Tag Archives: Lop8

Bất đẳng thức Cauchy – Phương pháp tách ghép

1. Phương pháp tách ghép

Ví dụ 1: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Giải

Áp dụng bất đẳng thức Cauchy ta có:

$\dfrac{ab}{c}+\dfrac{bc}{a} \ge 2b$

$\dfrac{bc}{a}+\dfrac{ca}{b} \ge 2c$

$\dfrac{ca}{b}+\dfrac{ab}{c} \ge 2a.$

Cộng vế theo vế các bất đẳng thức trên ta được

$2\left( \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)  \ge 2 (a+b+c)$

$\Leftrightarrow \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c$.

Ví dụ 2: Cho các số dương $a,b,c$. Chứng minh rằng

$$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c$$

Giải

Áp dụng bất đẳng thức Cauchy ta có

$\dfrac{a^3}{bc} +b+c \ge 3a $

$\dfrac{b^3}{ca}+c+a \ge 3b$

$\dfrac{c^3}{ab}+a+b \ge 3c.$

Cộng vế theo vế ba bất đẳng thức trên ta được

$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2(a+b+c) \ge 3(a+b+c)$

$\Leftrightarrow \dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c.$

Ví dụ 3: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh rằng $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Giải

Áp dụng bất đẳng thức $xy \le \dfrac{(x+y)^2}{4}$. Ta được:

$(a+b-c)(b+c-a) \le \dfrac{(a+b-c+b+c-a)^2}{4}=b^2$

$(b+c-a)(c+a-b) \le \dfrac{(b+c-a+c+a-b)^2}{4}=c^2$

$(c+a-b)(a+b-c) \le \dfrac{(c+a-b)(a+b-c)^2}{4} = a^2.$

Do $a,b,c$ là các cạnh của một tam giác nên các vế của bất đẳng thức trên đều dương do đó nhân vế theo vế ta được

$[(a+b-c)(b+c-a)(c+a-b)]^2 \le (abc)^2$

$\Leftrightarrow (a+b-c)(b+c-a)(c+a-b) \le abc.$

Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

2. Bài tập

Bài 1: Cho $a,b,c>0$. Chứng minh $\dfrac{a^4+b^4+c^4}{a+b+c} \ge abc$.

Bài 2: Cho $a,b,c>0$. Chứng minh:

a) $\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a} \ge a+b+c$

b) $\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c$

c) $\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \ge ab+bc+ca.$

d) $\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}.$

Bài 3: Chứng minh rằng với mọi $a,b,c$ dương ta có: $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Bài 4: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh:

a) $(p-a)(p-b)(p-c) \le \dfrac{1}{8}abc$.

b) $\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c} \ge 2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$.

c) $\dfrac{\sqrt{a}}{\sqrt{a+b-c}}+\dfrac{\sqrt{b}}{\sqrt{b+c-a}}+\dfrac{\sqrt{c}}{\sqrt{c+a-b}} \ge 3$

Bài 5: Cho 3 số không âm $a,b,c$ chứng minh rằng: $$ a+b+c \ge \sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}. $$

Bài 6: Cho $a,b,c \ge 0$. Chứng minh: $$ a^3+b^3+c^3 \ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}. $$

Bài 7: Cho $a,b,c$ là các số dương. Chứng minh rằng: $$ (a^2+bc)(b^2+ca)(c^2+ab) \ge abc(a+b)(b+c)(c+a). $$

Bài 8: Cho các số dương $x, y, z$. Chứng minh rằng: $$\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z} \le \dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}).$$

Bài 9: Cho các số thực dương $a,b,c$ thoả mãn $a+b+c=3$. Chứng minh: $$\dfrac{ab}{\sqrt{c^2+3}}+\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{c^2+3} \le \dfrac{3}{2}.$$

Bài 10: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c} \ge 2.$$

Bài 11: Cho các số dương $a,b,c$. Chứng minh: $$\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b} \le \dfrac{a+b+c}{6}.$$

Bài 12: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).$$

Bài 13: Cho các số dương $a,b,c$ thoả $a+b+c=3$. Chứng minh: $\sqrt{a}+\sqrt{b}+\sqrt{c} \ge ab+bc+ca.$

Bất đẳng thức Cauchy – Phương pháp chọn điểm rơi

1. Chọn điểm rơi

Ví dụ 1: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a}$.

Giải

Ta có $P =\dfrac{a}{4}+\dfrac{1}{a}+\dfrac{3a}{4} \ge 2 \sqrt{ \dfrac{a}{4}. \dfrac{1}{a}}+\dfrac{3.2}{4} =\dfrac{5}{2}.$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{4}=\dfrac{1}{a}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 2: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a^2}$.

Giải

Ta có: $P=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2} +\dfrac{6a}{8} \ge 3 \sqrt[3]{\dfrac{a}{8}. \dfrac{a}{8}. \dfrac{1}{a^2}}+\dfrac{6a}{8}$

$\hspace{6,5cm} \ge \dfrac{3}{4}+\dfrac{6.2}{8} \ge \dfrac{9}{4}.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{8}=\dfrac{1}{a^2}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 3: Cho các số không âm $a,b,c$ thoả $a^2+b^2+c^2=1$. Tìm GTNN của $P=a^3+b^3+c^3.$

Giải

Ta có: $a^3+a^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} a^2$

$b^3+b^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} b^2$

$c^3+c^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} c^2$

Cộng vế theo theo vế ba băt đẳng thức trên ta được

$2(a^3+b^3+c^3)+\dfrac{1}{\sqrt{3}} \ge \sqrt{3}(a^2+b^2+c^2)$

$\Leftrightarrow a^3+b^3+c^3 \ge \dfrac{1}{\sqrt{3}}.$

Dấu bằng xảy ra khi và chỉ chỉ $\begin{cases} a^2+b^2+c^2=1 &\\ a^3=b^3=c^3=\dfrac{1}{3\sqrt{3}} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}.$

Ví dụ 4: Cho $ a, b, c>0$, $a+b+c=1$. Chứng minh $ \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} \le \sqrt{6}. $

Giải

Đặt $P = \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} $.

Áp dụng bất đẳng thức $\sqrt{xy} \le \dfrac{x+y}{2}$ ta được:

$\sqrt{(a+b) \cdot \dfrac{2}{3}} \le \dfrac{a+b+\dfrac{2}{3}}{2}$

$\sqrt{(b+c) \cdot \dfrac{2}{3}} \le \dfrac{b+c+\dfrac{2}{3}}{2}$

$\sqrt{(c+a) \cdot \dfrac{2}{3}} \le \dfrac{c+a+\dfrac{2}{3}}{2}.$

Cộng vế theo vế các bất đẳng thức trên ta được:

$\sqrt{\dfrac{2}{3}} \cdot P \le \dfrac{2(a+b+c)+2}{2}=2 \Leftrightarrow P \le \sqrt{6}$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} a+b+c=1&\\ a+b=b+c=c+a=\dfrac{2}{3} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{3}.$

Ví dụ 5: Cho $a, b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab.$

Giải

Ta có: $\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab = \dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left( 4ab+\dfrac{1}{4ab}\right) + \dfrac{1}{4ab}$

$\hspace{5,4cm} \ge \dfrac{4}{(a+b)^2}+2\sqrt{4ab. \dfrac{1}{4ab}}+\dfrac{1}{(a+b)^2} \ge 7.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} a+b=1&\\a=b \end{cases} \Leftrightarrow a=b=\dfrac{1}{2}.$

Ví dụ 6: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh rằng $$\dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} \ge \dfrac{3}{2}.$$

Giải

Đặt $P = \dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} $

Ta có: $\dfrac{a^2}{1+b}+\dfrac{1+b}{4} \ge a$

$\dfrac{b^2}{1+c}+\dfrac{1+c}{4} \ge b$

$\dfrac{c^2}{1+a}+\dfrac{1+a}{4} \ge c.$

Cộng vế theo vế các bất đẳng thức trên ta được: $$P \ge (a+b+c)-\dfrac{1}{4}(a+b+c)-\dfrac{3}{4} \ge \dfrac{3}{4}.3.\sqrt[3]{abc}-\dfrac{3}{4}= \dfrac{3}{2}.$$

Dấu “=” xảy ra khi và chỉ khi $a=b=c=1.$

2. Bài tập

Bài 1: Cho $a \ge 6.$ Tìm GTNN của $ a^2+\dfrac{18}{a}$.

Bài 2: Cho $x \ge 1$. Tìm GTNN của $P=3x+\dfrac{1}{2x}.$

Bài 3: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=ab+\dfrac{1}{ab}.$

Bài 4: Cho $a,b>0$. Tìm GTNN của $P=\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}.$

Bài 5: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}$.

Bài 6: Cho $a,b>0$ thỏa $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{2ab}$.

Bài 7: Cho $a,b>0$, $a+b=1$. Chứng minh:

a) $a^3+b^3 \ge \dfrac{1}{4}$.

b) $a^4+b^4 \ge \dfrac{1}{8}.$

Bài 8: Cho $a, b, c >0$, $a+b+c=1$. Tìm GTLN của $$ P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}. $$

Bài 9: Cho $a, b, c >0$, $a+b+c=3$. Tìm GTLN của $$ P=\sqrt[3]{a(b+2c)}+\sqrt[3]{b(c+2a)}+\sqrt[3]{c(a+2b)}. $$

Bài 10: Cho $a, b, c >0$, $abc=1$. Chứng minh $$ \dfrac{a^3}{(a+1)(b+1)}+\dfrac{b^3}{(c+1)(a+1)}+\dfrac{c^3}{(a+1)(b+1)} \ge \dfrac{3}{4}. $$

Bài 11: Cho $a, b, c >0$, $a+b+c=3$. Chứng minh $$ \dfrac{a^3}{b(2c+a)}+\dfrac{b^3}{c(2a+b)}+\dfrac{c^3}{a(2b+c)} \ge 1.$$

Bài 12: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} \ge \dfrac{3}{2}$$

Bài 13: Cho các số thực dương $a,b,c$. Chứng minh rằng $$\dfrac{b^2c}{a^3(b+c)}+\dfrac{c^2a}{b^3(c+a)}+\dfrac{a^2b}{c^3(a+b)} \ge \dfrac{1}{2}(a+b+c).$$

Bài 14: Cho $x, y, z>0$, $xyz=1$. Chứng minh $x^3+y^3+z^3 \ge x+y+z$.

Bài 15: Cho $a,b,c>0$. Tìm GTNN của $P=a^3+b^3+c^3$. Biết $a^2+b^2+c^2=3$.

Bài 16: Cho $a,b,c>0$ và $a+2b+3c \ge 20$. Tìm GTNN của $$S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}.$$

Bài 17: Cho các số dương $a,b,c$ thoà $a+b+c=1$. Chứng minh $$a\sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c\sqrt[3]{1+a-b} \le 1.$$

Bất đẳng thức Cauchy – Các kĩ thuật cơ bản

1. Bất đẳng thức Cauchy

Tính chất 1: Cho các số $a, b$ thì ta có: $ab \leq \dfrac{1}{4} (a+b)^2 \leq \dfrac{1}{2}(a^2+b^2)$.

Tính chất 2: Cho $a, b$ là các số không âm thì $ a+b \geq 2\sqrt{ab}$.

2. Các kĩ thuật cơ bản

Ví dụ 1: Cho $x,y$ là các số thực thỏa mãn $x+y=2$. Chứng minh rằng $xy(x^2+y^2) \le 2 $.

Giải

Áp dụng bất đẳng thức $ab \le \dfrac{(a+b)^2}{4}$ ta được:

$xy(x^2+y^2)=\dfrac{1}{2}\cdot 2xy(x^2+y^2) \le \dfrac{1}{2} \dfrac{(x^2+y^2+2xy)^2}{4}=\dfrac{1}{8}(x+y)^4=2.$

Dấu bằng xảy ra khi và chỉ khi $x=y=\dfrac{1}{2}.$

Ví dụ 2: Cho các số dương $a,b$. Chứng minh rằng $\dfrac{a^2}{b}+\dfrac{b^2}{a} \ge \sqrt{2(a^2+b^2)}.$

Giải

Bất đẳng thức cần chứng minh tương đương với

$a^3+b^3\ge ab\sqrt{2(a+b)} \Leftrightarrow (a+b)(a^2+b^2-ab) \ge \sqrt{ab}.\sqrt{2ab(a^2+b^2)}$

Mặt khác ta có:

$0 <\sqrt{ab} \le \dfrac{a+b}{2}$

$0 \le \sqrt{2ab(a^2+b^2)} \le \dfrac{2ab+a^2+b^2}{2} \le a^2+b^2 \le 2(a^2+b^2-ab).$

Nhân vế theo vế hai bất đẳng thức trên ta được điều phải chứng minh.

Dấu “=” xảy ra khi và chỉ khi $a=b.$

Ví dụ 3: Cho các số thực dương $x,y,z$ thoả $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$. Chứng minh $(x-1)(y-1)(z-1) \ge 8.$

Giải

Bất đẳng thức đã cho được viết lại dưới dạng $ \left( \dfrac{x-1}{x}\right) \left( \dfrac{y-1}{y}\right) \left( \dfrac{z-1}{z}\right)  \ge \dfrac{8}{xyz}$

$\Leftrightarrow \left( 1-\dfrac{1}{x}\right) \left( 1-\dfrac{1}{y}\right) \left( 1-\dfrac{1}{z}\right)  \ge \dfrac{8}{xyz}.$

Theo bất đẳng thức Cauchy ta có:

$1-\dfrac{1}{x}=\dfrac{1}{y}+\dfrac{1}{z} \ge 2 \sqrt{\dfrac{1}{y}\cdot  \dfrac{1}{z}}=\dfrac{2}{\sqrt{yz}}.$

Tương tự ta cũng có $1-\dfrac{1}{y} \ge \dfrac{2}{\sqrt{zx}}$ và $1-\dfrac{1}{z} = \dfrac{2}{\sqrt{xy}}$.

Nhân vế theo vế các bất đẳng thức trên ta có điều phải chứng minh.

Dấu “=” xảy ra khi và chỉ khi $x=y=z=3.$

Ví dụ 4: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{abc}{(1+a)(a+b)(b+c)(c+16)} \le \dfrac{1}{81}.$

Giải

Ta có: $(1+a)(a+b)(b+c)(c+16)= \left( 1+\dfrac{a}{2}+\dfrac{a}{2}\right) \left( a+\dfrac{b}{2}+\dfrac{b}{2}\right) \left( b+\dfrac{c}{2}+\dfrac{c}{2}\right) (c+8+8)$

$\hspace{7,5cm} \ge 3\sqrt[3]{\dfrac{a^2}{4}}\cdot  3\sqrt[3] {\dfrac{ab^2}{4}}\cdot 3\sqrt[3]{\dfrac{bc^2}{4}}\cdot 3\sqrt[3]{64c} =81abc.$

Do đó $\dfrac{abc}{(1+a)(a+b)(b+c)(c+16)} \le \dfrac{1}{81}.$

Dấu “=” xảy ra khi và chỉ khi $a=2, b=4, c=8.$

3. Bài tập

Bài 1: Cho $x,y,z$ là các số thực dương. Chứng minh rằng $ \dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy} \ge 1. $

Bài 2: Cho $a,b,c>0$. Chứng minh

a) $\dfrac{1}{a}+\dfrac{1}{b} \ge \dfrac{4}{a+b}$.

b) $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{9}{a+b+c}$.

c) $(a+b+2)\left( \dfrac{1}{a+1}+\dfrac{1}{b+1}\right)  \ge 4$.

Bài 3: Cho $a>b>0$. Chứng minh

a) $a+\dfrac{1}{(a-b)b} \ge 3$.

b) $a+\dfrac{1}{(a-b)(b+1)} \ge 2$.

c) $a+\dfrac{4}{(a-b)(b+1)^2} \ge 3$.

Bài 4: Cho $a,b>1$. Chứng minh $a\sqrt{b-1}+b\sqrt{a-1} \le ab$.

Bài 5: Cho $c>0$ và $a,b \ge c$. Chứng minh rằng $\sqrt{c(a-c)}+\sqrt{c(b-c)} \le \sqrt{ab}$.

Bài 6: Cho $x,y$ là các số thực dương thỏa mãn $x+y=2$. Chứng minh rằng $x^2y^2(x^2+y^2) \le 2.$

Bài 7: Cho $a,b,c$ là các số không âm thỏa $a^2+b^2 \le 2$. Chứng minh rằng $a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)} \le 6.$

Bài 8: Cho $a,b,c>0$. Chứng minh $a(1+b)+b(1+c)+c(1+a) \ge 3 \sqrt[3]{abc}(1+\sqrt[3]{abc})$.

Bài 9: Cho $x,y >0$ và $x+y = 1.$ Chứng minh rằng $8(x^4+y^4)+\dfrac{1}{xy} \ge 5. $

Bài 10: Cho các số thực dương $a,b,c$. Chứng minh rằng $$ \frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc} \le \frac{1}{abc}. $$

Bài 11: Cho $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$. Chứng minh rằng $b+c \ge 16abc.$

Bài 12: Cho các số thực dương $a,b,c$ thoả $ab+bc+ca \ge a+b+c$. Chứng minh $a+b+c \ge 3.$

Bài 13: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{\sqrt{1+a^3+b^3}}{c}+\dfrac{\sqrt{1+b^3+c^3}}{a}+\dfrac{\sqrt{1+a^3+c^3}}{b} \ge 3 \sqrt{3}.$$

Bài 14: Cho các số dương $a, b, c$ thoả $a+b+c=abc$. Chứng minh $\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{a^3} \ge 1.$

Chuyên đề: Chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương

1. Phương pháp biến đổi tương đương

Ví dụ 1: Chứng minh các bất đẳng thức sau:

a) $a^2+b^2+c^2 \ge ab+bc+ca$

b)  $a^4+b^4+c^4 \ge abc(a+b+c)$

Giải

a) Ta có: $a^2+b^2+c^2 \ge ab+bc+ca $

$\Leftrightarrow 2(a^2+b^2+c^2) \ge 2(ab+bc+ca)$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2 \ge 0$ .

Bất đẳng thức cuối cùng hiển nhiên đúng với mọi $a,b,c$. Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

b) Áp dụng câu (a) liên tiếp ta có:

$a^4+b^4+c^4  \ge a^2b^2+b^2c^2+c^2a^2= (ab)^2+(bc)^2+(ca)^2$

$\hspace{2,6cm}  \ge ab\cdot bc+bc\cdot ca+ca\cdot ab=abc(a+b+c)$.

Dấu ‘=’ xảy ra khi $a=b=c.$

Ví dụ 2: Với mọi $x \in \mathbb{R}$. Chứng minh $2x^4+1 \ge 2x^3+x^2.$

Giải

Ta có  $2x^4+1-2x^3-x^2=1-x^2-2x^3(1-x)$

$\hspace{5,4cm} =(1-x)(1+x)-2x^3(1-x)$

$\hspace{5,4cm} = (1-x)(x+1-2x^3)$

$\hspace{5,4cm} =(1-x)[x(1-x^2)+1-x^3]$

$\hspace{5,4cm} =(1-x)^2[(1+x)^2+x^2] \ge 0. \forall x \in \mathbb{R}.$

Từ đó suy ra $2x^4+1 \ge 2x^3+x^2, \forall x \in \mathbb{R}$. Dấu “=” xảy ra khi $x=1.$

Ví dụ 3: Với mọi $x \in \mathbb{R}$. Chứng minh rằng $x^{12}-x^9+x^4-x+1 >0.$

Giải

Ta xét hai trường hợp $x<1$ và $x \ge 1.$

  • Trường hợp $x<1$, ta có $x^{12}-x^9+x^4-x+1=x^{12}+(x^4-x^9)+(1-x). $

 Vì $x<1$ nên $1-x>0, x^4-x^9>0$ do đó $x^{12}-x^9+x^4-x+1 >0.$

  •  Trường hợp $x \ge 1$, ta có $x^{12}-x^9+x^4-x+1=x^8(x^4-x)+(x^4-x)+1.$

 Vì $x \ge 1$ nên $x^4-x \ge 0$ do đó $x^{12}-x^9+x^4-x+1 >0.$

Ví dụ 4: (PTNK chuyên toán 1998) Cho $x, y, z, p, q, r$ là các số thực dương thỏa mãn điều kiện $x + y + z = p + q + r=1$ và $p,q,r \leq \dfrac{1}{2}$.

a) Chứng minh rằng nếu $x \leq y \leq z$ thì $px + qy + rz \geq \dfrac{x+y}{2}$

b) Chứng minh rằng $px + qy + rz \geq 8xyz$

Giải

a) Ta có $px+ qy + rz \geq \left( p-\dfrac{1}{2}\right) x + \dfrac{1}{2}x + (q+r)y \\ \ge \left( p-\dfrac{1}{2}\right) x + \left( q+r-\dfrac{1}{2}\right) y + \dfrac{1}{2}(x+y)\\ \ge \left( p-\dfrac{1}{2}\right) (x-y) + \dfrac{1}{2}(x+y) \\ \geq \dfrac{1}{2}(x+y)$

Vì $p – \dfrac{1}{2}\leq 0, x – y \leq 0$ nên $(p-\dfrac{1}{2})(x-y) \geq 0$.

b) Vai trò của $x, y, z$ như nhau, ta có thể giả sử $x \leq y \leq z$.

Áp dụng câu a, ta cần chứng minh $x+y \geq 16xyz$.

Ta có $4xy \leq (x+y)^2$, suy ra $16xyz \leq 4z(x+y)^2 = 4z(1-z)(x+y)$.

Mà $4z(1-z) \leq (z+1-z)^2 = 1$.

Do đó $16xyz \leq x+y$ (điều cần chứng minh).

Ví dụ 5: (PTNK Chuyên toán 2013) Cho $x, y$ là hai số không âm thỏa $x^3+y^3 \le x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.

b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

Giải

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.

Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. Suy ra $0\leq x \leq 1$.

Do đó $0 \leq y \leq x \leq 1$.

b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.

Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.

Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.

Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Ví dụ 6: Cho các số $x, y, z$ thỏa $|x| \leq 1, |y| \leq 1, |z| \leq 1$. Chứng minh rằng: $\sqrt{1-x^2} + \sqrt{1-y^2} + \sqrt{1-z^2} \leq \sqrt{9-(x+y+z)^2} $

Giải

Bình phương hai vế của bất đẳng thức, ta được bất đẳng thức tương đương:

$ 3-x^2-y^2-z^2 + 2\sqrt{1-x^2}\sqrt{1-y^2} + 2\sqrt{1-y^2}\sqrt{1-z^2}  + 2\sqrt{1-z^2}\sqrt{1-x^2} \leq 9-(x+y+z)^2\\ \Leftrightarrow \sqrt{1-x^2}\sqrt{1-y^2} + \sqrt{1-y^2}\sqrt{1-z^2} + \sqrt{1-z^2}\sqrt{1-x^2}  \leq 3-xy-yz-xz  $

Để hoàn tất chứng minh, ta cần chứng minh $\sqrt{1-x^2}\sqrt{1-y^2} \leq 1-xy (*)$.

Thật vậy do $1-xy\geq 0$ nên (*) tương đương với $(1-x^2)(1-y^2) \leq (1-xy)^2 \Leftrightarrow (x-y)^2 \geq 0$ (đúng).

2. Bài tập

Bài 1: Chứng minh các bất đẳng thức sau:

a) $a^2+b^2+1 \ge ab+a+b$

b) $a^2+b^2+c^2+d^2 +e^2 \ge a(b+c+d+e)$

c) $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$

Bài 2: Cho $x,y >0$. Chứng minh $\dfrac{x^2}{y}+\dfrac{y^2}{x} \ge x+y$

Bài 3: Với mọi $x, y \ne 0$. Chứng minh

a) $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \ge \dfrac{x}{y}+\dfrac{y}{x}$

b) $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4 \ge 3(\dfrac{x}{y}+\dfrac{y}{x})$.

Bài 4: Cho $x,y \ge 1$. Chứng minh $\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2} \ge \dfrac{2}{1+xy}$.

Bài 5: Cho $x,y>0$. Chứng minh rằng $\dfrac{1}{(1+x)^2}+\dfrac{1}{(1+y)^2} \ge \dfrac{1}{1+xy}$.

Bài 6: Cho $a>0$. Chứng minh $\dfrac{a}{a^2+1}+\dfrac{5(a^2+1)}{2a} \ge \dfrac{11}{2}$.

Bài 7: Cho $ab \ne 0$. Chứng minh $\dfrac{4a^2b^2}{(a^2+b^2)^2}+\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2} \ge 3$.

Bài 8: Cho $a,b>0$. Chứng minh $\dfrac{a^2b}{2a^3+b^3}+\dfrac{2}{3} \ge \dfrac{a^2+2ab}{2a^2+b^2}$.

Bài 9: Cho $a^2+b^2 \ne 0$. Chứng minh$\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2} \le \dfrac{3}{5}$.

Bài 10: Cho $a,b,c,d>0$. Chứng minh rằng nếu $\dfrac{a}{b}<1$ thì $\dfrac{a}{b}< \dfrac{a+c}{b+c}$. Từ đó suy ra

a) $\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}<2$

b) $1<\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}<2$

c) $2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}<3$.

Phương trình nghiệm nguyên – Phương pháp đồng dư thức

1. Phương pháp đồng dư thức

Ví dụ 1: Giải phương trình $ x^3 +21y^3+5=0 $

Giải

Ta có với mọi $x$ thì $ x^3\equiv 0, 1, -1 \ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $

Do đó phương trình vô nghiệm.

Ví dụ 2: Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $

Giải

Với mọi số nguyên $x$ thì $ 6^x \equiv 1\ (mod\ 5) $

Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3: Tìm nghiệm nguyên dương của phương trình $7^x – 9^y = 4$

Giải

Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv (-1)^x (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.

Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.

Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4: Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$

Giải

+ Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.

+ Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).

+ Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.

Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ.

Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.

Ta có: $5^6 \equiv 1 (\mod 9)$ suy ra $5^x \equiv 5\  (\mod 9)$ nếu $x \equiv 1\ (\mod 6)$;

 $5^x \equiv -1\  (\mod 9)$ khi $x \equiv 3 \ (\mod 6)$;

 $5^x \equiv 2 \ (\mod 9)$ khi $x \equiv 5\ (\mod 6)$.

Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó  $3^x + 5^x = y^3$ khi $ x \equiv 3 \ (\mod 6)$.

Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.

Do đó phương trình vô nghiệm.

Vậy nghiệm của phương trình là $(1,2,3)$.

2. Bài tập rèn luyện

Bài 1: Tìm nghiệm nguyên của các phương trình sau:

a) $2^x-3^y=1$;

b) $2^x-3^y=7$;

c) $2^x+3^y=z^2$;

d) $3^x+4^y=5^z$;

e) $3^x+4^y=7^z$.

Bài 2: (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.

b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

Bài 3: (PTNK 2009)

a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$

b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Phương trình đưa về phương trình bậc nhất

1.Cách giải

Khi giải phương trình, chúng ta thường tìm cách biến đổi (dùng quy tắc chuyển vế hay quy tắc nhân) để đưa phương trình đó về dạng biết cách giải (đơn giản nhất là dạng $ax+b=0$ hay $ax=-b$).

2.Chú ý

  • Trong một vài trường hợp, ta còn có những cách biến đổi khác đơn giản hơn (ngoài việc bỏ dấu ngoặc và quy đồng mẫu).
  • Qúa trình giải có thể dẫn đến các trường hợp đặc biệt là hệ số của ẩn bằng $0$. Khi đó, phương trình có thể vô nghiệm hoặc nghiệm đúng với mọi $x$.

3. Ví dụ: Giải các phương trình sau:
a) $ 2(x-3)=12 $

Giải

$ 2(x-3)=12 $

$\Leftrightarrow 2x-6=12$

$\Leftrightarrow 2x=18$

$\Leftrightarrow x=9$

Tập nghiệm của phương trình: $S=\{9\}.

 

b)  $ x-(8+x)=4 $

Giải

$ x-(8+x)=4 $

$\Leftrightarrow x-8-x=4$

$\Leftrightarrow 0x=12$

$\Leftrightarrow 0=12 $ (vô lý)

Vậy phương trình trên vô nghiệm.

c) $ \dfrac{7x-1}{6}+2x=$ \dfrac{16-x}{5} $

Giải

$ \dfrac{5(7x-1)}{30}+\dfrac{30 \cdot 2x}{30}=$ \dfrac{6(16-x)}{30} $

$\Leftrightarrow 35x-5+60x=96-6x$

$\Leftrightarrow 95x-5=96-6x$

$\Leftrightarrow 95x+6x=96+5$

$\Leftrightarrow 101x=101$

$\Leftrightarrow x=1$

Tập nghiệm của phương trình: $S=\{1\}.

d)  $ (x+3)^2=x^2+4x $

Giải

$ (x+3)^2=x^2+4x $

$\Leftrightarrow x^2+6x+9=x^2+4x$

$\Leftrightarrow x^2-x^2+6x-4x=-9$

$\Leftrightarrow 2x=-9$

$\Leftrightarrow x=-\dfrac{9}{2}$

Tập nghiệm của phương trình: $S=\{-\dfrac{9}{2}\}.

4. Bài tập

Bài 1. Giải các phương trình sau:

a) $ 4x+20=0 $
b)  $ 2x-3=3(x-1)+x+2 $
c) $ (x-1)(x+3)=x^2+4 $
d) $ x-(x+2)(x-3)=4-x^2 $.

Bài 2. Giải các phương trình ẩn $ x $ sau:

a) $ \dfrac{x+2}{5}=3 $
b) $ \dfrac{3x-2}{7}=4 $
c) $\dfrac{x-2}{3}=1 $
d) $ \dfrac{x}{2}=x+5 $.

Bài 3. Giải các phương trình sau:

a) $ (x-1)^2+(x+3)^2=2(x-2)(x+1)+38 $
b) $ 5(x^2-2x-1)+2(3x-2)=5(x+1)^2 $
c) $(x-3)^3-2(x-1)=x(x-2)^2-5x^2 $
d) $ x(x+3)^2-3x=(x+2)^3+1 $.

Bài 4. Tìm giá trị của $ m $ sao cho phương trình:

a) $ 12-2(1-x)^2=4(x-m)-(x-3)(2x+5) $ có nghiệm $ x=3. $
b) $ (9x+1)(x-2m)=(3x+2)(3x-5) $ có nghiệm $ x=1. $

Phương trình bậc nhất một ẩn

1.Định nghĩa phương trình bậc nhất một ẩn

Phương trình dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \neq 0$, được gọi là phương trình bậc nhất một ẩn.

2. Hai quy tắc biến đổi phương trình

a) Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

b) Quy tắc nhân với một số: Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác $0$.

3. Cách giải phương trình bậc nhất một ẩn

  • Từ một phương trình, dùng quy tắc chuyển vế hay quy tắc nhân, ta luôn nhận được một phương trình mới tương đương với phương trình đã cho.
  • Phương trình bậc nhất $ax+b=0$ (với $a \neq 0$) được giải như sau:

$ax+b=0 \Leftrightarrow ax=-b \Leftrightarrow x = -\dfrac{b}{a}$

Vậy phương trình bậc nhất $ax+b=0$ luôn có một nghiệm duy nhất $x = -\dfrac{b}{a}$.

Ví dụ 1: 

Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) $ 1-x=0 $
b) $ x^3+1=0 $
c) $ 2+t=0 $
d) $ y=0 $
e) $ 0x-2=0 $.

Giải
  • Phương trình $ 1-x=0 $ là phương trình bậc nhất ẩn $x$ (vì có dạng $ax+b=0$ với $a=-1; b=1$).
  • Phương trình $ 2+t=0 $ là phương trình bậc nhất ẩn $t$ (vì có dạng $at+b=0$ với $a=1; b=2$).
  • Phương trình $ y=0 $ là phương trình bậc nhất ẩn $y$ (vì có dạng $ay+b=0$ với $a=1; b=0$).

Các phương trình còn lại không phải phương trình bậc nhất.

Ví dụ 2: 

Giải các phương trình:
a) $ 4x-12=0 $
b)  $ 5x+x+18=0 $
c) $ x-3=1-4x $
d) $ 6-2x=3-x $.

Giải

a) $ 4x-12=0 $

$\Leftrightarrow 4x=12$

$\Leftrightarrow x=12:4$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

b)  $ 5x+x+18=0 $

$\Leftrightarrow 6x+18=0$

$\Leftrightarrow 6x=-18$

$\Leftrightarrow x=-18:6$

$\Leftrightarrow x=-3$

Vậy tập nghiệm của phương trình là $S=\{-3\}$.

c) $ x-3=1-4x $

$\Leftrightarrow x+4x=1+4$

$\Leftrightarrow 5x=5$

$\Leftrightarrow x=5:5$

$\Leftrightarrow x=1$

Vậy tập nghiệm của phương trình là $S=\{1\}$.

d) $ 6-2x=3-x $

$\Leftrightarrow -2x+x=3-6$

$\Leftrightarrow -x=-3$

$\Leftrightarrow x=-3:(-1)$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

 

Ví dụ 3: 

Tìm giá trị của $ m, $ biết rằng phương trình: $ -4x^2+m^2=6x $ có nghiệm là $ x=\dfrac{1}{2} $.

Giải

Thay $ x=\dfrac{1}{2} $ vào $ -4x^2+m^2=6x $, ta được:

$ -4 \cdot \left(\dfrac{1}{2}\right)^2+m^2=6 \cdot \dfrac{1}{2} $

$\Leftrightarrow -1+m^2=3$

$\Leftrightarrow m^2=4$

$\Leftrightarrow m=2$ hoặc $m=-2$

Vậy $m=2$ hoặc $m=-2$.

 

4. Bài tập áp dụng

Bài 1. Trong các phương trình sau, phương trình nào là phương trình bậc nhất:
a) $ 3+3x=0 $
b) $ 5-4y=0 $
c) $ z^2-2z=0 $
d) $ 7t=0 $.

Bài 2. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
a) $ 2x^2-3=0 $
b) $ x+5=0 $
c) $ 0x-10=0 $
d)  $ x^2+2x-3=0 $.

Bài 3. Giải các phương trình:
a) $ x+5=7 $
b) $ 3=x-2 $
c) $ 2x=7+x $
d) $ 3x+1=5x+2 $.

Bài 4. Giải các phương trình:
a) $ 5x+35=0 $
b) $ 9x-3=0 $
c) $ 24-8x=0 $
d) $ -6x+16=0 $.

Bài 5. Giải các phương trình:
a) $ 7x-5=13-5x $
b) $ 2-3x=5x+10 $
c) $ 13-7x=4x-20 $
d) $ 11-9x=3-7x $.

Bài 6. Giải các phương trình sau:
a) $ \dfrac{3x}{4}=6 $
b) $ \dfrac{3}{5}x=-12 $
c) $ 7+\dfrac{5x}{3}=x-2 $
d) $ 1+\dfrac{x}{9}=\dfrac{4}{3} $.

Bài 7. Giải các phương trình sau, viết số gần đúng của mỗi nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
a) $ 3x=13 $
b) $ 16+9x=0 $
c) $ 6-2x=7x $

Bài 8. Tìm giá trị của $ m, $ sao cho phương trình sau nhận $ x=-3 $ làm nghiệm:
$ 4x+3m=3-2x. $

Bài 9. Cho hai phương trình ẩn $ x: \ 3x+3=0 \ (1); 5-kx=7 \ (2) $. Tìm giá trị của $ k $ sao cho nghiệm của phương trình $ (1) $ là nghiệm của phương trình $ (2) $.

Đề và đáp án ôn thi học kì 1 – Toán 8

Thời gian trôi qua rất nhanh, mới ngày nào bước vào năm học giờ đã chuẩn bị thi học kì một. Trong giai đoạn ôn thi căng thẳng này, các em cần phải chú một số điều sau đây:

  • Tổng hợp các kiến thức đã học, làm lại các dạng bài tập thầy cô hay ra.
  • Chỗ nào hổng phải hỏi bạn, hỏi thầy để được khắc phục ngay lập tức.
  • Rủ các bạn học chung để đạt hiệu quả cao nhất.
  • Giải các đề ôn tập là một trong những việc quan trọng giúp hệ thống kiến thức và rèn luyện trình bày bài toán, ngoài ra còn phải canh thời gian để làm kịp giờ.

Để giúp các em ôn thi tốt các Giáo viên trẻ của Star Education có chọn lựa và giải một số đề toán ôn thi học kì một. Chúc các em thành công.

Link Download

STAR_L8_ON-TAP_1920 (1) (Phiên bản V1.1 – sẽ update chỉnh sửa sau)