Tag Archives: M

Rút gọn biến đổi căn thức nâng cao

Ví dụ 1: Rút gọn các biểu thức sau:

a) $\left( \dfrac {\sqrt {x}-1}{\sqrt {x}+1} -\dfrac {\sqrt {x}+1}{\sqrt {x}-1}\right).\left( \sqrt {x} -\dfrac {1}{\sqrt {x}}\right) $ với $x> 0$, $x \ne 1$

b) $\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$ với $x\ge 0$, $x\ne 1$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$ với $a>0$, $a\ne 1$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $ với $x\ge 0$, $y\ge 0$, $xy\ne 1$

Giải

a) $\left( \dfrac{\sqrt x – 1}{\sqrt x + 1} – \dfrac{\sqrt x + 1}{\sqrt x – 1} \right).\left( \sqrt x – \dfrac{1}{\sqrt x } \right)$

$= \dfrac{\left( \sqrt x – 1 \right)^2 – \left( \sqrt x + 1 \right)^2}{\left( \sqrt x + 1 \right)\left( \sqrt x – 1\right)}. \dfrac{x – 1}{\sqrt x } $

$ = \dfrac{ – 4\sqrt x }{x – 1}.\dfrac{x – 1}{\sqrt x } = – 4$

b)$\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$

$=\dfrac {15\sqrt {x}-11}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{\left( 3\sqrt x-2\right) \left(\sqrt x+3\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{3\left( \sqrt x-1\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)}$

$=\dfrac{-3x+5\sqrt x-2}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }=\dfrac{-\left( \sqrt x-1\right) \left( 3\sqrt x-2\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)} =\dfrac{2-3\sqrt x}{\sqrt x+3}$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$

$=\dfrac{a-1}{\sqrt a\left( \sqrt a-1\right) }:\dfrac{\sqrt a-1+2}{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }$

$=\dfrac{a-1 }{\sqrt a\left( \sqrt a-1\right) }.\dfrac{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }{\sqrt a+1}=\dfrac{a-1}{\sqrt a}$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $

$=\dfrac{\left( \sqrt x-\sqrt y\right) \left( 1-\sqrt {xy}\right) +\left( \sqrt x+\sqrt y\right) \left( 1+\sqrt {xy}\right) }{\left( 1+\sqrt {xy}\right) \left( 1-\sqrt {xy}\right) }:\dfrac{ x+y+xy+1}{1-xy}$

$=\dfrac{2\sqrt x+2y\sqrt x}{1-xy}.\dfrac{1-xy}{x+y+xy+1}$

$=\dfrac{2\sqrt x\left( y+1\right) }{\left( x+1\right) \left( y+1\right) }=\dfrac{2\sqrt x}{x+1}$

Ví dụ 2: Chứng minh với mọi giá trị của $x$ để biểu thức có nghĩa thì giá trị của:

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

không phụ thuộc vào $x$.

Giải

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

$A=\dfrac{\left( \sqrt x+1\right)^2+3.2-\left( \sqrt x+3\right) \left( \sqrt x-1\right) }{2\left( \sqrt x+1\right) \left( \sqrt x-1\right) }.\dfrac{4x-4}{5}$

$A=\dfrac{9}{2\left( x-1\right) }.\dfrac{4\left( x-1\right) }{5}=\dfrac {18}{5}$

Vậy biểu thức $A$ không phụ thuộc vào $x$.

Ví dụ 3: Cho biểu thức $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

a) Chứng minh $A=\sqrt {1-x}$.

b) Tính $x$ khi $A=\dfrac{1}{2}$.

Giải

a) $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

$A=\left( \dfrac {3}{\sqrt {1+x}}+\sqrt {1-x}\right) :\dfrac {3+\sqrt {1-x^2}}{\sqrt {1-x^2}}$

$A=\dfrac {3+\sqrt {1-x^2}}{\sqrt {1+x}}.\dfrac {\sqrt {1-x^2}}{3+\sqrt {1-x^2}}$

$A=\dfrac {\sqrt {1-x}.\sqrt {1+x}}{\sqrt {1+x}}=\sqrt {1-x}$

Vậy $A=\sqrt {1-x}$

b) $A=\dfrac{1}{2}$

$ \Rightarrow \sqrt {1-x}=\dfrac{1}{2}$

$\Rightarrow 1-x=\dfrac {1}{4}$

$\Rightarrow x=\dfrac {3}{4}$ $(n)$

Vậy $x=\dfrac {3}{4}$

Bài tập:

Bài 1: Rút gọn các biểu thức sau:

a) $\left( 2+\dfrac {a-\sqrt a}{\sqrt a-1}\right) \left( 2-\dfrac {a+\sqrt a}{\sqrt a+1}\right) $ với $a\ge 0$, $a\ne 1$

b) $\left( \dfrac {y}{\sqrt y}-\dfrac {\sqrt y}{\sqrt y+1}\right) :\dfrac {\sqrt y}{y+\sqrt y}$ với $y>0$

c) $\left( \dfrac {x\sqrt x+1}{x\sqrt x+x+\sqrt x+1}-\dfrac {\sqrt x}{x+1}\right) :\dfrac {\sqrt x-1}{x+1}$ với $x\ge 0$, $x\ne 1$

d) $\left( \dfrac {1}{\sqrt x}-\dfrac {1}{x}\right):\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {\sqrt x+2}{\sqrt x-1}\right) $ với $x>0$, $x\ne 1$, $x\ne 4$

e) $\dfrac {\sqrt x+7x+13}{x+3\sqrt x-10}+\dfrac {\sqrt x+5}{2-\sqrt x}-\dfrac {\sqrt x-4}{\sqrt x+5}$ với $x\ge 0$, $x\ne 4$

f) $\left( \dfrac {\left( 16-\sqrt a\right) \sqrt a}{a-4}+\dfrac {3+2\sqrt a}{2-\sqrt a}-\dfrac {2-3\sqrt a}{\sqrt a+2}\right) :\dfrac {1}{a+4\sqrt a+4}$ với $a\ge 0$, $a\ne 4$

Bài 2: Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của $x$, $y$

$A=\dfrac {\sqrt y}{\sqrt x-\sqrt y}-\dfrac {x\sqrt x-y\sqrt x}{x+y}.\left( \dfrac {\sqrt x}{\left( \sqrt x-\sqrt y \right)^2}-\dfrac {\sqrt y}{x-y}\right) $

Bài 3: Cho biểu thức $P=\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {2}{x-4}\right) \left( \sqrt x-1+\dfrac {\sqrt x-4}{\sqrt x}\right) $

a) Chứng minh $P=\sqrt x+3$.

b) Tìm tất cả các giá trị của $x$ sao cho $P=x+3$.

Bài 4: Cho biểu thức $P=\dfrac {3x+\sqrt x}{x+\sqrt x}+\dfrac{ 3\left( x-\sqrt x+1\right) }{x\sqrt x+1}$ với $x>0$

a) Rút gọn biểu thức $P$.

b) Chứng minh $P<4$.

Bài 5: Cho biểu thức $P=\left( \dfrac {\sqrt x}{2}-\dfrac {1}{2\sqrt x}\right) \left( \dfrac {x-\sqrt x}{\sqrt x+1}-\dfrac {x+\sqrt x}{\sqrt x-1}\right) $

Rút gọn biểu thức $P$. Tìm $x$ để $P>-6$.

Rút gọn biến đổi căn thức chứa biến và các bài toán liên quan

Ví dụ 1: Cho biểu thức:

$P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

a) Rút gọn $P$.

b) Tìm giá trị nhỏ nhất của $P$.

Giải

a) $P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

$P=\dfrac {2\sqrt x\left( \sqrt x-3\right) +\sqrt x\left( \sqrt x+3\right) -3x-3}{\left( \sqrt x-3\right) \left( \sqrt x+3\right) }:\dfrac {2\sqrt x-2-\sqrt x+3}{\sqrt x-3}$

$P=\dfrac {-3\sqrt x-3}{\left( \sqrt x+3\right) \left( \sqrt x-3\right) }.\dfrac {\sqrt x-3}{\sqrt x+1}$

$P=\dfrac {-3}{\sqrt x+1}$

b) Ta có: $P=\dfrac {-3}{\sqrt x+1}\ge -3$, $\forall x\ge 0$

Vậy giá trị nhỏ nhất của $P$ bằng $-3$  khi $x=0$

Ví dụ 2: Cho biểu thức:

$M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $ ($x>0$, $x\ne 4$)

a) Rút gọn $M$.

b) Tìm các giá trị nguyên của $x$ để $M$ nhận giá trị nguyên.

Giải

a) $M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $

$M=\dfrac {\sqrt x\left( \sqrt x-2\right) -x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }:\dfrac {2\sqrt x-1-\sqrt x+2}{\sqrt x\left( \sqrt x-2\right)} $

$M=\dfrac {-2\sqrt x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }.\dfrac {\sqrt x\left( \sqrt x-2\right) }{\sqrt x+1}$

$M=\dfrac {-2\sqrt x}{\sqrt x+1}$

b) Ta có: $M=\dfrac {-2\sqrt x}{\sqrt x+1}=\dfrac {-2\left( \sqrt x+1\right) +2}{\sqrt x+1}=-2+\dfrac {2}{\sqrt x+1}$

$M$ nhận giá trị nguyên khi $\left( \sqrt x+1\right)  \in \{1;2\}$ ($x>0$, $ x\in \mathbb{Z}$)

Với  $\sqrt x+1=1 \Leftrightarrow x=0$  $(l)$

Với  $\sqrt x+1=2 \Leftrightarrow x=1$  $(n)$

Vậy với $x=1$ thì $M$ nhận giá trị nguyên là $-1$

Bài tập:

Bài 1: Cho biểu thức:

$P=\dfrac {x^2-\sqrt x}{x+\sqrt x+1}-\dfrac {2x+\sqrt x}{\sqrt x}+\dfrac {2\left( x-1\right) }{\sqrt x-1}$

Rút gọn $P$ và tìm giá trị nhỏ nhất của $P$.

Bài 2: Cho biểu thức:

$A=\dfrac {15\sqrt x-11}{x+2\sqrt x-3}-\dfrac {3\sqrt x-2}{\sqrt x-1}-\dfrac {2\sqrt x+3}{\sqrt x+3}$

Rút gọn $A$ và tìm giá trị lớn nhất của $A$.

Bài 3: Cho biểu thức:

$P=\dfrac {1}{\sqrt x-1}-\dfrac {x\sqrt x-\sqrt x}{x+1}\left( \dfrac {1}{x-2\sqrt x+1}+\dfrac {1}{1-x}\right) $

a) Rút gọn biểu thức $P$. Tìm $x$ để $P=-\dfrac {2}{5}$.

b) Tìm $x$ nguyên để $\sqrt x$, $\dfrac {1}{P}$ cũng là số nguyên.

Bài 4:  Cho biểu thức:

$A=\left( \dfrac {1}{x+\sqrt x}-\dfrac {2-\sqrt x}{\sqrt x+1}\right) :\left( \dfrac {1}{x}+x-2\right) $

Rút gọn biểu thức $A$. Tìm số chính phương $x$ để $3A$ là số nguyên.

Bài 5:  Cho biểu thức:

$A=\dfrac {7}{\sqrt x+8}$ và $B=\dfrac {\sqrt x}{\sqrt x-3}+\dfrac {2\sqrt x-24}{x-9}$ với $x\ge 0$, $x\ne 9$

a) Chứng minh $B=\dfrac {\sqrt x+8}{\sqrt x+3}$.

b) Tìm $x$ để biểu thức $P=A.B$ có giá trị là số nguyên$.

Bài 6:  Cho biểu thức:

$M=\left( 2+\dfrac {x+\sqrt x}{\sqrt x+1}\right) \left( 1-2\sqrt x-x+\dfrac {1-x\sqrt x}{1-\sqrt x}\right) $

a) Tìm điều kiện của $x$ để biểu thức $M$ có nghĩa. Rút gọn biểu thức $M$.

b) Tìm giá trị của $x$ để biểu thức $P=\dfrac {2}{M}$ nhận giá trị là số nguyên.

Bài 7: Rút gọn biểu thức:

$T=\dfrac {2\sqrt a+\sqrt b}{\sqrt {ab} +2\sqrt a-\sqrt b-2}-\dfrac {2-\sqrt {ab}}{\sqrt {ab}+2\sqrt a+\sqrt b+2}$

với $a, b\ge 0$, $a\ne 1$. Tìm giá trị lớn nhất của $T$ khi $a$ là số tự nhiên khác $1$.

Phân tích đa thức thành nhân tử – Phương pháp đặt ẩn phụ

  1. Đặt ẩn phụ dạng đa thức

Ví dụ: Phân tích đa thức thành nhân tử

a) $ 4x^4 -37x^2+9 .$
b) $ (x-y)^2 +4x-4y -12. $
c)  $ (x^2 + 3x)^2 + 7x^2 +21x +10 $

Giải

a) $ 4x^4 -37x^2+9 $

Đặt $t=x^2, t \geq 0$

Ta có:

$4t^2-37t+9$

$=4t^2-t-36t+9$

$=t(4t-1)-9(4t-1)$

$=(4t-1)(t-9)$

Vậy

$ 4x^4 -37x^2+9$

$=(4x^2-1)(x^2-9)$

$=(2x-1)(2x+1)(x-3)(x+3). $

b) $ (x-y)^2 +4x-4y -12=(x-y)^2+4(x-y)-12$

Đặt $t=x-y$

Ta có:

$(x-y)^2+4(x-y)-12$

$=t^2+4t-12$

$=t^2-2t+6t-12$

$=t(t-2)+6(t-2)$

$=(t-2)(t+6)$

Vậy

$ (x-y)^2 +4x-4y -12$

$=(x-y)^2+4(x-y)-12$

$=(x-y-2)(x-y+6).$

c)  $ (x^2 + 3x)^2 + 7x^2 +21x +10 =(x^2 + 3x)^2+7(x^2 + 3x)+10 $

Đặt $t=x^2 + 3x$

Ta có:

$t^2+7t+10$

$=t^2+2t+5t+10$

$=t(t+2)+5(t+2)$

$=(t+2)(t+5)$

Vậy

$ (x^2 + 3x)^2 + 7x^2 +21x +10$

$=(x^2 + 3x)^2+7(x^2 + 3x)+10$

$=(x^2 + 3x+2)(x^2 + 3x+5).  $

2. Đặt ẩn phụ dạng $ (x+a)(x+b)(x+c)(x+d)+e $ với $ (a+d = b+c). $

Ví dụ: Phân tích đa thức thành nhân tử

a) $(x+1)(x+2)(x+3)(x+4) – 24$.
b)  $ (x+2)(x+4)(x+6)(x+8)+16. $
c)$ (x^2 + 6x +8)(x^2+8x+15) -24. $

Giải

a) $(x+1)(x+2)(x+3)(x+4) – 24$

$=(x+1)(x+4)(x+2)(x+3)-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

Đặt $t=x^2+5x+5$

Suy ra

$(x^2+5x+4)(x^2+5x+6)-24$

$=(t-1)(t+1)-24$

$=t^2-1-24$

$=t^2-25=(t-5)(t+5)$

Vậy $(x^2+5x+4)(x^2+5x+6)-24$

$=(x^2+5x+5-5)(x^2+5x+5+5)$

$=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

b)  $ (x+2)(x+4)(x+6)(x+8)+16$

$=(x+2)(x+8)(x+4)(x+6)+16$

$=(x^2+10x+16)(x^2+10x+24)+16 $

Đặt $t=x^2+10x+20$

Suy ra

$(x^2+10x+16)(x^2+10x+24)+16$

$=(t-4)(t+4)+16$

$=t^2-16+16=t^2 $

Vậy

$(x^2+10x+16)(x^2+10x+24)+16$

$=(x^2+10x+20)^2 $
c)$ (x^2 + 6x +8)(x^2+8x+15) -24$

$=(x+2)(x+4)(x+3)(x+5)-24$

$=(x+2)(x+5)(x+3)(x+4)-24$

$=(x^2+7x+10)(x^2+7x+12)-24 $

Đặt $t=x^2+7x+11$

Suy ra

$(x^2+7x+10)(x^2+7x+12)-24$

$=(t-1)(t+1)-24$

$=t^2-1-24$

$=t^2-25$

$=(t-5)(t+5)$

Vậy

$(x^2+7x+10)(x^2+7x+12)-24$

$=(x^2+7x+11-5)(x^2+7x+11+5)$

$=(x^2+7x+6)(x^2+7x+16)$

 

3. Đặt biến phụ dạng đẳng cấp.

Ví dụ: Phân tích các đa thức sau thành nhân tử:
a)  $ (x^2 + 1)^2 + 3x(x^2+1) +2x^2. $
b)  $ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2. $
c)  $ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2. $

Giải

a)  $(x^2 + 1)^2 + 3x(x^2+1) +2x^2$

Đặt $ t=x^2+1$, ta được:

$t^2+3xt+2x^2$

$=(t^2+xt)+(2xt+2x^2)$

$=t(t+x)+2x(t+x)$

$=(t+x)(t+2x)$

Vậy

$ (x^2 + 1)^2 + 3x(x^2+1) +2x^2$

$=(x^2+1+x)(x^2+1+2x)$.

b)  $ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2. $

Đặt $ t=x^2+4x+8$, ta được:

$t^2+3xt+2x^2$

$=(t^2+xt)+(2xt+2x^2)$

$=t(t+x)+2x(t+x)$

$=(x+t)(t+2x)$

Vậy

$ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2$

$=(x+x^2+4x+8)(x^2+4x+8+2x)$

$=(x^2+5x+8)(x^2+6x+8)$.
c)  $ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2. $

Đặt $ t=x^2+x+1$, ta được:

$4t^2+5xt+x^2$

$=(4t^2+4xt)+(xt+x^2)$

$=4t(t+x)+x(t+x)$

$=(x+t)(4t+x)$

Vậy

$ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2$

$=(x^2 +x +1+x)[4(x^2 +x +1)+x]$

$=(x+1)^2(4x^2+5x+4)$.

 

4. Đặt biến phụ dạng hồi quy $ ax^4 + bx^3 + cx^2 + dx + e = 0. \left(\dfrac{a}{e} =\left( \dfrac{b}{d}\right)^2\right) $. Hay $ e = \left(\dfrac{d}{b}\right)^2. $

Cách giải:  Đặt biến phụ $ t = x^2 + \dfrac{d}{b} $ và biến đổi đa thức trên về dạng chứa hạng tử $ t^2 +bxy + zx^2 $ rồi sử dụng hằng đẳng thức.

Ví dụ: Phân tích các đa thức sau thành nhân tử.
a)  $ x^4 + 6x^3 +11x^2 + 6x+1 $
b) $ x^4 + 5x^3 -12x^2 + 5x +1. $
c) $ 6x^4 + 5x^3 -38x^2 + 5x+ 6. $

Giải

a)  $ x^4 + 6x^3 +11x^2 + 6x+1$

$=x^2\left(x^2+6x+11+\dfrac{6}{x}+\dfrac{1}{x^2}\right)$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+6\left(x+\dfrac{1}{x}\right)+11\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+6\left(x+\dfrac{1}{x}\right)+11\right]$

$=x^2(t^2-2+6t+11)$

$=x^2(t^2+6t+9)$

$=x^2(t+3)^2$

$=x^2\left(x+\dfrac{1}{x}+3\right)^2.$
b) $ x^4 + 5x^3 -12x^2 + 5x +1. $

$=x^2\left(x^2+5x-12+\dfrac{5}{x}+\dfrac{1}{x^2}\right)$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12\right]$

$=x^2(t^2-2+5t-12)$

$=x^2(t^2+5t-14)$

$=x^2(t^2-2t+7t-14)$

$=x^2[t(t-2)+7(t-2)]$

$=x^2(t-2)(t+7)$

$=x^2\left(x+\dfrac{1}{x}-2\right)\left(x+\dfrac{1}{x}+7\right).$

c) $ 6x^4 + 5x^3 -38x^2 + 5x+ 6. $

$=x^2\left(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}\right)$

$=x^2\left[6\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-38\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$=x^2\left[6\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-38\right]$

$=x^2[6(t^2-2)+5t-38]$

$=x^2(6t^2-12+5t-38)$

$=x^2(6t^2+5t-50)$

$=x^2(6t^2-15t+20t-50)$

$=x^2(2t-5)(3t+10)$

$=x^2\left[2\left(x+\dfrac{1}{x}\right)-5\right]\left[3\left(x+\dfrac{1}{x}\right)+10\right].$

 

5. Đặt biến phụ dạng $(x+a)(x+b)(x+c)(x+d)+ex^2 $ với $ (ad= bc) .$

Ví dụ: Phân tích đa thức thành nhân tử

a) $ (x+1)(x-4)(x+2)(x-8) + 4x^2. $
b)  $ (x-1)(x+2)(x+3)(x-6)+32x^2. $
c) $ (x+2)(x-4)(x+6)(x-12) +36x^2. $

Giải

a) $ (x+1)(x-4)(x+2)(x-8) + 4x^2. $

$=(x+1)(x-8)(x-4)(x+2)+4x^2$

$=(x^2-7x-8)(x^2-2x-8)+4x^2$

Đặt $t=x^2-8 $

$(x^2-7x-8)(x^2-2x-8)+4x^2$

$=(t-7x)(t-2x)+4x^2$

$=t^2-9xt+14x^2+4x^2$

$=t^2-9xt+18x^2$

$=t^2-3xt-6xt+18x^2$

$=t(t-3x)-6x(t-3x)$

$=(t-3x)(t-6x)$

$=(x^2-8-3x)(x^2-8-6x).$
b)  $ (x-1)(x+2)(x+3)(x-6)+32x^2. $

$=(x-1)(x-6)(x+2)(x+3)+32x^2$

$=(x^2-7x+6)(x^2+5x+6)+32x^2$

Đặt $t=x^2+6 $

$(x^2-7x+6)(x^2+5x+6)+32x^2$

$=(t-7x)(t+5x)+32x^2$

$=t^2-2xt-35x^2+32x^2$

$=t^2-2xt-3x^2$

$=t^2+xt-3xt-3x^2$

$=t(t+x)-3x(t+x)$

$=(t+x)(t-3x)$

$=(x^2+6+x)(x^2+6-3x).$

c) $ (x+2)(x-4)(x+6)(x-12) +36x^2. $

$=(x+2)(x-12)(x-4)(x+6)+36x^2$

$=(x^2-10x-24)(x^2+2x-24)+36x^2$

Đặt $t=x^2-24 $

$=(x^2-10x-24)(x^2+2x-24)+36x^2$

$=(t-10x)(t+2x)+36x^2$

$=t^2-8xt-20x^2+36x^2$

$=t^2-8xt+16x^2$

$=(t-4x)^2$

$=(tx^2-24-4x)^2$.

 

Bài tập

Bài 1. Phân tích  các đa thức sau thành nhân tử:

a)  $ (x^2 +5x)^2 +10x^2 + 50x +24. $
b) $ x^2 + 6xy + 9y^2 – 3(x+3y)+1. $
c)  $ (x^2 +x + 1)(x^2 +x +2) -12. $
d) $(x^2+2x)^2-4(x^2+2x)+3.$
e)$(x^2+x+1)^2-4(x^2+x+1) – 5.$

Bài 2. Phân tích các đa thức sau thành nhân tử

a)  $(x^2+x-2)(x^2+9x+18) – 28$
b) $(x-1)(x-3)(x-5)(x-7)-20 $
c) $(x^2 + 5x+6)(x^2 -15x+56)-144 $
d)$x(x+1)(x+2)(x+3)+1$
e) $(x^2-11x+28)(x^2-7x+10)-72$c

Bài 3. Phân tích các đa thức sau thành nhân tử

a) $(x-3)(x-5)(x-6)(x-10) – 24x^2 $
b) $(x-1)(x+2)(x+3)(x-6) + 32x^2 $
c) $(x+2)(x+3)(x+8)(x+12)- 4x^2 $
d) $(x^2+1)^2 + 3x(x^2 + 1)+2x^2 $
e) $(x^2 -x+2)^4 – 3x^2(x^2-x+2)^2 + 2x^4$
Bài 4. Phân tích đa thức thành nhân tử

a) $x^3 – x^2 + x + 3$
b) $x^3 – 3x^2 – 5x +1$
c) $x^3 + 4x^2 – 2x -5$
d)  $2x^3 – 3x^2 – x + 4$
e)  $3x^3 – 2x^2 +5$
f) $-x^3 – 4x^2 + 2x +5$

Bài 5. Phân tích các đa thức sau thành nhân tử

a) $(x-1)(x-3)(x-5)(x-7)-20 $
b) $(x^2 + 5x+6)(x^2 -15x+56)-144 $
c) $x(x+1)(x+2)(x+3)+1$
d) $(x^2-11x+28)(x^2-7x+10)-72$
e) $(x^2+x-2)(x^2+9x+18) – 28$

 

 

Phân tích đa thức thành nhân tử – Phương pháp thêm bớt (tách) hạng tử

  1. Phương pháp tách hạng tử

Cách thực hiện: Với tam thức bậc hai: $ ax^2 + bx + c. $

  • Xét tích: $ a\cdot c $.
  • Phân tích $ a\cdot c $ thành tích của hai số nguyên.
  • Xét xem tích nào có tổng của chúng bằng $ b $, thì ta tách $ b $ thành 2 số đó, cụ thể như sau:
    $ b_1+b_2 = b$ và $ a \cdot c = b_1 \cdot b_2. $

Ví dụ 1 : Phân tích đa thức thành nhân tử.

a)  $ x^2 -7x +12. $
b)  $ x^2 – 5x -14. $
c) $ 4x^2 – 3x -1. $

Giải

a)  $ x^2 -7x +12=x^2-3x-4x+12$

$= (x^2-3x)-(4x-12)=x(x-3)-4(x-3)$

$=(x-3)(x-4).$
b)  $ x^2 – 5x -14=x^2-7x+2x-14$

$=(x^2-7x)+(2x-14)=x(x-7)+2(x-7)$

$=(x+2)(x-7) $
c) $ 4x^2 – 3x -1=4x^2-4x+x-1$

$=(4x^2-4x)+(x-1)=4x(x-1)+(x-1)$

$=(x-1)(4x+1). $

Với dạng $ax^2+bxy+cy^2$ ta cũng làm tương tự.

Ví dụ. Phân tích đa thức thành nhân tử:

a) $3x^2+10xy+3y^2$

b) $2x^2-9xy + 9y^2$.

Giải

a) $3x^2 + 10xy + 3y^2 = 3x^2 + xy + 9xy+3y^2$

$= x(3x+y) + 3y(3x+y)$

$=(3x+y)(x+3y)$.

b) $2x^2-9xy+9y^2 = 2x^2-3xy -6xy + 9y^2$

$=x(2x-3y) – 3y(2x-3y)$

$=(2x-3y)(x-3y)$.

2. Phương pháp thêm bớt cùng một hạng tử

Một số trường hợp ta thêm bớt để được hằng đẳng thức $(a+b)^2$ hoặc $a^3-b^3$.

Ví dụ 1. Phân tích đa thức thành nhân tử.
a) $ x^4 +4$
b)  $ 64x^4 +1. $
c)  $ 81x^4 +4. $

Giải

a) Phân tích: Ta thấy $x^4 + 4 = (x^2)^2 + 2^2$, để có hằng đẳng thức ta thêm bớt hạng tử $2.2x^2 = 4x^2$, khi đó ta có biến đổi sau:

$ x^4 +4=x^4+4x^2+4-4x^2$

$=(x^4+4x^2+4)-4x^2=(x^2+2)^2-(2x)^2$

$=(x^2+2+2x)(x^2+2-2x) $

Tương tự ta có thể làm cho các bài sau.
b)  $ 64x^4 +1=64x^4+16x^2+1-16x^2$

$=(8x^2+1)^2-(4x)^2$

$=(8x^2+1-4x)(8x^2+1+4x) $
c)  $ 81x^4 +4=81x^4+36x^2+4-36x^2$

$=(81x^4+36x^2+4)-36x^2$

$=(9x^2+2-6x)(9x^2+2+6x) $

 

Ví dụ 2. Phân tích đa thức $ x^5 + x +1 $ thành nhân tử

Giải

$ x^5 + x +1=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1$

$=(x^5+x^4+x^3)-(x^4+x^3+x^2)+(x^2+x+1)$

$=x^3(x^2+x+1)-x^2(x^2+x+1)+(x^2+x+1)$

$=(x^2+x+1)(x^3-x^2+1).$

Bài tập

Bài 1. Phân tích thành nhân tử:

a) $x^2+4x+3$
b) $x^2+6x+5$
c) $2x^2+5x+2$
Bài 2.  Phân tích đa thức sau thành phân tử

a) $ x^2 – 3x + 2 .$
b) $ x^2 + 5x + 6. $
c)   $ x^4 +4. $

Bài 3. Phân tích thành nhân tử

a) $2x^2+7x^2+5y^2$

b) $x^2-4xy-5y^2$.

Bài 4. Phân tích đa thức thành nhân tử

a)  $x^5 + x^4 + x^3 + x^2 + x+ 1$
b)  $ x^3 + x^2 – x+ 2$
c) $ x^5 – x^2 + x^3 – 1$
d)   $x^5 + x^4+ 1$

Đường thẳng qua điểm cố định. VMO 2014.

Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.

  1. Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
  2. Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.
Gợi ý

1.

  • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
  • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
  • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
  • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

2.

  • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
  • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
  • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
  • Vậy $AF$ luôn đi qua điểm $G$ cố định.

Ba đường thẳng đồng quy.

Bài toán. (PoP 1.11) Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.

  1. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn.
  2. Chứng minh $MP, NQ$ và $BC$ đồng quy.
Gợi ý

1.

  • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

2.

  • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
  • Gọi $V$ là giao điểm của $MP$ và $QN$.
  • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
  • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
  • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
  • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
  • Do đó $F, K, C$ thẳng hàng.

Trực tâm thuộc một đường cố định.

Bài toán. (PoP 1.10). Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.

  1. Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.
  2. Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.
Gợi ý
  1. Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
    $\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
    $BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
    Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
    Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
  2. Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.

Đường thẳng tiếp xúc đường tròn

Bài toán. (PoP1.6)  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.

Gợi ý

Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.

  • Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
  • Khi đó $AM, ZF, YE$ đồng quy tại $D$.
  • Chứng minh $E, M, F$ thẳng hàng.
  • Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
  • Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.