Author Archives: Hung Nguyen

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004

ĐỀ THI

 

Câu 1

Cho $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác. Hãy tìm giá trị nhỏ nhất của biểu thức:

$\quad\quad\quad\quad\quad\mathrm{T}=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Câu 2

Tìm nghiệm dương của phương trình:

$\quad\quad\quad\quad\quad 2 x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x-\frac{1}{x}}$

Câu 3

Cho $a_1, a_2, \ldots, a_n$ là các số nguyên dương đôi một phân biệt $(\mathrm{n} \geq 2)$ thỏa mãn điều kiện:$\sum_{\mathrm{j}=1}^{\mathrm{n}} \frac{1}{\mathrm{a}_{\mathrm{j}}}=1$ và $Max(a_j)=2 p$ (với $p$ là số nguyên tố)

Tìm tất cả các số $a_1, a_2, \ldots, a_n$.

Câu 4

Cho tam giác $\mathrm{ABC}$ có $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$. Đường tròn nội tiếp tam giác $\mathrm{ABC}$ tiếp xúc với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$.

Đặt $\mathrm{B}_1 \mathrm{C}_1=\mathrm{a}_1 ; \mathrm{C}_1 \mathrm{~A}_1=\mathrm{b}_1 ; \mathrm{A}_1 \mathrm{~B}_1=\mathrm{c}_1$.

Chứng minh rằng: $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2}\right) \geq 36$.

 

LỜI GIẢI

Câu 1

Cho $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác. Hãy tìm giá trị nhỏ nhất của biểu thức:

$\quad\quad\quad\quad\quad\mathrm{T}=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Lời Giải

$\quad\quad\quad\quad\quad T=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Ta có: $\sin ^6 \frac{\mathrm{A}}{2}+\left(\frac{1}{2}\right)^6+\left(\frac{1}{2}\right)^6 \geq 3\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^2 \sin ^2 \frac{\mathrm{A}}{2}$

hay $\sin ^6 \frac{\mathrm{A}}{2}+\frac{2}{64} \geq \frac{3}{16} \sin ^2 \frac{\mathrm{A}}{2}$

Dấu “=” xảy ra khi $\mathrm{A}=\frac{\pi}{3}$

Tương tự như thế ta sẽ có:

$\quad\quad\quad\quad\quad T+\frac{6}{64} \geq \frac{3}{16}\left(\sin ^2 \frac{A}{2}+\sin ^2 \frac{B}{2}+\sin ^2 \frac{C}{2}\right)$

$\quad\quad\quad\quad =\frac{3}{16}\left(\frac{3}{2}-\frac{1}{2}(\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C})\right)$

$\quad\quad\quad\quad =\frac{3}{16}\left(\frac{1-\cos \mathrm{A}}{2}+\frac{1-\cos \mathrm{B}}{2}+\frac{1-\cos \mathrm{C}}{2}\right)$

$\quad\quad\quad\quad\geq \frac{3}{16}\left(\frac{3}{2}-\frac{1}{2} \cdot \frac{3}{2}\right)=\frac{9}{64}$

Vậy $\mathrm{T} \geq \frac{3}{64} \Rightarrow \mathrm{T}_{\min }=\frac{3}{64} \Leftrightarrow$ tam giác $\mathrm{ABC}$ là tam giác đều.

Câu 2

Tìm nghiệm dương của phương trình:

$\quad\quad\quad\quad\quad 2 x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x-\frac{1}{x}}$

Lời Giải

Ta phải tìm nghiệm dương của phương trình: $2 x+\frac{x-1}{y}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x}$

$+$ Điều kiện $x \geq 1$

$+$ Đặt $t=\sqrt{1-\frac{1}{x}} \geq 0$

Phương trình thành:

$\quad\quad\quad\quad\quad\mathrm{t}^2-(1+3 \sqrt{\mathrm{x}+1}) \mathrm{t}+2 \mathrm{x}=0$

$\quad\quad\quad\quad \Delta=(\sqrt{x+1}+3)^2$

$\operatorname{Nên}\left[\begin{array}{l}\mathrm{t}=2(\sqrt{\mathrm{x}+1}+1)\quad(1) \\ \mathrm{t}=\sqrt{\mathrm{x}+1}-\mathrm{x}\quad\quad(2)\end{array}\right.$

  • (1) cho: $\sqrt{1-\frac{1}{x}}=2(\sqrt{x+1}+1),(x \geq 1)$

Phương trình này vô nghiệm vì $\sqrt{1-\frac{1}{x}}<1<2(\sqrt{x+1}+1)$

  • (2) cho: $\sqrt{1-\frac{1}{x}}=\sqrt{x+1}-1,(x \geq 1) \Leftrightarrow \frac{x-1}{x}=x+2-2 \sqrt{x+1}$

$\quad\quad\quad\quad \Leftrightarrow 2 \sqrt{x+1}=x+1+\frac{1}{x} \Leftrightarrow(x-\sqrt{x+1})^2=0 \Leftrightarrow x=\sqrt{x+1}$

$\quad\quad\quad\quad \Leftrightarrow x=\frac{1 \pm \sqrt{5}}{2}$, nhận nghiệm $x=\frac{1+\sqrt{5}}{2} \geq 1$.

Câu 3

Cho $a_1, a_2, \ldots, a_n$ là các số nguyên dương đôi một phân biệt $(\mathrm{n} \geq 2)$ thỏa mãn điều kiện:$\sum_{\mathrm{j}=1}^{\mathrm{n}} \frac{1}{\mathrm{a}_{\mathrm{j}}}=1$ và $Max(a_j)=2 p$ (với $p$ là số nguyên tố)

Tìm tất cả các số $a_1, a_2, \ldots, a_n$.

Lời Giải

Không mất tính tổng quát, giả sử $a_1=\max(a_j)$ với $\mathrm{j}=1,2, \ldots, \mathrm{n}$.

Từ giả thiết: $\sum_{j=2}^n \frac{1}{a_j}=\frac{2 \cdot p-1}{2 \cdot p}$

$\Rightarrow 2 \cdot p \cdot B=(2 p-1) a_2 \cdot a_3 \cdot \ldots \cdot a_n$ với $B \in Z^{+}$.

$\Rightarrow(2 p-1) a_2 \cdot a_3 \ldots \cdot a_n$ chia hết cho $p$.

$\Rightarrow a_2 \cdot a_3 \ldots \ldots \cdot a_n$ chia hết cho $\mathrm{p}$ vì $(\mathrm{p}, 2 \mathrm{p}-1)=1$

$\Rightarrow \exists \mathrm{a}_1 \vdots \mathrm{p}$, vì p là số nguyên tố với $\mathrm{I}=2,3 \ldots \mathrm{n}$

Gọi $\mathrm{a}_2$ là số nói trên thì $\mathrm{a}_2=\mathrm{p}$ (do $\left.\mathrm{gt}\right)$

$\Rightarrow \sum_{j=3}^n \frac{1}{a_j}=\frac{2 \cdot p-3}{2 \cdot p} \Rightarrow 2 \cdot p \cdot M=(2 p-3) a_3 \cdot a_4 \ldots . a_n$ với $M \in Z^{+}$

Tương tự như trên: ta có $2 \mathrm{p}-3 \vdots \mathrm{p}$, từ đó $\mathrm{p}=3$

Vậy $a_1=6, a_2=3, a_3=2$.

Câu 4

Cho tam giác $\mathrm{ABC}$ có $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$. Đường tròn nội tiếp tam giác $\mathrm{ABC}$ tiếp xúc với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$.

Đặt $\mathrm{B}_1 \mathrm{C}_1=\mathrm{a}_1 ; \mathrm{C}_1 \mathrm{~A}_1=\mathrm{b}_1 ; \mathrm{A}_1 \mathrm{~B}_1=\mathrm{c}_1$.

Chứng minh rằng: $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2}\right) \geq 36$.

Lời Giải

  • Gọi $\mathrm{p}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ thì $\mathrm{AC}_1=\mathrm{p}-\mathrm{a}$

Suy ra: $a_1=2 A C_1 \cdot \sin \frac{A}{2}$

$\quad\quad\quad\quad  =(b+c-a) \sin \frac{A}{2}$

Do đó: $a_1^2=(b+c-a)^2 \cdot \sin ^2\left(\frac{A}{2}\right)$

$\quad\quad\quad\quad  =\frac{1}{2}(b+c-a)^2 \cdot(1-\cos A)$

$\quad\quad\quad\quad  =\frac{1}{2}(b+c-a)^2 \cdot\left(1-\frac{b^2+c^2-a^2}{2 b c}\right)$

$\quad\quad\quad\quad  =\frac{1}{4 b c}\left[b^2-(a-c)^2\right] \cdot\left[c^2-(a-b)^2\right] \leq \frac{b c}{4} \Rightarrow \frac{1}{a_1^2} \geq \frac{4}{b c}$

Tương tự: $\frac{1}{\mathrm{~b}_1^2} \geq \frac{4}{\mathrm{ac}}$ và $\frac{1}{\mathrm{c}_1^2} \geq \frac{4}{\mathrm{ab}}$

Vậy: $\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2} \geq 4\left(\frac{1}{\mathrm{ab}}+\frac{1}{\mathrm{bc}}+\frac{1}{\mathrm{ac}}\right) \geq 4\left(\frac{9}{\mathrm{ab}+\mathrm{bc}+\mathrm{ac}}\right) \geq \frac{36}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}$

Suy ra: $\left(a^2+b^2+c^2\right),\left(\frac{1}{a_1^2}+\frac{1}{b_1^2}+\frac{1}{c_1^2}\right) \geq 36$

Dấu đẳng thức xảy ra khi và chỉ khi tam giác $\mathrm{ABC}$ đều.

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2003

ĐỀ THI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}2 x+x^2 y=y \\ 2 y+y^2 z=z \\ 2 z+z^2 x=x\end{array}\right.$

Câu 2

Tam giác $\mathrm{ABC}$ nội tiếp trong đường tròn $(\mathrm{O})$ có các đường phân giác trong $\mathrm{AA}^{\prime} ; \mathrm{BB}^{\prime} ; \mathrm{CC}^{\prime}$ cắt đường tròn $(\mathrm{O})$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1$. Chứng minh rằng: $\frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}+\frac{\mathrm{BB}^{\prime}}{\mathrm{BB}_1}+\frac{\mathrm{CC}^{\prime}}{\mathrm{CC}_1} \leq \frac{9}{4}$

Câu 3

Cho các số thực không âm $a_1, a_2, a_3, \ldots, a_{2003}$ thỏa đồng thời các điều kiện sau:

$\quad\quad$ i) $a_1+a_2+a_3+\ldots+a_{2003}=2$

$\quad\quad$ ii) $a_1 a_2+a_2 a_3+\ldots+a_{2002} a_{2003}+a_{2003} a_1=1$

Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của

$\quad\quad\quad\quad\quad\quad S=a_1^2+a_2^2+a_3^2+\ldots+a_{2003}^2$

Câu 4

Cho phương trình: $x^3-3 xy^2+y^3=n$; với $n$ nguyên dương.

$\quad\quad$ i) Chứng minh rằng: nếu phương trình có nghiệm $(\mathrm{x}, \mathrm{y})$ thì phương trình có ít nhất 3 nghiệm nguyên khác nhau.

$\quad\quad$ ii) Với $\mathrm{n}=2003$ phương trình trên có nghiệm nguyên hay không? Tại sao?

Câu 5

Hãy tìm tất cả các tập hợp $\mathrm{M}$ gồm có $\mathrm{n}$ số thực, với $\mathrm{n}$ hữu hạn lớn hơn hoặc bằng 2 thỏa điều kiện: với mọi số $\mathrm{a}, \mathrm{b}$ thuộc $\mathrm{M}$, a khác $\mathrm{b}$, thì $\frac{2 a}{3}-b^2$ cũng thuộc $M$ ?

Câu 6

Cho hai đường tròn đồng tâm $\mathrm{O}$, bán kính $\mathrm{R}_1, \mathrm{R}$, với $\mathrm{R}_1>\mathrm{R}$ và tứ giác $\mathrm{ABCD}$ nội tiếp trong đường tròn $(\mathrm{O}, \mathrm{R})$. Tia $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ cắt đường tròn $\left(\mathrm{O}, \mathrm{R}_1\right)$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1, \mathrm{D}_1$.

Chứng minh rằng: $\quad\quad\frac{S_{A_1 B_1 C_1 D_1}}{S_{ABCD}} \geq \frac{R_1^2}{R^2}$

 

LỜI GIẢI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}2 x+x^2 y=y \\ 2 y+y^2 z=z \\ 2 z+z^2 x=x\end{array}\right.$

Lời Giải

Hệ đã cho $\Leftrightarrow(1)\left\{\begin{array}{l}y\left(1-x^2\right)=2 x \\ z\left(1-y^2\right)=2 y \\ x\left(1-z^2\right)=2 z\end{array}\right.$

Vì một trong các giá trị $\mathrm{x}, \mathrm{y}$ bằng $\pm 1$ đều không thỏa hệ phương trình (1) nên $x \neq \pm 1, y=\pm 1, z=\pm 1$

Nên hệ phương trình $(1) \Leftrightarrow\left\{\begin{array}{l}y=\frac{2 x}{1-x^2}\quad\quad(1) \\ z=\frac{2 y}{1-y^2}\quad\quad(2) \\ x=\frac{2 z}{1-z^2}\quad\quad(3)\end{array}\right.$

Đặt $\mathrm{x}=\operatorname{tga}$, với $\mathrm{a} \in\left(-\frac{\pi}{2} ; \frac{\pi}{2}\right)$

Từ (1) ta có $\mathrm{y}=\operatorname{tg} 2 \mathrm{a}$, từ (2) ta có $\mathrm{z}=\operatorname{tg} 4 \mathrm{a}$, từ (3) ta có $\mathrm{x}=\operatorname{tg} 8 \mathrm{a}$ Do đó ta có $\operatorname{tga}=\operatorname{tg} 8 \mathrm{a} \Leftrightarrow 7 \mathrm{a}=\mathrm{k} \pi(\mathrm{k} \in \mathrm{Z})$

Suy ra a $=\frac{\mathrm{k} \pi}{7}$, khi đó $\mathrm{x}=\operatorname{tg} \frac{\mathrm{k} \pi}{7}, \mathrm{y}=\operatorname{tg} 2 \frac{\mathrm{k} \pi}{7}, \mathrm{y}=\operatorname{tg} 2 \frac{\mathrm{k} \pi}{7}, \mathrm{z}=\operatorname{tg} 4 \frac{\mathrm{k} \pi}{7}$

Với phép thử, ta được $\mathrm{k} \in{-3 ;-2 ;-1 ; 0 ; 1 ; 2 ; 3}$ Vậy hệ phương trình đã cho có 7 nghiệm:

$\quad\quad\quad\left(\operatorname{tg} \frac{-3 \pi}{7}, \operatorname{tg} \frac{-6 \pi}{7}, \operatorname{tg} \frac{-12 \pi}{7}\right) ;\left(\operatorname{tg} \frac{-2 \pi}{7} ; \operatorname{tg} \frac{-4 \pi}{7} ; \operatorname{tg} \frac{-8 \pi}{7}\right)$

$\quad\quad\quad\left(\operatorname{tg} \frac{-\pi}{7} ; \operatorname{tg} \frac{-2 \pi}{7} ; \operatorname{tg} \frac{-4 \pi}{7}\right) ;(0 ; 0 ; 0) ;\left(\operatorname{tg} \frac{3 \pi}{7} ; \operatorname{tg} \frac{6 \pi}{7} ; \operatorname{tg} \frac{12 \pi}{7}\right)$

$\quad\quad\quad\left(\operatorname{tg} \frac{2 \pi}{7} ; \operatorname{tg} \frac{4 \pi}{7} ; \operatorname{tg} \frac{8 \pi}{7}\right) ;\left(\operatorname{tg} \frac{\pi}{7} ; \operatorname{tg} \frac{2 \pi}{7} ; \operatorname{tg} \frac{4 \pi}{7}\right)$

Câu 2

Tam giác $\mathrm{ABC}$ nội tiếp trong đường tròn $(\mathrm{O})$ có các đường phân giác trong $\mathrm{AA}^{\prime} ; \mathrm{BB}^{\prime} ; \mathrm{CC}^{\prime}$ cắt đường tròn $(\mathrm{O})$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1$. Chứng minh rằng: $\frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}+\frac{\mathrm{BB}^{\prime}}{\mathrm{BB}_1}+\frac{\mathrm{CC}^{\prime}}{\mathrm{CC}_1} \leq \frac{9}{4}$

Lời Giải

Đặt $\mathrm{BC}=\mathrm{a} ; \mathrm{AC}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$

Chứng minh được: $\triangle \mathrm{ABA}^{\prime} \sim \triangle \mathrm{AA}_1 \mathrm{C}$

$\quad\quad\quad\Rightarrow \mathrm{AA}^{\prime} \cdot \mathrm{AA}_1=\text { b.c }$

Mặt khác: $\frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}=\frac{\mathrm{AA}^{\prime 2}}{\mathrm{AA}^{\prime} \cdot \mathrm{AA}_1}=\frac{\mathrm{AA}^{\prime 2}}{\mathrm{bc}}$

Chứng minh được: $\mathrm{AA}^{\prime}=\frac{2 \mathrm{bc} \cdot \cos \frac{\mathrm{A}}{2}}{\mathrm{~b}+\mathrm{c}}$

$\quad\quad\quad\Rightarrow \frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}=\frac{4 \mathrm{~b}^2 \mathrm{c}^2 \cdot \cos ^2 \frac{\mathrm{A}}{2}}{(\mathrm{~b}+\mathrm{c})^2 \cdot \mathrm{bc}}$

$\quad\quad\quad\quad\quad\quad =\frac{2 b c \cdot(1+\cos A)}{(b+c)^2}=1-\frac{a^2}{(b+c)^2}$

Tương tự: $\frac{\mathrm{BB}^{\prime}}{\mathrm{BB}_1}=1-\frac{\mathrm{b}^2}{(\mathrm{a}+\mathrm{c})^2} ; \frac{\mathrm{CC}^{\prime}}{\mathrm{CC}_1}=1-\frac{\mathrm{c}^2}{(\mathrm{a}+\mathrm{b})^2}$

$\quad\quad\quad\Rightarrow \frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}+\frac{\mathrm{BB}^{\prime}}{\mathrm{BB}_1}+\frac{\mathrm{CC}^{\prime}}{\mathrm{CC}_1}=3-\left[\frac{\mathrm{a}^2}{(\mathrm{~b}+\mathrm{c})^2}+\frac{\mathrm{b}^2}{(\mathrm{a}+\mathrm{c})^2}+\frac{\mathrm{c}^2}{(\mathrm{a}+\mathrm{b})^2}\right]$

Ta lại có:

$\quad\quad\quad\quad\frac{a^2}{(b+c)^2}+\frac{b^2}{(a+c)^2}+\frac{c^2}{(a+b)^2} \geq \frac{a^2}{2(b+c)^2}+\frac{b^2}{2(a+c)^2}+\frac{c^2}{2(a+b)^2}$

$\quad\quad\quad =\frac{1}{2}\left[\frac{\mathrm{a}^2}{(\mathrm{~b}+\mathrm{c})^2}+\frac{\mathrm{b}^2}{(\mathrm{a}+\mathrm{c})^2}+\frac{\mathrm{c}^2}{(\mathrm{a}+\mathrm{b})^2}\right]$

Chứng minh được: $\frac{\mathrm{a}^2}{(\mathrm{~b}+\mathrm{c})^2}+\frac{\mathrm{b}^2}{(\mathrm{a}+\mathrm{c})^2}+\frac{\mathrm{c}^2}{(\mathrm{a}+\mathrm{b})^2} \geq \frac{3}{2}$

Từ đó suy ra: $\frac{\mathrm{AA}^{\prime}}{\mathrm{AA}_1}+\frac{\mathrm{BB}^{\prime}}{\mathrm{BB}_1}+\frac{\mathrm{CC}^{\prime}}{\mathrm{CC}_1} \leq \frac{9}{4}$

Đẳng thức xảy $\mathrm{ra} \Leftrightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}$. Khi đó tam giác $\mathrm{ABC}$ đều.

Câu 3

Cho các số thực không âm $a_1, a_2, a_3, \ldots, a_{2003}$ thỏa đồng thời các điều kiện sau:

$\quad\quad$ i) $a_1+a_2+a_3+\ldots+a_{2003}=2$

$\quad\quad$ ii) $a_1 a_2+a_2 a_3+\ldots+a_{2002} a_{2003}+a_{2003} a_1=1$

Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của

$\quad\quad\quad\quad\quad\quad S=a_1^2+a_2^2+a_3^2+\ldots+a_{2003}^2$

Lời Giải

Không mất tính tổng quát, giả sử rằng $a_{2003}$ là min $(a_i)$ và $a_1>0$ Từ giả thiết đó

$\quad\quad\quad 4=\left(a_1+a_2+\ldots+a_{2003}\right)^2$

$\quad\quad\quad\quad\geq\left(a_1+a_2+\ldots+a_{2003}\right)^2-\left(a_1-a_2+a_3-\ldots+a_{2003}\right)^2$

$\quad\quad\quad\quad=4\left(a_1+a_3+\ldots+a_{20033}\right)\left(a_2+a_4+\ldots+a_{2002}\right)$

$\quad\quad\quad\quad\geq 4\left(a_1 a_2+a_2 a_3+\ldots+a_{2002} a_{2003}\right)+$

$\quad\quad\quad\quad\quad\quad +4\left(a_1 a_4+a_2 a_5+\ldots+a_{2000} a_{2003}\right)+4 a_1\left(a_6+a_8+\ldots+a_{2002}\right)$

$\quad\quad\quad\quad =4\left(1-a_{2003} a_1\right)+4\left(a_1 a_4+a_2 a_5+\ldots+a_{2000} a_{20033}\right)+$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad +4 a_1\left(a_6+a_8+\ldots+a_{2002}\right)$

$\quad\quad\quad\quad =4+4\left(a_1 a_4+a_2 a_5+\ldots+a_{2000} a_{20013}\right)+4a_1\left(a_6+a_8+\ldots+a_{2002}-a_{2003}\right)$

$\quad\quad\quad\quad\geq 4$

Do đó ta phải có:

$\quad\quad\quad\quad\left\{\begin{array}{l}a_1+a_3+\ldots+a_{2003}=a_2+a_4+\ldots+a_{2002}=1\quad\quad(1) \\ a_1 a_4=a_2 a_5=\ldots=a_{2000} a_{2003}=0\quad\quad\quad\quad\quad\quad\quad\quad(2) \\ a_6+a_8+\ldots+a_{2002}=a_{2003}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(3)\end{array}\right.$

Vì $a_1>0$ nên $a_4=0(\operatorname{do} 2)$

Vì $a_{20013}=min (a_i)$ nên $a_{2003}=0$

Do đó $a_6=a_8=\ldots=a_{2002}=0(\operatorname{do} 3)$

Từ (1) ta có: $a_2=1$ và từ (ii) ta có $a_1+a_3=1$

Áp dụng điều đó vào i) ta có $a_4+a_5+\ldots+a_{2003}=0$

Suy ra $a_4=a_5=\ldots=a_{2003}=0$. Do đó

$\quad\quad\quad\quad S=a_1^2+a_2^2+a_3^2=a_1^2+1+\left(1-a_1\right)^2=2\left(a_1-\frac{1}{2}\right)^2+\frac{3}{2}$

Do đó $S \max$ khi $a_1=1$, khi đó $\mathrm{s} \max =2$.

$\mathrm{S}$ min khi $\mathrm{a}_1=\frac{1}{2}$, khi đó $\mathrm{S} \min =\frac{3}{2}$.

Câu 4

Cho phương trình: $x^3-3 xy^2+y^3=n$; với $n$ nguyên dương.

$\quad\quad$ i) Chứng minh rằng: nếu phương trình có nghiệm $(\mathrm{x}, \mathrm{y})$ thì phương trình có ít nhất 3 nghiệm nguyên khác nhau.

$\quad\quad$ ii) Với $\mathrm{n}=2003$ phương trình trên có nghiệm nguyên hay không? Tại sao?

Lời Giải

i) Ta có $x^3-3 x y^2+y^3=(y-x)^3-3(y-x) x^2+(-x)^3$

Và $x^3-3 x y^2+y^2=(-y)^3-3(-y)(x-y)^2+(x-y)^3$

Vậy phương trình có nghiệm $(x, y)$ thì cũng có 2 nghiệm nữa là

$\quad\quad\quad\quad\quad\quad (\mathrm{y}-\mathrm{x},-\mathrm{x})$ và $(-\mathrm{y}, \mathrm{x}-\mathrm{y})$

Và 3 nghiệm ấy là phân biệt vì nếu 2 nghiệm bằng nhau thì dẫn tới $x=y=0$ trái với giả thiết $n>0$.

ii) Giả sử phương trình $\mathrm{x}^3-3 \mathrm{x}^2+\mathrm{y}^3=2003$ có nghiệm.

Ta có: $\quad 2003=-1(\bmod 3)$

$\quad\quad\quad\quad\Rightarrow x^3-3 x y^2+y^3=x^3+y^3 \equiv-1(\bmod 3)$

$\quad\quad\quad\quad\Rightarrow \mathrm{x}+\mathrm{y} \equiv-1(\bmod 3)$

Do đó:

a) $x \equiv 0, y \equiv-1(\bmod 3)$

$\quad\quad\quad\quad\Rightarrow \mathrm{x}=3 \mathrm{k} ; \mathrm{y}=3 \mathrm{k}-1$ suy ra $\mathrm{x}^3-3 \mathrm{xy}^2+\mathrm{y}^3 \equiv-1(\bmod 9)$

Mặt khác $2005 \equiv 5(\bmod 9)$ vô lí.

b) $x \equiv-1, y \equiv 0(\bmod 3)$ tương tự dẫn đến vô lí.

c) $x \equiv 1, y \equiv 1(\bmod 3)$ tương tự dẫn đến vô lí.

Do $(y-x,-x)$ cùng là nghiệm nên trở lại trường hợp $x \equiv 0, y \equiv-1(\bmod 3)$

Vậy phương trình vô nghiệm.

Câu 5

Hãy tìm tất cả các tập hợp $\mathrm{M}$ gồm có $\mathrm{n}$ số thực, với $\mathrm{n}$ hữu hạn lớn hơn hoặc bằng 2 thỏa điều kiện: với mọi số $\mathrm{a}, \mathrm{b}$ thuộc $\mathrm{M}$, a khác $\mathrm{b}$, thì $\frac{2 a}{3}-b^2$ cũng thuộc $M$ ?

Lời Giải

Nhận xét: $0 \notin \mathrm{M}$ vì nếu không $\mathrm{M}$ sẽ chứa vô hạn các phần tử $\left(\frac{2}{3}\right)^{\mathrm{n}} \mathrm{a}, \mathrm{n} \in$ $\mathrm{N}^*$, với $\mathrm{a} \neq 0, \mathrm{a} \in \mathrm{M}$.

Hơn nữa, $M$ có chứa phần tử âm. Thật vậy, nếu tất cả các phần tử của $\mathrm{M}$ đều dương thì tồn tại một phần tử nhỏ nhất của $\mathrm{M}$, gọi là $\mathrm{b}$ sao cho $\forall \mathrm{c}$ ta có:

$\quad\quad\quad\quad\quad\quad\frac{2 b}{3}-c^2>b \Leftrightarrow \frac{-b}{3}-c^2<0$ (vô lí)

Đặt $a_1<a_2<\ldots<a_k$ là tất cả các số âm của $\mathrm{M}$. Ta có:

$\quad\quad\quad\quad\frac{2 a_1}{3}-a_2^2<\frac{2 a_1}{3}-a_3^2<\ldots<\frac{2 a_1}{3}-{a_k}^2<\frac{2 a_1}{3}-a_3^2<\ldots<\frac{2 a_{n-1}}{3}-a_{k}^2$

Có $2 \mathrm{k}-3$ số âm khác nhau của $\mathrm{M} \Rightarrow 2 \mathrm{k}-3 \leq \mathrm{k} \Leftrightarrow \mathrm{k} \leq 3$

  • Xét $\mathrm{k}=3 \Rightarrow \frac{2 \mathrm{a}_1}{3}-\mathrm{a}_2^2<\frac{2 \mathrm{a}_1}{3}-\mathrm{a}_3^2<\frac{2 \mathrm{a}_2}{3}-\mathrm{a}_3^2$

$\quad\quad\quad\quad\Rightarrow\left\{\begin{array}{l}\frac{2}{3} a_1-a_1^2=a_1 \\ \frac{2}{3} a_2-a_3^2=a_2 \\ \frac{2}{3} a_3-a_2^2=a_3\end{array} \Rightarrow\right.$ Hệ vô nghiệm (loại)

  • Xét $\mathrm{k}=2$ : Ta có $\frac{2 a_1}{3}-a_2^2 \in \mathrm{M}$ và $\frac{2 a_2}{3}-a_1^2 \in \mathrm{M}$

Nếu $\frac{2 a_1}{3}-a_2^2=\frac{2 a_2}{3}-a_1^2\left(hoặc  =a_2\right.)$

$\quad\quad\quad\quad\Rightarrow a_1+a_2=-\frac{2}{3}$ và $a_1=-3 a_2^2\left(\right.$ hoặc $\left.a_2=-3 a_1^2\right)$

$\quad\quad\quad\quad\Rightarrow\left[\begin{array}{l}\left.a_2=\frac{1}{3}=a_1 \quad \text { (loại vì } a_1 \neq a_2\right) \\ a_2=\frac{2}{3}, a_1=-\frac{4}{3}\left(\text { loại vì } a_1 \cdot a_2<0\right)\end{array}\right.$

Nếu $\frac{2 a_1}{3}-a_2^2 \neq \frac{2 a_2}{3}-a_1^2$ thì một trong 2 số này hoặc bằng $\mathrm{a}_1$ hoặc bằng $\mathrm{a}_2$.

Xét $\left\{\begin{array}{l}\frac{2}{3} a_1-a_2^2=a_2 \\ \frac{2}{3} a_2-a_1^2=a_1\end{array} \Rightarrow a_1=\mathrm{a}_2=-\frac{1}{3}\right.$ (vô lí). Tương tự cho trường hợp còn lại.

Do đó $\mathrm{M}$ chỉ chứa 1 số âm, gọi là $\mathrm{a}$.

Nếu b và c là 2 số dương phân biệt của $M$ thì $\frac{2}{3} a-b^2$ và $\frac{2}{3} a-c^2$ là 2 số âm phân biệt của $M$ (loại)

Do đó $\mathrm{M}$ chỉ chứa 1 số dương, gọi là $\mathrm{b} \Rightarrow \mathrm{M}={\mathrm{a}, \mathrm{b}}, \mathrm{a}<0, \mathrm{~b}<0$

Ta có:

$\quad\quad\quad\frac{2}{3} a-b^2<0 \Rightarrow \frac{2}{3} a-b^2=a \Rightarrow a=-3 b^2$

$\quad\quad\Rightarrow \frac{2}{3} b-a^2=\frac{2}{3} b-4 b^4=\left[\begin{array}{l}b \Rightarrow\left(b=0 \text { hay } b=-\frac{1}{3}\right) \text { (loại) } \\ -3 b^2 \Rightarrow b=\frac{2}{3} \text { (nhận) }\end{array}\right.$

Kết luận: $a=-\frac{4}{3} ; b=\frac{2}{3} \Rightarrow M(-\frac{4}{3}, \frac{2}{3})$

Câu 6

Cho hai đường tròn đồng tâm $\mathrm{O}$, bán kính $\mathrm{R}_1, \mathrm{R}$, với $\mathrm{R}_1>\mathrm{R}$ và tứ giác $\mathrm{ABCD}$ nội tiếp trong đường tròn $(\mathrm{O}, \mathrm{R})$. Tia $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ cắt đường tròn $\left(\mathrm{O}, \mathrm{R}_1\right)$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1, \mathrm{D}_1$.

Chứng minh rằng: $\quad\quad\frac{S_{A_1 B_1 C_1 D_1}}{S_{ABCD}} \geq \frac{R_1^2}{R^2}$

Lời Giải

Đặt $\mathrm{AB}=\mathrm{a} ; \mathrm{BC}=\mathrm{b}$

$\mathrm{CD}=\mathrm{c} ; \mathrm{DA}=\mathrm{d}$

$\mathrm{A}_1 \mathrm{~B}=\mathrm{x} ; \mathrm{B}_1 \mathrm{C}=\mathrm{y}$

$\mathrm{C}_1 \mathrm{D}=\mathrm{z} ; \mathrm{D}_1 \mathrm{~A}=\mathrm{t}$

$\quad\quad\quad\quad\frac{S_{A_1 B_1 C_1 D_1}}{S_{ABCD}}=1+\frac{S_{A_1 B_1 B}}{S_{ABCD}}+\frac{S_{B_1 C_1 C}}{S_{ABCD}}+\frac{S_{C_1 D_1 D}}{S_{ABCD}}+\frac{S_{D_1 A_1 D}}{S_{ABCD}}$

$\quad\quad\quad =1+\frac{x(b+y)}{a b+c d}+\frac{y(c+z)}{a d+b c}+\frac{z(d+t)}{a b+c d}+\frac{t(x+a)}{a d+b c}$

$\quad\quad\quad \geq 1+\frac{x\left(R_1^2-R^2\right)}{y 4 R^2}+\frac{y\left(R_1^2-R^2\right)}{z 4 R^2}+\frac{z\left(R_1^2-R^2\right)}{t 4 R^2}+\frac{t\left(R_1^2-R^2\right)}{x 4 R^2}$

$\quad\quad\quad =1+\frac{\left(R_1^2-R^2\right)}{4 R^2}\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\right) \geq 1+\frac{\left(R_1^2-R^2\right)}{4 R^2} 4=\frac{R_1^2}{R^2}$

Dấu “=” xảy ra khi và chỉ khi $\mathrm{ABCD}$ là hình vuông.

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2002

ĐỀ THI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}x_1=\frac{1}{2}\left(x_2+\frac{1}{x_2}\right) \\ x_2=\frac{1}{2}\left(x_3+\frac{1}{x_3}\right) \\ \cdots \\ x_{2002}=\frac{1}{2}\left(x_1+\frac{1}{x_1}\right)\end{array}\right.$

Câu 2

Chứng minh rằng: Phần nguyên của $(\sqrt{11}+3)^{3 \mathrm{n}+1}$ thì chia hết cho $2^{\mathrm{n}+1}$ và không chia hết cho $2^{\mathrm{n}+2}$ với mọi $\mathrm{n}$ là số tự nhiên.

Câu 3

Cho tam giác $\mathrm{ABC}$ thỏa:

$\quad\quad\quad\quad\quad\frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}=\sqrt{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot \operatorname{tg} \frac{C}{2}}}$

Chứng minh rằng: Tam giác $\mathrm{ABC}$ đều.

Câu 4

Giả sử điểm $\mathrm{M}$ nằm trong tam giác $\mathrm{ABC}$ sao cho: $\widehat{\mathrm{AMC}}=90^{\circ}$; $\widehat{\mathrm{AMB}}=150^{\circ} ; \widehat{\mathrm{BMC}}=120^{\circ}$. Gọi các điểm $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ lần lượt là tâm các đường tròn ngoại tiếp của tam giác $\mathrm{AMC}, \mathrm{AMB}, \mathrm{BMC}$.

Chứng minh rằng:

 

LỜI GIẢI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}x_1=\frac{1}{2}\left(x_2+\frac{1}{x_2}\right) \\ x_2=\frac{1}{2}\left(x_3+\frac{1}{x_3}\right) \\ \cdots \\ x_{2002}=\frac{1}{2}\left(x_1+\frac{1}{x_1}\right)\end{array}\right.$

Lời Giải

  • Nhận xét: Nếu $\left(x_1, x_2, \ldots, x_{2002}\right)$ là nghiệm thì $x_1, x_2, \ldots, x_{2002}$ phải cùng dấu và khác 0

Đồng thời $\left(-x_1,-x_2, \ldots,-x_{2002}\right)$ cũng là nghiệm, nên ta chỉ cần xét với $x_1, x_2, \ldots, x_{2002}$ dương.

  • Theo bất đẳng thức Côsi: $x_i+\frac{1}{x_i} \geq 2(I=1,2, \ldots, 2002)\quad\quad\quad (1)$

Từ các phương trình trong hệ và (1) ta được: $2 x_i \geq 2$ hay $x_i \geq 1\quad\quad\quad (2)$

  • Mặt khác cộng các phương trình trong hệ thì:

$x_1+x_2+\ldots+x_{2002}=\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_{2002}}\quad\quad\quad(3)$

Từ (2) và (3) được: $x_1=x_2=\ldots=x_{2002}=1$

  • Vậy hệ có 2 nghiệm: $\left[\begin{array}{l}x_1=x_2=\ldots=x_{2002}=1 \\ x_1=x_2=\ldots=x_{2002}=-1\end{array}\right.$

Câu 2

Chứng minh rằng: Phần nguyên của $(\sqrt{11}+3)^{3 \mathrm{n}+1}$ thì chia hết cho $2^{\mathrm{n}+1}$ và không chia hết cho $2^{\mathrm{n}+2}$ với mọi $\mathrm{n}$ là số tự nhiên.

Lời Giải

Trước hết, nhận xét rằng: $(\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{n}+1}$ là một số tự nhiên. Thật vậy, ta có:

$(\sqrt{11}+3)^{2 n+1}=C_{2 n+1}^0(\sqrt{11})^{2 n+1}+C_{2 n+1}^1(\sqrt{11})^{2 n} \cdot 3+C_{2 n+1}^2(\sqrt{11})^{2 n-1} 3^2$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad +\ldots+C_{2 n+1}^{2 n}(\sqrt{11})^1 3^{2 n}+C_{2 n+1}^{2 n+1} 3^{2 n+1}$

$(\sqrt{11}-3)^{2 n+1}=C_{2 n+1}^0(\sqrt{11})^{2 n+1}-C_{2 n+1}^1(\sqrt{11})^{2 n} \cdot 3+C_{2 n+1}^2(\sqrt{11})^{2 n-1} 3^2$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad -\ldots+C_{2 n+1}^{2 n}(\sqrt{11})^1 3^{2 n}-C_{2 n+1}^{2 n+1} 3^{2 n+1}$

$\Rightarrow(\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{n}+1}=$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =2\left[C_{2 n+1}^1(\sqrt{11})^{2 n} \cdot 3+C_{n+1}^3(\sqrt{11})^{2 n-2} \cdot 3^2+\ldots+C_{2 n+1}^{2 n+1} \cdot 3^{2 n+1}\right]$

Suy ra $(\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{n}+1}$ là số tự nhiên.

$\operatorname{Mà}(\sqrt{11}-3)^{2 \mathrm{n}+1} \in(0 ; 1)$ nên

$\left[(\sqrt{11}+3)^{2 \mathrm{n}+1}\right]=(\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{n}+1}$

(Vì: $\mathrm{a}-\mathrm{b}=\mathrm{k} \in \mathrm{N} \Rightarrow \mathrm{a}=\mathrm{k}+\mathrm{b}$ với $\mathrm{b} \in(0 ; 1)$ nên $[\mathrm{a}]=\mathrm{k}^{\prime}=\mathrm{a}-\mathrm{b}$, kí hiệu $[$.$] là$ phần nguyên của số thực)

  • Với n $=0:(\sqrt{11}+3)^1-(\sqrt{11}-3)^1=6$ chia hết cho $2^{0+1}=2$ nhưng không chia hết cho $2^2=4$

  • Lại có: $(\sqrt{11}+3)^2-(\sqrt{11}-3)^2=40 \Rightarrow$ với $\mathrm{n}=1$ thì

$(\sqrt{11}+3)^3-(\sqrt{11}-3)^3=\left(\frac{(\sqrt{11}+3)-(\sqrt{11}-3)}{6}\right)$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left[\frac{(\sqrt{11}+3)^2+(\sqrt{11}-3)^2}{40}+\frac{(\sqrt{11}+3)(\sqrt{11}-3)}{2}\right]$

$=6.42=2^2 \cdot 3^2 \cdot 7$

chia hết cho $2^2$ nhưng không chia hết cho $2^3$.

Giả sử tính chất này đúng với mọi số tự nhiên $\mathrm{k}<\mathrm{n}$. Ta chứng minh tính chất này đúng với $\mathrm{k}=\mathrm{n}$.

Trước hết nhận xét rằng:

$(\sqrt{11}+3)(\sqrt{11}-3)=2 \Rightarrow \sqrt{11}-3=\frac{2}{\sqrt{11}+3}$

$\sqrt{11}+3=\frac{2}{\sqrt{11}-3}$

Thật vậy:

$\quad\quad (\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{x}+1}$

$=[(\sqrt{11}\left.+3)^2+(\sqrt{11}-3)^2\right]\left[(\sqrt{11}+3)^{2 n+1}-(\sqrt{11}-3)^{2 n-1}\right] $

$\quad\quad\quad\left.-\left[(\sqrt{11}-3)^2(\sqrt{11}+3)^{2 n-1}\right]-(\sqrt{11}+3)^2(\sqrt{11}-3)^{2 n-1}\right]$

$=40\left[(\sqrt{11}+3)^{2 \mathrm{n}-1}-(\sqrt{11}-3)^{2 \mathrm{n}-1}\right]-4\left[(\sqrt{11}+3)^{2 \mathrm{n}-3}-(\sqrt{11}-3)^{2 \mathrm{n}-3}\right]$

$=\underbrace{2^3 5 \cdot\left[(\sqrt{11}+3)^{2 \mathrm{n}-1}-(\sqrt{11}-3)^{2 \mathrm{n}-1}\right]}_{\text {chia hết cho } 2^{\mathrm{n}}}-$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad -\underbrace{2^2 \cdot\left[(\sqrt{11}+3)^{2 \mathrm{n}-3}-(\sqrt{11}-3)^{2 \mathrm{n}-3}\right]}_{\text {chia hết cho } 2^{\mathrm{u}-1} \text { nhưng không chia hết cho } 2^{\mathrm{n}}}$

Vậy $\left[(\sqrt{11}+3)^{2 n+1}\right]$ chia hết cho $2^{n+1}$ nhưng không chia hết cho $2^{n+2}$.

Câu 3

Cho tam giác $\mathrm{ABC}$ thỏa:

$\quad\quad\quad\quad\quad\frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}=\sqrt{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot \operatorname{tg} \frac{C}{2}}}$

Chứng minh rằng: Tam giác $\mathrm{ABC}$ đều.

Lời Giải

Ta có: $\mathrm{a}^2=\mathrm{b}^2+\mathrm{c}^2-2 \mathrm{bc} \cdot \cos \mathrm{A}$

$\quad\quad\quad\quad=\mathrm{b}^2+\mathrm{c}^2-(2 \mathrm{bcsin} \mathrm{A}) \cdot \operatorname{cotg} \mathrm{A}=\mathrm{b}^2+\mathrm{c}^2-4 \mathrm{~S} \cdot \operatorname{cotg} \mathrm{A} \text {. }$

(S là diện tích $\triangle \mathrm{ABC}$ )

Tương tự: $\mathrm{b}^2=\mathrm{a}^2+\mathrm{c}^2-4 \operatorname{ScotgB} ; \mathrm{c}^2=\mathrm{a}^2+\mathrm{b}^2-4 \mathrm{~S} \operatorname{cotg} \mathrm{C}$

Suy ra: $a^2+b^2+c^2=4 S(\operatorname{cotg} A+\operatorname{cotg} B+\operatorname{cotg} C)$

$\quad\quad\quad\Leftrightarrow \sin ^2 \mathrm{~A}+\sin ^2 \mathrm{~B}+\sin ^2 \mathrm{C}=\frac{\mathrm{S}}{\mathrm{R}^2}(\operatorname{cotg} \mathrm{A}+\operatorname{cotg} \mathrm{B}+\operatorname{cotg} \mathrm{C})$

$\quad\quad\quad\Leftrightarrow \frac{\sin ^2 \mathrm{~A}+\sin ^2 \mathrm{~B}+\sin ^2 \mathrm{C}}{\cot g \mathrm{~A}+\cot g \mathrm{~B}+\cot g \mathrm{C}}=\frac{\mathrm{S}}{\mathrm{R}^2}\quad(1)$

  • Mặt khác:

$\quad\quad\quad\quad a^2=b^2+c^2-2 b c \cdot \cos A \geq 2 b c-2 b c \cdot \cos A=4 b c \cdot \sin ^2 \frac{A}{2}=4 S \cdot \operatorname{tg} \frac{A}{2} $

$\quad\quad\quad\Rightarrow \frac{\sin ^2 A}{\operatorname{tg} \frac{A}{2}} \geq \frac{S}{R^2}$

Tương tự: $\frac{\sin ^2 \mathrm{~B}}{\operatorname{tg} \frac{\mathrm{B}}{2}} \geq \frac{\mathrm{S}}{\mathrm{R}^2} ; \frac{\sin ^2 \mathrm{C}}{\operatorname{tg} \frac{\mathrm{C}}{2}} \geq \frac{\mathrm{S}}{\mathrm{R}^2}$

Từ đó: $\sqrt[3]{\frac{\sin ^2 \mathrm{~A} \cdot \sin ^2 \mathrm{~B} \cdot \sin ^2 \mathrm{C}}{\operatorname{tg} \frac{\mathrm{A}}{2} \cdot \operatorname{tg} \frac{\mathrm{B}}{\mathrm{C}} \cdot \operatorname{tg} \frac{\mathrm{C}}{2}}} \geq \frac{\mathrm{S}}{\mathrm{R}^2}\quad(2)$

Tữ (1) và (2) suy ra: $\sqrt[3]{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{C} \cdot \operatorname{tg} \frac{C}{2}}} \geq \frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}$

Dấu “=” xảy ra khi $\mathrm{a}=\mathrm{b}=\mathrm{c} \Leftrightarrow \triangle \mathrm{ABC}$ đều. Từ đó suy ra điều phải chứng minh.

Câu 4

Giả sử điểm $\mathrm{M}$ nằm trong tam giác $\mathrm{ABC}$ sao cho: $\widehat{\mathrm{AMC}}=90^{\circ}$; $\widehat{\mathrm{AMB}}=150^{\circ} ; \widehat{\mathrm{BMC}}=120^{\circ}$. Gọi các điểm $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ lần lượt là tâm các đường tròn ngoại tiếp của tam giác $\mathrm{AMC}, \mathrm{AMB}, \mathrm{BMC}$.

Chứng minh rằng:

Lời Giải

$A, M$ đối xứng nhau qua $P Q$.

$\mathrm{B}, \mathrm{M}$ đối xứng nhau qua $\mathrm{QR}$.

$\mathrm{C}, \mathrm{M}$ đối xứng nhau qua $\mathrm{RP}$.

$\quad\quad\quad\quad\quad\quad\quad\Rightarrow\left\{\begin{array}{l}\mathrm{S}(\mathrm{MPQ})=\mathrm{S}(\mathrm{APQ}) \\ \mathrm{S}(\mathrm{MQR})=\mathrm{S}(\mathrm{BQR}) \\ \mathrm{S}(\mathrm{MPR})=\mathrm{S}(\mathrm{CPR})\end{array}\right.$

$\quad\quad\quad\quad\quad\quad\quad\Rightarrow 2 \mathrm{~S}(\mathrm{PQR})=\mathrm{S}(\mathrm{AQBRC})$

$\quad\quad\quad\quad\quad\quad\quad\Rightarrow \mathrm{S}(\mathrm{PQR})=\frac{1}{2} \mathrm{~S}(\mathrm{AQBRC})$

Do sự đối xứng trên ta có

$\quad\quad\quad\quad\quad\widehat{\mathrm{AQB}}=2 \widehat{\mathrm{PQR}}=2\left(180^{\circ}-\widehat{\mathrm{AMB}}\right)=60^{\circ}$

$\quad\quad\quad\quad\quad\widehat{\mathrm{BRC}}=2 \widehat{\mathrm{QRP}}=120^{\circ}$

$\mathrm{S}(\mathrm{PQR})=\frac{1}{2} \mathrm{~S}(\mathrm{AQBRC})=\frac{1}{2}[\mathrm{~S}(\mathrm{ABC})+\mathrm{S}(\mathrm{AQB})+\mathrm{S}(\mathrm{BRC})]$

$\quad\quad\quad\quad =\frac{1}{2}\left[\mathrm{~S}(\mathrm{ABC})+\frac{\sqrt{3}}{4} \mathrm{AB}^2+\frac{\mathrm{CB}^2}{4 \sqrt{3}}\right]$

$\quad\quad\quad\quad\geq \frac{1}{2} S(\mathrm{ABC})+\frac{1}{4} \mathrm{AB} \cdot \mathrm{CB} \geq \frac{1}{2} \mathrm{~S}(\mathrm{ABC})$

$\quad\quad\quad\quad\quad\quad\quad +\frac{1}{2} \cdot \frac{1}{2} \mathrm{AB} \cdot \mathrm{CB} \cdot \sin \widehat{\mathrm{ABC}}$

(Do $\mathrm{M}$ nằm trong $\triangle \mathrm{ABC}$ và $\left.\widehat{\mathrm{AMC}}=90^{\circ} \Rightarrow \widehat{\mathrm{ABC}}<90^{\circ}\right)$

$\quad\quad\quad\quad S_{\triangle P Q R}>\frac{1}{2} S(A B C)+\frac{1}{2} S(A B C)=S(A B C)$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998

ĐỀ THI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

 

LỜI GIẢI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Lời Giải

a) Gọi I là tâm đường tròn nội tiếp tam giác $\mathrm{ABC}$, chứng minh:

$ a \overrightarrow{\mathrm{IA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{IB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{IC}}=\overrightarrow{0} $

$- \text { Từ bất đẳng thức: }(\mathrm{a} \cdot \overrightarrow{\mathrm{MA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{MB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{MC}})^2 \geq 0, \text { dấu “=” xảy ra khi } \mathrm{M} \equiv \mathrm{I} $

$\Rightarrow  \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2+2 \mathrm{ab} \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}+2 \mathrm{bc} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}}+$

$+2 \mathrm{ca} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}} \geq 0$

$ \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}=\frac{1}{2}\left(\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{AB}^2\right) \text { thì có } $

$(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a} \cdot \mathrm{MA}^2+\mathrm{mB} \cdot \mathrm{MB}^2+c \cdot \mathrm{MC}^2-\mathrm{abc}\right) \geq 0 $

$= \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2 \geq \mathrm{abc}$

Do đó, theo giả thiết dấu “=” xảy ra

$\Rightarrow \mathrm{M} \equiv \mathrm{I}$ (đpcm)

b) (i) $\mathrm{E} \neq \mathrm{N}$ :

Đặt

$\mathrm{AM} / \mathrm{MC}=\alpha, \mathrm{CN} / \mathrm{NB}=\beta$

$\mathrm{ME} / \mathrm{EN}=\gamma(\alpha, \beta>0 ; \gamma \geq 0)$

Suy ra

$S_{\triangle M E C}=S_1 / \alpha ; S_{\triangle N E C}=\beta S_2$

$S_{\triangle M E C} / S_{\triangle N E C}=\gamma$

Do đó $\mathrm{S}_1=\alpha \beta \gamma . \mathrm{S}_2$

$S_{\triangle M N C} / S_{\triangle A B C}=M C \cdot N C / A B \cdot B C$

$S_{\triangle M N C}=S_{\triangle M E C}+S_{\triangle M N C}=\beta(\gamma+1) S_2$

$\mathrm{AC} / \mathrm{MC}=\alpha+1 ; \mathrm{BC} / \mathrm{NC}=(\beta+1) / \beta \Rightarrow \mathrm{S}=(\alpha+1)(\beta+1)(\gamma+1) \mathrm{S}_2$

$\mathrm{~S}_2=\mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1) ; \mathrm{S}_1=\alpha \beta \gamma \mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1)$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}}$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}} \Leftrightarrow \underbrace{\frac{1}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}+\frac{\sqrt[3]{\alpha \beta \gamma}}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}}_A=1$

Mặt khác, theo bất đẳng thức Côsi

$\mathrm{A} \leq \frac{1}{3}\left(\frac{1}{1+\alpha}+\frac{1}{1+\beta}+\frac{1}{1+\gamma}+\frac{\alpha}{1+\alpha}+\frac{\beta}{1+\beta}+\frac{\gamma}{1+\gamma}\right)=1$

Đẳng thức $\mathrm{A}=1 \Leftrightarrow \alpha=\beta=\gamma$.

Vậy vị trí $\mathrm{M}, \mathrm{N}, \mathrm{E}$ sao cho $\mathrm{AM} / \mathrm{MC}=\mathrm{CN} / \mathrm{NB}=\mathrm{ME} / \mathrm{EN}$

(ii) $\mathrm{E} \equiv \mathrm{N}$ : $\mathrm{S}_2=0$ và $\mathrm{S}_1<\mathrm{S}$ (không xảy ra $\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}$ ).

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Lời Giải

Nhận xét rằng với mọi $\mathrm{k} \in \mathrm{N}$ ta đều có:

$\mathrm{k}=\left[\sqrt{\mathrm{k}^2}\right]=\left[\sqrt{\mathrm{k}^2+1}\right]=\left[\sqrt{\mathrm{k}^2+2}\right]=\ldots=\left[\sqrt{\mathrm{k}^2+2 \mathrm{k}}\right] $

$\Rightarrow {\left[\sqrt{\mathrm{k}^2}\right]+\left[\sqrt{\mathrm{k}^2+1}\right]+\left[\sqrt{\mathrm{k}^2+2}\right]+\ldots+\left[\sqrt{(\mathrm{k}+1)^2}-1\right] } $

$=\mathrm{k}(2 \mathrm{k}+1)=2 \mathrm{k}^2+\mathrm{k}$

Lần lượt cho $\mathrm{k}=1,2, \ldots, \mathrm{x}-1$ ta được:

${[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=2.1^2+1} $

${[\sqrt{4}]+[\sqrt{5}]+\ldots+[\sqrt{8}]=2.2^2+2} $

$\cdots $

${\left[\sqrt{(x-1)^2}\right]+\ldots+\left[\sqrt{x^2-1}\right]=2 .(x-1)^2+(x-1)}$

Cộng từng vế các đẳng thức trên ta được:

$ {[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{x^2-1}\right] } $

$= 2 \cdot\left[1^2+2^2+\ldots+(x-1)^2\right]+[1+2+\ldots+(x-1)]$

$=\frac{(x-1) x(2 x-1)}{3}+\frac{x(x-1)}{2}$

Vậy phương trình đã cho có dạng $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{6}=\mathrm{y}\left({ }^*\right)$

Ta giải phương trình $\left(^*\right).$  trong tập hợp các số nguyên tố

Vì $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{\mathrm{y}}=6$ là một số nguyên dương và $\mathrm{y}$ là số nguyên tố nên $\mathrm{y}$ là ước của một trong ba thừa số $\mathrm{x}-1 ; \mathrm{x} ; 4 \mathrm{x}+1$

$\Rightarrow \mathrm{y} \leq \max {x-1 ; x ; 4 x+1}=4 x+1 $

$\Rightarrow 6=\frac{(x-1) x(4 x-1)}{y} \geq x(x-1) \Rightarrow x \leq 3$

Thử lại ta được các nghiệm nguyên tố sau đây của phương trình: $(2 ; 3) ;(3 ; 13)$.

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Lời Giải

$\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$

Cộng (1), (2) và (3) vế theo vế ta có:

$(a+b+c)\left(x^2+x+1\right)=0 $

$\Rightarrow  a+b+c=0 \text { vì } x^2+x+1>0 \forall x$

Từ điều kiện $a+b+c=0$ ta có phương trình (1) có nghiệm

$x=1 \vee x=c / a$

$x=1$ không thỏa đồng thời (2) và (3) nên ta loại

Tữ $x=c / a$ ta có: $a x=c$, thay vào (2) ta được: $(a+b) x^2+a=26$

Mà $\mathrm{a}+\mathrm{b}=-\mathrm{c}=-\mathrm{ax}$ ta lại có: $-\mathrm{ax}{ }^3+\mathrm{a}=26 \Leftrightarrow \mathrm{a}\left(1-\mathrm{x}^3\right)=26(4)$

Do $\mathrm{x} \neq 1$ nên $26: \mathrm{a}, \mathrm{a} \in \mathrm{Z}$ nên a có thể là: $\pm 1 ; \pm 2 ; \pm 13 ; \pm 26$

Với $\mathrm{a}=1, \mathrm{a}=\pm 2 ; \mathrm{a}=-13, \mathrm{a}=-26,(4)$ không có nghiệm nguyên.

Với $\mathrm{a}=-1$, từ (4) ta có $\mathrm{x}^3=-1$ nên $\mathrm{x}=-1$ khi đó $\mathrm{x}=-13$ và $\mathrm{b}=0$

Với $\mathrm{a}=26$, từ (4) ta có $\mathrm{x}^3=0$ nên $\mathrm{x}=0$ khi đó $\mathrm{c}=0$ và $\mathrm{b}=-26$

Vậy $(-1 ; 4 ;-3) ;(13 ; 0 ;-13)$ và $(26 ;-26 ; 0)$ là bộ 3 số nguyên để hệ có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

Lời Giải

Ta có: $\mathrm{T}^2=(\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C})^2 \leq 3\left(\sin ^2 7 \mathrm{~A}+\sin ^2 7 \mathrm{~B}+\sin ^2 7 \mathrm{C}\right)$

$\leq 3 / 2 \cdot[3-(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+\cos 14 \mathrm{C})]\quad\quad\quad (1)$

Mà với mọi tam giác $A B C$ ta luôn có:

$\cos 14 A+\cos 14 B+\cos 14 C \geq-3 / 2 \quad\quad\quad (2)$

Do $\cos 14 C=\cos [4 \pi-14(A+B)]=\cos 14(A+B)$

$=\cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-\sin 14 \mathrm{~A} \sin 14 \mathrm{~B}$

Và $(2) \Leftrightarrow 3+2 \cos 14 \mathrm{~A}+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{C} \geq 0$

$\Leftrightarrow 1+\sin ^2 14 \mathrm{~A}+\cos ^2 14 \mathrm{~A}+\sin ^2 14 \mathrm{~B}+\cos ^2 14 \mathrm{~B}+2 \cos 14 \mathrm{~A}$

$+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-2 \sin 14 \mathrm{~A} \sin 14 \mathrm{~B} \geq 0$

$\Leftrightarrow(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+1)^2+(\sin 14 \mathrm{~A}-\sin 14 \mathrm{~B})^2 \geq 0$

Từ (1), (2) $\Rightarrow \mathrm{T}^2 \leq 3 / 2 \cdot(3+3 / 2)=27 / 4 \Rightarrow \mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$

Nếu $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ thì ta có $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$

Ngược lại với $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$ thì rõ ràng $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ Vậy ta có $\mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$, với mọi tam giác $\mathrm{ABC}$ và $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ $\Leftrightarrow \sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}(1)$

Ta có: $\left\{\begin{array}{l}\sin 7 x=-\sqrt{\frac{3}{2}}=\sin \left(-\frac{\pi}{3}\right) \\ 0<x<\pi\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}\mathrm{x}=-\frac{\pi}{21}+\frac{\mathrm{k} 2 \pi}{7}=\frac{(6 \mathrm{k}-1) \pi}{21} \\ \mathrm{x}=\frac{4 \pi}{21}+\frac{l 2 \pi}{7}=\frac{(6 l+4) \pi}{21}\end{array} \quad(0<\mathrm{x}<\pi)\right.$

$\Leftrightarrow \mathrm{x} \in \mathrm{E}=\left(\frac{4 \pi}{21} ; \frac{5 \pi}{21} ; \frac{10 \pi}{21} ; \frac{11 \pi}{21} ; \frac{16 \pi}{21} ; \frac{17 \pi}{21}\right)$

Vai trò $\mathrm{A}, \mathrm{B}, \mathrm{C}$ như nhau nên có thể giả sử

$\mathrm{A} \leq \mathrm{B} \leq \mathrm{C} \Rightarrow \mathrm{A} \leq \frac{\pi}{3} \Rightarrow \mathrm{A}=\frac{4 \pi}{21} \text { hay } \mathrm{A}=\frac{5 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21}$ thì $\mathrm{B}+\mathrm{C}=\frac{17 \pi}{21}$ nhưng với mọi $\mathrm{B}, \mathrm{C}$ thuộc $\mathrm{E}$, ta đã có $B+C \neq \frac{17 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21} \Rightarrow \mathrm{B}+\mathrm{C}=\frac{16 \pi}{21} \Rightarrow \mathrm{B}=\frac{5 \pi}{21} \leq \mathrm{B} \leq(\mathrm{B}+\mathrm{C}) / 2=\frac{8 \pi}{21}$

$\Rightarrow \mathrm{B}=\frac{5 \pi}{21} \Rightarrow \mathrm{C}=\frac{11 \pi}{21} \in \mathrm{E}$

Vậy $\mathrm{T}$ có giá trị nhỏ nhất là $-3 \frac{\sqrt{3}}{2}$ đạt được khi tam giác $\mathrm{ABC}$ cân có góc ở đáy bằng $\frac{5 \pi}{21}$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999

ĐỀ THI

Câu 1

Giải phương trình: $x^2-3 x+1=-\frac{\sqrt{3}}{3} \cdot \sqrt{x^4+x^2+1}$.

Câu 2

Cho $\mathrm{x}$ là số thực sao cho $\mathrm{x}^3-\mathrm{x}$ và $\mathrm{x}^4-\mathrm{x}$ đều là các số nguyên. Chứng minh $\mathrm{x}$ là số nguyên.

Câu 3

Tìm giá trị nhỏ nhất của: $S=|x|+\left|\frac{2 x-1}{x+3}\right|$.

Câu 4

Gọi $\mathrm{R}, \mathrm{r}, \mathrm{p}$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp, nửa chu vi của tam giác $A B C$. Chứng minh:

$\operatorname{tg} \frac{\mathrm{A}}{2}\left(1+\cos \frac{\mathrm{A}}{2}\right)+\operatorname{tg} \frac{\mathrm{B}}{2}\left(1+\cos \frac{\mathrm{B}}{2}\right)+\operatorname{tg} \frac{\mathrm{C}}{2}\left(1+\cos \frac{\mathrm{C}}{2}\right) \geq \frac{\mathrm{p}(\mathrm{R}+\mathrm{r})+\mathrm{R}(4 \mathrm{R}+\mathrm{r})}{\mathrm{pR}}$

Câu 5

Trong mặt phẳng toạ độ $(\mathrm{Oxy})$, cho 3 đường thẳng có hệ số góc là $\frac{1}{\mathrm{~m}}, \frac{1}{\mathrm{n}}, \frac{1}{\mathrm{p}}$ với $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là các số nguyên dương. Tìm $\mathrm{m}, \mathrm{n}, \mathrm{p}$ sao cho 3 đường thẳng đó tạo với trục hoành 3 góc có tổng số đo là $45^{\circ}$.

 

LỜI GIẢI

 

Câu 1

Giải phương trình: $x^2-3 x+1=-\frac{\sqrt{3}}{3} \cdot \sqrt{x^4+x^2+1}$.

Lời Giải

Ta có: $x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)>0$ $x^2-3 x+1=2\left(x^2-x+1\right)-\left(x^2+x+1\right)$

Đặt $t=\sqrt{\frac{x^2-x+1}{x^2+x+1}}$. Ta xét phương trình: $2 t^2-m t-1=0\quad\quad\quad (1)$

Chú ý: Từ $t=\sqrt{\frac{x^2-x+1}{x^2+x+1}}$

Ta có: $\left(\mathrm{t}^2-1\right) \mathrm{x}^2+\left(\mathrm{t}^2+1\right) \mathrm{x}+\mathrm{t}^2-1=0\quad\quad\quad (2)$

Và $\frac{\sqrt{3}}{3} \leq \mathrm{t} \leq \sqrt{3}$

a) Khi $\mathrm{m}=-\frac{\sqrt{3}}{3}$ thì (1) có hai nghiệm $\mathrm{t}=-\frac{3}{2 \sqrt{3}} ; \mathrm{t}_2=\frac{1}{\sqrt{3}}$ Chỉ xét $\mathrm{t}=\frac{1}{\sqrt{3}}$. Lúc đó (2) có nghiệm $\mathrm{x}=1$

Vậy trường hợp này phương trình có một nghiệm là $\mathrm{x}=1$.

b) Nhận xét: Phương trình (1) có hai nghiệm $\mathrm{t}_1, \mathrm{t}_2$ mà $\mathrm{t}_1<0<\mathrm{t}_2$

Do đó phương trình $\left({ }^*\right)$ có tối đa hai nghiệm thực.

Trường hợp phương trình có một nghiệm thực là trường hợp (2) chỉ có một nghiệm thực.

Đó là các trường hợp sau:

1) $t=1:$ ta có $m=1$ và $x=0$

2) $t^2-1 \neq 0$ và $\Delta_t=0$. Ta có $t=\frac{\sqrt{3}}{3}$ hay $t=\sqrt{3}$.

Lúc đó: $m=-\frac{\sqrt{3}}{3}$ và $x=1$ hay $m=\frac{5 \sqrt{3}}{3}$ và $x=-1$.

Tóm lại: phương trình có một số lẻ nghiệm thực khi và chỉ khi:

$\mathrm{M} \in[1 ; \frac{5 \sqrt{3}}{3} ;-\frac{\sqrt{3}}{3}]$

Câu 2

Cho $\mathrm{x}$ là số thực sao cho $\mathrm{x}^3-\mathrm{x}$ và $\mathrm{x}^4-\mathrm{x}$ đều là các số nguyên. Chứng minh $\mathrm{x}$ là số nguyên.

Dành cho bạn đọc

Câu 3

Tìm giá trị nhỏ nhất của: $S=|x|+\left|\frac{2 x-1}{x+3}\right|$.

Lời Giải

Ta có các trường hợp sau:

Nếu $x<-3$ :

Khi $x<-3 \Rightarrow|x|>3$. Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq|x|>3$.

Vậy trong trường hợp này ta có $\mathrm{S}>3\quad\quad\quad\quad\quad (1)$

Nếu $-3<\mathrm{x}<0$ :

Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq\left|\frac{2 x-1}{x+3}\right|\quad\quad\quad (a)$

Mặt khác với $-3<x<0$ thì $\frac{2 x-1}{x+3}<0$; bởi vậy thay vào (a) ta có:

$S \geq-\frac{2 x-1}{x+3}=-2+\frac{7}{x+3}\quad\quad\quad\quad (b)$

Vì $-3<x<0 \Rightarrow 0<x+3<3 \Rightarrow \frac{1}{3}<\frac{1}{x+3} \Rightarrow \frac{7}{3}<\frac{7}{x+3}$

Đem kết quả này vào $(\mathrm{b})$ ta được:

$\mathrm{S} \geq-\frac{2 \mathrm{x}-1}{\mathrm{x}+3}=-2+\frac{7}{\mathrm{x}+3}>-2+\frac{7}{3}=\frac{1}{3}$

Vậy trong trường hợp này ta có: $\mathrm{S}>\frac{1}{3}\quad\quad\quad\quad (2)$

Nếu $x>\frac{1}{2}$ :

Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq|x|>\frac{1}{2}$

Vậy trong trường hợp này ta có: $\mathrm{S}>\frac{1}{2}\quad\quad\quad\quad (3)$

Nếu $0 \leq x \leq \frac{1}{2}$ :

Trong trường hợp này $S=x-\frac{2 x-1}{x+3}=\frac{x^2+x+1}{x+3}$

Ta chứng minh $S \geq \frac{1}{3}$; nghĩa là chứng minh: $\frac{x^2+x+1}{x+3} \geq \frac{1}{3}\quad\quad (c)$

Ta có: $(\mathrm{c}) \Leftrightarrow 3 \mathrm{x}^2+3 \mathrm{x}+3 \geq \mathrm{x}+3 \Leftrightarrow 3 \mathrm{x}^2+2 \mathrm{x} \geq 0 \Leftrightarrow x \geq 0$.

Vậy trong trường hợp $0 \leq x \leq \frac{1}{2}$ thì $S \geq \frac{1}{3}$; dấu bằng xảy ra khi $x=0$.

Bởi vậy trong trường hợp $0 \leq x \leq \frac{1}{2}$ thì $S$ đạt giá trị nhỏ nhất là $\frac{1}{3}$ khi $x=0\quad\quad (4)$

Từ (1), (2), (3) và (4) ta có kết luận:

Giá trị nhỏ nhất của S là $\frac{1}{2}$, đạt được khi $x=0$.

Câu 4

Gọi $\mathrm{R}, \mathrm{r}, \mathrm{p}$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp, nửa chu vi của tam giác $A B C$. Chứng minh:

$\operatorname{tg} \frac{\mathrm{A}}{2}\left(1+\cos \frac{\mathrm{A}}{2}\right)+\operatorname{tg} \frac{\mathrm{B}}{2}\left(1+\cos \frac{\mathrm{B}}{2}\right)+\operatorname{tg} \frac{\mathrm{C}}{2}\left(1+\cos \frac{\mathrm{C}}{2}\right) \geq \frac{\mathrm{p}(\mathrm{R}+\mathrm{r})+\mathrm{R}(4 \mathrm{R}+\mathrm{r})}{\mathrm{pR}}$

Dành cho bạn đọc

Câu 5

Trong mặt phẳng toạ độ $(\mathrm{Oxy})$, cho 3 đường thẳng có hệ số góc là $\frac{1}{\mathrm{~m}}, \frac{1}{\mathrm{n}}, \frac{1}{\mathrm{p}}$ với $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là các số nguyên dương. Tìm $\mathrm{m}, \mathrm{n}, \mathrm{p}$ sao cho 3 đường thẳng đó tạo với trục hoành 3 góc có tổng số đo là $45^{\circ}$.

Lời Giải

Gọi $\alpha, \beta, \delta$ là 3 góc tạo bởi 3 đường thẳng đã cho với trục $O x$ trong hệ trục tọa độ trục chuẩn Oxy.

Ta có:

$\operatorname{tg}(\alpha+\beta+\delta)=\frac{\operatorname{tg}(\alpha+\beta)+\operatorname{tg} \delta}{1-\operatorname{tg}(\alpha+\beta) \operatorname{tg} \delta}=\frac{\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta}+\operatorname{tg} \delta}{1-\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta} \operatorname{tg} \delta}$

$=\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta+\operatorname{tg} \delta-\operatorname{tg} \alpha \operatorname{tg} \beta \operatorname{tg} \delta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta-\operatorname{tg} \beta \operatorname{tg} \delta-\operatorname{tg} \delta \operatorname{tg} \alpha}=\frac{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{\operatorname{mnp}}}{1-\frac{1}{m n}-\frac{1}{n p}-\frac{1}{p m}}$

$=\frac{\mathrm{mn}+\mathrm{np}+\mathrm{pm}-1}{\mathrm{mnp}-\mathrm{m}-\mathrm{n}-\mathrm{p}}$

Theo giả thiết $\alpha+\beta+\delta=45^{\circ}$ nên ta có

$m n+n p+p m-1=m n p-m-n-p$

hay $m n p-m n-n p-p m+m+n+p+1=2(m+n+p-1)$

Đặt $\mathrm{x} y=-\mathrm{m}-1 ; \mathrm{y}=\mathrm{n}-1 ; \mathrm{z}=\mathrm{p}-1$ ta có phương trình nghiệm nguyên không âm

$x y z=2(x+y+z+2)\quad\quad\quad\quad (1)$

Tả tìm cách giải phương trình này. Vì $x+y+z+2>0$ nên $x>0, y>0, z>0$. Không làm mất tính chất tổng quát ta giả sử $\mathrm{x} \geq \mathrm{y} \geq \mathrm{z}$.

Phương trình (1) tương đương với

$\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}+\frac{2}{x y z}=\frac{1}{2}\quad\quad\quad\quad (2)$

Có 2 trường hợp:

1) Nếu $z \geq 3$ thì vế trái của phương trình (2) nhỏ hơn $\frac{3}{\mathrm{z}^2}+\frac{2}{\mathrm{z}^3} \leq \frac{1}{3}+\frac{2}{27}=\frac{11}{27}<\frac{1}{2}$ vậy phương trình không thỏa.

2) Nếu $z=2$ thì

$ 2 x y=2(x+y+4) $

$\Leftrightarrow  x y-x-y+1=5 $

$\Leftrightarrow (x-1)(y-1)=5 $

$\Leftrightarrow  x-1=5 \text { và } y-1=1 $

$\Leftrightarrow  x=6 \text { và } y=2 \text { suy ra } m=7, n=3, p=3$

3) Nếu $\mathrm{z}=1$ thì $\Leftrightarrow(x-2)(y-2)=10$

Điều này tương đương với

  • hoặc $\mathrm{x}-2=5$ và $\mathrm{y}-2=2$

$\Leftrightarrow x=7$ và $y=4$ suy ra $\mathrm{m}=8, \mathrm{n}=5, \mathrm{p}=2$.

  • hoặc $x-2=10$ và $y-2=1$

$\Leftrightarrow x=12$ và $y=3 \Leftrightarrow m=13, n=4$ và $p=2$.

Do tính chất đối xứng, các số $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là cá c hoán vị của $(13 ; 4 ; 2) ;(8 ; 5 ; 2) ;(7 ; 3 ; 3)$

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000

ĐỀ THI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

 

LỜI GIẢI

 

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Lời Giải

Điều kiện $\mathrm{x}>0, \mathrm{y}>0$.

Hệ phương trình có thể viết:

$\quad\quad\quad\quad \left\{\begin{array}{l}\frac{1}{\sqrt{x}}-\frac{\sqrt{2}}{\sqrt{y}}=\frac{5}{y+42 x}\quad\quad (1) \\ \frac{1}{\sqrt{x}}+\frac{\sqrt{2}}{\sqrt{y}}=3\quad\quad\quad\quad (2)\end{array} \Rightarrow \frac{1}{x}-\frac{2}{y}=\frac{15}{y+42 x}\right.$

$\quad\quad\quad \Leftrightarrow(y-2 x)(y+42 x)=15 x y \Leftrightarrow y^2-84 x^2+25 x y=0 $

$\quad\quad\quad \Leftrightarrow(y-3 x)(y+28 x)=0$

Do $y+28 x>0 \Rightarrow y=3 x$. Thế vào $(2) \Rightarrow$ hệ có nghiệm là:

$\quad\quad\quad\quad\quad\quad\quad\quad \left(\frac{5+2 \sqrt{6}}{27} ; \frac{5+2 \sqrt{6}}{9}\right)$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Dành cho bạn đọc

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Lời Giải

a) Xét 5 số tự nhiên tuỳ ý, khi chia cho 3 có thể xảy ra:

  • Có 3 số dư giống nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3 .

  • Trái lại, sẽ có 3 số dư đôi một khác nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3.

Vậy trong 5 số tự nhiên bất kì, tồn tại 3 số có tổng chia hết cho 3 .

b) Xét 17 số tự nhiên tuỳ ý:

Chia chúng thành 3 tập, có lần lượt $5,5,7$ phần tử. Trong mỗi tập, chọn được 3 số có tổng lần lượt là $3 \mathrm{a}_1, 3 \mathrm{a}_2, 3 \mathrm{a}_3\left(\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \in \mathrm{N}\right)$

Còn lại: $17-9=8$ số

Trong 8 số này, chọn tiếp 3 số có tổng là $3 \mathrm{a}_4$, còn lại 5 số chọn tiếp 3 số có tổng là $3 \mathrm{a}_5$.

Trong 5 số $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4$, a5 có 3 số ai1, ai2, ai3 có tổng chia hết cho 3 .

$\Rightarrow 9$ học sinh tương ứng có tổng các số kí danh là:

$\quad\quad\quad\quad\quad\quad 3 a_{i 1}+3 a_{i 2}+3 a_{i 3}=3\left(a_{i 1}+a_{i 2}+a_{i 3}\right) \vdots 9 .$

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Lời Giải

Để ý rằng nếu $\mathrm{M} \equiv \mathrm{C}$ (hay $\mathrm{N} \equiv \mathrm{C}$ ) thì $\mathrm{I} \equiv \mathrm{D}$ (hay $\mathrm{I} \equiv \mathrm{B}$ ) $\Rightarrow$ bài toán đúng.

Xét trường hợp $\mathrm{I} \neq \mathrm{B}, \mathrm{I} \neq \mathrm{D}$

Áp dụng định luật Menelaus cho tam giác $\mathrm{BCD}$ với bộ 3 điểm $\mathrm{M}, \mathrm{N}$, I ta có:

$\quad\quad \frac{\mathrm{MB}}{\mathrm{MC}} \cdot \frac{\mathrm{NC}}{\mathrm{ND}} \cdot \frac{\mathrm{ID}}{\mathrm{IB}}=1$

$\Leftrightarrow \frac{\mathrm{AB} \cdot \sin \mathrm{A}_5}{\mathrm{AC} \cdot \sin \mathrm{A}_4} \cdot \frac{\mathrm{AC} \cdot \sin \mathrm{A}_3}{\mathrm{AD} \cdot \sin \mathrm{A}_2} \cdot \frac{\mathrm{AD} \cdot \sin \mathrm{A}_1}{\mathrm{AB} \cdot \sin \widehat{\mathrm{AIB}}}=1$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\sin \mathrm{A}_4 \cdot \sin \widehat{\mathrm{IAB}}\left(\right.$ do $\left.\sin \mathrm{A}_2=\sin \mathrm{A}_5\right)$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\cos \left(\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \left(\mathrm{A}_1+\mathrm{A}_2\right)$

$\Leftrightarrow \frac{1}{2}\left[\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)-\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)\right]$

$=\frac{1}{2}\left[\cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)\right]$

$\Leftrightarrow \cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)=0$

$\Leftrightarrow 2 \cos \left(\mathrm{A}_1+\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \mathrm{A}_2=0$

$\Leftrightarrow \cos \left(A_1+A_2+A_3\right)=0 \Leftrightarrow A_1+A_2+A_3=90^{\circ} .$

Vậy $I A \perp A C$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

Lời Giải

Chọn $\mathrm{a}=\mathrm{b}=\frac{1}{2}=0$, ta có $\mathrm{k} \leq \frac{15}{4}$, ta chứng minh rằng $\mathrm{k}_{\max }=\frac{15}{4}$

tức là ta chứng $\operatorname{minh}: a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

Xét 3 số $(\mathrm{a}+\mathrm{c}-\mathrm{b}) ;(\mathrm{a}+\mathrm{b}-\mathrm{c}) ;(\mathrm{b}+\mathrm{c}-\mathrm{a})$ có nhiều nhất 1 số âm vì tổng số tuỳ ý đều không âm. Nếu có 1 số âm thì

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a)<0 \leq a b c$

Nếu cả 3 số đều dương ta dễ dàng chứng minh

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a) \leq a b c$

Do đó ta có $(1-2 \mathrm{a})(1-2 \mathrm{~b})(1-2 \mathrm{c}) \leq \mathrm{abc}$

$\quad\quad\quad\Leftrightarrow \frac{3}{4}-3(a b+b c+c a)+\frac{27}{4} a b c \geq 0$

$\quad\quad\quad\Leftrightarrow(a+b+c)^2-3(a b+b c+c a)(a+b+c)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow(a+b+c)\left(a^2+b^2+c^2-a b-b c-a c\right)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2001

ĐỀ THI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

 

LỜI GIẢI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Lời Giải

Giả sử $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ và $2 \leq \mathrm{a}<\mathrm{b}<\mathrm{c}$ thoả:

$\quad\quad\quad\quad\quad\quad\quad\quad a b+1 \vdots c ; a c+1 \vdots b ; b c+1 \vdots a$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow(a b+1)(a c+1)(b c+1) \vdots a b c \Rightarrow a b+b c+c a+1 \vdots a b c$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow a b+b c+c a+1 \geq a b c \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c} \geq 1$

Nếu $\mathrm{b} \geq 4$ thì $\mathrm{c} \geq 5$, khi đó

$\quad\quad\quad\quad\quad \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{abc}} \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{40}=\frac{39}{40}<1 \text { (vô lí) }$

Vậy $3 \leq \mathrm{b}<4 \Rightarrow \mathrm{b}=3$, $a=2$

Từ $\mathrm{ab}+1=7 \vdots \mathrm{c} \Rightarrow \mathrm{c}=7$.

Thử lại $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(2,3,7)$ thỏa điều kiện.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Lời Giải

Do vai trò $x, y, z$ như nhau nên giả sử: $1 \leq x \leq y \leq z \leq 2$

$\Rightarrow\left\{\begin{array}{l}\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right) \geq 0 \\ \left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right) \geq 0\end{array} \Rightarrow\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right) \leq 2+\left(\frac{x}{z}+\frac{z}{x}\right)\right.$

$\Rightarrow P=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+3 \leq 5+2\left(\frac{x}{z}+\frac{z}{x}\right)\quad\quad (1)$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}x=y \ y=z\end{array}\right.$

Đặt $t=\frac{x}{z} \in\left[\frac{1}{2} ; 1\right] t_i$ ta có $(2-t)\left(\frac{1}{2}-t\right) \leq 0 \Leftrightarrow t+\frac{1}{t} \leq \frac{5}{2}\quad\quad\quad\quad (2)$

Dấu “=” của $(2)$ xảy ra $\Leftrightarrow t=\frac{1}{2}$

Từ (1) và $(2$ ) suy ra $\mathrm{P} \leq 5+5=10=\mathrm{const}$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x=y=1 \\ z=2\end{array}\right. \\ \left\{\begin{array}{l}x=1 \\ y=z=2\end{array}\right.\end{array}\right.$

Vậy: $\max \mathrm{P}=10$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Lời Giải

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}\quad\quad (1)$

Ta có: $\quad \cos 3 \mathrm{a}=4 \cos ^3 \mathrm{a}-3 \cos \mathrm{a}$

$\quad\quad\quad\quad\quad\quad \Rightarrow\left\{\begin{array}{l}\cos 4 a=8 \cos ^4 a-8 \cos ^2 a+1 \\ \cos 5 a=16 \cos ^5 a-20 \cos ^3 a+5 \cos a \\ \cos 6 a=32 \cos ^6 a-48 \cos ^4 a+18 \cos ^2 a-1 \\ \cos 7 a=64 \cos ^7 a-112 \cos ^5 a+56 \cos ^3 a-7 \cos a\end{array}\right.$

Đặt $x=$ cost với $t \in[0 ; \pi],(1)$ trở thành:

$\quad\quad\quad\quad\quad\quad\quad 64 \cos ^6 t-112 \cos ^4 t+56 \cos ^2 t-7=2 \sqrt{1-\cos ^2 t} $

$\quad\quad\quad\quad\quad\quad \Leftrightarrow  64 \cos ^7 t-112 \cos ^5 t+56 \cos ^3 t-7 \cos t=2 \cos t \sin t$

(với cost $\neq 0$ )

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\sin 2 \mathrm{t}$

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\cos \left(\frac{\pi}{2}-2 \mathrm{t}\right) \Leftrightarrow\left[\begin{array}{l}\mathrm{t}=\frac{\pi}{18}+\mathrm{k} \frac{2 \pi}{9} \\ \mathrm{t}=-\frac{\pi}{10}+l \frac{2 \pi}{5}\end{array} \mathrm{k}, l \in \mathrm{Z}\right.$

$\quad\quad\quad \mathrm{t} \in[0 ; \pi]$

$\Rightarrow \mathrm{t}=\frac{\pi}{18} \vee \mathrm{t}=\frac{5 \pi}{18} \vee \mathrm{t}=\frac{9 \pi}{18} \vee \mathrm{t}=\frac{13 \pi}{19} \vee \mathrm{t}=\frac{17 \pi}{18} \vee \mathrm{t}=\frac{3 \pi}{10} \vee \mathrm{t}=\frac{7 \pi}{10}$

Vì cost $\neq 0$ nên $t \neq \frac{\pi}{2}$. Vậy phương trình (1) có 6 nghiệm thực là:

$\quad\quad\quad x=\cos \frac{\pi}{18} \vee x=\cos \frac{5 \pi}{18} \vee x=\cos \frac{9 \pi}{18} \vee x=\cos \frac{13 \pi}{19}$

$\quad\quad\quad\quad\quad\quad\quad\quad \vee x=\cos \frac{17 \pi}{18} \vee x=\cos \frac{3 \pi}{10} \vee x=\cos \frac{7 \pi}{10}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

Lời Giải

Theo giả thiết các tam giác $\mathrm{OAB}, \mathrm{OBC}$ và ODE là các tam giác đều nên:

$\quad\quad\quad\quad\quad\quad\quad \widehat{\mathrm{AOE}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad \text { Mà } \quad\quad  2 \widehat{\mathrm{DCO}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AOE}}=2 \widehat{\mathrm{DCO}} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AON}}=\widehat{\mathrm{MCO}}$

Từ đó $\triangle \mathrm{NOA}=\Delta \mathrm{MCO} \Rightarrow \mathrm{ON}=\mathrm{CM}$

Dẫn đến: $\Delta \mathrm{ONB}=\Delta \mathrm{CMB}$ (c.g.c) $\Rightarrow\left\{\begin{array}{l}\mathrm{BN}=\mathrm{NM} \\ \widehat{\mathrm{OBN}}=\widehat{\mathrm{CBM}}\end{array}\right.$

Mà $\widehat{\mathrm{OBC}}=60^{\circ} \Rightarrow \widehat{\mathrm{NBM}}=60^{\circ}$, vậy $\triangle \mathrm{MBN}$ đều.

Đặt $\alpha=\widehat{\mathrm{AON}}\left(0<\alpha<90^0\right)$. Khi đó

$\quad\quad\quad \mathrm{BN}^2 =\mathrm{R}^2+\mathrm{R}^2 \cos ^2 \alpha-2 \mathrm{R}^2 \cdot \cos \alpha \cos \left(\alpha+60^{\circ}\right) $

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left[1+\cos ^2 \alpha-2 \cos \alpha\left(\cos \alpha \cdot \cos 60^{\circ}-\sin \alpha \cdot \sin 60^{\circ}\right)\right]$

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left(1+\frac{\sqrt{3}}{2} \sin 2 \alpha\right) $

$\quad\quad \Rightarrow \mathrm{BN}^2 \leq \mathrm{R}^2\left(1+\frac{\sqrt{3}}{2}\right)$

Dấu “=” xảy ra khi $\sin 2 \alpha=1$ hay $\alpha=45^{\circ}$.

Chu vi lớn nhất có thể có của tam giác $\mathrm{BMN}$ là: $\mathrm{P}=\frac{3 \mathrm{R}(1+\sqrt{3})}{2}$.

 

 

 

 

 

 

 

 

 

 

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHÂN THỨC ĐẠI SỐ – P.2

 CÁC PHÉP TÍNH VỀ PHÂN THỨC

 

Muốn cộng các phân thức, ta quy đồng mẫu thức, cộng các tử thức với nhau, giữ nguyên mẫu thức chung, rồi rút gọn phân thức vừa tìm được.

Muốn trừ đi một phân thức, ta lấy phân thức bị trừ cộng với phân thức đối của phân thức trừ.

Muốn nhân các phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau, rồi rút gọn phân thức vừa tìm được. Muốn chia cho một phân thức khác 0 , ta lấy phân thức bị chia nhân với phân thức nghịch đảo của phân thức chia.

Ví dụ 1.

Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ đều khạ́c 0 . Rút gọn biểu thức

$A=\frac{a b}{a^2+b^2-c^2}+\frac{b c}{b^2+c^2-a^2}+\frac{c a}{c^2+a^2-b^2} \text {. }$

Giải : Từ $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ suy ra $\mathrm{a}+\mathrm{b}=-\mathrm{c}$.

Bình phương hai vế, ta được $\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ab}=\mathrm{c}^2$ nên $\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2=-2 \mathrm{ab}$.

Tương tự, $\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2=-2 \mathrm{bc}$ và $\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2=-2 \mathrm{ca}$.

Do đó $\mathrm{A}=\frac{\mathrm{ab}}{-2 \mathrm{ab}}+\frac{\mathrm{bc}}{-2 \mathrm{bc}}+\frac{\mathrm{ca}}{-2 \mathrm{ca}}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}$.

Ví dụ 2. Rút gọn biểu thức

$A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} .$

Giải : Do đặc điểm của bài toán, ta không quy đồng mẫu tất cả các phân thức mà cộng lần lượt từng phân thức.

$A =\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} $

$=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}=\frac{8}{1-x^8}+\frac{8}{1+x^8}=\frac{16}{1-x^{16}}$

Ví dụ 3. Rút gọn biểu thức

$\mathrm{B}=\frac{3}{(1.2)^2}+\frac{5}{(2.3)^2}+\ldots+\frac{2 n+1}{[n(n+1)]^2}$

Giải : Đương nhiên không thể quy đồng mẫu tất cả các phân thức. Ta tìm cách tách mỗi phân thức thành hiệu của hai phân thức rồi dùng phương pháp khử liên tiếp. Ta có :

$\frac{2 \mathrm{k}+1}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{(\mathrm{k}+1)^2-\mathrm{k}^2}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{1}{\mathrm{k}^2}-\frac{1}{(\mathrm{k}+1)^2}$

Do đó : $\quad \mathrm{B}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\ldots+\frac{1}{\mathrm{n}^2}-\frac{1}{(\mathrm{n}+1)^2}=$

$=1-\frac{1}{(n+1)^2}=\frac{n(n+2)}{(n+1)^2}$

Ví dụ 4. Xác định các ‘số a, b, c sao cho

$\frac{1}{\left(x^2+1\right)(x-1)}=\frac{a x+b}{x^2+1}+\frac{c}{x-1} \text {. }\quad\quad(1)$

Giải : Thực hiện phép cộng ở vế phải của (1) :

$\frac{(a x+b)(x-1)+c\left(x^2+1\right)}{\left(x^2+1\right)(x-1)}=\frac{a x^2-a x+b x-b+c x^2+c}{\left(x^2+1\right)(x-1)}=$

$=\frac{(a+c) x^2+(b-a) x+(c-b)}{\left(x^2+1\right)(x-1)} \text {. }$

Đồng nhất phân thức trên với phân thức $\frac{1}{\left(x^2+1\right)(x-1)}$, ta được :

$\left\{\begin{array} { l }{ \mathrm { a } + \mathrm { c } = 0 } \\ { \mathrm { b } – \mathrm { a } = 0 } \\ { \mathrm { c } – \mathrm { b } = 1 }\end{array} \Rightarrow \left\{\begin{array}{l}\mathrm{c}+\mathrm{b}=0 \\ \mathrm{c}-\mathrm{b}=1\end{array} \Rightarrow \mathrm{c}=\frac{1}{2} ; \mathrm{b}=-\frac{1}{2} .\right.\right.$

Do đó $a=-\frac{1}{2}$. Như vậy : $\frac{1}{\left(x^2+1\right)(x-1)}=\frac{-\frac{1}{2} x-\frac{1}{2}}{x^2+1}+\frac{\frac{1}{2}}{x-1}$.

Ví dụ 5. Cho $\quad A=\frac{1}{(x+y)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)$, $B=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right), \quad C=\frac{2}{(x+y)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)$.

Thực hiện phép tính $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

Giải : Ta có

$A =\frac{y^4-x^4}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)\left(y^2-x^2\right)}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2} $

$B+C =\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{1}{x+y} \cdot \frac{y^2-x^2}{x^2 y^2}\right) $

$=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{y-x}{x^2 y^2}\right)=\frac{2}{(x+y)^4} \cdot \frac{y^3-x^3+x y(y-x)}{x^3 y^3}$

$=\frac{2}{(x+y)^4} \cdot \frac{(y-x)\left(y^2+2 x y+x^2\right)}{x^3 y^3}=\frac{2(y-x)}{(x+y)^2 x^3 y^3}$

Do đó $A+B+C=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2}+\frac{2(y-x)}{x^3 y^3(x+y)^2}=$

$=\frac{\left(y^2+x^2\right)(y-x)+2 x y(y-x)}{x^4 y^4(x+y)^2}=\frac{(y-x)\left(y^2+x^2+2 x y\right)}{x^4 y^4(x+y)^2}=\frac{y-x}{x^4 y^4}$

 

BÀI TẬP

19. Thực hiện phép tính :
a) $\frac{x+3}{x+1}-\frac{2 x-1}{x-1}-\frac{x-3}{x^2-1}$
b) $\frac{1}{x(x+y)}+\frac{1}{y(x+y)}+\frac{1}{x(x-y)}+\frac{1}{y(y-x)}$.
10. Thực hiện phép tính :
a) $A=\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}$;
b) $B=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-a)(b-c)}+\frac{1}{c(c-a)(c-b)}$;
c) $\mathrm{C}=\frac{\mathrm{bc}}{(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})}+\frac{\mathrm{ac}}{(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{c})}+\frac{\mathrm{ab}}{(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})}$;
d) $D=\frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}$.
11. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số nguyên khác nhau đôi một. Chứng minh rằng biểu thức sau có giá trị là một số nguyên :
$P=\frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-a)(b-c)}+\frac{c^3}{(c-a)(c-b)}$

12. Cho $3 y-x=6$. Tính giá trị của biểu thức

$A=\frac{x}{y-2}+\frac{2 x-3 y}{x-6}$

13. Tìm $\mathrm{x}, \mathrm{y}, \mathrm{z}$, biết rằng $\frac{\mathrm{x}^2}{2}+\frac{\mathrm{y}^2}{3}+\frac{\mathrm{z}^2}{4}=\frac{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}{5}$.

14. Tìm $\mathrm{x}, \mathrm{y}$, biết rằng $\mathrm{x}^2+\mathrm{y}^2+\frac{1}{\mathrm{x}^2}+\frac{1}{\mathrm{y}^2}=4$.

15. Cho biết :

$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=2$

$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}=2 .$

Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{abc}$.

16. Cho

$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=0$

và $\quad \frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{z}}=2$.

Tính giá trị của biểu thức : $\frac{\mathrm{a}^2}{\mathrm{x}^2}+\frac{\mathrm{b}^2}{\mathrm{y}^2}+\frac{\mathrm{c}^2}{\mathrm{z}^2}$.

17. Cho $(a+b+c)^2=a^2+b^2+c^2$ và $a, b, c$ khác 0 . Chứng minh rằng

$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{a b c}$

18. Cho

$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{a}}+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{b}}$

Chứng minh rằng trong ba số $\mathrm{a}, \mathrm{b}, \mathrm{c}$, tồn tại hai số bằng nhau.

19. Tìm các giá trị nguyên của $\mathrm{x}$ để phân thức sau có giá trị là số nguyên :

a) $\mathrm{A}=\frac{2 \mathrm{x}^3-6 \mathrm{x}^2+\mathrm{x}-8}{\mathrm{x}-3}$

b) $\mathrm{B}=\frac{\mathrm{x}^4-2 \mathrm{x}^3-3 \mathrm{x}^2+8 \mathrm{x}-1}{\mathrm{x}^2-2 \mathrm{x}+1}$

c) $C=\frac{x^4+3 x^3+2 x^2+6 x-2}{x^2+2}$

20. Rút gọn biểu thức sau với $\mathrm{x}=\frac{\mathrm{a}}{3 \mathrm{a}+2}$ :

$A=\frac{x+3 a}{2-x}+\frac{x-3 a}{2+x}-\frac{2 a}{4-x^2}+a$

21. Rút gọn biểu thức :

$A=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a-b)(b-c)(c-a)} .$

  1. Cho biết $\frac{a+b-c}{a b}-\frac{b+c-a}{b c}-\frac{a+c-b}{a c}=0$. Chứng minh rằng trong ba phân thức ở vế trái, có ít nhất một phân thức bằng 0 .

23. Xác định các số a, b, c sao cho :

a) $\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{b x+c}{x^2+1}$

b) $\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}$

c) $\frac{1}{(x+1)^2(x+2)}=\frac{a}{x+1}+\frac{b}{(x+1)^2}+\frac{c}{x+2}$.

24. Rút gọn biểu thức

$\mathrm{B}=(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)-\mathrm{abc}\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)$

25. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ khác nhau đôi một và $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$. Rút gọn các biểu thức :

a) $M=\frac{1}{a^2+2 b c}+\frac{1}{b^2+2 a c}+\frac{1}{c^2+2 a b}$

b) $\mathrm{N}=\frac{\mathrm{bc}}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{ca}}{\mathrm{b}^2+2 \mathrm{ac}}+\frac{\mathrm{ab}}{\mathrm{c}^2+2 \mathrm{ab}}$;

c) $\mathrm{P}=\frac{\mathrm{a}^2}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{~b}^2+2 \mathrm{ac}}+\frac{\mathrm{c}^2}{\mathrm{c}^2+2 \mathrm{ab}}$.

26. Cho các số $a, b, c$ khác nhau đôi một và $\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}$. Tính giá trị của biểu thức

$\mathrm{M}=\left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)\left(1+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{a}}\right)$

27*. Cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3=3 \mathrm{abc}$ và $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$. Tính giá trị của biểu thức :

$N=\frac{a^2+b^2+c^2}{(a+b+c)^2}$

28. Rút gọn các biểu thức :

a) $A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right) \ldots\left(1-\frac{1}{n^2}\right)$;

b) $\mathrm{B}=\frac{1^2}{2^2-1} \cdot \frac{3^2}{4^2-1} \cdot \frac{5^2}{6^2-1} \cdot \cdots \cdot \frac{(2 n+1)^2}{(2 n+2)^2-1} .$

29. Rút gọn các biểu thức :

a) $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(n-1) n}$;

b) $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n+2)(3 n+5)}$;

c) $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{(n-1) n(n+1)}$.

30. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

a) $\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\ldots+\frac{1}{(2 n)^2}<\frac{1}{2}$

b) $\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots+\frac{1}{(2 n+1)^2}<\frac{1}{4}$.

31. Chứng minh rằng với mọi số tự nhiện $\mathrm{n} \geq 2$ :

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}<\frac{2}{3} .$

32. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 3$ :

$\mathrm{B}=\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\ldots+\frac{1}{\mathrm{n}^3}<\frac{1}{12} $

33. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

$A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right) \cdots\left(1+\frac{1}{n(n+2)}\right)<2$

34. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 2$ :

$\mathrm{B}=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right) \ldots\left(1-\frac{2}{\mathrm{n}(\mathrm{n}+1)}\right)>\frac{1}{3} \text {. }$

35. Rút gọn biểu thức

$A=\frac{3^2-1}{5^2-1} \cdot \frac{7^2-1}{9^2-1} \cdot \frac{11^2-1}{13^2-1} \cdot \ldots \frac{43^2-1}{45^2-1} .$

36*. Chứng minh rằng :

a) $\mathrm{A}=\frac{2^3+1}{2^3-1} \cdot \frac{3^3+1}{3^3-1} \cdot \frac{4^3+1}{4^3-1} \cdot \ldots \cdot \frac{9^3+1}{9^3-1}<\frac{3}{2}$.

b) $\mathrm{B}=\frac{2^3-1}{2^3+1} \cdot \frac{3^3-1}{3^3+1} \cdot \ldots \cdot \frac{\mathrm{n}^3-1}{\mathrm{n}^3+1}>\frac{2}{3}$.

37*. Rút gọn biểu thức

$P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right) \ldots\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right) \ldots\left(23^4+4\right)} .$

38. Rút gọn biểu thức

$M=\frac{1}{a^2-5 a+6}+\frac{1}{a^2-7 a+12}+\frac{1}{a^2-9 a+20}+\frac{1}{a^2-11 a+30}$

39. Rút gọn biểu thức

9.$\left(\frac{\mathrm{n}-1}{1}+\frac{\mathrm{n}-2}{2}+\frac{\mathrm{n}-3}{3}+\ldots+\frac{2}{\mathrm{n}-2}+\frac{1}{\mathrm{n}-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}\right) .$

40. Rút gọn biểu thức

$\frac{A}{B}=\frac{\frac{1}{1(2 n-1)}+\frac{1}{3(2 n-3)}+\frac{1}{5(2 n-5)}+\ldots+\frac{1}{(2 n-3) \cdot 3}+\frac{1}{(2 n-1) .1}}{1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}} .$

41. Cho

$a b c=1$

và $\quad \mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$.

Chứng minh rằng trong ba số a, b, c, tồn tại một số bằng 1 .

42. Chứng minh rằng nếu $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ và $\frac{1}{\dot{\mathrm{x}}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=\frac{1}{\mathrm{a}}$ thì tồn tại một trong ba số $\mathrm{x}, \mathrm{y}, \mathrm{z}$ bằng $\mathrm{a}$.

43. Các biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{z}$ và $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}$ có thể cùng có giá trị bằng 0 được hay không ?

44. Tính giá trị của biểu thức $\mathrm{M}=\frac{1}{\mathrm{x}+2}+\frac{1}{\mathrm{y}+2}+\frac{1}{\mathrm{z}+2}$, biết rằng $2 a=b y+c z, 2 b=a x+c z, 2 c=a x+b y$ và $a+b+c \neq 0$.

45. a) Cho abc $=2$. Rút gọn biểu thức

$M=\frac{a}{a b+a+2}+\frac{b}{b c+b+1}+\frac{2 c}{a c+2 c+2} .$

b) Cho abc $=1$. Rút gọn biểu thức

$\mathrm{N}=\frac{\mathrm{a}}{\mathrm{ab}+\mathrm{a}+1}+\frac{\mathrm{b}}{\mathrm{bc}+\mathrm{b}+1}+\frac{\mathrm{c}}{\mathrm{ac}+\mathrm{c}+1} .$

46. Cho $\frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}-\mathrm{c}}, \mathrm{a} \neq 0, \mathrm{c} \neq 0, \mathrm{a}-\mathrm{b} \neq 0, \mathrm{~b}-\mathrm{c} \neq 0$. Chứng minh rằng

$\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}$

47. Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0(\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0)$. Rút gọn các biểu thức :

a) $\mathrm{A}=\frac{\mathrm{a}^2}{\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{ca}}+\frac{\mathrm{c}^2}{\mathrm{ab}}$

b) $\mathrm{B}=\frac{\mathrm{a}^2}{\mathrm{a}^2-\mathrm{b}^2-\mathrm{c}^2}+\frac{\mathrm{b}^2}{\mathrm{~b}^2-\mathrm{c}^2-\mathrm{a}^2}+\frac{\mathrm{c}^2}{\mathrm{c}^2-\mathrm{a}^2-\mathrm{b}^2}$.

48*. Tính giá trị của biểu thức sau, biết rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ :

$A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right) \text {. }$

49. Chứng minh rằng nếu $\left(\mathrm{a}^2-\mathrm{bc}\right)(\mathrm{b}-\mathrm{abc})=\left(\mathrm{b}^2-\mathrm{ac}\right)(\mathrm{a}-\mathrm{abc})$ và các số $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{a}-\mathrm{b}$ khác 0 thì $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\mathrm{a}+\mathrm{b}+\mathrm{c}$.

50*. Cho $a+b+c=0, x+y+z=0, \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0$. Chứng minh rằng

$a x^2+b y^2+c z^2=0 .$

51. Cho $\frac{x y+1}{y}=\frac{y z+1}{z}=\frac{x z+1}{x}$. Chứng minh rằng $x=y=z$ hoặc $x^2 y^2 z^2=1$.

52. Cho $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1$. Chứng minh rằng $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0$.

53*. Cho $\frac{\mathrm{a}}{\mathrm{b}-\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}-\mathrm{a}}+\frac{\mathrm{c}}{\mathrm{a}-\mathrm{b}}=0$. Chứng minh rằng

$\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=0$

54. Cho $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{a}$. Tính các biểu thức sau theo $\mathrm{a}$ :

a) $x^2+\frac{1}{x^2}$

b) $x^3+\frac{1}{x^3}$

c) $x^4+\frac{1}{x^4}$

d) $x^5+\frac{1}{x^5}$

55. Cho $\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a$. Tính biểu thức

$M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right) \text { theo } a$

  1. Cho $x^2-4 x+1=0$. Tính giá trị của biểu thức $A=\frac{x^4+x^2+1}{x^2}$.

57. Cho $\frac{x}{x^2-x+1}=a$. Tính $M=\frac{x^2}{x^4+x^2+1}$ theo $a$.

58. Cho $x=\frac{b^2+c^2-a^2}{2 b c}, y=\frac{a^2-(b-c)^2}{(b+c)^2-a^2}$.

Tính giá trị của biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{xy}$.

59. Tìm hai số tự nhiên a và b sao cho :

a) $a-b=\frac{a}{b}$;

b) $a-b=\frac{a}{2 b}$

60. Cho hai số nguyên dương $\mathrm{a}$ và $\mathrm{b}$ trong đó $\mathrm{a}>\mathrm{b}$. Tìm số nguyên dương $\mathrm{c}$ khác b sao cho

$\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}$

61. Cho dãy số $a_1, a_2, a_3, \ldots$ sao cho :

$a_2=\frac{a_1-1}{a_1+1} ; a_3=\frac{a_2-1}{a_2+1} ; \ldots ; a_n=\frac{a_{n-1}-1}{a_{n-1}+1} .$

a) Chứng minh rằng $\mathrm{a}_1=\mathrm{a}_5$.

b) Xác định năm số đầu của dãy, biết rằng $\mathrm{a}_{101}=3$.

62. Tìm phân số $\frac{\mathrm{m}}{\mathrm{n}}$ khác 0 và số tự nhiên $\mathrm{k}$, biết rằng $\frac{\mathrm{m}}{\mathrm{n}}=\frac{\mathrm{m}+\mathrm{k}}{\mathrm{nk}}$.

63*. Cho hai số tự nhiên a và $\mathrm{b}(\mathrm{a}<\mathrm{b})$. Tìm tổng các phân số tối giản có mẫu bằng 7 , mỗi phân số lớn hơn a nhưng nhỏ hơn b.

64. a) Mức sản xuất của một xí nghiệp năm 2001 tăng a\% so với năm 2000, năm 2002 tăng b\% so với năm 2001. Mức sản xuất của xí nghiệp đó năm 2002 tăng so với năm 2000 là :

A) $(a+b) \%$;

B) $a b \%$

C) $\left(a+b+\frac{a+b}{100}\right) \%$

D) $\left(a+b+\frac{a b}{100}\right) \%$

$\mathrm{E})\left(\frac{\mathrm{a}+\mathrm{b}}{100}+\frac{\mathrm{ab}}{10000}\right) \%$

Hãy chọn câu trả lời đúng.

b) Một số a tăng m\%, sau đó lại giảm đi n\% ( $\mathrm{a}, \mathrm{m}, \mathrm{n}$ là các số dương) thì được số $b$. Tìm liên hệ giữa $m$ và $n$ để $b>a$.

65*. Chứng minh rằng các tổng sau không là số nguyên :

a) $\mathrm{A}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 2)$

b) $\mathrm{B}=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{2 \mathrm{n}+1}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 1)$.

 

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI ĐA THỨC

Định lý Bezout và áp dụng

1. Đa thức chia có dạng $x-a$ (a là hằng)

Ví dụ 1. Chứng minh rằng số dư khi chia đa thức $\mathrm{f}(\mathrm{x})$ cho nhị thức $\mathrm{x}$ – a bằng giá trị của đa thức $\mathrm{f}(\mathrm{x})$ tại $\mathrm{x}=\mathrm{a}$.

Định lí Bê-du (Bézout, 1730 – 1783, nhà toán học Pháp).

Giải : Do đa thức chia $\mathrm{x}$ – a có bậc nhất nên số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-\mathrm{a}$ là hằng số $\mathrm{r}$.

Ta có $\quad \mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a}) 、 \mathrm{Q}(\mathrm{x})+\mathrm{r}$.

Đẳng thức trên đúng với mọi $\mathrm{x}$ nên với $\mathrm{x}=\mathrm{a}$ ta có

$f(a)=0 . Q(a)+r \text { hay } f(a)=r \text {. }$

Chú ý : Từ định lí Bê-du ta suy ra :

Đa thức $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-\mathrm{a}$ khi và chỉ khi $\mathrm{f}(\mathrm{a})=0$ (tức là khi và chỉ khi a là nghiệm của đa thức).

Ví dụ 2. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số bằng 0 thì đa thức ấy chia hết cho $\mathrm{x}-1$ ‘.

Giải : Gọi : $f(x)=a_ox^n+a_1 x^n-1+\ldots+a_n-1x+a_n$.

Theo giả thiết, $\quad a_0+a_1+\ldots+a_{n-1}+a_n=0 $.

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-1$ là

$r = f(1) = a_\circ + a_1 + \ldots + a_{n-1} + a_n $

Từ (1) và (2) suy ra $r=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-1$.

Ví dụ 3. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì đa thức ấy chia hết cho $x+1$.

Giải : Gọi $f(x)=a_0 x^{2 n}+a_1 x^{2 n-1}+a_2 x^{2 n-2}+\ldots+a_{2 n-2} x^2+a_{2 n-1} x+a_{2 n}$, trong đó $\mathrm{a}_0$ có thể bằng 0 .

Theo giả thiết

$a_\circ + a_2 + \ldots + a_{2n} = a_2 + a_3 + \ldots + a_{2n-1}$ nên

$\left(a_0+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right)=0 .$

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}+1$ bằng

$r =f(-1)=a_0-a_1+a_2-\ldots+a_{2 n-2}-a_{2 n-1}+a_{2 n} $

$=\left(a_o+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right) $

Từ (1) và (2) suy ra $\mathrm{r}=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}+1$.