$K+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1=(a+b+c)N \Rightarrow 7=a+b+c$

$M=4 \Rightarrow a b+b c+c a=4 a b c$.

Thay vào $ (*) $
$\Rightarrow 7^{2}-2.4 a b c=15 a b c$
$\Rightarrow a b c=\dfrac{49}{23} .$

 

Bài 3. 

a) Có nhận xét: nếu $x_1 + x_2 +\cdots x_k > 0$ thì có ít nhất $i \in \overline{1,k}$ để $x_i > 0$ suy ra $x_{k+1}>0$.

(0.75 điểm) Giả sử rằng $ x_1+x_2>x_n\geq \dfrac{1}{3}>0 $, khi đó $x_i > 0$ với mọi $2 \leq i \leq n$.

Do $n \geq 5$ nên $x_1+\cdots x_{n-1} \geq x_1 +x_2+x_3+x_4 \leq 2(x_1+x_2) >\dfrac{2}{3} \Rightarrow x_n < \dfrac{1}{3}$ (Vô lý).

b)

  • Nếu $x_n \geq \dfrac{1}{3}$, khi đó $\dfrac{2}{3}\geq x_n \geq \dfrac{1}{3}$, Từ $x_1+x_2+\cdots x_n=1$, suy ra $$\dfrac{1}{3} \leq x_1+x_2 +\cdots +x_{n-1} = 1-x_n \geq \dfrac{2}{3}$$
  • Nếu $x_n < \dfrac{1}{3}$. Suy ra $x_i < \dfrac{1}{3}$ với mọi $i$.

    Giả sử không tồn tại $k$ thỏa đề bài, tức là không có $k$ để $$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3} (*)$$

Ta chứng minh tồn tại $l\leq n-2$ sao cho $x_1+\cdots x_l < \dfrac{1}{3}$ và $x_1+\cdots x_{l+1} > \dfrac{2}{3}$. (**)

Thật vậy nếu không tồn tại $l$ thì $x_1 < \dfrac{1}{3}$, suy ra $x_1+x_2 < \dfrac{1}{3}$, vì ngược lại thì do (**) nên $\dfrac{1}{3} \leq x_1+x_2 \leq \dfrac{2}{3}$.(mâu thuẫn do (*)

Lý luận tương tự thì $x_1+x_2+\cdots x_{n-1} <\dfrac{1}{3}$(Mâu thuẫn).

Do đó nếu tồn tại $l$ thỏa $(**)$ thì suy ra $x_{l+1} > \dfrac{1}{3} > x_n$ (vô lý).

Vậy điều giả sử sai. Do đó tồn tại $k$ thỏa đề bài.

 

Bài 4. 

a) (0.5 điểm) ${{\left(2n+1\right)}^3+1}\; \vdots\; {{2}^{2021}}$
$\Leftrightarrow {(2n+2)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {2(n+1)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {(n+1)(4n^{2}+2n+1)}\; \vdots\; {{2}^{2020}}$
$\Leftrightarrow n+1\; \vdots \; 2^{2020} \quad\text{(do$ \; 4n^{2}+2n+1 \equiv 1 \; $ (mod$ \; 2$))}$
$\Leftrightarrow n=2^{2020}k-1\ (k\in \mathbb Z^+)$

b)  (1 điểm)Từ $p\mid 2n+2$ và $p\mid 4n^2+2n+1$ thì $p$ phải là số lẻ, dẫn đến $p\mid n+1$.

Do $4n+2+2n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p\mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p\mid n+1$ thì $n=3k-1$ với $k\in \mathbb Z^+$.
(0.5 điểm)
Ta chứng minh rằng $\dfrac{2n+2}{3}$ và $\dfrac{4n+2+2n+1}{3}$ không cùng là số chính phương.

Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:
$$\dfrac{2n+2}{3}\cdot \dfrac{4n^2+2n+1}{3}=s^2\ (s\in \mathbb Z^+)$$
Viết lại thành $(2n+1)^3=(3s-1)(3s+1)$.

Do $s$ là số chẵn nên $(3s-1,3s+1)=1$, dẫn đến việc tồn tại các số nguyên $a,b$ để $ab=2n+1$, $(a,b)=1$ và:
$$\begin{cases}
3s-1=a^3\\
3s+1=b^3
\end{cases}$$

Từ đây $2=(b-a)(b^2+ba+a^2)$.

Do $b>a$ nên $b-a\in{1,2}$.

Xét từng trường hợp và giải ra cụ thể, ta được $(a,b)=(-1,1)$.

Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.
(0.5 điểm)

Bài 5.

a) (1 điểm) Qua $D$ vẽ đường thẳng song song $BC$ cắt $AB, AC$ tại $X, Y$.

Ta có $\dfrac{DY}{BC} = \dfrac{DF}{BF} = \dfrac{DE}{EC} = \dfrac{DX}{BC}$.

Suy ra $DX = DY$. Suy ra $D$ là trung điểm của $XY$.

Do đó $AD$ qua trung điểm $I$ của $EF$.

Ta có $DHFN, DHEM$ nội tiếp. Suy ra $\widehat{DHN} = \widehat {DFN} = \widehat {MAN}$ và
$\widehat {DHM} = \widehat {NEM} = \widehat {NAM}$.

Suy ra $\widehat {MHN} = 2 \widehat {MAN} = \widehat {MIN}$.

Suy ra tứ giác $MIHN$ nội tiếp. Ta có điều cần chứng minh.
b) (1 điểm) Ta có $\triangle BMP \backsim \triangle BLF$.
Suy ra $BM \cdot BF = BP \cdot BL$.

Mặt khác $\triangle BAF \backsim \triangle BEM$, suy ra $BE \cdot BA = BM \cdot BE$.

Do đó $BA \cdot BE = BP \cdot BL$.

Từ đó ta có tứ giác $AEPL$ nội tiếp.

Chứng minh tương tự thì tứ giác $AFQK$ nội tiếp.

Và $\dfrac{BP\cdot BL}{CQ\cdot CK} = \dfrac{BE\cdot BA}{CF \cdot CA} = \dfrac{AB^2}{AC^2}$.
c) (1 điểm) Giả sử $EL, FK$ cắt nhau tại $S$ thuộc $(I)$.

Khi đó $\angle ESF =90^\circ$ và $EFLK$ là hình vuông.

Vẽ $PU \bot AB, QV \bot AC$.

Ta có $\dfrac{BP}{BC} = \dfrac{BU}{BA} = \dfrac{BK}{BL}$
và $\dfrac{CQ}{BC} = \dfrac{CV}{CA} = \dfrac{CL}{CK}$

Đặt $x = EF = KL$

Ta cần chứng minh $\dfrac{BK}{BL} + \dfrac{CL}{CK} = 1$.

$ \Leftrightarrow BK \cdot CK + BL \cdot CL = BL \cdot CK$
$\Leftrightarrow BK(CL+x)+(BK+x)CL = (BK+x)(CL+x)\Leftrightarrow x^2= BK\cdot CL$.

Đúng vì tam giác $BEK$ và $CFL$ đồng dạng.

 

Bài 6. 

a) Giả sử có chữ cái $S$ sao cho $S$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_1$, $A_2$, $\ldots$, $A_6$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chữ cái chung duy nhất là $S$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

  • Nếu $N=6$ thì vô lý do $S$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \ge 7$.
  •  Với $N \ge 7$, lấy tập $A_7$, có 2 khả năng:

    + $A_7$ chứa $S$: Vì $A_7$ và những tập $A_1$, $A_2$, $\ldots$,$A_6$ có chung đúng một chữ cái $\sigma$ nên $A_7$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_1$, $A_2$, $\ldots$, $A_6$.

    Suy ra tổng số chữ cái trong 7 tập trên là: $1+ 7(5-1)=29 >26$ (vô lý)
    + $A_7$ không chứa $S$.

    Khi đó $A_7$ sẽ có chung đúng 1 phần tử với mỗi tập $A_1$, $A_2$, $\ldots$, $A_6$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_1$, $A_2$, $\ldots$, $A_6$ đã có chung $S$)

    Do đó $A_7$ có ít nhất 6 phần tử. (vô lý).
    Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b)

Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $S$ và $T$.

Khi đó dễ thấy $k \ge N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X$, $X$ không chứa $\left\{ S, T \right\} $.

  •  Nếu $X$ không chứa cả $S$ lẫn $T$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2k \le 5 \Rightarrow k \le 2$
  •  Nếu $X$ chỉ chứa $S$, không chứa $T$.
    Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $X$ có 5 phần tử nên $k \le 4$.
    Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

    Để chỉ ra một ví dụ về khả năng có $4$ tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ $1$ đến $26$. Khi đó chọn bộ $N$ tập hợp như sau:
    $$\begin{cases}
    A_1=\{1,2,3,4,5\}\\\\
    A_2=\{1,2,6,7,8\}\\\\
    A_3=\{1,2,9,10,11\}\\\\
    A_4=\{1,2,12,13,14\}\\\\
    A_5=\{1,3,6,10,13\}\\\\
    A_6=\{2,3,6,9,12\}
    \end{cases}$$
    Bộ $6$ tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

Đề thi vào lớp 10 Chuyên Toán vào trường PTNK năm 2020

ĐỀ BÀI

Bài 1.  Cho các phương trình: $x^2+ ax +3=0$ và $x^2 +bx +5=0$ với $a$, $b$ là tham số. a) Chứng minh nếu $ab\ge 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung $x_0$. Tìm $a$, $b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất. Bài 2. Cho phương trình: $3x^2-y^2=23^n$ với $n$ là số tự nhiên. a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x,y)$. b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x,y)$. Bài 3.  Cho đường tròn $(O)$, dây cung $BC$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $BC$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle ABE =\angle CAE =\angle ACF =\angle BAF =90^\circ $. a) Chứng minh rằng $AE\cdot AC =AF \cdot AB$ và điểm $O$ là trung điểm $EF$. b) Hạ $AD$ vuông góc với $EF$ $(D\in EF)$. Chứng minh các tam giác $DAB$ và $DCA$ đồng dạng và điểm $D$ thuộc một đường tròn cố định. c) Gọi $G$ là giao điểm của $AD$ với đường tròn $(O)$ $(G\ne A)$. Chứng minh $AD$ đi qua một điểm cố định và $GB\cdot AC = GC\cdot AB$. d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $AK$ đi qua một điểm cố định. Bài 4.  Cho số tự nhiên $a=3^{13}\cdot 5^7 \cdot 7^{20}$ a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105. Hỏi tập $A$ có bao nhiêu phần tử? b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương. Bài 5. Cho hệ phương trình với $k$ là tham số: $\left\{ \begin{array}{l} \dfrac{x}{\sqrt{yz}}+\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{x}{z}}=k\\ \dfrac{y}{\sqrt{zx}}+\sqrt{\dfrac{y}{z}}+\sqrt{\dfrac{y}{x}}=k\\ \dfrac{z}{\sqrt{xy}}+\sqrt{\dfrac{z}{x}}+\sqrt{\dfrac{z}{y}}=k \end{array} \right. $ a) Giải hệ với $k=1$. b) Chứng minh hệ vô nghiệm với $k\ge 2$ và $k\ne 3$.

LỜI GIẢI

Bài 1.  Xét phương trình: $x^2 +ax +3=0 \quad (1)$, ta có: $\Delta_1 = a^2-12$. Xét phương trình: $x^2 +bx +5=0 \quad (2)$, ta có: $\Delta_2 = b^2-20$ Ta có: $\Delta_1 + \Delta_2 = a^2 + b^2 -32 \ge 2ab -32 \ge 0$ Vậy trong hai số $\Delta_1$ và $\Delta_2$ có ít nhất một số không âm hay một trong hai phương trình đã cho có nghiệm. Dễ thấy $x_0 \ne 0$.
  • $(1) \Leftrightarrow -a=\dfrac{x_0^2+3}{x_0} \Leftrightarrow |a|=\dfrac{x_0^2+3}{|x_0|}$ $(2) \Leftrightarrow -b=\dfrac{x_0^2+5}{x_0} \Leftrightarrow |b|=\dfrac{x_0^2+5}{|x_0|}$
  • Suy ra $|a|+|b|= 2|x_0| + \dfrac{8}{|x_0|} \ge 2\sqrt{2|x_0| \cdot \dfrac{8}{|x_0|}} =8 $
Dấu $”=”$ xảy ra khi và chỉ khi: $x_0^2=4 \Leftrightarrow \left[ \begin{array}{l} x_0 =2 \\ x_0 = -2 \end{array} \right. $ Với $x_0=2$ hoặc $x_0=-2$, lần lượt giải được $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc \ $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Vậy giá trị nhỏ nhất của $|a|+|b|$ là 8 khi $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Bài 2. a) Ta nhận thấy 1 số chính phương $m=a^2$ khi chia cho 3 thì có số dư lần lượt là 0 hoặc 1. Nên tổng 2 số chính phương nếu chia hết cho 3 thì mỗi số đều phải chia hết cho 3. Quay lại bài toán, do $n$ chẵn nên $23^n$ và $y^2$ đều là các số chính phương mà $23^n +y^2 =3x^2\ \vdots \ 3 \Rightarrow 23^n\ \vdots \ 3$ (vô lí) Vậy $n$ chẵn thì phương trình đã cho không có nghiệm nguyên. b) Do $n$ lẻ $\Rightarrow n=2k+1$ ($k\in \mathbb{N^*}$) Xét $\left\{ \begin{array}{l} x=3\cdot 23^k\\ y=2\cdot 23^k \end{array}\right. $ $\Rightarrow 3x^2-y^2=23^{2k+1}=23^n$ Vậy phương trình có nghiệm nguyên Bài 3.
a) Ta có $\angle BAE + \angle EAF = 90^\circ$ và $\angle CAF + \angle EAF = 90^\circ$. Suy ra $\angle BAE = \angle CAF$. $\triangle ABE \backsim \triangle ACF$, suy ra $AE \cdot AC = AB \cdot AF$ Gọi $I$ là giao điểm của $BE$ và $CF$. Khi đó $AI$ là đường kính của $O$. Tứ giác $AEIF$ là hình bình hành, $O$ là trung điểm $AI$ nên là trung điểm $EF$. b) Các tứ giác $ADBE, ADFC$ nội tiếp. Khi đó $\angle ADB = \angle AEB = \angle AFC = \angle ACD$. $\angle ABD = \angle AEC = \angle IFE = \angle AFC = \angle ADC$. Suy ra $\triangle ADB \backsim \triangle ACDA$. (g.g) Ta có $\angle BDC = 2 \angle ADB = 2 \angle AEB = 2 \angle EIF = \angle BOC$. Suy ra tứ giác $BDOC$ nội tiếp. $D$ thuộc đường tròn ngoại tiếp tam giác $BOC$ cố định. c)  Gọi $S$ là giao điểm của $AD$ và $(BOC$), ta có $\angle OBS = \angle ODS = 90^\circ$. Suy ra $OS$ là đường kính của $(BOC$, do đó $S$ cố định. $AD$ qua $S$ cố định và $SB, SC$ là tiếp tuyến của $(O)$. Khi đó $\triangle SAB \backsim \triangle SGB$, suy ra $\dfrac{AB}{BG} = \dfrac{SB}{SG}$ tương tự thì $\dfrac{AC}{GC} = \dfrac{SC}{SG}$. Mà $SB = SC$, nên $\dfrac{AB}{BG} = \dfrac{AC}{CG}$, suy ra $GB \cdot AC = GC \cdot AB$. Dễ thấy $D$ là trung điểm của $AG$. d) Gọi $M$ là trung điểm của $BC$. Ta chứng minh $A, M, K$ thẳng hàng. Ta chứng minh được $\angle DAE = \angle KAF$ ($\angle 90^\circ – \angle AED$). Gọi $T$ là trung điểm $CG$. Ta có $\triangle ACD \backsim \triangle BCG$ suy ra $\triangle ABC \backsim \triangle DCG$. Từ đó ta có $\triangle ACM \backsim \triangle DCT$. Khi đó $\angle CAM = \angle CDT = \angle ACD = \angle BAD$. Mà $\angle CAM = \angle CAF + \angle FAM$ và $\angle BAD = \angle BAE + \angle EAD$. Suy ra $\angle FAM = \angle EAD = \angle FAK$. Vậy $A, M, K$ thẳng hàng. $AK$ qua trung điểm $M$ của $BC$ cố định. Bài 4.  a) $k\ \vdots \ 105 \Rightarrow k$ chia hết cho 3, 5, 7 $\Rightarrow k=3^n\cdot 5^m \cdot 7^p$ với $m$, $n$, $p$ nguyên dương $\Rightarrow $ có $13\cdot 7\cdot 20 =1820$ cách. b) Giả sử $B$ là tập hợp 9 số nguyên dương $a_i$, $i=\overline{1,9}$\ với $a_i=3^{n_i}\cdot 5^{m_i}\cdot7^{p_i}$ trong đó $0\le n_i\le 13$; $0\le m_i\le 7$ và $0\le p_i\le 20$ Do $B$ có 9 phân tử. Xét nguyên lý Dirichlet với tập các số $n_i$ thì ta có ít nhất 5 số hạng $a_i$ sao cho các số mũ $n_i$ của 3 tương ứng cùng tính chẵn lẻ. Xét tiếp nguyên lý Dirichlet 5 số này cho số mũ $m_i$ của 5 tương ứng thì ta có ít nhất 3 số mà số mũ $m_i$ cũng cùng tính chẵn lẻ. Với 3 số còn lại này ta cũng xét nguyên lý Dirichlet cho số mũ $p_i$ của 7 thì ta sẽ có ít nhất 2 số cũng tính chẵn lẻ. Do 2 số được chọn này có số mũ cùng tính chẵn lẻ với cả các số 3, 5 và 7 nên tích chúng lại sẽ là số chính phương. Bài 5.  Điều kiện $x, y, z > 0$ hoặc $x, y, z < 0$. Từ hệ ta có $x + \sqrt{xz} + \sqrt{xy} = k\sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = k\sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = k\sqrt{xy} (3)$. a) Khi $k = 1$ ta có $x + \sqrt{xz} + \sqrt{xy} = \sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = \sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = \sqrt{xy} (3)$.
  • Nếu $x, y, z > 0$ thì cộng (3) phương trình ta có vô lí.
  • Nếu $x, y, z < 0$. Cộng 3 phương trình ta có $x+y+z +\sqrt{xy}+\sqrt{xz}+\sqrt{zy} = 0 \Leftrightarrow (\sqrt{-x}-\sqrt{y})^2 +(\sqrt{-y}-\sqrt{-z})^2+(\sqrt{-x}-\sqrt{-z})^2 = 0$, do đó $x=y=z$.
  • Thử lại thấy bộ $(x,y,z)$ mà $x=y=z <0$ thỏa hệ phương trình.
b) Giả sử $k\geq 2, k = 3$ thì hệ có nghiệm $(x,y,z)$. Từ hệ ta có $x+y+z = (k-2)(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}) \geq 0, suy ra $x, y, z > 0$. Giả sử $x = \max{x,y,z}$, ta có $k = \dfrac{x+\sqrt{xy}+\sqrt{xz}}{\sqrt{yz}} \geq 3$. $k = \dfrac{z+\sqrt{xz}+\sqrt{yz}}{\sqrt{xy}} \leq 3$. Do đó $k = 3$ (vô lí). Vậy hệ vô nghiệm khi $k \geq 2 $ và $k \neq 3$.

Đề thi vào lớp 10 chuyên toán Phổ thông Năng khiếu: Năm 2016

ĐỀ BÀI

BÀI 1. 
a) Giải hệ $\left\{\begin{array}{l} (x-2y)(x+my) = m^2-2m-3 \\(y-2x)(y+mx) = m^2-2m-3
\end{array} \right.$ khi $m = -3$ và tìm $m$ để hệ co ít nhất một nghiệm $(x_o, y_o)$ thỏa $x_o > 0, y_o > 0$.
b)  Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.
BÀI 2.  Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b)  Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

BÀI 3.  Biết $x \geq y \geq z, x + y + z =0$ và $x^2 + y^2 + z^2 = 6$.

a) Tính $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2$.
b) Tìm giá trị lớn nhất của $P = |(x-y)(y-z)(z-x)|$.

BÀI 4. Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.

a) Chứng minh $\triangle ABE \sim \triangle ACF$ và tứ giác $EFQN$ nội tiếp.
b) Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c) $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

BÀI 5. Với mỗi số nguyên dương $m$ lớn hơn 1, kí hiệu $s(m)$ là ước nguyên dương lớn nhất của $m$ và khác $m$. Cho số tự nhiên $n > 1$, đặt $n_o = n$ và lần lượt tính các số $n_1 =n_o- s(n_o), n_2 = n_1 – s(n_1), …, n_{i+1} = n_i – s(n_i)$,…. Chứng minh tồn tại số nguyên dương $k$ để $n_k = 1$ và tính $k$ khi $n = 2^{16}.14^{17}$.

Hết

Lời giải. 

Bài 1: 

a) Đây là hệ đối xứng loại 2, nên phương pháp giải là lấy (1) – (2) để có thừa số $x-y$, từ đó giải tiếp.

Chú ý xét trường hợp và điều kiện $x_o > 0, y_o > 0$ để biện luận. Những dạng toán này chú ý tính toán cẩn thận và xét đầy đủ các trường hợp.

b) Là bài dạng  biểu thức nghiệm không đối xứng, có nhiều cách, có thể tính nghiệm theo $m$ từ đó suy ra $m$.

Lời giải.

a) Khi $m = -3$ ta có hệ:

$\left\{\begin{array}{l} (x-2y)(x-3y)=12 \\(y-2x)(y-3x) = 12 \end{array} \right.$

$\Leftrightarrow \left\{\begin{array}{l} x^2-5xy+6y^2=12 (1)\\y^2-5xy+6x^2 = 12(2) \end{array} \right.$

Lấy (1) – (2) ta có $5(y^2-x^2) = 0 \Leftrightarrow x = y, x = -y$.
Với $x= y$ thế vào (1) ta có $x^2 =6 \Leftrightarrow x = \sqrt{6}, y = \sqrt{6}$ hoặc $x=-\sqrt{6}, y = -\sqrt{6}$.
Với $x = -y$ thế vào (1) ta có $x^2 = 1 \Leftrightarrow x = 1, x = -1$. Với $x = 1, y = -1$, với $x=-1, y = 1$.
Vậy hệ phương trình có 4 nghiệm.
Hệ có thể viết lại $\left\{\begin{array}{l} x^2+(m-2)xy-2my^2 = m^2-2m-3 (1)\\y^2+(m-2)xy-2mx^2= m^2-2m-3(2) \end{array} \right.$

Lấy (1) – (2) ta có $(2m+1)(y^2-x^2) = 0$.
Xét $m = \dfrac{-1}{2}$ ta có hệ trở thành: $x^2 – \dfrac{5}{2}xy + y^2 + \dfrac{7}{4}=0$, có nghiệm $ (\dfrac{5+\sqrt{2}}{2},2)$ thỏa đề bài.
Xét $m \neq \dfrac{-1}{2}$ ta có $x = y$ hoặc $x = -y$.

Trường hợp $x = -y$ không thỏa đề bài.
Trường hợp $x = y$, thế vào (1) ta có:

$-(m+1)x^2 = m^2-2m-3 = (m+1)(m-3)$.
Nếu $m = -1$ ta có $(x-2y)(x-y) = 0, (y-2x)(y-x) = 0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$.
Nếu $m \neq -1$ ta có $x^2 = 3-m$ để có nghiệm $x_o = y_o > 0$ thì $m < 3$.

Khi đó phương trình có nghiệm $x_0 = \sqrt{3-m}, y_o = \sqrt{3-m}$ thỏa đề bài.

Kết luận $m = \dfrac{-1}{2}, m = -1$ và $m < 3$.

b) Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.
Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.
Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1
\Leftrightarrow x_2^2+ax_2-a^2-a+2=0
\Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ (1).
Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.
Lấy (1) – (2) ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.
Thế vào phương trình (1) ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.
Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài 2.

a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.

b) Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$, ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1: Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2: Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Bài 3. Bài này là bài bdt khó, nhưng câu a đã gợi ý để làm câu b, chú ý các bdt phụ quan trọng.

a) Ta có $(x+y+z)^2 = x^2+y^2+z^2 + 2(xy+yz+xz)$. Suy ra $xy + yz + xz = -3$.
Ta có $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2 $

$= x^2 -2xy+y^2+xy-y^2+yz-xz+y^2-2yz + z^2$

$= x^2+y^2+z^2-yx-yz-xz = 9$.

b) Ta có thể chứng minh trực tiếp không qua câu a) như sau:

$(x-y)(y-z) \leq \dfrac{1}{3}((x-y)^2+(x-y)(y-z) + (y-z)^2) = 3$. Suy ra $P \leq 3|x-z|$.
Ta có $|x-z| \leq \sqrt{2(x^2+z^2)}\leq \sqrt{2(x^2+y^2+z^2)}= \sqrt{12}$. Suy ra $P \leq 3\sqrt{12} = 6\sqrt{3}$.
Đẳng thức xảy ra khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$.

Vậy giá trị lớn nhất của P là $6\sqrt{3}$ khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$

Ngoài ra ta có thể áp dụng câu a: Đặt $a = x-y, b = y-z$ ta có $a^2+b^2+ab = 9$, cần tìm giá trị lớn nhất của $P = ab(a+b)$.

Áp dụng $ab \leq \dfrac{1}{4} (a+b)^2$ và $a^2+b^2+ab \geq \dfrac{3}{4} (a+b)^2$. Ta có điều cần chứng minh.

Bài 4. Đây là bài hình khó và dài, các em chú ý hình vẽ cụ thể là góc, vẽ hình chính xác. 

Tránh dùng các kiến thức cấp 3: phương tích trục đẳng phương,…

a) Ta có $\angle EAB + \angle BAC = 90^\circ, \angle FAC + \angle BAC = 90^\circ$. Suy ra $\angle EAB = \angle FAC$.
Mặt khác có $\angle ABE = \angle ACF = 90^\circ$. Suy ra $\triangle ABE \backsim \triangle ACF$.
Suy ra $AE\cdot AC = AF\cdot AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE\cdot AQ = AN\cdot AF$. Suy ra tứ giác $QNEF$ nội tiếp.
b) Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF|| ET, AE|| FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX || BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

b) $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$.
Suy ra $NDFK’$ nội tiếp. Chứng minh tương tự ta có $DQK’E$ nội tiếp.
Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^\circ – 2 \angle BKE = 2(90^\circ – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
Mặt khác $\angle BKA = 180^\circ – \angle AEB = 180^\circ – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
Vậy 4 điểm $D, A, K, J$ thẳng hàng.

Bài 5. Đây là bài toán lạ và khá hay, sử dụng đơn biến.

Ta có $s(n_i) < n_i$, suy ra $n_i – s(n_i) \geq 1$. Suy ra $n_{i+1} \geq 1$. Do đó $n_i \geq 1$ với mọi $i = 1, 2, …$.
Mặt khác $n_{i+1} = n_i – s(n_i) < n_i$ với mọi $i$. Suy ra $n=n_o > n_1 > n_2 > …>…$.
Nếu không tồn tại $n_k$ để $n_k = 1$ ta xây dựng được dãy vô hạn các số nguyên dương giảm và nhỏ hơn $n$ (vô lý) vì số các số nhỏ hơn $n$ là bằng $n-1$.
Vậy tồn tại $k$ sao cho $n_k = 1$.
Với $n=2^{16}.14^{17} = 2^{33}.7^{17}$, ta có $n_1 = 2^{33}7^{17} – 2^{32}.7^{17}= 2^{32}.7^{17}$.\
$n_2 = 2^{31}.7^{17}$.
Tiếp tục ta có $n_{33} = 7^{17}$.
Đặt $m_o= 7^{17}$ ta có $m_1 = 6.7^{16}$, $m_2 = 3.7^{16}, m_3 = 2.7^{16}, m_4 = 7^{16}$. Tương tự ta có $m_8 = 7^{15}$,…,$m_{68} = 7^0 = 1$.
Vậy $k = 33 + 68 = 101$.

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán

ĐỀ BÀI

BÀI 1. Cho phương trình $x^2-4mx+m^2-2m+1=0$ (1) với m là tham số .

a) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó hai
nghiệm không thể trái dấu.
b)  Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $|x_1 -x_2| =1$.

BÀI 2.  Giải hệ phương trình $\left\{ \begin{array}{l}
3{x^2} + 2y + 1 = 2z\left( {x + 2} \right)\\
3{y^2} + 2z + 1 = 2x\left( {y + 2} \right)\\
3{z^2} + 2x + 1 = 2y\left( {z + 2} \right)
\end{array} \right.$

BÀI 3. Cho $x, y$ là hai số không âm thỏa $x^3+y^3 < x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.
b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

BÀI 4.  Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

BÀI 5.  Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.

a) Chứng minh rằng các tứ giác $IFMK$ và $IMAN$ nội tiếp .
b) Gọi $J$ là trung điểm cạnh $BC$.Chứng minh rằng ba điểm $A,K,J$ thẳng hàng.
c) Gọi $r$ là bán kính của dường tròn $(I)$ và $S$ là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

BÀI 6.  Trong một kỳ thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kỳ thi , người ta nhận
thấy rằng: Với hai thí sinh bất kỳ luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải
được. Chứng minh rằng :

a) Nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà
mọi thí sinh đều giải được .
b) Có một bài toán mà có ít nhất 40 thí sinh giải được.

LỜI GIẢI

Nhìn vào đề này thấy độ phức tạp nhẹ nhàng, các câu dễ có thể một phát ăn ngay là bài 1, 3a, 4a, 4b ý đầu, 5a.

Tiếp theo là các câu khó hơn như 2,3b ý sau, 5b, 5c và khó nhằn nhất có lẽ là bài tổ hợp.

Bài hình trong đề này là một bài rất quen thuộc, do đó việc giải lại các bài toán đã học là một việc quan trọng. Chú ý những lỗi suy luận trong làm bài, các em tự làm và tự đánh giá điểm để xem được nhiêu điểm nhé, đáp án sẽ có sau vài ngày nữa.

Bài 1. (1,5 điểm) 

a) Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta ‘ = 3m^2+2m-1> 0 \Leftrightarrow m > \dfrac{1}{3}$ hoặc $m < – 1$. Khi đó tích hai nghiệm của phương trình $x_1x_2 = (m-1)^2 \geq 0$ nên phương trình không thể có hai nghiệm trái dấu.

b) Điều kiện để phương trình có hai nghiệm $x_1, x_2$ không âm:

$\Delta’ = 3m^2+2m-1\geq 0; S = x_1+x_2 \geq 0; P=x_1x_2 = m^2-2m+1 \geq 0$

$\Leftrightarrow m \geq \dfrac{1}{3} $
Ta có $|\sqrt{x_1}-\sqrt{2}| = 1 $
$\Leftrightarrow x_1 + x_2 – \sqrt{x_1x_2} = 1 $
$\Leftrightarrow 4m – 2\sqrt{m^2-2m+1} = 1 $
$\Leftrightarrow m = \dfrac{1}{2} (n), m = \dfrac{-1}{2} (l)$.

Bình luận Nhiều bạn xét $P \geq 0$ suy ra phương trình có hai nghiệm cùng dấu, cái này là suy luận sai, vì còn trường hợp bằng 0, tốt nhất là dùng phản chứng.

Bài 2. (1 điểm) Cộng ba phương trình lại ta có:
$3(x^2+y^2+z^2) + 2(x+y+z)+3 = 2(xy+yz+zx) + 4(x+y+z)$

$\Leftrightarrow 3(x^2+y^2+z^2)-2(xy+yz+xz) – 2(x+y+z)+3 = 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2 + (x-1)^2+(y-1)^2+(z-1)^2 = 0$
$\Leftrightarrow \left\{\begin{array}{l}x=1\\y=1\\z=1
\end{array} \right.$
Thử lại thấy $(1, 1,1)$ là nghiệm của hệ.

Bình luận: Bài này hệ hoái vị vòng quanh, bất đẳng thức là một trong những cách hay dùng.

Bài 3. (1,5 điểm) 

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.
Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. \Suy ra $0\leq x \leq 1$.
Do đó $0 \leq y \leq x \leq 1$.
b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.
Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.
Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.
Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Bình luận: Đây là bất đẳng thức tương đối dễ, chỉ dùng các biến đổi đơn giản, tuy vậy để làm được ý cuối trong điều kiện phòng thi thì không đơn giản.

Bài 4. (1,5 điểm) 

a)Ta có $M = a^2 + 3a + 1 = a(a+1) + 2a + 1$. Mà $a(a+1)$ là tích hai số tự nhiên liến tiếp nên chia hết cho 2, suy ra $M = a(a+1) + 2a +1$ là số lẻ, do đó mọi ước của $M$ đều là số lẻ.
b) Giả sử $M = a^2 + 3a + 1$ chia hết cho 5. Mà $M = (a-1)^2 + 5a$ nên $(a-1)^2$ chia hết cho 5. Suy ra $a = 5k + 1$ ($k$ là số tự nhiên).
Thử lại thấy với $a = 5k + 1$ thì M chia hết cho 5.
Giả sử $M = (a-1)^2+ 5a = 5^n$.
Nếu $n \geq $ ta có $M$ chia hết cho 25.
Từ M chia hết cho 5, tương tự trên ta có $a = 5k + 1$.
Khi đó $M = 25k^2 + 25k + 5 = 5(5k^2+5k+1)$. Ta có $5k^2 + 5k + 1$ không chia hết cho 5 nên M không chia hết cho 25. (mâu thuẫn).
Nếu $n = 1$. Khi đó $k = 0, a= 1$ và $A=5$ thỏa đề bài.
Đáp số $a = 1$.

Bình luận: Bài này thực chất là bài phương trình nghiệm nguyên, cách hay sử dụng là đồng dư, và đưa ra điều kiện của $a$, ta cũng có thể thử vài giá trị để đoán được nghiệm, từ đó cho ra cách giải.

Bên cạnh đó, nắm chắc một chút các phương pháp chia hết như biến đổi thành tổng.

Bài 5.  (3 điểm) 

a) Do $MN|| BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^\circ$ nên tứ giác $IFMK$ nội tiếp. Tam giác $AEF$ đều nên $\angle KFI = 30^\circ$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^\circ$ nên tứ giác $IMAN$ nội tiếp.
b) Ta có $\angle IMN = \angle INM = 30^\circ$ nên tam giác $IMN$ cân tại $I$.
Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.
b) Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF\cdot AF = r^2 \sqrt{3}$.

Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Bình luận. Đây là một mô hình quen thuộc của đường tròn nội tiếp, hầu hết các bạn đã gặp bài toán này, do đó nắm chắc các bài toán là một lợi thế.

Bài 6. (1,5 điểm) 

a) Kí hiệu các bài toán là BT1, BT2, BT3.
Từ giả thiết suy ra rằng mọi thí sinh đều giải được ít nhất một bài toán.
Ta giả sử, mọi thí sinh đều không giải được BT1. Khi đó mọi thí sinh đều giải được BT2 hoặc BT3. Nếu có một thí sinh chỉ giải được 1 bài toán, giả sử đó là bài toán 2. Khi đó theo đề bài thì mọi thí sinh khác đều giải được bài toán 2. Vậy mọi thí sinh đều giải được bài toán 2. Còn nếu tất cả các thí sinh đều giải được 2 bài toán thì cũng thỏa.

b) Ta xét hai trường hợp:
TH1: Có một thí sinh nào đó giải đúng một bài toán, theo câu a thì mọi thí sinh đều giải được bài toán đó, ta có điều cần chứng minh.
TH2: Mọi thí sinh đều giải được ít nhất 2 bài toán. Gọi $a$ là số thi sinh giải được cả 3 bài toán, $b$ là số thí sinh giải được BT1 và BT2, $c$ là số thí sinh giải được BT2 và BT3, $d$ là số thí sinh giải được BT1 và BT3.
Ta có $a + b+ c+ d = 60$.
Nếu $b, c, d > 20$, suy ra $b+c+d > 60$ vô lý. Do đó có một trong ba số $b, c, d$ phải nhỏ hơn hoặc bằng 20. Giả sử là $b \leq 20$. Suy ra $a+c+d \geq 40$.

Hay số thí sinh giải được bài BT3 không ít hơn 40. Điều cần chứng minh.

Bình luận: Đây là bài tổ hợp vừa phải, câu a, chỉ cần đọc kĩ giả thiết là làm được.

Câu b, là biểu đồ venn có thể suy nghĩ đến khi cần phân ra các tập rời nhau.

Bên cạnh đó phản chứng là phương pháp được sử dụng.

Nhìn chung đề này có nhiều câu dễ và quen thuộc, với những câu đó phải làm trước và làm thật chắc, khi đó mới có nhiều thời gian làm các câu khó.

Đề thi và đáp án thi chọn đội dự tuyển trường PTNK năm học 2016-2017

ĐỀ BÀI

Bài 1. Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:
$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2. Tìm tất cả các hàm số $f:N^* \rightarrow  N^*$ thoả mãn đồng thời các điều kiện:

i)  $ f(mn)=f(m)f(n) \forall m,n \in N^* $.
ii) $f(m)+f(n)$ chia hết cho $m+n$, $\forall m,n \in N^* $.
iii) $f(2017)=2017^3$.

Bài 3.  Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.
a) Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.
b) Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4.  Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$. \medskip

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

 

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$