Tag Archives: Lop8

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.3

PHÂN TÍCH ĐA THỨC THÀNH PHÂN TỬ

 

Để phân tích một đa thức thành nhân tử, ta thường dùng các phương pháp :

  • Đặt nhân tử chung.

  • Dùng các hằng đẳng thức đáng nhớ.

  • Nhóm các hạng tử một cách thích hợp nhằm làm xuất hiện dạng hằng đẳng thức hoặc xuất hiện nhân tử chung mới.

Để phân tích đa thức thành nhân tử, người ta còn dùng các phương pháp khác. Xem chuyên đề Một số phương pháp phân tích đa thức thành nhân tủ̉.

Ví dụ 1. Phân tích đa thức sau thành nhân tử :

$x^4+x^3+2 x^2+x+1$

Giải : $\quad \mathrm{x}^4+\mathrm{x}^3+2 \mathrm{x}^2+\mathrm{x}+1=\left(\mathrm{x}^4+2 \mathrm{x}^2+1\right)+\left(\mathrm{x}^3+\mathrm{x}\right)$

$=\left(x^2+1\right)^2+x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+x+1\right) .$

Ví dụ 2. Cho $a+b+c=0$. Rút gọn biểu thức

$M=a^3+b^3+c\left(a^2+b^2\right)-a b c .$

Giải :

$M =a^3+b^3+a^2 c+b^2 c-a b c=\left(a^3+a^2 c\right)+\left(b^3+b^2 c\right)-a b c $

$=a^2(a+c)+b^2(b+c)-a b c=a^2(-b)+b^2(-a)-a b c $

$=-a b(a+b+c)=0$

Ví dụ 3.

a) Phân tích đa thức sau thành nhân tử : $a^3+b^3+c^3-3 a b c$.

b) Phân tích đa thức sau thành nhân tử bằng cách áp dụng câu a) :

$(x-y)^3+(y-z)^3+(z-x)^3$.

Giải : $a^3+b^3+c^3-3 a b c=(a+b)^3-3 a^2 b-3 a b^2+c^3-3 a b c $

$= {\left[(a+b)^3+c^3\right]-3 a b(a+b+c) } $

$=(a+b+c)\left[(a+b)^2-c(a+b)+c^2\right]-3 a b(a+b+c) $

$=(a+b+c)\left(a^2+2 a b+b^2-a c-b c+c^2-3 a b\right) $

$=(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$

b) Đặt $x-y=a, y-z=b, z-x=c$ thì $a+b+c=0$.

Do đó theo câu a) ta có $a^3+b^3+c^3-3 a b c=0 \Rightarrow a^3+b^3+c^3=3 a b c$

$\Rightarrow(x-y)^3+(y-z)^3+(z-x)^3=3(x-y)(y-z)(z-x) .$

Cần nhớ kết quả của câu a) để vận dụng vào giải toán.

Ví dụ 4. Phân tích các đa thức sau thành nhân tử :

a) $(a+b+c)^3-a^3-b^3-c^3$

b) $8(x+y+z)^3-(x+y)^3-(y+z)^3-(z+x)^3$

Giải : a) Áp dụng nhiều lần công thức $(\mathrm{x}+\mathrm{y})^3=\mathrm{x}^3+\mathrm{y}^3+3 \mathrm{xy}(\mathrm{x}+\mathrm{y})$, ta có :

$(a+b+c)^3-a^3-b^3-c^3=[(a+b)+c]^3-a^3-b^3-c^3 $

$=(a+b)^3+c^3+3 c(a+b)(a+b+c)-a^3-b^3-c^3 $

$=a^3+b^3+3 a b(a+b)+c^3+3 c(a+b)(a+b+c)-a^3-b^3-c^3 $

$=3(a+b)\left(a b+a c+b c+c^2\right) $

$=3(a+b)[a(b+c)+c(b+c)] $

$=3(a+b)(b+c)(c+a) .$

b) Đặt $\mathrm{x}+\mathrm{y}=\mathrm{a}, \mathrm{y}+\mathrm{z}=\mathrm{b}, \mathrm{z}+\mathrm{x}=\mathrm{c}$ thì $\mathrm{a}+\mathrm{b}+\mathrm{c}=2(\mathrm{x}+\mathrm{y}+\mathrm{z})$. Đa thức đã cho có dạng $(a+b+c)^3-a^3-b^3-c^3$.

Áp dụng kết quả của câu a), đa thức đã cho bằng :

$3(a+b)(b+c)(c+a)=3(x+2 y+z)(y+2 z+x)(z+2 x+y)$

Chú ý : Cần nhớ kết quả của câu a) để vận dụng vào giải toán.

Ví dụ 5. Phân tích đa thức sau thành nhân tử :

$P=x^2(y-z)+y^2(z-x)+z^2(x-y)$

Giải :

Cách 1 : Khai triển hai hạng tử cuối rồi nhóm các hạng tử làm xuất hiện ṇân tử chung $\mathrm{y}-\mathrm{z}$.

$P =x^2(y-z)+y^2 z-x y^2+x z^2-y z^2 $

$=x^2(y-z)+y z(y-z)-x\left(y^2-z^2\right) $

$=(y-z)\left(x^2+y z-x y-x z\right) $

$=(y-z)[x(x-y)-z(x-y)] $

$=(y-z)(x-y)(x-z)$

Cách 2. Tách $\mathrm{z}-\mathrm{x}$ thành $-[(\mathrm{y}-\mathrm{z})+(\mathrm{x}-\mathrm{y})]$, ta có

$P =x^2(y-z)-y^2[(y-z)+(x-y)]+z^2(x-y) $

$=(y-z)\left(x^2-y^2\right)-(x-y)\left(y^2-z^2\right) $

$=(y-z)(x+y)(x-y)-(x-y)(y+z)(y-z) $

$=(y-z)(x-y)(x+y-y-z) $

$=(y-z)(x-y)(x-z)$

Ví dụ 6. Xét hằng đẳng thức $(x+1)^3=x^3+3 x^2+3 x+1$.

Lần lượt cho $\mathrm{x}$ bằng $1,2,3, \ldots$, n rồi cộng từng vế $\mathrm{n}$ đẳng thức trên để tính giá trị của biểu thức :

$S=1^2+2^2+3^2+\ldots+n^2$

Giải : Từ hằng đẳng thức đã cho ta có :

$2^3=1^3+3.1^2+3.1+1 $

$3^3=2^3+3.2^2+3.2+1 $

$\cdots $

$(n+1)^3=n^3+3 n^2+3 n+1 $

Cộng từng vế $\mathrm{n}$ đẳng thức trên rồi rút gọn, ta được

$(n+1)^3=1^3+3\left(1^2+2^2+\ldots+n^2\right)+3(1+2+\ldots+n)+n$

Do đó

$ 3\left(1^2+2^2+\ldots+n^2\right)=(n+1)^3-\frac{3 n(n+1)}{2}-(n+1)=$

$=(n+1)\left[(n+1)^2-\frac{3 n}{2}-1\right]=(n+1)\left(n^2+\frac{n}{2}\right)=\frac{1}{2} n(n+1)(2 n+1) $

$\text { Vậy } S=\frac{1}{6} n(n+1)(2 n+1) $

BÀI TẬP

55. Phân tích thành nhân tử :

a) $(a b-1)^2+(a+b)^2$

b) $x^3+2 x^2+2 x+1$;

c) $x^3-4 x^2+12 x-27$

d) $x^4-2 x^3+2 x-1$;

e) $x^4+2 x^3+2 x^2+2 x+1$.

56. Phân tích thành nhân tử :

a) $x^2-2 x-4 y^2-4 y$

b) $x^4+2 x^3-4 x-4$;

c) $x^2\left(1-x^2\right)-4-4 x^2$

d) $(1+2 x)(1-2 x)-x(x+2)(x-2)$;

e) $x^2+y^2-x^2 y^2+x y-x-y$.

57. Chứng minh rằng $199^3-199$ chia hết cho 200 .

58. Tính giá trị của biểu thức sau, biết $x^3-x=6$ :

$A=x^6-2 x^4+x^3+x^2-x $

59. Phân tích thành nhân tử :

a) $a\left(b^2+c^2+b c\right)+b\left(c^2+a^2+a c\right)+c\left(a^2+b^2+a b\right)$

b) $(a+b+c)(a b+b c+c a)-a b c$;

$\left.c^*\right) a(a+2 b)^3-b(2 a+b)^3$

60. Phân tích thành nhân tử :

a) $a b(a+b)-b c(b+c)+a c(a-c)$;

b) $a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2 a b c$;

c) $(a+b)\left(a^2-b^2\right)+(b+c)\left(b^2-c^2\right)+(c+a)\left(c^2-a^2\right)$

d) $a^3(b-c)+b^3(c-a)+c^3(a-b)$;

e) $a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+a b c(a b c-1)$.

61*. Phân tích thành nhân tử :

a) $a(b+c)^2(b-c)+b(c+a)^2(c-a)+c(a+b)^2(a-b)$;

b) $a(b-c)^3+b(c-a)^3+c(a-b)^3$;

c) $a^2 b^2(a-b)+b^2 c^2(b-c)+c^2 a^2(c-a)$

d) $a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2 a b c-a^3-b^3-c^3$;

e) $a^4(b-c)+b^4(c-a)+c^4(a-b)$.

62. Phân tích thành nhân tử :

a) $(a+b+c)^3-(a+b-c)^3-(b+c-a)^3-(c+a-b)^3$.

b) $a b c-(a b+b c+c a)+(a+b+c)-1$.

63. Chứng minh rằng trong ba số $a, b, c$, tồn tại hąi số bằng nhau, nếu :

$a^2(b-c)+b^2(c-a)+c^2(a-b)=0 $

64. Chứng minh rằng nếu $\mathrm{a}^2+\mathrm{b}^2=2 \mathrm{ab}$ thì $\mathrm{a}=\mathrm{b}$.

65*. Chứng minh rằng nếu $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3=3 \mathrm{abc}$ và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số dương thì $\mathrm{a}=\mathrm{b}=\mathrm{c} .$

66*. Chứng minh rằng nếu $a^4+b^4+c^4+d^4=4 a b c d$ và $a, b, c, d$ là các số dương thì $a=b=c=d$

67. Chứng minh rằng nếu $\mathrm{m}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ thì

$(\mathrm{am}+\mathrm{bc})(\mathrm{bm}+\mathrm{ac})(\mathrm{cm}+\mathrm{ab})=$

$(\mathrm{a}+\mathrm{b})^2(\mathrm{~b}+\mathrm{c})^2(\mathrm{c}+\mathrm{a})^2 $

68. Cho $a^2+b^2=1, c^2+d^2=1, a c+b d=0$. Chứng minh rằng $a b+c d=0$.

69. Xét hằng đẳng thức $(x+1)^2=x^2+2 x+1$.

Lần lượt cho $x$ bằng $1,2,3, \ldots$, n rồi cộng từng vế n đẳng thức trên để tính giá trị của biểu thức $\mathrm{S}_1=1+2+3+\ldots+\mathrm{n}$.

70*. Bằng phương pháp tương tự như ở ví dụ 14 và bài tập 74 , tính giá trị của biểu thức $\mathrm{S}_3=1^3+2^3+3^3+\ldots+\mathrm{n}^3$.

 

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.2

CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

 

Thực hiện phép nhân đa thức, ta được các hằng đẳng thức sau :

1. $(a+b)^2=a^2+2 a b+b^2$.

2. $(a-b)^2=a^2-2 a b+b^2$.

3. $(a+b)(a-b)=a^2-b^2$.

4. $(a+b)^3=a^3+3 a^2 b+3 a b^2+b^3$

$(a+b)^3=a^3+b^3+3 a b(a+b) \text {. }$

5. $(a-b)^3=a^3-3 a^2 b+3 a b^2-b^3$

$(a-b)^3=a^3-b^3-3 a b(a-b)$

6. $(a+b)\left(a^2-a b+b^2\right)=a^3+b^3$

7. $(a-b)\left(a^2+a b+b^2\right)=a^3-b^3$.

Ta cũng có :

$(a+b+c)^2=a^2+b^2+c^2+2 a b+2 a c+2 b c .$

Tổng quát của các hằng đẳng thức 3 và 7 , ta có hằng đẳng thức :

8. $a^n-b^n=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^2+\ldots+a b^{n-2}+b^{n-1}\right)$

với mọi số nguyên dương $\mathrm{n}$.

Tổng quát của hằng đẳng thức 6 , ta có hằng đẳng thức :

9. $a^n+b^n=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^2-\ldots-a b^{n-2}+b^{n-1}\right)$

với mọi số lẻ n.

Tổng quát của các hằng đẳng thức $1,2,4,5$, ta có công thức Niu-tơn (xem chuyên đề Tính chia hết đối với số nguyên).

Ví dụ 1. Chứng minh rằng số 3599 viết được dưới dạng tích của hai số tự nhiên khác 1 .

Giải : $\quad 3599=3600-1=60^2-1=(60+1)(60-1)=61.59$.

Ví dụ 2. Chứng minh rằng biểu thức sau viết được dưới dạng tổng các bình phương của hai biểu thức :

$x^2+2(x+1)^2+3(x+2)^2+4(x+3)^2$

Giải: $\mathrm{x}^2+2(\mathrm{x}+1)^2+3(\mathrm{x}+2)^2+4(\mathrm{x}+3)^2=$

$=x^2+2\left(x^2+2 x+1\right)+3\left(x^2+4 x+4\right)+4\left(x^2+6 x+9\right) $

$=x^2+2 x^2+4 x+2+3 x^2+12 x+12+4 x^2+24 x+36 $

$=10 x^2+40 x+50 $

$=\left(x^2+10 x+25\right)+\left(9 x^2+30 x+25\right) $

$=(x+5)^2+(3 x+5)^2$

Ví dụ 3. Cho

$x+y+z=0 $

$4x y+y z+z x=0$

Chứng minh rằng $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

Giải : Ta có $(\mathrm{x}+\mathrm{y}+\mathrm{z})^2=\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2+2(\mathrm{xy}+\mathrm{yz}+\mathrm{zx})$.

Suy ra

$0=x^2+y^2+z^2+2.0$

hay

$\text { Vậy } x=y=z(=0) \text {. }$

Ví dụ 4 :

a) Tính $A=-1^2+2^2-3^2+4^2-\ldots-99^2+100^2$.

b) Tính $\mathrm{A}=-1^2+2^2-3^2+4^2-\ldots+(-1)^{\mathrm{n}} \cdot \mathrm{n}^2$.

Giải: a) $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left(100^2-99^2\right)$

$=(2-1)(1+2)+(4-3)(3+4)+\ldots+(100-99)(99+100) $

$=1+2+3+4+\ldots+99+100 $

$=\frac{100.101}{2}=5050 .$

b) Xét hai trường hợp :

Nếu n chẵn thì $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left[\mathrm{n}^2-(\mathrm{n}-1)^2\right]$

$=1+2+3+4+\ldots+(n-1)+n$

$=\frac{\mathrm{n}(\mathrm{n}+1)}{2} \text {. }$

Nếu n lẻ thì $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left[(\mathrm{n}-1)^2-(\mathrm{n}-2)^2\right]-\mathrm{n}^2$

$=1+2+3+4+\ldots+(n-1)-n^2 $

$=\frac{n(n-1)}{2}-n^2=-\frac{n(n+1)}{2}$

Chú ý : Hai kết quả trên có thể viết chung trong một công thức

$(-1)^{\mathrm{n}} \cdot \frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Ví dụ 5. Cho

$x+y=a+b\quad(1)$

$x^2+y^2=a^2+b^2\quad(2)$

Chứng minh rằng $x^3+y^3=a^3+b^3$.

Giải : Ta có : $\quad \mathrm{x}^3+\mathrm{y}^3=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^2-\mathrm{xy}+\mathrm{y}^2\right)\quad(3)$.

Từ (1) suy ra : $\quad(x+y)^2=(a+b)^2$,

tức là $\quad x^2+2 x y+y^2=a^2+2 a b+b^2$.

Do $x^2+y^2=a^2+b^2$ nên $2 x y=2 a b$, suy ra $x y=a b\quad(4)$

Thay các kết quả (1), (2), (4) vào (3), ta được

$x^3+y^3=(x+y)\left(x^2+y^2-x y\right)=(a+b)\left(a^2+b^2-a b\right)=a^3+b^3 .$

Ví dụ 6. Cho $a+b=m, a-b=n$. Tính $a b$ và $a^3-b^3$ theo $m$ và $n$.

Giải :

Cách 1. Từ $\mathrm{a}+\mathrm{b}=\mathrm{m}, \mathrm{a}-\mathrm{b}=\mathrm{n}$, ta tính được $\mathrm{b}=\frac{\mathrm{m}-\mathrm{n}}{2}, \mathrm{a}=\frac{\mathrm{m}+\mathrm{n}}{2}$.

Do đó $\quad \mathrm{ab}=\frac{\mathrm{m}+\mathrm{n}}{2} \cdot \frac{\mathrm{m}-\mathrm{n}}{2}=\frac{\mathrm{m}^2-\mathrm{n}^2}{4} ;$

$a^3-b^3=\left(\frac{m+n}{2}\right)^3-\left(\frac{m-n}{2}\right)^3=\frac{(m+n)^3-(m-n)^3}{8}$

Rút gọn biểu thức trên, ta được $\frac{3 \mathrm{~m}^2 \mathrm{n}+\mathrm{n}^3}{4}$.

Cách 2. Ta có

$4 a b =(a+b)^2-(a-b)^2=m^2-n^2 \text { nên } a b=\frac{m^2-n^2}{4} . $

$\text { Ta có } a^3-b^3 =(a-b)\left(a^2+a b+b^2\right)=(a-b)\left[(a+b)^2-a b\right] $

$=n\left(m^2-\frac{m^2-n^2}{4}\right)=\frac{n\left(3 m^2+n^2\right)}{4}=\frac{3 m^2 n+n^3}{4} .$

BÀI TẬP

16. Tính giá trị của các biểu thức :

a) $\frac{63^2-47^2}{215^2-105^2}$

b) $\frac{437^2-363^2}{537^2-463^2}$

17. So sánh $\mathrm{A}=26^2-24^2$ và $\mathrm{B}=27^2-25^2$.

18. Tìm $\mathrm{x}$, biết :

$4(x+1)^2+(2 x-1)^2-8(x-1)(x+1)=11$

19. Rút gọn các biểu thức :

a) $2 x(2 x-1)^2-3 x(x+3)(x-3)-4 x(x+1)^2$;

b) $(a-b+c)^2-(b-c)^2+2 a b-2 a c$;

c) $(3 x+1)^2-2(3 x+1)(3 x+5)+(3 x+5)^2$;

d) $(3+1)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)$;

e) $(a+b-c)^2+(a-b+c)^2-2(b-c)^2$

g) $(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2$;

h) $(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2$.

20. Cho $x+y=3$. Tính giá trị của biểu thức

$A=x^2+2 x y+y^2-4 x-4 y+1 $

21. Cho $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2=\mathrm{m}$. Tính giá trị của biểu thức sau theo $\mathrm{m}$ :

$A=(2 a+2 b-c)^2+(2 b+2 c-a)^2+(2 c+2 a-b)^2 .$

22. Hãy viết các số sau đây dưới dạng tích của hai số tự nhiên khác 1 :

a) $899$

b) $9991$

23. Chứng minh rằng hiệu sau đây là một số gồm toàn các chữ số như nhau :

$7778^2-2223^2$

24. Chứng minh các hằng đẳng thức :

a) $(a+b+c)^2+a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2$

b) $x^4+y^4+(x+y)^4=2\left(x^2+x y+y^2\right)^2$

25. Cho $\mathrm{a}^2-\mathrm{b}^2=4 \mathrm{c}^2$. Chứng minh hằng đẳng thức

$(5 a-3 b+8 c)(5 a-3 b-8 c)=(3 a-5 b)^2$

26. Chứng minh rằng nếu $\left(a^2+b^2\right)\left(x^2+y^2\right)=(a x+b y)^2$ với $x, y$ khác 0 thì $\frac{\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{y}}$

27. Chứng minh rằng nếu $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2\right)=(\mathrm{ax}+\mathrm{by}+\mathrm{cz})^2$ với $x, y, z$ khác 0 thì $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$.

28. Cho $(a+b)^2=2\left(a^2+b^2\right)$. Chứng minh rằng $a=b$.

29. Chứng minh rằng $\mathrm{a}=\mathrm{b}=\mathrm{c}$ nếu có một trong các điều kiện sau :

a) $a^2+b^2+c^2=a b+b c+c a$

b) $(a+b+c)^2=3\left(a^2+b^2+c^2\right)$

c) $(a+b+c)^2=3(a b+b c+c a)$.

  1. Hãy viết các biểu thức sau dưới dạng tổng của ba bình phương :

a) $(a+b+c)^2+a^2+b^2+c^2$

b) $2(a-b)(c-b)+2(b-a)(c-a)+2(b-c)(a-c)$

31. Tính giá trị của biểu thức $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4$, biết rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ và :

a) $a^2+b^2+c^2=2$;

b) $a^2+b^2+c^2=1$.

32. Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4$ bằng mỗi biểu thức :

a) $2\left(a^2 b^2+b^2 c^2+c^2 a^2\right)$;

b) $2(a b+b c+c a)^2$

c) $\frac{\left(a^2+b^2+c^2\right)^2}{2}$

33. Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến :

a) $9 x^2-6 x+2$

b) $\mathrm{x}^2+\mathrm{x}+1$

c) $2 x^2+2 x+1$.

34. Tìm giá trị nhỏ nhất của các biểu thức :

a) $A=x^2-3 x+5 ;$

b) $B=(2 x-1)^2+(x+2)^2$

35. Tìm giá trị lớn nhất của các biểu thức :

a) $A=4-x^2+2 x$

b) $B=4 x-x^2$

36. Chứng minh rằng :

a) Nếu $\mathrm{p}$ và $\mathrm{p}^2+8$ là các số nguyên tố thì $\mathrm{p}^2+2$ cũng là số nguyên tố.

b) Nếu $\mathrm{p}$ và $8 \mathrm{p}^2+1$ là các số nguyên tố thì $2 \mathrm{p}+1$ cũng là số nguyên tố.

37. Chứng minh rằng các số sau là hợp số :

a) 999991 ;

b) 1000027 .

38. Thực hiện phép tính :

a) $(x-2)^3-x(x+1)(x-1)+6 x(x-3)$

b) $(x-2)\left(x^2-2 x+4\right)(x+2)\left(x^2+2 x+4\right)$.

39. Tìm $x$, biết :

a) $(x-3)\left(x^2+3 x+9\right)+x(x+2)(2-x)=1$

b) $(x+1)^3-(x-1)^3-6(x-1)^2=-10$

40. Rút gọn các biểu thức :

a) $(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3$

b) $(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)$

41. Chứng minh các hằng đẳng thức :

a) $(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)$.

b) $a^3+b^3+c^3-3 a b c=(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$.

42. Cho $a+b+c=0$. Chứng minh rằng $a^3+b^3+c^3=3 a b c$.

43. Cho $\mathrm{x}+\mathrm{y}=\mathrm{a}$ và $\mathrm{xy}=\mathrm{b}$. Tính giá trị của các biểu thức sau theo $\mathrm{a}$ và $\mathrm{b}$ :

a) $x^2+y^2$

b) $x^3+y^3$

c) $x^4+y^4$;

d) $x^5+y^5$.

44. a) Cho $x+y=1$. Tính giá trị của biểu thức $x^3+y^3+3 x y$.

b) Cho $\mathrm{x}-\mathrm{y}=1$. Tính giá trị của biểu thức $\mathrm{x}^3-\mathrm{y}^3-3 \mathrm{xy}$.

45. Cho $\mathrm{a}+\mathrm{b}=1$. Tính giá trị của biểu thức

$M=a^3+b^3+3 a b\left(a^2+b^2\right)+6 a^2 b^2(a+b)$

46. a) Cho $x+y=2$ và $x^2+y^2=10$. Tính giá trị của biểu thức $x^3+y^3$.

b) Cho $x+y=a$ và $x^2+y^2=b$. Tính $x^3+y^3$ theo a và $b$.

47. Chứng minh rằng :

a) Nếu số n’ là tổng của hai số chính phương thì 2 n cũng là tổng của hai số chính phương.

b) Nếu số $2 \mathrm{n}$ là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.

c) Nếu số $\mathrm{n}$ là tổng của hai số chính phương thì $\mathrm{n}^2$ cũng là tổng của hai số chính phương.

d) Nếu mỗi số m và $\mathrm{n}$ đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương.

48. Chứng minh rằng với mọi số tự nhiên $\mathrm{a}$, tồn tại số tự nhiên $\mathrm{b}$ sao cho $\mathrm{ab}+4$ là số chính phương.

49. Cho a là số gồm $2 \mathrm{n}$ chữ số $1, \mathrm{~b}$ là số gồm $\mathrm{n}+1$ chữ số $1, \mathrm{c}$ là số gồm $\mathrm{n}$ chữ số 6. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+8$ là số chính phương.

50. Chứng minh rằng biểu thức sau không là lập phương của một số tự nhiên :

$10^{150}+5.10^{50}+1 .$

51. Chứng minh rằng tích ba số nguyền dương liên tiếp không là lập phương của một số tự nhiên.

52. Chia 27 quả cân có khối lượng $10,20,30, \ldots, 270$ gam thành ba nhóm có khối lượng bằng nhau.

53*. Chia 18 quả cân có khối lượng $1^2, 2^2, 3^2, \ldots, 18^2$ gam thành ba nhóm có khối lượng bằng nhau.

54*. Chia 27 quả cân có khối lượng $1^2, 2^2, 3^2, \ldots, 27^2$ gam thành ba nhóm có khối lượng bằng nhau.

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.4

CHIA ĐA THỨC

 

Đa thức $\mathrm{A}(\mathrm{x})$ gọi là chia hết cho đa thức $\mathrm{B}(\mathrm{x})$ khác 0 nếu tồn tại đa thức $\mathrm{Q}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})$.

Người ta chứng minh được rằng : Với mọi cặp đa thức $\mathrm{A}(\mathrm{x})$ và $\mathrm{B}(\mathrm{x})$ trong đó $\mathrm{B}(\mathrm{x}) \neq 0$, tồn tại duy nhất cặp đa thức $\mathrm{Q}(\mathrm{x})$ và $\mathrm{R}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})+\mathrm{R}(\mathrm{x})$, trong đó $R(x)=0$ hoặc bậc của $R(x)$ nhỏ hơn bậc của $B(x)$.

Nếu $R(x)=0$ thì $A(x)$ chia hết cho $B(x)$. Nếu $R(x) \neq 0$ thì $A(x)$ không chia hết cho $B(x)$, khi đó $Q(x)$ là thương và $R(x)$ là dư của phép chia $A(x)$ cho $B(x)$.

Ví dụ 1. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=3 x^{n-1} y^6-5 x^{n+1} y^4 ; B=2 x^3 y^n$

Tìm thương $\mathrm{A}: \mathrm{B}$ trong trường hợp đó.

Giải : Điều kiện để $\mathrm{A}$ chia hết cho $\mathrm{B}$ là :

$\left\{\begin{array}{r}\mathrm{n}-1 \geq 3 \\ \mathrm{n}+1 \geq 3 \\ 6 \geq \mathrm{n} \\ 4 \geq \mathrm{n}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{n} \geq 4 \\ \mathrm{n} \leq 4\end{array} \Leftrightarrow \mathrm{n}=4\right.\right.$

Vậy với $\mathrm{n}=4$ thì đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$. Khi đó

$A: B=\left(3 x^3 y^6-5 x^5 y^4\right):\left(2 x^3 y^4\right)=\frac{3}{2} y^2-\frac{5}{2} x^2$

Ví dụ 2. Xác định các số hữu tỉ a và $\mathrm{b}$ để đa thức $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho đa thức $x^2+x-2$.

Giải : Cách 1. Đặt tính chia :

Để chia hết thì đa thức dư phải bằng 0 với mọi giá trị của $x$, nên :

$\left\{\begin{array}{l}a+3=0 \\ b-2=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$.

Cách 2. (Phương pháp hệ số bất định)

Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là $\mathrm{x}^3: \mathrm{x}^2=\mathrm{x}$.

Gọi thương là $\mathrm{x}+\mathrm{c}$, ta có :

$x^3+a x+b=\left(x^2+x-2\right)(x+c)$

nên

$x^3+a x+b=x^3+(c+1) x^2+(c-2) x-2 c $

Hai đa thức trên bằng nhau nên :

$\left\{\begin{array}{l}\mathrm{c}+1=0 \\ \mathrm{c}-2=\mathrm{a} \\ -2 \mathrm{c}=\mathrm{b}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{c}=-1 \\ \mathrm{a}=-3 \\ \mathrm{~b}=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$, thương là $\mathrm{x}-1$.

Cách 3. (Phương pháp xét giá trị riêng)

Gọi thương khi chia $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ cho $\mathrm{x}^2+\mathrm{x}-2$ là $\mathrm{Q}(\mathrm{x})$, ta có :

$x^3+a x+b=(x-1)(x+2) Q(x)$

Vì đẳng thức đúng với mọi $x$ nên lần lượt cho $\mathrm{x}=1, \mathrm{x}=-2$, ta được :

$\left\{\begin{array}{l}1+a+b=0 \\ -8-2 a+b=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=-1 \\ -2 a+b=8\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2 .\end{array}\right.\right.\right.$

Với $a=-3 ; b=2$ thì $x^3+a x+b$ chia hết cho $x^2+x-2$.

BÀI TẬP

Chia đơn thức cho đơn thức

71. Thực hiện phép tính :

a) $8^{12}: 4^6$;

b) $27^6: 9^2$;

c) $\frac{9^{15} \cdot 25^3 \cdot 4^3}{3^{10} \cdot 50^6}$

72. Chứng minh rằng biểu thức sau không âm với mọi giá trị của biến :

$A=\left(-15 x^3 y^6\right):\left(-5 x y^2\right)$

73. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến $\mathrm{y}(\mathrm{x} \neq 0 ; \mathrm{y} \neq 0)$ :

$B=\frac{2}{3} x^2 y^3:\left(-\frac{1}{3} x y\right)+2 x(y-1)(y+1)$

74. Tìm số tự nhiên $\mathrm{n}$ để đơn thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=4 x^{n+1} y^2 ; B=3 x^3 y^{n-1}$

Chia đa thức cho dơn thức

75. Thực hiện phép tính :

a) $\left(\frac{1}{2} a^2 x^4+\frac{4}{3} a x^3-\frac{2}{3} a x^2\right):\left(-\frac{2}{3} a x^2\right)$

b) $4\left(\frac{3}{4} x-1\right)+\left(12 x^2-3 x\right):(-3 x)-(2 x+1)$.

76. Thực hiện phép tính rồi tìm giá trị nhỏ nhất của biểu thức :

$A=\left(9 x y^2-6 x^2 y\right):(-3 x y)+\left(6 x^2 y+2 x^4\right):\left(2 x^2\right) $

77. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=7 x^{n-1} y^5-5 x^3 y^4 ; \quad B=5 x^2 y^n$

Chia đa thức cho đa thức

78. Rút gọn biểu thức

$\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3(x+y)^2\right]:(x+y)$

79. Chia các đa thức :

a) $\left(3 x^4-2 x^3-2 x^2+4 x-8\right):\left(x^2-2\right)$;

b) $\left(2 x^3-26 x-24\right):\left(x^2+4 x+3\right)$;

c) $\left(x^3-7 x+6\right):(x+3)$.

80. Xác định hằng số a sao cho :

a) $4 x^2-6 x+$ a chia hết cho $x-3$;

b) $2 \mathrm{x}^2+\mathrm{x}+\mathrm{a}$ chia hết cho $\mathrm{x}+3$;

c) $x^3+a x^2-4$ chia hết cho $x^2+4 x+4$.

81. Xác địṇh hằng số a sao cho :

a) $10 x^2-7 x+a$ chia hết cho $2 x-3$;

b) $2 x^2+a x+1$ chia cho $x-3$ dư 4 ;

c) $a x^5+5 x^4-9$ chia hết cho $x-1$.

82. Xác định các hằng số a và $\mathrm{b}$ sao cho :

a) $\mathrm{x}^4+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2-4$;

b) $x^4+a x^3+b x-1$ chia hết cho $x^2-1$;

c) $x^3+a x+b$ chia hết cho $x^2+2 x-2$.

83. Xác định các hằng số a và b sao cho :

a) $x^4+a x^2+b$ chia hết cho $x^2-x+1$;

b) $a x^3+b x^2+5 x-50$ chia hết cho $x^2+3 x-10$;

c) $a x^4+b x^3+1$ chia hết cho $(x-1)^2$;

d) $x^4+4$ chia hết cho $x^2+a x+b$.

84. Tìm các hằng số $a$ và $b$ sao cho $x^3+a x+b$ chia cho $x+1$ thì dư 7 , chia cho $x-3$ thì dư $-5$.

85. Tìm các hằng số $\mathrm{a}, \mathrm{b}, \mathrm{c}$ sao cho $\mathrm{ax}^3+\mathrm{bx}^2+\mathrm{c}$ chia hết cho $\mathrm{x}+2$, chia cho $x^2-1$ thì dư $x+5$.

 

 

 

Bài tập số học ôn thi vào lớp 10 – Phần 3

Bài 21. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên

Lời giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Bài 22. Tìm tất cả các số tự nhiên n sao cho ${5^{{5^{n + 1}}}} + {5^{{5^n}}} + 1$ là một số nguyên tố.

Lời giải

Đặt $m = 5^n$ ta có bài trên.

Bài 23. Tìm số nguyên tố $p$ để $p^2 + 2^p$ cũng là số nguyên tố.

Lời giải

Nhận thấy $p=3$ thỏa đề bài.
Xét $p>3$ thì $p$ lẻ và $p$ không chia hết cho 3.
Khi đó $p^2 \equiv 1 (\mod 3)$ và $2^p \equiv -1 (\mod 3)$. Do đó $p^2 + 2^p \equiv 3$ nên không là số nguyên tố.

Bài 24. Cho $p, q$ là các số nguyên tố và phương trình $x^2 – px+q=0$ có nghiệm nguyên dương. Tìm $p$ và $q$.

Lời giải

Gọi $x_1, x_2$ là nghiệm của phương trình. Ta có $x_1 + x_2 = p, x_1 x_2 = q$. Do đó $x_1, x_2 $ đều là các số nguyên dương. Giả sử $x_1 \geq x_2$.
Suy ra $x_2 = 1, x_1 = q$, $1+q = p$. Do đó $p = 3, q=2$.
Thử lại thấy thỏa đề bài.

Bài 25. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
$p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 26. Tìm tất cả các số nguyên tố $p$ sao cho tồn tại các số nguyên dương $x, y$ thỏa phương trình $x(y^2-p)+y(x^2-p)=5p$.

Lời giải

$(x+y)(xy-p) = 5p$, $x+y \geq 2$ Do đó có các trường hợp sau:\\
$x+y = 5, xy-p=p$. Giải ra được $x=2, y=3, p=3$, $x=3, y=2, p=3$, $x=1, y=4, p=2$, $x=4,y=1, p=2$.\\
$x+y = p, xy -p=5$. $x^2-px+p+5 = 0$. $p^2-4(p+5) = =k^2 \Leftrightarrow (p-2)^2 – 24 = k^2 \Leftrightarrow (p-2-k)(p-2+k) = 24$. \\
Ta có $p-2-k, p-2+k$ cùng chẵn. Có các trường hợp sau:
+ $p-2-k = 2, p-2+k=12$, suy ra $p=9$ (loại)\\
+ $p-2 -k = 4, p-2+k = 6$, suy ra $p=7$. Khi đó $x+y = 7, xy = 12$. Giải ra được $x=3, y=4$ và $x=4, y=3$.

Bài 27. Cho các số nguyên dương $a, b, c, d$ thỏa $ab = cd$. Chứng minh rằng $a + b + c + d$ là hợp số.

Lời giải

Đặt $k = (a,c), a= ka’, c=kc’$, Suy ra $a’b = c’d$, suy ra $b \vdots c’$, đặt $b = mc’$, suy ra $d=ma’$.
Khi đó $a+b+c+d = ka’+mc’ + kc’+ma’ = (k+m)(a’+c’)$ là hợp số.

Bài 28. Tìm tất cả các số nguyên tố $p>q>r$ sao cho $p-r, p-q, q-r$ cũng là các số nguyên tố.

Lời giải

Nếu các số $p, q, r$ đều lẻ, thì $p-r, p-q, q-r$ đề chẵn mà là số nguyên tố và bằng 2, vô lý.
Do đó có 1 số nguyên tố chẳn, suy ra $r = 2$.
$p-2, q-2, p-q$ nguyên tố. Suy ra $p-q = 2$.
Vậy $p-2, p,p+2$ là các số nguyên tố. Suy ra $p-2=3$, $p=5$, $q=7$.

Bài 29. Tìm các số nguyên tố $p,q$ thỏa mãn hệ thức $p + q = {\left( {p – q} \right)^3}$

Lời giải

$p-q = r$ ta có $r^3 =2p+r$. Suy ra $p = \dfrac{r^3-r}{2}$ chia hết cho 3. Suy ra $p=3, q=5$.

Bài 30. Tìm tất cả các số nguyên tố $p$ sao cho hệ phương trình $p+1=2x^2,p^2+ 1=2y^2$ có nghiệm nguyên.

Lời giải

Ta xét $y, x>0$. Ta có $p = 2$ không thỏa.
$p(p-1) = 2(y-x)(y+x)$, suy ra $p |2(y-x)(y+x)$
$p|y-x$, suy ra $2(x+y)|p-1$ (vô lý)
$p|x+y$, mặt khác $p > x, p > y$, suy ra $2p>x+y$, do đó $p = x+y$. Khi đó $p-1 = 2x – 2y$. Từ đó suy ra $x = \dfrac{3p-1}{4}$, thế vào ta giải ra được $p = 7, x = 2, y = 5$.

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Tứ giác

Định nghĩa. Tứ giác $ABCD$ là hình gồm các đoạn thẳng $AB, BC, CD, DA$.

Định lí. Tổng 4 góc trong một tứ giác bằng $360^\circ$.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$ có $\angle A = 70^\circ$. Các tia phân giác $BD, CE$ của các góc $B$ và $C$ cắt nhau tại điểm $I$; các tia phân giác ngoài của các góc $B$ và $C$ cắt nhau tại điểm $J$.

a)Tính số đo các góc của tứ giác $BICJ$.
b) hứng minh $A$, $I$, $J$ là ba điểm thẳng hàng.
c) Tứ giác $ABIC$ có phải là tứ giác lồi không? Vì sao?

Bài 2. Cho tứ giác $ABCD$. Gọi $I, J$ theo thứ tự là giao điểm của các phân giác trong và phân giác ngoài của các góc $A, B$.

a) Chứng minh rằng $\angle AIB = \dfrac{1}{2}(\angle C+ \angle D)$; $\angle AJB = \dfrac{1}{2}(\angle A + \angle B)$.
b) Chứng minh rằng $\angle AIB $ và $\angle AJB$ là hai góc bù nhau.

Bài 3. Cho tứ giác $ABCD$ có $\angle ACB = \angle ADB = 25^\circ, \angle BDC = 60^\circ, \angle ACD = 30^\circ$, góc ngoài của góc $A$ bằng $55^\circ$. Tính số đo các góc $\angle CAB, \angle DBA, \angle ABC$.

Bài 4.  Cho tứ giác $ABCD$. Chứng minh rằng:

a) $AC + BD < AB + BC + CD + DA$.
b) $AB + BC+ CD + DA < 2(AC + BD)$.

Bài 5.  Cho tứ giác $ABCD$ có $\widehat A + \widehat C = 180^\circ$, các tia $DA, CB$ cắt nhau tại $E$, tia $BA, CD$ cắt nhau tại $F$. Phân giác của góc $\widehat {DEC}$ và phân giác của góc $\widehat {CFB}$ cắt nhau tại $H$. Tính $\widehat {EHF}$.

Bài 6. Cho tứ giác $ABCD$ có $\widehat{ADB} = 10^\circ, \widehat {BDC} = 50^\circ, \widehat {ACD} = 60^o\circ , \widehat {ACB }= 20^o\circ$. Tính số đo các góc còn lại của tứ giác $ABCD$.

Bài 7. Cho tứ giác $ABCD$ có tam giác $ACD$ đều, tam giác $ACB$ cân tại $C$ và $\angle ACB = 20^0$.

a) Tính số đo góc $A,B$ của tứ giác.
b) Gọi $O$ là giao điểm của $AC, BD$. Tính số đo các góc $\widehat {ABD}, \widehat {COD}$.

Bài 8.  Cho tứ giác $ABCD$ có $AB+BD$ không lớn hơn $AC+CD$. Chứng minh $AB < AC$.

Bài 9. Cho tứ giác $ABCD$ và một điểm $O$ nằm trong tứ giác. Chứng minh rằng tổng khoảng cách từ $O$ đến các đỉnh của tứ giác thì lớn hơn nửa chu vi của tứ giác.

Ước chung lớn nhất

Ước chung

  • Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
  • Tập các ước chung của $a$ và $b$ kí hiệu ƯC(a,b). Ta có x thuộc ƯC(a,b) khi và chỉ khi $a \vdots x$ và $b \vdots x$.

Ví dụ 1. Ư(12) = {1, 2, 3, 4, 6, 12}, Ư(8) = {1, 2, 4, 8}

Thì ước chung của 12 và 8 là 1, 2, 4, kí hiệu ƯC(8,12) = {1, 2, 4}.

Cách tìm ước chung của $a$ và $b$.

  • Tìm tập các số là ước của $a$, tập các ước của $b$.
  • Tìm các phần tử của của hai tập trên ta được tập ước chung của $a$ và $b$.

Ví dụ 2. Tìm ước chung của 24 và 30.

Ta có Ư(24) = {1, 2, 3, 4, 6, 8, 12, 24}, Ư(30) = {1, 2, 3, 5, 6, 15, 30}

Khi đó ƯC(24,30) = {1, 2, 3, 6}.

Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của $a$ và $b$ là ƯCLN(a,b)

Ví dụ 3. ƯC(24,30) = {1, 2, 3, 6}, ƯCLN(24,30) = 6.

Ví dụ 4. Các bạn học sinh lớp 6 A đang lên kế hoạch làm sạch môi trường ở địa phương. Cả lớp có 12 bạn nữ và 18 bạn nam. Các bạn muốn chia lớp thành các nhóm nhỏ gồm cả nam và nữ sao cho số bạn nam và số bạn nữ được chia đều vào các nhóm. Có thể chia được nhiều nhất thành bao nhiêu nhóm học sinh? Khi đó, mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Lời giải.

  • Số nhóm được chia phải là ước của cả 12 và 18 .
  • Số nhóm được chia phải là nhiều nhất có thể. Vì vậy, số nhóm được chia là ước chung lớn nhất của 12 và 18 .

Ta có $\mathrm{U}^{\circ} \mathrm{CLN}(12,18)=6$. Do đó cần chia lớp thành 6 nhóm.

Số học sinh trong mỗi nhóm là $(12+18): 6=5$ (học sinh).

Vậy mỗi nhóm có 5 học sinh, gồm 2 nữ và 3 nam.

Cách tìm ước chung lớn nhất của $a, b$ bằng phân tích thành thừa số nguyên tố.

Muốn tìm U’CLN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.
    Tích đó là ƯCLN phải tìm.

Ví dụ 5. Tìm ước chung lớn nhất của 24 và 30.

Lời giải.

Ta có $24 = 2^3 \cdot 3$ và $30 = 2 \cdot 3 \cdot 5$.

Ta có ƯCLN (a, b) = 2 \cdot 3 = 6.

Định nghĩa. Hai số có ước chung lớn nhất bằng 1 được gọi là nguyên tố cùng nhau. 

Kí hiệu hai số $a, b$ nguyên tố cùng nhau là (a,b) = 1

Ứng dụng tối giản phân số. Khi rút gọn $\frac{90}{126}$, ta chia cả tử số và mẫu số cho
một ước chung của 90 và 126 để được phân số mới. Tiếp tục
quy trình đó đến khi không rút gọn cho đến khi
tử số và mẫu số của chúng không có ước chung nào khác 1
(tử số và mẫu số là hai số nguyên tố cùng nhau). Khi đó, ta
được một phân số tối giản.

Bài tập rèn luyện

Bài 1. Tìm:
a) $\mathrm{UCLN}(1,16)$;
b) $\operatorname{UCLN}(8,20)$
c) UCLN $(84,156)$;
d) UCLN $(16,40,176)$.
Bài 2. a) Ta có $\mathrm{U}^{\prime} \mathrm{CLN}(18,30)=6$. Hãy viết tập hợp A các ước của 6 . Nêu nhận xét về tập hợp UC $(18,30)$ và tập hợp $\mathrm{A}$.
b) Cho hai số a và b. Để tìm tập hợp $\mathrm{UC}(\mathrm{a}, \mathrm{b})$, ta có thể tìm tập hợp các ước của $\mathrm{U}^{\circ} \mathrm{CLN}(\mathrm{a}, \mathrm{b})$. Hãy tìm UCLN rồi tìm tập hợp các ước chung của:
i. 24 và 30 ;
ii. 42 và 98 ;
iii. 180 và 234 .
Bài 3. Rút gọn các phân số sau: $\frac{28}{42} ; \frac{60}{135} ; \frac{288}{180}$.
Bài 4. Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là $140 \mathrm{~cm}, 168 \mathrm{~cm}$ và $210 \mathrm{~cm}$. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

BÀI GIẢNG ƯỚC CHUNG LỚN NHẤT VÀ MỘT SỐ TÍNH CHẤT