Tag Archives: Lop7

ĐỀ HỌC SINH GIỎI LỚP 7

Bài 1.

a. Tính: $\mathrm{A}=1 \frac{13}{15} \cdot(0,5)^2 \cdot 3+\left(\frac{8}{15}-1 \frac{19}{60}\right): 1 \frac{23}{24}$
b. So sánh: $16^{20}$ và $2^{100}$

Hướng dẫn giải

a. Biến đổi:

$$
\begin{aligned}
& A=\frac{7}{5}-\frac{47}{60}: \frac{47}{24} \
& =\frac{7}{5}-\frac{2}{5} \
& =1
\end{aligned}
$$

b. Biến đổi: $16^{20}=2^{4.20}=2^{80}$

$$\text { Có } 2^{80}<2^{100} \text { vì }(1<2 ; 80<100)$$

Vậy $16^{20}<2^{100}$

Bài 2.
a. Tìm $x$ biết: $|2 x-7|+\dfrac{1}{2}=1 \dfrac{1}{2}$
b. Tìm số tự nhiên n biết: $3^{-1} \cdot 3^n+4.3^n=13.3^5$

Hướng dẫn giải

a. $\text { Ta có }|2 x-7|+\dfrac{1}{2}=1 \frac{1}{2} \Rightarrow|2 x-7|=1$
$\Rightarrow 2 x-7=1 \text { hoặc } 2 x-7=-1$
$\Rightarrow x=4 \text { hoặc } x=3$
Vậy $x=4$ hoặc $x=3$.

b. $\text { Biến đổi được } 3^n \cdot\left(3^{-1}+4\right)=13 \cdot 3^5$
$\Rightarrow 3^n=3^6$
$\Rightarrow \mathrm{n}=6$

Bài 3.
a. Cho dãy tỉ số bằng nhau:
$\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$
Tính giá trị biểu thức Q , biết $\mathrm{Q}=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$

b. Cho biểu thức $M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}$ với $x, y, z$, t là các số tự nhiên khác 0 . Chứng minh $M^{10}<1025$.

Hướng dẫn giải

a. Biến đổi: $\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$

$\dfrac{2 a+b+c+d}{a}-1=\dfrac{a+2 b+c+d}{b}-1=\dfrac{a+b+2 c+d}{c}-1=\dfrac{a+b+c+2 d}{d}-1$
$\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \neq 0 \text { thì } \mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=>\mathrm{Q}=1+1+1+1=4$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\text { thì } \mathrm{a}+\mathrm{b}=-(\mathrm{c}+\mathrm{d}) ;$ $\mathrm{b}+\mathrm{c}=-(\mathrm{d}+\mathrm{a}) ; \mathrm{c}+\mathrm{d}=-(\mathrm{a}+\mathrm{b}) ; \mathrm{d}+\mathrm{a}=-(\mathrm{b}+\mathrm{c})$
$\Rightarrow \mathrm{Q}=(-1)+(-1)+(-1)+(-1)=-4$
$\mathrm{KL}: \text { Vậy } \mathrm{Q}=4 \text { khi } a+b+c+d \neq 0$

$\text { b. Ta có: } \dfrac{x}{x+y+z}<\dfrac{x}{x+y}$
$\dfrac{y}{x+y+t}<\dfrac{y}{x+y} $
$\dfrac{z}{y+z+t}<\dfrac{z}{z+t} $
$\dfrac{t}{x+z+t}<\dfrac{t}{z+t}$
$\Rightarrow \mathrm{M}<\left(\dfrac{\mathrm{x}}{\mathrm{x}+\mathrm{y}}+\dfrac{\mathrm{y}}{\mathrm{x}+\mathrm{y}}\right)+\left(\dfrac{\mathrm{z}}{\mathrm{z}+\mathrm{t}}+\dfrac{\mathrm{t}}{\mathrm{z}+\mathrm{t}}\right) $
$\Rightarrow \mathrm{M}<2 $
$\text { Có }M^{10}<2^{10}(\text { Vì } M>0) \text { mà } 2^{10}=1024<1025$
$\text { Vậy } \mathrm{M}^{10}<1025$
KL: Vậy $\mathrm{n}=6$

Bài 4.
1) Cho tam giác ABC vuông cân tại A . Gọi $M$ là trung điểm $\mathrm{BC}, \mathrm{D}$ là điểm thuộc đoạn $\mathrm{BM}(\mathrm{D}$ khác B và M ). Kẻ các đường thẳng $\mathrm{BH}, \mathrm{CI}$ lần lượt vuông góc với đường thẳng AD tại H và I . Chứng minh rằng:
a. $\mathrm{BAM}=\mathrm{ACM}$ và $\mathrm{BH}=\mathrm{AI}$.
b. Tam giác MHI vuông cân.
2) Cho tam giác ABC có góc $\widehat{\mathrm{A}}=90^{\circ}$. Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E . Chứng minh rằng $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}+\mathrm{DE}$.

Hướng dẫn giải

$ \text { a. } \text { * Chứng minh: } B A M=A C M$
$+ \text { Chứng minh được: } \triangle \mathrm{ABM}=\triangle \mathrm{ACM}(\mathrm{c}-\mathrm{c}-\mathrm{c})$
$\text { + Lập luận được: } B A M=C A M=45^{\circ}$
$\text { + Tính ra được } A C M=45^{\circ}$
$\Rightarrow B A M=A C M$
$\text { * Chứng minh: } \mathrm{BH}=\mathrm{AI} \text {. }$
$\text { + Chỉ ra: } B A H=A C I \text { (cùng phụ } D A C)$
$\text { + Chứng minh được } \triangle \mathrm{AIC}=\Delta \mathrm{BHA}(\text { Cạnh huyên – góc nhọn) }$
$\Rightarrow \mathrm{BH}=\mathrm{AI}(2 \text { cạnh tương ứng) }$

b. Tam giác MHI vuông cân.

Chứng minh được $A M \perp B C$
Chứng minh được $\mathrm{AM}=\mathrm{MC}$
Chứng minh được $H A M=I C M$
Chứng minh được $\Delta \mathrm{HAM}=\Delta \mathrm{ICM}(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \mathrm{HM}=\mathrm{MI}$ (1)
Do $\triangle \mathrm{HAM}=\triangle \mathrm{ICM} \Rightarrow H M A=I M C \Rightarrow H M B=I M A$ (do $A M B=A M C=90^{\circ}$
Lập luận được: $H M I=90^{\circ}$ (2)
Từ (1)(2)=>$\Delta$ MHI vuông cân $\left({ }^{ }\right)$
Từ (1) và (2)=>$\Delta \mathrm{MHI}$ vuông cân

$\text { + Chứng minh được : }$
$A E \mathrm{C}=A B C+B A E=H A D+D A C+B A E=E A H+H A D+D A C=E A C$
$\text { (Vì } B \text { và } H A C \text { cùng phụ với } B A H \text { ) }$
Suy ra tam giác AEC cân tại C $\Rightarrow\mathrm{AC}=\mathrm{CE}$ (1)
Tương tự chứng minh được $ \mathrm{AB}=\mathrm{BD}$ (2)
Từ (1) và (2) $\Rightarrow\mathrm{AB}+\mathrm{AC}=\mathrm{BD}+\mathrm{EC}=\mathrm{ED}+\mathrm{BC}$

Bài 5. Cho $\mathrm{x}, \mathrm{y}, \mathrm{z}$ là 3 số thực tùy ý thỏa mãn $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ và $-1 \leq x \leq 1,-1 \leq y \leq 1$, $-1 \leq z \leq 1$. Chứng minh rằng đa thức $x^2+y^4+z^6$ có giá trị không lớn hơn 2 .

Hướng dẫn giải

+) Trong ba số $x, y, z$ có ít nhất hai số cùng dấu.
Giả sử $x ; y \geq 0$
$\Rightarrow \mathrm{z}=-\mathrm{x}-\mathrm{y} \leq 0$
$+\mathrm{Vì}-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 1=>x^2+y^4+z^6 \leq|x|+|y|+|z|$
$\Rightarrow x^2+y^4+z^6 \leq x+y-z$
$\Rightarrow x^2+y^4+z^6 \leq-2 z$
$+)-1 \leq z \leq 1 \text { và } \mathrm{z} \leq 0 \Rightarrow x^2+y^4+z^6 \leq 2$
KL: Vậy $x^2+y^4+z^6 \leq 2$













HAI ĐƯỜNG THẲNG VUÔNG GÓC

Ví dụ 1: Cho góc bẹt $A O B$ và tia $O M$ sao cho $\widehat{A O M}=60^{\circ}$. Vẽ tia $O N$ nằm trong góc $B O M$ sao cho $O N \perp O M$. Chứng tỏ rằng $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.

Tìm cách giải

Muốn so sánh hai góc $B O N$ và $A O M$ ta cần tính số đo của chúng.
Đã biết số đo của góc $A O M$ nên chỉ cần tính số đo của góc $B O N$.

Hướng dẫn giải

Hai góc $A O M$ và $B O M$ kề bù nên $\widehat{A O M}+\widehat{B O M}=180^{\circ}$
$\Rightarrow \widehat{B O M}=180^{\circ}-60^{\circ}=120^{\circ}$. Vì $O M \perp O N$ nên $\widehat{M O N}=90^{\circ}$.
Tia $O N$ nằm trong góc $B O M$ nên $\widehat{B O N}+\widehat{M O N}=\widehat{B O M}$
$\Rightarrow \widehat{B O N}=120^{\circ}-90^{\circ}=30^{\circ}$. Vì $30^{\circ}=\dfrac{1}{2} \cdot 60^{\circ}$ nên $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.

Ví dụ 2: Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O E, O F$ sao cho $\widehat{A O E}=\widehat{B O F}<90^{\circ}$. Vẽ tia phân giác $O M$ của góc $E O F$. Chứng tỏ rằng $O M \perp A B$.

Tìm cách giải

Để chứng tỏ $O M \perp A B$ ta cần chứng tỏ góc $A O M$ hoặc góc $B O M$ có số đo bằng $90^{\circ}$

Hướng dẫn giải

Ta có $\widehat{A O E}=\widehat{B O F} ; \widehat{M O E}=\widehat{M O F}$ (đề bài cho)
$$
\Rightarrow \widehat{A O E}+\widehat{M O E}=\widehat{B O F}+\widehat{M O F} \text {. }
$$

Tia $O E$ nằm giữa hai tia $O A, O M$; tia $O F$ nằm giũa hai tia $O B, O M$ nên từ (1) suy ra $\widehat{A O M}=\widehat{B O M}$. Mặt khác, $\widehat{A O M}+\widehat{B O M}=180^{\circ}$ (hai góc kề bù) nên $\widehat{A O M}=180^{\circ}: 2=90^{\circ}$, suy ra $O M \perp O A$. Do đó $O M \perp A B$.

Ví dụ 3: Cho góc tù $A O B$. Vẽ vào trong góc này các tia $O M, O N$ sao cho $O M \perp O A, O N \perp O B$. Vẽ tia $O K$ là tia phân giác của góc $M O N$. Chứng tỏ rằng tia $O K$ cũng là tia phân giác của góc $A O B$.

Tìm cách giải

Muốn chứng tỏ tia $O K$ là tia phân giác của góc $A O B$ ta cần chứng tỏ $\widehat{A O K}=\widehat{B O K}$. Muốn vậy cần chứng tỏ $\widehat{A O N}+\widehat{N O K}=\widehat{B O M}+\widehat{M O K}$.

Hướng dẫn giải

Ta có $O M \perp O A \Rightarrow \widehat{A O M}=90^{\circ} ; O N \perp O B \Rightarrow \widehat{B O N}=90^{\circ}$.
Tia $O N$ nằm giữa hai tia $O A, O M$ nên $\widehat{A O N}+\widehat{N O M}=\widehat{A O M}=90^{\circ}$;
Hinh2.6

Tia $O M$ nằm giữa hai tia $O B, O N$ nên $\widehat{B O M}+\widehat{M O N}=\widehat{B O N}=90^{\circ}$.
Suy ra $\widehat{A O N}=\widehat{B O M}$ (cùng phụ với $\widehat{M O N}$ ).
Tia $O K$ là tia phân giác của góc $M O N$ nên $\widehat{N O K}=\widehat{M O K}$.
Do đó $\widehat{A O N}+\widehat{N O K}=\widehat{B O M}+\widehat{M O K}$.
Vi tia $O N$ nằm giũ̃a hai tia $O A, O K$ và tia $O M$ nằm giữa hai tia $O B, O K$ nên từ (1) suy ra $\widehat{A O K}=\widehat{B O K}$. Mặt khác, tia $O K$ nằm giũa hai tia $O A, O B$ nên tia $O K$ cũng là tia phân giác của góc $A O B$.

Bài tập vận dụng

Bài 1. Cho hai đường thẳng $A B$ và $C D$ vuông góc với nhau tại $O$. Vẽ tia $O K$ là tia phân giác của góc $A O C$. Tính số đo góc $K O D$ và $K O B$.

Hướng dẫn giải

Vì $A B \perp C D$ nên $ \widehat{A O C}=90^{\circ}$

Vì tia $O K$ là tia phân giác của góc $A O C$ nên $\widehat{O_1}=\widehat{O_2}=45^{\circ}$.
Ta có $\widehat{K O D}+\widehat{O_1}=180^{\circ}$ (hai góc kề bù)
$$
\Rightarrow \widehat{K O D}=180^{\circ}-45^{\circ}=135^{\circ} \text {. }
$$
$\widehat{K O B}+\widehat{O_2}=180^{\circ}$ (hai góc kề bù)
$$
\Rightarrow \widehat{K O B}=180^{\circ}-45^{\circ}=135^{\circ} \text {. }
$$

Bài 2. Cho góc $A O B$ và tia $O C$ nằm trong góc đó sao cho $\widehat{A O C}=4 \widehat{B O C}$. Vẽ tia phân giác $O M$ của góc $A O C$. Tính số đo của góc $A O B$ nếu $O M \perp O B$.

Hướng dẫn giải

Tia $O M$ là tia phân giác của góc $A O C$ nên $\widehat{M O C}=\frac{1}{2} \widehat{A O C}$ mà $\widehat{A O C}=4 \widehat{B O C}$ nên $\widehat{M O C}=2 \widehat{B O C}$.

Nếu $O M \perp O B$ thì $\widehat{M O B}=90^{\circ}$.
Ta có $\widehat{M O C}+\widehat{B O C}=90^{\circ}$ do đó $2 \widehat{B O C}+\widehat{B O C}=90^{\circ} \Rightarrow \widehat{B O C}=30^{\circ}$.
Vậy $\widehat{A O C}=4.30^{\circ}=120^{\circ}$.

Bài 3. Cho góc tù $A O B, \widehat{A O B}=m^{\circ}$. Vẽ vào trong góc này các tia $O C, O D$ sao cho $O C \perp O A ; O D \perp O B$.
a) Chứng tỏ rằng $\widehat{A O D}=\widehat{B O C}$.
b) Tìm giá trị của $m$ để $\widehat{A O D}=\widehat{D O C}=\widehat{C O B}$.

Hướng dẫn giải

a) Ta có $O C \perp O A$ nên $\widehat{A O C}=90^{\circ}$; OD $\perp O B$ nên $\widehat{B O D}=90^{\circ}$.

Tia $O D$ nằm trong góc $A O B$ nên $\widehat{A O D}+\widehat{B O D}=\widehat{A O B}$.
$$
\Rightarrow \widehat{A O D}=\widehat{A O B}-\widehat{B O D}=m^{\circ}-90^{\circ}
$$

Tia $O C$ nằm trong góc $A O B$ nên $\widehat{A O C}+\widehat{B O C}=\widehat{A O B}$
$$
\Rightarrow \widehat{B O C}=\widehat{A O B}-\widehat{A O C}=m^{\circ}-90^{\circ}
$$
Từ (1) và (2), suy ra: $\widehat{A O D}=\widehat{B O C}\left(=m^{\circ}-90^{\circ}\right)$.
b) Tia $O C$ nằm giữa hai tia $O B$ và $O D$. Suy ra $\widehat{B O C}+\widehat{D O C}=\widehat{B O D}=90^{\circ}$.

Nếu $\widehat{B O C}=\widehat{D O C}$ thì $\widehat{D O C}=90^{\circ}: 2=45^{\circ}$.

Do đó, $\widehat{A O D}=\widehat{D O C}=\widehat{C O D} \Leftrightarrow \widehat{A O B}=3 \cdot \widehat{D O C}=3.45^{\circ}=135^{\circ} \Leftrightarrow m=135$

CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC

Bài 4. Trong hình 2.7 có góc $M O N$ là góc bẹt, góc $A O C$ là góc vuông. Các tia $O M, O N$ lần lượt là các tia phân giác của các góc $A O B$ và $C O D$. Chứng tỏ rằng $O B \perp O D$.


Hướng dẫn giải

Vì $\widehat{M O N}$ là góc bẹt nên $\widehat{O_1}+\widehat{O_3}+\widehat{A O C}=180^{\circ}$
$$
\widehat{O_2}+\widehat{O_4}+\widehat{B O D}=180^{\circ}
$$

Mặt khác, $\widehat{O_1}=\widehat{O_2} ; \widehat{O_3}=\widehat{O_4}$ (đề bài cho) nên từ (1) và (2) suy ra $\widehat{A O C}=\widehat{B O D}$.
Vì $\widehat{A O C}=90^{\circ}$ nên $\widehat{B O D}=90^{\circ} \Rightarrow O B \perp O D$.

Bài 5. Cho góc nhọn $A O B$. Trên nửa mặt phẳng bờ $O A$ có chứa tia $O B$, vẽ tia $O C \perp O A$. Trên nửa mặt phẳng bờ $O B$ có chứa tia $O A$ vẽ tia $O D \perp O B$. Gọi $O M$ và $O N$ lần lượt là các tia phân giác của các góc $A O D$ và $B O C$. Chứng tỏ rằng $O M \perp O N$.


Hướng dẫn giải

Ta có $O C \perp O A \Rightarrow \widehat{A O C}=90^{\circ}$. $O D \perp O B \Rightarrow \widehat{B O D}=90^{\circ}$.
Tia $O B$ nằm giữa hai tia $O A, O C$.
Do đó $\widehat{A O B}+\widehat{B O C}=90^{\circ}$.
Tương tự, ta có $\widehat{A O B}+\widehat{A O D}=90^{\circ}$.
Từ (1) và (2) $\Rightarrow \widehat{B O C}=\widehat{A O D}$ (cùng phụ với $\widehat{A O B}$ ).
Tia $O M$ là tia phân giác của góc $A O D \Rightarrow \widehat{O_1}=\widehat{O_2}=\frac{\widehat{A O D}}{2}$.
Hinh 2.12

Tia $O N$ là tia phân giác của góc $B O C \Rightarrow \widehat{O_3}=\widehat{O_4}=\frac{\widehat{B O C}}{2}$.
Vi $\widehat{A O D}=\widehat{B O C}$ nên $\widehat{O_1}=\widehat{O_2}=\widehat{O_3}=\widehat{O_4}$.
Ta có $\widehat{A O B}+\widehat{B O C}=90^{\circ} \Rightarrow \widehat{A O B}+\widehat{O_3}+\widehat{O_4}=90^{\circ} \Rightarrow \widehat{A O B}+\widehat{O_3}+\widehat{O_2}=90^{\circ}$.
Do đó $\widehat{M O N}=90^{\circ} \Rightarrow O M \perp O N$.

Bài 6. Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O M$ và $O N$ sao cho $\widehat{A O M}=\widehat{B O N}=m^{\circ}(90<m<180)$. Vẽ tia phân giác $O C$ của góc $M O N$.
a) Chứng tỏ rằng $O C \perp A B$.
b) Xác định giá trị của $m$ để $O M \perp O N$.


Hướng dẫn giải

a) Ta có $\widehat{A O N}+\widehat{B O N}=180^{\circ} ; \widehat{B O M}+\widehat{A O M}=180^{\circ}$ (hai góc kề bù) mà $\widehat{A O M}=\widehat{B O N}$ (đề bài cho) nên $\widehat{A O N}=\widehat{B O M}$.

Mặt khác, tia $O C$ là tia phân giác của góc $M O N$ nên $\widehat{C O N}=\widehat{C O M}$.
Do đó $\widehat{A O N}+\widehat{C O N}=\widehat{B O M}+\widehat{C O M}$
Ta có tia $O N$ nằm giữa hai tia $O A, O C$; tia $O M$ nằm giữa hai tia $O B$, $O C$ nên từ (1) suy ra $\widehat{A O C}=\widehat{B O C}=180^{\circ}: 2=90^{\circ}$. Vậy $O C \perp A B$.
Hinh 2.13
b) Tia $O M$ nằm giữa hai tia $O B$ và $O N$ nên $\widehat{B O M}+\widehat{M O N}=\widehat{B O N}=m^{\circ}$

Mặt khác $\widehat{B O M}=180^{\circ}-\widehat{A O M}=180^{\circ}-m^{\circ}$
(2).

Từ (1) và (2) suy ra: $\left(180^{\circ}-m^{\circ}\right)+90^{\circ}=m^{\circ} \Rightarrow 2 m^{\circ}=270^{\circ} \Rightarrow m^{\circ}=135^{\circ}$.
Vậy $m=135$.

CHỨNG MINH MỘT TIA LÀ TIA PHÂN GIÁC, LÀ TIA ĐỐI

Bài 7. Cho góc $A O B$ có số đo bằng $120^{\circ}$. Vẽ tia phân giác $O M$ của góc đó. Trên nửa mặt phẳng bờ $O M$ có chứa tia $O A$, vẽ tia $O N \perp O M$. Trong góc $A O B$ vẽ tia $O C \perp O B$. Chứng tỏ rằng:
a) Tia $O C$ là tia phân giác của góc $A O M$;
b) Tia $O A$ là tia phân giác của góc $C O N$.


Hướng dẫn giải

a) Tia $O M$ là tia phân giác của góc $A O B$ nên $\widehat{A O M}=\widehat{B O M}=120^{\circ}: 2=60^{\circ}$.

Ta có $O C \perp O B \Rightarrow \widehat{B O C}=90^{\circ}$.
Tia $O M$ nằm giữa hai tia $O B, O C$ nên $\widehat{B O M}+\widehat{C O M}=\widehat{B O C}$ $\Rightarrow \widehat{C O M}=90^{\circ}-60^{\circ}=30^{\circ}$.
Tia $O C$ nằm giữa hai tia $O A, O B$ nên $\widehat{A O C}+\widehat{B O C}=\widehat{A O B}$
$\Rightarrow \widehat{A O C}=120^{\circ}-90^{\circ}=30^{\circ}$.

Vậy $\widehat{A O C}=\widehat{C O M}\left(=30^{\circ}\right)$.
Tia $O C$ nằm giữa hai tia $O A, O M$ nên từ (1) suy ra tia $O C$ là tia phân giác của góc $A O M$.
b) Ta có $O M \perp O N \Rightarrow \widehat{M O N}=90^{\circ}$.

Tia $O A$ nằm giữa hai tia $O N, O M$ nên $\widehat{A O N}+\widehat{A O M}=\widehat{M O N}$.
Suy ra $\widehat{A O N}=\widehat{M O N}-\widehat{A O M}=90^{\circ}-60^{\circ}=30^{\circ}$.
Vậy $\widehat{A O N}=\widehat{A O C}\left(=30^{\circ}\right)$
Tia $O A$ nằm giữa hai tia $O N, O C$ nên từ (2) suy ra tia $O A$ là tia phân giác của góc $C O N$.

Bài 8. Cho góc bẹt $A O B$, tia $O C \perp A B$. Vẽ tia $O M$ và $O N$ ở trong góc $B O C$ sao cho $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}$. Tìm trong hình vẽ các tia là tia phân giác của một góc.


Hướng dẫn giải

Ta có $O C \perp A B$ nên $\widehat{A O C}=\widehat{B O C}=90^{\circ}$
Tia $O C$ nằm giữa hai tia $O A, O B$.
Từ (1) và (2) suy ra tia $O C$ là tia phân giác của góc $A O B$.
Ta có $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}=30^{\circ}$.
Tia $O N$ nằm trong góc $B O C$ nên $\widehat{B O N}+\widehat{C O N}=\widehat{B O C}$.
Suy ra $\widehat{B O N}=90^{\circ}-30^{\circ}=60^{\circ}$.
Tia $O M$ nằm giữa hai tia $O B, O N$.
Do đó $\widehat{B O M}+\widehat{M O N}=\widehat{B O N} \Rightarrow \widehat{M O N}=60^{\circ}-30^{\circ}=30^{\circ}$.
Vậy $\widehat{B O M}=\widehat{M O N}=\widehat{C O N}=30^{\circ}$
Từ (3) và (4) suy ra tia $O M$ là tia phân giác của góc $B O N$.
Tia $O N$ nằm giữa hai tia $O M$ và $O C$
Từ (4) và (5) suy ra tia $O N$ là tia phân giác của góc $C O M$.
Tóm lại, các tia $O C, O M, O N$ lần lượt là các tia phân giác của các góc $A O B, B O N$ và $C O M$.

Bài 9. Cho hai tia $O M$ và $O N$ vuông góc với nhau, tia $O C$ nằm giữa hai tia đó. Vẽ các tia $O A$ và $O B$ sao cho tia $O M$ là

tia phân giác của góc $A O C$, tia $O N$ là tia phân giác của góc $B O C$. Chứng tỏ rằng hai tia $O A$, $O B$ đối nhau.

Hướng dẫn giải

Ta có $O M \perp O N \Rightarrow \widehat{M O N}=90^{\circ}$.
Tia $O M$ là tia phân giác của góc $A O C$ nên $\widehat{A O M}=\widehat{M O C}$.
Tia $O N$ là tia phân giác của góc $B O C$ nên $\widehat{B O N}=\widehat{N O C}$.
Xét tổng
$$
\widehat{A O C}+\widehat{B O C}=2 \widehat{M O C}+2 \widehat{N O C}=2(\widehat{M O C}+\widehat{N O C})=2 \widehat{M O N}=2.90^{\circ}=180^{\circ} \text {. }
$$

Hai góc kề $A O C$ và $B O C$ có tổng bằng $180^{\circ}$ nên hai tia $O A, O B$ đối nhau.

ĐƯỜNG TRUNG TRỰC – HAI GÓC CÓ CẠNH TƯƠNG ỨNG VUÔNG GÓC

Bài 10. Cho đoạn thẳng $A B=2 a$. Lấy các điểm $E$ và $F$ nằm giữa $A$ và $B$ sao cho $A E=B F$. Chứng tỏ rằng hai đoạn thẳng $A B$ và $E F$ cùng có chung một đường trung trực.

Hướng dẫn giải

  • Trường hợp $A E=B F<a$ :

Gọi $M$ là trung điểm của $A B$. Khi đó $M A=M B=a$.
Điểm $E$ nằm giữa hai điểm $A$ và $M$, điểm $F$ nằm giữa hai điểm $B$ và $M$.

Do đó $M E=M A-A E=a-A E ; M F=M B-B F=a-B F$.
Vì $A E=B F$ nên $M E=M F$. Vậy $M$ là trung điểm chung của hai đoạn thẳng $A B$ và $E F$. Qua $M$ vẽ $x y \perp A B$ thì $x y$ là đường trung trực chung của $A B$ và $E F$.

  • Trường hợp $A E=B F>a$ : Chứng minh tương tự.

Bài 11. Cho bốn điểm $M, N, P, Q$ nằm ngoài đường thẳng $x y$. Biết $M N \perp x y ; P Q \perp x y$ và $x y$ là đường trung trực của đoạn thẳng $N P$. Chứng tỏ rằng bốn điểm $M, N, P, Q$ thẳng hàng.

Hướng dẫn giải

Ta có $M N \perp x y ; N P \perp x y$ (vì $x y$ là đường trung trực của $N P$ ). Qua điểm $N$ chỉ vẽ được một đường thẳng vuông góc với $x y$, suy ra ba điểm $M, N, P$ thẳng hàng. (1)

Ta có $N P \perp x y ; P Q \perp x y$. Qua điểm $P$ chỉ vẽ được một đường thẳng vuông góc với $x y$, suy ra ba điểm $N, P, Q$ thẳng hàng. (2)

Từ (1) và (2) suy ra các điểm $M, N, P, Q$ thẳng hàng vì chúng cùng thuộc đường thẳng $N P$.

Bài 2.12. Hai góc gọi là có cạnh tương ứng vuông góc nếu đường thẳng chứa mỗi cạnh của góc này tương ứng vuông góc với đường thẳng chứa một cạnh của góc kia.

Xem hình $2.8(\mathrm{a}, \mathrm{b})$ rồi kể tên các góc nhọn (hoặc tù) có cạnh tương ứng vuông góc.


Hướng dẫn giải

Trên hình 2.8a) có $A H \perp O x, A K \perp O y$ nên các góc có cạnh tương ứng vuông góc là: góc $H A K$ và góc $x O y$; góc $H A t$ và góc $x O y$.
Trên hình 2.8 b ) có $A B \perp A C$ và $A H \perp B C$ nên các góc có cạnh tương ứng vuông góc là: góc $B A H$ và góc $C$; góc $C A H$ và góc $B$.

Tỉ lệ thức và dãy tỉ số bằng nhau – Phần 2

Bài 1. Cho $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}$. Chứng minh rằng $a=b=c$.
Lời giải.
$$
\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1
$$

Khi đó, $a=b ; b=c ; c=a \Rightarrow a=b=c$.
Bài 2. Cho ba tỉ số bằng nhau là $\dfrac{a}{b+c}, \dfrac{b}{c+a}, \dfrac{c}{a+b}$. Tìm giá trị của mỗi tỉ số đó.
Lời giải.
$$
\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2 a+2 b+2 c}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \text {. }
$$

Bài 3. Cho $a+b+c+d \neq 0$ và $\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}$.

Tính giá trị của: $A=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$.

Lời giải.
$$
\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3 a+3 b+3 c+3 d}=\frac{a+b+c+d}{3(a+b+c+d)}=\frac{1}{3} \text {. }
$$

Khi đó, $3 a=b+c+d \quad ; 3 b=a+c+d \quad ; 3 c=a+b+d \quad ; 3 d=a+b+c$
$$
4 a=a+b+c+d \quad ; 4 b=a+b+c+d \quad ; 4 c=a+b+c+d \quad ; 4 d=a+b+c+d
$$

Khi đó, $4 a=4 b=4 c=4 d \Rightarrow a=b=c=d$.
Vậy $A=4$.

Bài 4. Cho tỉ lệ $\frac{a}{b}=\frac{c}{d}$. Chứng minh rằng: $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
Lời giải.
$$
\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}
$$

Bài 5. Cho tỉ lệ thức $\dfrac{a}{b}=\dfrac{c}{d}$. Chứng minh rằng $\dfrac{a b}{c d}=\dfrac{a^2-b^2}{c^2-d^2}$.
Lời giải.
$ \dfrac{a}{b}=\dfrac{c}{d} \Rightarrow \dfrac{a}{c}=\dfrac{b}{d}=k .$
$k^2=\dfrac{a}{c} \cdot \dfrac{b}{d}=\dfrac{a b}{c d} . $
$k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2} $

Khi đó, $\dfrac{a b}{c d}=\dfrac{a^2-b^2}{c^2-d^2}$.

Bài 6. Cho $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$.

Chứng minh rằng: $\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}$.

Lời giải.

$\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=k $

$\Rightarrow k^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3 . $
$k^3=\dfrac{a}{b} \cdot \dfrac{b}{c} \cdot \dfrac{c}{d}=\dfrac{a}{d} $
$\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d} $

Bài tập tự luyện.


Bài 1. Cho tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$. Chứng minh rằng ta có các tỉ lệ thức sau: (với giả thiết các tỉ số đều có nghĩa).
(a) $\dfrac{3 a+5 b}{3 a-5 b}=\dfrac{3 c+5 d}{3 c-5 d}$;
(b) $\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}$;
(c) $\dfrac{a b}{c d}=\dfrac{(a-b)^2}{(c-d)^2}$;
(d) $\dfrac{7 a^2+5 a c}{7 a^2-5 a c}=\dfrac{7 b^2+5 b d}{7 b^2-5 b d}$.

Bài 2. Cho $\dfrac{a}{2018}=\dfrac{b}{2019}=\dfrac{c}{2020}$.

Chứng minh rằng: $ 4(a-b)(b-c)=(c-a)^2$.

Bài 3. Cho dãy tỉ số bằng nhau: $\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\ldots=\dfrac{a_{2018}}{a_{2019}}$.

Chứng minh rằng: Ta có đẳng thức: $\dfrac{a_1}{a_{2019}}=\left(\dfrac{a_1+a_2+a_3+\ldots+a_{2018}}{a_2+a_3+a_4+\ldots+a_{2019}}\right)^{2018}$

Phần trăm

Bài tập 1. Có ba bài kiểm tra, bài số 1 có 25 câu, bài số 2 có 40 câu, bài số 3 có 10 câu. Đức là được $80 \%$ câu đúng bài số 1, $90 \%$ câu đúng bài số 2 và $70 \%$ câu đúng bài số 3. Mỗi câu đúng bài số 1 được 3 điểm, bài số 2 được 5 điểm và bài số 3 được 7 điểm.
a) Tính số câu đúng Đức làm được.
b) Tính số điểm của Đức đạt được.

Lời giải.

a) Số câu đúng Đức làm được: $80 \%.25 + 90 \%.40 + 70 \%.10=63$ câu.

b) Số điểm Đức làm được: $80 \%.25.3 + 90 \%.40.5 + 70 \%.10.7=289$ điểm.

Bài tập 2. Một số nam sinh và nữ sinh đang rửa xe để quyên tiền cho chuyến tham quan Hà Nội của lớp. Ban đầu $40 \%$ của nhóm là con gái. Ngay sau đó, hai cô gái rời đi và hai chàng trai đến, sau đó $30 \%$ trong nhóm là các cô gái. Lúc đầu trong nhóm có bao nhiêu bạn nữ?

Lời giải.
Gọi $x$ (bạn) là số bạn nữ lúc đầu trong nhóm có, $(x>0)$
$$
40 \% \cdot x-2=30 \% . x \Rightarrow x=20
$$

Vậy có 20 bạn nữ.

Bài tập 3. Giả sử trường $\mathrm{A}$ có 1000 học sinh và trường $\mathrm{B}$ có 1200 học sinh. Hỏi số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là bao nhiêu phần trăm?

Lời giải.
Số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $1200-1000=200$ (học sinh).
Phần trăm số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $\frac{200}{1000} \cdot 100=20 \%$
Vậy có $20 \%$

Bài tập 4. Thuế thu nhập của TPHCM được đánh ở mức $p \%$ của 28.000.000 đầu tiên của thu nhập hàng năm cộng với $(p+2) \%$ của bất kỳ số tiền nào trên 28.000.000. Nam nhận thấy rằng thuế thu nhập ở TPHCM mà ba bạn phải trả lên tới $(p+0,25) \%$ thu nhập hàng năm của ba. Thu nhập hàng năm của ba Nam ấy là bao nhiêu?

Lời giải.
Gọi $x$ (đồng) là thu nhập hàng năm của ba Nam, $(x>0)$
Thuế thu nhập của TPHCM là $p \% .28000000+(p+2) \%(x-28000000)$
Thuế thu nhập của TPHCM mà ba Nam trả là $(p+0,25) \% . x$
Giải phương trình:
$ p \% .28000000+(p+2) \%(x-28000000)=(p+0,25) \% . x $
$\Leftrightarrow p \% .28000000+x p \%-28000000 p \%+x .2 \%-56000000 \%=x p \%+x .0,25 \% $
$\Leftrightarrow x=32000000$

Bài tập 5. Giá cổ phiếu của công ty $T T C$ là $\$ 100$ vào năm 2021 . Nó đã giảm $25 \%$ vào năm 2022 và sau đó tăng $25 \%$ vào năm 2023 . Giá cổ phiếu cuối năm 2023 là bao nhiêu?

Lời giải.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 100.25 \%=\$ 25$.
$\Rightarrow$ Giá cổ phiếu vào năm 2022 là $\$ 100-\$ 25=\$ 75$.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 75.25 \%=\$ 18,75$.
$\Rightarrow$ Giá cổ phiếu vào năm 2023 là $\$ 75+\$ 18,75=\$ 93,75$.

Bài tập 6. Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng 2,5 chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3 \%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5 \mathrm{~m}$ và tăng chiều rộng $2 \mathrm{~m}$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20 m^2$. Hãy tính các cạnh của mảnh vườn.

Lời giải.
Gọi $x(\mathrm{~m})$ là chiều rộng của mảnh vườn, $(x>0)$.
Vì chiều dài bằng 2,5 chiều rộng nên chiều dài của mảnh vườn là $2,5 x(\mathrm{~m})$.
Gọi $y(\mathrm{~m})$ là chiều rộng của mặt hồ ban đầu.
Gọi $z(\mathrm{~m})$ là chiều dài của mặt hồ ban đầu.
Vì diện tích của mặt hồ chiếm 3\% diện tích mảnh vườn nên diện tích của mặt hồ là
$$
y . z=3 \% .2,5 x^2 \Rightarrow y z=0,075 x^2\left(\mathrm{~m}^2\right)
$$

Nếu giảm chiều dài $5 m$ và tăng chiều rộng $2 m$ thì mặt hồ là hình vuông nên
$$
y+2=z-5 \Rightarrow z=y+7
$$

Diện tích của mặt hồ giảm $20 \mathrm{~m}^2$ nên
$$
y z-(y+2)(z-5)=20 \Rightarrow y \cdot(y+7)-(y+2)^2=20 \Rightarrow y=8 \Rightarrow z=8+7=15
$$

Thay $y=8$ và $z=15$ vào $y z=0,075 x^2$, ta được $8.15=0,075 x^2 \Rightarrow x^2=1600 \Rightarrow x=40$ hoặc $x=-40$.

Vì $x>0$ nên nhận $x=40$.
Vậy chiều rộng của mảnh vườn là $40(\mathrm{~m})$ và chiều dài của mảnh vườn là $100(\mathrm{~m})$

Bài tập 7. Tổng kết học kì 2 , trường trung học cơ sở $\mathrm{N}$ có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1 , số học sinh giỏi của học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 . Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải thích:
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Nhóm 1 và nhóm $4=x$ học sinh
60 học sinh không đạt học sinh giỏi học kì 2.
Nhóm 2 và nhóm $3=60$ học sinh

6 học sinh từng đạt học sinh giỏi học kì 1 trong số học sinh không giỏi ở hk2.
Nhóm $3=6$ họ sinh
$8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 .
Nhóm $4=8 \%$ học sinh toàn trường

Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 .
Nhóm 1 và $4=\frac{40}{37}$ nhóm 1 và 3

Lời giải.
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Số học sinh toàn trường là $x+60$ (học sinh)
Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 nên
$$
x=\frac{40}{37} \text { số học sinh giỏi của học kì } 1 \text {. }
$$

Số học sinh giỏi của học kì 1 là
$$
x-\frac{8}{100}(x+60)+6=\frac{23}{25} x+\frac{6}{5}(\text { học sinh })
$$

Khi đó, $x=\frac{40}{37} \cdot\left(\frac{23}{25} x+\frac{6}{5}\right) \Rightarrow x=240$. Vậy số học sinh giỏi học kì 2 của trường là 240 học sinh.

Bất đẳng thức trong tam giác

Định lý 1. Trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.

Chứng minh.

Giả thiết : $\triangle \mathrm{ABC}$.
Kết luận : $\mathrm{AC}+\mathrm{BC}>\mathrm{AB} ; \mathrm{AB}+$ $+\mathrm{BC}>\mathrm{AC} ; \mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.

Trên tia đối của tia $\mathrm{CA}$ xác định điểm $\mathrm{D}$ sao cho $\mathrm{CL}=\mathrm{CB}$ (h. 94). Tia $\mathrm{BC}$ nằm giữa hai tia $\mathrm{BA}$ và
$\mathrm{BD}$, do đó : $\widehat{\mathrm{ABD}}>\mathrm{CBD}$. (1)

Theo cách xác định điểm $\mathrm{D}$ thì tam giác $\mathrm{BCD}$ là tam giác cân cạnh đáy $\mathrm{BD}$; do đó : $\widehat{\mathrm{CBD}}=\widehat{\mathrm{D}}$.
(2)

Từ (1) và $(2)$ suy ra: $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$.
Trong tam giác $\mathrm{ABD}$ : vì $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$ nên $\mathrm{AD}>\mathrm{AB}$. Ta biết $\mathrm{AD}=\mathrm{AC}+\mathrm{CD}=\mathrm{AC}+\mathrm{CB}$, do đó $\mathrm{AC}+\mathrm{CB}>\mathrm{AB}$.

Chứng minh tương tự cho các trường hợp còn lại.

Hệ quả. Trong một tam giác hiệu độ dài hai cạnh nhỏ hơn độ dài cạnh còn lại.

Ví dụ 1. Có thể có tam giác nào mà ba cạnh như sau không :
a) $5 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$;

b) $1 \mathrm{~m}, 2 \mathrm{~m}, 3,3 \mathrm{~m}$; c) $1,2 \mathrm{~m}, 1 \mathrm{~m}, 2,2 \mathrm{~m}$.

Ví dụ 2. Trong một tam giác cân, một cạnh bằng 25m, cạnh kia bằng $10 \mathrm{~m}$. Cạnh nào là cạnh đáy ? Vi sao ?

Ví dụ 3. Cho tam giác $ABC$ có $M$ là trung điểm của đoạn $AC$. Chứng minh

$2BM + AC > AB + BC$.

Bài tập.

  1. Tính chu vi tam giác cân $\mathrm{ABC}$ biết rằng :
    a) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$.
    b) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$.
  2. Cho điểm $M$ nằm trong tam giác $\mathrm{ABC}$. Chứng minh rằng tổng $\mathrm{MA}+\mathrm{MB}+\mathrm{MC}$ lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giạc.
  3. Cho điểm $\mathrm{D}$ nằm trên cạnh $\mathrm{BC}$ của tam giác $\mathrm{ABC}$. Chứng minh rằng :
    $$
    \frac{A B+A C-B C}{2}<A D<\frac{A B+A C+B C}{2}
    $$

Quan hệ giữa cạnh và góc trong tam giác

Định lý 1. Trong một tam giác góc đối diện với cạnh lớn hơn là góc lớn hơn.

Chứng minh. Trên tia $\mathrm{AC}$ xác định điểm $\mathrm{B}^{\prime}$ sao cho $\mathrm{AB}^{\prime}=$ $\mathrm{AB}$ (h.88) ‘ tam giác $\mathrm{ABB}$ ‘ là tam giác cân cạnh đáy $\mathrm{BB}$ ‘, từ đó suy ra : $\widehat{\mathrm{ABB}^{\prime}}=\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ (1).

Vì $\mathrm{AB}^{\prime}<\mathrm{AC}$ nên điểm $\mathrm{B}^{\prime}$ nằm giữa hai điểm $\mathrm{A}$ và $\mathrm{C}$, từ đó suy $\mathrm{ra}$ : – tia $\mathrm{BB}^{\prime}$ nằm giữa hai tia $\mathrm{BA}$ và $\mathrm{BC}$, do đó : $\widehat{\mathrm{ABC}}>\widehat{\mathrm{ABB}^{\prime}}$ (2)

  • góc $\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ là góc ngoài ở đỉnh $\mathrm{B}^{\prime}$ của tam giác $\mathrm{BCB}$, do đó : $\widehat{\mathrm{AB}} \mathrm{B}>\widehat{\mathrm{C}}$. (3)

Từ (1) và (2) ta suy $\mathrm{ra} \widehat{\mathrm{ABC}}>$ $>\widehat{\mathrm{AB}^{\prime} \mathrm{B}}(4)$; từ (3) và (4) ta suy ra : $\widehat{\mathrm{B}}>\widehat{\mathrm{C}}$. Đó là điều phải chứng minh.

Định lý 2. Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.

Chứng minh.

Giả sử tam giác $\triangle \mathrm{ABC}, \widehat{\mathrm{B}}>\widehat{\mathrm{C}}$.
Ta cần chứng minh: $\mathrm{AC}>\mathrm{AB}$.
Chứng minh : Giả sử $A C=A B$, tam giác $A B C$ là tam giác cân cạnh đáy $\mathrm{BC}$, do đó $\widehat{\mathrm{B}}=\widehat{\mathrm{C}}$; đó là điều trái với giả thiết.

Giả sử $\mathrm{AC}<\mathrm{AB}$, theo định lí 1 , thì ta có $\widehat{\mathrm{B}}<\widehat{\mathrm{C}}$, đó cũng là điều trái với giả thiết.
Do đó $\mathrm{AC}>\mathrm{AB}$.

Hệ quả 1. Trong một tam giác vuông, cạnh huyền (cạnh đối diện góc vuông) là cạnh có độ dài lớn nhất.

Ví dụ 1.

a) So sánh các góc của tam giác $\mathrm{ABC}$ có $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
b) So sánh các cạnh của tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=50^{\circ}, \widehat{\mathrm{C}}=50^{\circ}$.

Ví dụ 2.  Cho tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=100^{\circ}, \widehat{\mathrm{B}}=40^{\circ}$.
a) Tim cạnh lớn nhất của tam giác $\mathrm{ABC}$.
b) Tam giác $\mathrm{ABC}$ là tam giác gi? Vì sao?

Ví dụ 3. Cho tam giác $\mathrm{ABC}$ vuông tại $\mathrm{A}$ có $\widehat{\mathrm{B}}>45^{\circ}$.
a) So sánh các cạnh của tam giác.
b) Lấy điểm $\mathrm{K}$ bất ki thuộc đoạn thẳng $\mathrm{AC}$. So sánh độ dài $\mathrm{BK}$ và $\mathrm{BC}$.

Bài tập 

  1. So sánh các góc của tam giác $\mathrm{ABC}$ biết rằng $\mathrm{AB}=4 \mathrm{~cm}$, $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
  2. So sánh các cạnh của tam giác $\mathrm{ABC}$ biết rằng $\widehat{\mathrm{A}}=92^{\circ}$, $\widehat{\mathrm{B}}=48^{\circ}$.
  3. Chứng minh rằng trong tam giác vuông cạnh huyển bao giờ cũng lớn hơn mỗi cạnh góc vuông.
  4. Chứng minh rằng trong một tam giác góc đối diện với cạnh nhỏ nhất là góc nhọn.
  5. Góc ở đáy của tam giác cân nhỏ hơn $60^{\circ}$, cạnh nào của tam giác cân là lớn nhất ?
  6. Chứng minh rằng : Nếu một tam giác có hai đường cao bằng nhau thì nó là tam giác cân.