Author Archives: Hung Nguyen

Câu chuyện toán học: Chiến thắng thần kì

Thời Bắc Tống, thủ lĩnh tộc Man ở châu Quảng Nguyên là Nùng Trí Cao không ngừng mở rộng thế lực, đã lập chính quyên “Nam Thiên quốc”. Tháng 4-1052, Nùng Trí Cao dấy binh đánh Tống. Tháng 5-1052, Nùng Trí Cao vây hãm Ung Châu (Nam Ninh thuộc tỉnh Quảng Tây ngày nay), tự xưng là “Nhân Huệ hoàng đế” và từ Ung Châu đánh dọc theo sông xuống phía nam, đến đâu thắng đó, chấn động khắp nơi.
Năm 1053, đại tướng Địch Thanh phụng chỉ chinh phạt Nùng Trí Cao. Lúc đó miên nam có tục sùng bái quỷ thần, nên đại quân vừa đến nam Quế Lâm, Địch Thanh bèn cho quân lập đàn cúng tế thần. Ông lấy 100 đồng tiên bằng đồng rồi khấn : “Nếu lần ra trận này đánh bại được kẻ địch thì khi gieo 100 đồng tiên này lên mặt đất, toàn bộ mặt đồng tiền đều ngửa lên”.

Các quan tả hữu hoảng. sợ, cố khuyên chủ tướng bỏ ý nghĩ đó đi, vì không thể có được trường hợp cả 100 đồng tiên đêu ngửa cả. Nhưng Địch Thanh vẫn mặc kệ, cứ giữ ý của mình. Trước mắt muôn vạn quân lính, ông đột nhiên vung tay, gieo tất cạ̉ 100 đồng tiên lên mặt đất. Vậy mà như “ma xui quỷ khiến”, tất cả mặt tiên đêu ngửa ! Lúc đó toàn quân hoan hô, tiếng vang dội cả đất trời.

Bản thân Địch Thanh cũng vui mừng khôn xiết. Ông lệnh cho tả hữu mang đến 100 cái đinh đóng chặt các đồng tiên xuống đất, cầu khấn rằng : “Đợi khi khải hoàn trở về nhất định sẽ hậu tạ thần linh, thu hồi các đồng tiền”.

Do quân lính ai ai cũng tin rằng thần linh phù hộ nên trong chiến đấu đã dũng mãnh xông lên phía trước, Địch Thanh nhanh chóng bình định được Ung Châu.

Khi trở về, theo lời hứa trước, Địch Thanh cho quân thu hồi các đồng tiên, các thuộc hạ của ông nhìn xem, thì ra các đồng tiên ấy có hai mặt đều đúc ngửa (như nhau).

Địch Thanh được thăng quan nhờ chiến công thần kì này. Còn Nùng Trí Cao thì thất bại, chạy vê Đại Lí, không biết kết cục ra sao.

Một trang sử lặng lẽ lật qua, dòng thời gian đẩy lịch sử loài người tiến về phía trước đã gần 1000 năm. Dòng sông lớn chảy vê Đổng, sóng nước trôi hết, nhân vật lịch sử đã trở vê thiên cổ. Song, chiến công thần kì của Địch Thanh đã để lại cho thế gian sự gợi ý vĩnh hằng, …

Bây giờ ta trở lại với người chủ của câu chuyện.

Bản thân Địch Thanh là đại tướng quân làm sao không hiểu được rằng, khi gieo 1 đồng tiền thì việc xuất hiện mặt ngửa hay mặt sấp là tùy lúc (ngẫu nhiên). Gieo 2 đồng tiền sẽ có 4 khả năng : (ngửa, ngửa); (ngửa, sấp) ; (sấp, ngửa) và (sấp, sấp). Gieo 3 đồng tiền sẽ có 8 khả năng: (ngửa, ngửa, ngửa); (ngửa, ngửa, sấp) ; (ngửa, sấp, ngửa) ; (ngửa, sấp, sấp) ; (sấp, ngửa, ngửa) ; (sấp, ngửa, sấp) ; (sấp, sấp, ngửa) và (sấp, sấp, sấp).
Sau đó mỗi lần gieo thêm 1 đồng tiền nữa thì khả năng phối hợp sẽ tăng lên một lần nữa. Vì vậy hi vọng gieo 100 đồng tiền để xuất hiện một trường hợp đặc biệt toàn ngửa cả là cực kì ảo tưởng. Các thuộc hạ của Địch Thanh cũng đều hiểu điều này, nên đã cố khuyên chủ tướng không làm thể nghiệm này.

Địch Thanh thông minh, khi để ý thấy quân lính quan sát hiện tượng theo thời, thường rất tin vào kinh nghiệm bản thân, mà bỏ qua điều kiện tiền đề. Vì thế, ông đã dùng biện pháp “thay xà đổi cột”, khéo léo thay đổi tiền đề. Tiền đề có hai mặt chính – phụ nhưng lại đúc hai mặt đồng tiền như nhau. Lúc đó đối với Địch Thanh thì 100 đồng tiền đêu ngửa, là một việc tất nhiên, nhưng với tướng sĩ thì không thể có được. Song việc đó lại xảy ra như một kì tích ! Ngay lúc đó, trong tâm trí tướng sĩ, sự phấn khởi đã chiến thắng sự hoài nghi. Họ cảm thấy sự phù hộ của thần linh là sự giải thích duy nhất cho cái phù hợp vượt quá bình thường này. Đó là một loại lừa bịp khoa học, thế mà đã kích thích được dũng khí nghìn vạn tướng sĩ, làm cho Địch Thanh giành được thắng lợi.

Câu chuyện này gợi ý cho ta rằng, khi quan sát một loại hiện tượng, không thể bỏ qua tiền đề của nó.

Tương tự câu chuyện này là câu chuyện trong bộ phim nhiều tập “Đông Chu liệt quốc” đã được đài Phát thanh và truyên hình Hà Nội chiếu tháng 4-1999. Trong phần Chiến Quốc có quốc sĩ Địch Hoàn, khi chuẩn bị ra quân cũng làm lễ tế Trời Đất, thần linh. Lúc đó thầy cúng cũng phải thực hiện mưu đồ như Địch Thanh để có được tinh thần phấn chấn của tướng sĩ.

(Theo Những câu chuyện lí thú Toán học – Nguyễn Bá Đô)

Bài tập số học ôn thi vào 10 – Phần 2

Bài 11. Chứng minh rằng

a) Trong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.

Giải

a) Một số khi chia cho 3 có các số dư là 0, 1, 2.
Nếu trong 5 số khi chia cho 3 số có đủ 3 số dư 0, 1, 2 thì tổng 3 số này chia hết cho 3.
Nếu có 2 loại số dư thì có 3 số khi chia cho 3 có cùng một số dư, tổng của chúng chia hết cho 3.
Nếu có 1 loại số dư, thì tổng 3 số bất kì đều chia hết cho 3.
b) Đặt các số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.
Trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho 3, không mất tính tổng quát là $a_1, a_2, a_3$. Đặt $a_1 + a_2 + a_3 = 3b_1$.
Trong 5 số $a_4, \cdots, a_8$ có 3 số có tổng chia hết cho 3, giả sử $a_4, a_5, a_6$ và đặt $a_4 + a_5+ a_6 = 3b_2$.
Tương tự ta xây dựng được các số $b_3, b_4, b_5$.
Khi đó áp dụng tiếp cho 5 số $b_1, b_2, b_3, b_4, b_5$ có 3 số có tổng chia hết cho 3, giả sử $b_1, b_2,b_3$ có tổng chia hết cho 3. Khi đó 9 số $a_1, \cdots, a_9$ có tổng chia hết cho 9.

Bài 12. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 2018)\ Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Giải

a) \item Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $\\
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.\\
$ \Rightarrow A_n \ \vdots \ 3. $\\
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.\\
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.\\
$ \Rightarrow A_n \ \vdots\ 17. $\\
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$

b) Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
\item Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
Ta có \begin{align*}
A_n &\equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}\\\\
&\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} \\\\
& \equiv 2^n(1-2^n) \quad \text { (mod 9)}
\end{align*}
Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài 13. Tìm các nghiệm nguyên không âm $(x, y)$ của phương trình
${\left( {xy – 1} \right)^2} = {x^2} + {y^2}$

Giải

$(xy-6)^2 – (x+y)^2 = -13$.
$(xy-6-x-y)(xy-6+x+y) = -13$.
Ta có $xy – 6 +x+y \leq xy – 6 -x-y$ nên có các trường hợp.
$xy -6 -x-y = -13, xy -6 +x+y = 1$, giải ra được $(x;y)$ là $(7;0), (0;7)$;
$xy – 6 -x-y=-1, xy-6+x+y = 13$ (VN);
$Vậy phương trình có nghiệm $(0;7), (7;0)$.

Bài 14. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Giải

Ta có $x^3 = (y-x)(y+x+1)$.
Gọi $d$ là ước nguyên tố chung lớn nhất của $y-x, y+x+1$, nếu $d$ là số nguyên tố thì $d|x, d|y$, suy ra $d|1$ (vô lý), Vậy $y-x, y+x+1$ nguyên tố cùng nhau.
Do đó $y -x = a^3, y+x+1 = b^3, ab=x$.
Ta có phương trình $b^3-a^3 = 2ab+1$ với $a, b$ nguyên dương và $b > a\geq 1$. Ta có $b^3-a^3 \geq a^2+b^2+ab > 2ab + 1$.
Vậy phương trình không có nghiệm trong tập các số nguyên dương.

Bài 15. Tìm tất cả các bộ ba số nguyên dương thỏa phương trình:
${\left( {x + y} \right)^2} + 3x + y + 1 = {z^2}$

Giải

Ta có $(x+y)^2 < z^2 < (x+y+2)^2$. Do đó $z^2 = (x+y+1)^2$ hay $(x+y+1)^2 = (x+y)^2+3x+y + 1 \Leftrightarrow y = x$.
\Vậy bộ nghiệm là $(n, n, 2n+1)$ với $n$ là số nguyên dương.

Bài 16. Tìm nghiệm nguyên dương của phương trình sau
$xy + yz + zx – xyz = 2$

Giải

Vai trò của $(x, y, z)$ là như nhau, giả sử $x \geq y \geq z$.
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} – 1 = \dfrac{2}{xyz} > 0$. Suy ra $\dfrac{3}{z} -1 > 0$, suy ra $z < 3$.
Nếu $z = 1$ thì $x+y = 2$ ta có $x = y = 1$.
Nếu $z=2$ thì $2(x+y)-xy = 2 \Leftrightarrow (x-2)(y-2) = 2$, giải ra được $x = 4, y = 3$.
Do tính đối xứng nên nghiệm của phương trình là $(1, 1, 1), (4,3,2)$ và các hoán vị.

Bài 17. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$

Giải

Có một nghiệm là $(0;0)$.
Dễ thấy $y$ chẵn nên $y^4+4y+1 \equiv 1 (\mod 8)$. Suy ra $x$ chẵn, $x = 2k$. Khi đó $(5^k)^2 = y^4 + 4y+1$ là số chính phương.
Ta có $y\geq 1$ nên $y^4 < y^4+4y + 1 < (y^2+2)^2$. Suy ra $y^4+4y + 1 = (y^2+1)^2 \Leftrightarrow y = 2$, suy ra $x = 2$.
Vậy có 2 cặp nghiệm $(0;0), (2;2)$.

Bài 18. Giải phương trình nghiệm tự nhiên $x – {y^4} = 4$ với $x$ là số nguyên tố.

Giải

$x = y^4+4 = (y^2-2y+2)(y^2+2y+2)$ là số nguyên tố khi và chỉ khi $y^2-2y + 2 = 1$ hay $y=1$. Từ đó $x=1$.

Bài 19. Tìm nghiệm nguyên của phương trình sau
${\left( {{x^2} – {y^2}} \right)^2} = 1 + 16y$

Giải
Dễ thấy nghiệm là $(-1;0), (1;0)$.
Ta có $y \geq 0$, vì $x$ thỏa pt thì $-x$ cũng thỏa nên có thể giả sử $x\geq 0$.
Ta có $(x^2-y^2)^2 = 1 + 16y >1$, suy ra $x^2 > y^2 \Rightarrow x \geq y + 1$.
Nếu $x \geq y + 2$, suy ra $x^2-y^2 \geq 4y + 4 \Rightarrow (x^2-y^2)^2 > 1+16y$.
Do đó $x = y + 1$, suy ra $(1+2y)^2 = 1+16y \Leftrightarrow 4y^2 – 12y = 0 \Leftrightarrow y = 3$. Suy ra $x = 4$.
Vậy nghiệm là $(-4;3), (4;3),(-1;0), (1;0)$.

Bài 20. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên tố.

Giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Bài tập số học ôn thi vào lớp 10 chuyên toán – Phần 1

Bài 1. Cho $m, n$ là các số nguyên. Chứng minh rằng nếu $mn+1$ chia hết cho 24 thì $m+n$ cũng chia hết cho 24.

Giải

Ta có $mn+1$ chia hết cho 24, suy ra $mn+1$ chia hết cho 3 và 8. Ta cũng chứng minh $m+n$ chia hết cho 3 và 8.

Nếu $m \equiv p (\mod 3), n \equiv q (\mod 3)$, suy ra $pq + 1 \equiv 0 (\mod 3)$. Suy ra $pq = 2$. Do đó $p = 1, q = 2$ hoặc $p=2, q=1$. Suy ra $p+q \equiv 0 (\mod 3)$ hay $m+n \equiv (\mod 3)$.
Tương tự $m \equiv q (\mod 8), n \equiv p (\mod 8)$, suy ra $pq \equiv 7 (\mod 8)$ và $p, q \in \{1, 2, 3, 4, 5, 6, 7\}$, suy ra $p=1, q=7$ hoặc $p=7, q=1$. Do đó $m+n$ chia hết cho 8.
Vậy $m + n$ chia hết cho 24.5

Bài 2. Tìm tất cả các số $n$ sao cho:

a) $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
b) $2^{2n} + 2^n + 1$ chia hết cho 21.

Giải

Đặt $A_n = 1^n + 2^n + 3^n + 4^n$.
Nếu $n$ lẻ ta có $1^n + 4^n$ chia hết cho 5, $2^n + 3^n$ chia hết cho 5. Suy ra $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
Nếu $n$ chẵn, đặt $n = 2k$. Ta có $1 + 2^n + 3^n + 4^n = 1 + 4^k + 9^k + 16^k \equiv 1 + (-1)^k + (-1)^k + 1 (\mod 5)$.
Do đó $A_n \vdots 5 \Leftrightarrow k$ lẻ.
Vậy $A_n$ chia hết cho 5 khi và chỉ khi $n$ lẻ hoặc $n$ chia 4 dư 2.

Đặt $B_n = 2^{2n} + 2^n + 1$.
Ta tìm $n$ để $B_n$ chia hết cho 3 và 7.

Nếu $n = 2k$ ta có $B_n = 16^k + 4^k + 1 \equiv 0 (\mod 3)$.\\
Nếu $n = 2k + 1$ ta có $B_n = 4\cdot 16^k + 2\cdot 4^k + 1 \equiv 7 (\mod 3)$ (loại)\\
Vậy $B_n \vdots 3 \Leftrightarrow n = 2k$.

Nếu $n = 3k$ ta có $B_n = 64^k + 8^k + 1 \equiv 3 (\mod 7)$. (loại)\\
Nếu $n = 3k+ 1$ ta có $B_n = 4 \cdot 64^k + 2 \cdot 8^k + 1 \equiv 0 (\mod 7)$ (nhận)
Nếu $n = 3k + 2 $ ta có $B_n = 16\cdot 64^k + 4\cdot 8^k + 1 \equiv 0 (\mod 7)$.

Vậy $B_n$ chia hết cho 7 khi và chỉ khi $n = 6k+4$ hoặc $n = 6k+2$.

Bài 3. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Giải

a) Nếu $n$ ta có $2^n + 3^n$ chia hết cho 5.
Xét $n=2k + 1$ ta có $n.2^n + 3^n = (n-1)2^n+ 2^n + 3^n$ chia hết cho 5 khi và chỉ khi $n-1$ chia hết cho 5, hay $k$ chia hết cho 5,suy ra $k = 5q$. Vậy $n = 10q + 1$.
Xét $n = 2k$ ta có $n.2^n + 3^n = 2k.4^k + 9^k = 2k.4^k + 4^k + 9^k – 4^k = (2k+1).4^k + 9^k – 4^k $ chia hết cho 5 khi $2k+1$ chia hết cho 5. Khi đó $k = 5q + 2$, suy ra $n = 10q + 4$.
Vậy với $n = 10q + 1, 10q + 4$ thì $n.2^n + 3^n$ chia hết cho 5.

b) Theo câu a để $A=n.2^n + 3^n$ chia hết cho 5 thì $n = 10q+1, 10q + 4$. Ta tìm $q$ để $n.2^n + 3^n$ chia hết cho 25.
+Với $n = 10q + 1$ ta có $A = (10q+1)2^{10q+1} + 3^{10q+1} = (20q+2).1024^q + 3.3^{10q}$\\
Ta có $1024 \equiv -1 (\mod 25), 3^10 \equiv -1 (\mod 25)$. Suy ra $A \equiv (20q + 2)(-1)^q + 3.(-1)^q (\mod 25)$ hay $A = (-)^q (20q+5) (\mod 25)$.
Suy ra $A$ chia hết cho 25 khi và chỉ khi $20q +5$ chia hết cho 25 hay $4q+1$ chia hết cho 5. Suy ra $q = 5k + 1$. Vậy $n = 10(5k+1)+1 = 50k + 11$.
+Với $n = 10q + 4$. Ta có $A = (10q+4)2^{10q+4} + 3^{10q+4} = (160q+64)2^{10q} + 81.3^{10q} \equiv (10q+14)(-1)^q + 6(-1)^q (\mod 25) \equiv (-1)^q(10q+20) (\mod 25)$.
Do đó $A$ chia hết cho 25 khi và chỉ khi $10q+20$ chia hết cho 25 hay $q+2$ chia hết cho 5, suy ra $q = 5k + 3$. Suy ra $n = 10(5k+3) + 4 = 50k + 34$.
Vậy $n = 50k+11, 50k+34$.

Bài 4. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Giải

a)
TH1: $n = 3k$ ta có $2^n – 1 = 2^{3k}-1 = 8^k – 1$ chia hết cho 7.
TH2: $n = 3k + 1$ ta có $2^n- 1= 2.8^k – 1$ chia 7 dư 1.
TH3: $n = 3k + 2$ ta có $2^n – 1= 4.8^k – 1$ chia 7 dư 3.
Vậy $2^n- 1$ chia hết cho 7 khi và chỉ khi $n$ chia hết cho 3.

b)
$42p = 2.3.7.p$.
TH1: $p = 7$ ta có $3^7 – 2^7 – 1$ chia hết cho $42.7$.
TH2: $p > 7$ khi đó các số $2, 3, 7, p$ đôi một nguyên tố cùng nhau.
+ Ta có $3^p – 1 – 2^p$ chia hết cho 2.
+ $2^p + 1$ chia hết cho 3 vì $p$ lẻ, suy ra $3^p -2^p-1$ chia hết cho 3.
+ $p$ nguyên tố lớn hơn hoặc bằng 5, suy ra $p = 6k + 1$ hoặc $p = 6k+5$. Nếu $p = 6k + 1$ ta có $3^p – 2^p – 1 = 3^{6k+1} – 2^{6k+1} – 1 = 3.3^{6k} – 2.2^{6k} – 1$.
Ta có $3^6 \equiv 1 (\mod 7)$, suy ra $3^{6k} \equiv 1 (\mod 7)$, tương tự thì $2^{6k} \equiv 1 (\mod 7)$. Do đó $3.3^{6k} – 2.2^{6k} – 1 \equiv 0 (\mod 7)$.
Nếu $p = 6k + 5$ ta có $3^p – 2^p – 1 \equiv 3^5 – 2^5 – 1 \equiv 0 (\mod 7)$.
Do đó $3^p – 2^p – 1$ chia hết cho 7.
+ Theo định lý Fermat nhỏ, ta có $3^p \equiv 3 (\mod p), 2^p \equiv 2 (\mod 7)$. Suy ra $3^p – 2^p – 1$ chia hết cho $p$.
Vậy $3^p – 2^p – 1$ chia hết cho $42p$.

Bài 5. Cho a,b là hai số nguyên dương thỏa mãn $4{a^2} – 1$ chia hết cho $4ab – 1$. Chứng minh rằng $a = b$.

Giải

$4a^2-1$ chia hết cho $4ab-1$ suy ra $4a^2\geq 4ab \Rightarrow a\geq b$.
Ta có $4a^2 – 1 \vdots 4ab-1 \Rightarrow 4b^2(4a^2-1) \vdots 4ab – 1 \Rightarrow 16a^2b^2-1-(4b^2-1) \vdots 4ab-1$, suy ra $4b^2-1 \vdots 4ab-1$. Tương tự trên ta có $b \geq a$.
Do đó $a = b$.

Bài 6. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.

Giải

Nếu $x, y, z$ khi chia cho 3 có số dư khác nhau thì $x+y+z \vdots 3$ nhưng $(x-y)(y-z)(z-x)$ không chia hết cho 3 (mẫu thuẫn).
Nếu 2 trong 3 số $x, y,z$ có số dư giống nhau, giả sử là $x, y$. Khi đó $x-y \vdots 3$, suy ra $(x-y)(y-z)(z-x)$ chia hết cho 3, nhưng $x+y + z$ không chia hết cho 3 (mâu thuẫn).
Vậy $x, y, z$ có cùng số dư khi chia cho 3, suy ra $x-y, y-z, z-x$ đều chia hết cho 3. Do đó $x+y+z = (x-y)(y-z)(z-x)$ chia hết cho 27.

Bài 7. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Giải

$a_nb^n = (2^{2n+1}-2^{n+1}+1)(2^{2n+1}+2^{n+1}+1) = (2^{2n+1}+1)^2 – (2^{n+1})^2 = 4^{2n+1} +2.2^{2n+1} + 1 – 2^{2n+2} = 4^{2n+1} + 1$.
Ta có $4 \equiv -1(\mod 5)$, suy ra $4^{2n+1} \equiv -1 (\mod 5)$. Suy ra $4^{2n+1} + 1 \equiv 0(\mod 5)$.
Vậy $a_nb_n$ chia hết cho 5 với mọi $n$.
Ta có $a_n + b_n = 2.2^{2n+1} + 2 = 4^{n+1} + 2$.
Ta có $4^{n+1} \equiv -1, 1 (\mod 5)$. Suy ra $4^{n+1} +2 \equiv 1, 3 (\mod 5)$. Vậy $a_n + b_n$ không chia hết cho 5 với mọi $n$.
Do đó chỉ có một trong 2 số $a_n, b_n$ chia hết cho 5.

Bài 8. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Giải

Nếu $3^nn^3 + 1$ chia hết cho 7. Suy ra $n$ không chia hết cho 7, suy ra $n^6-1$ chia hết cho 7.\\
Ta có $n^3 (3^n + n^3 ) = n^33^n + n^6 = n^33^n +1 + n^6 – 1$ chia hết cho 7. \\
Mà $(n,7) = 1$. Suy ra $3^n + n^3$ chia hết cho 7.
Nếu $3^n + n^3$ chia hết cho 7. Làm tương tự ta cũng có $n^33^n + 1$ chia hết cho 7.

Bài 9. Chứng minh rằng nếu $2^n-1$ là số nguyên tố thì $n$ cũng là số nguyên tố.

Giải

Giả sử $n$ không là số nguyên tố.
Nếu $n = 1$ thì $2^1 – 1$ không nguyên tố.
Nếu $n$ là hợp số, ta có $n = pq$ với $1 < p < n$.
Khi đó $2^n – 1= (2^p)^q -1$ chia hết cho $2^p-1$. Mà $1< 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (Vô lý).

Bài 10. Ta điền các số từ 1 đến 9 vào bảng vuông $3\times 3$ sao cho mỗi số điền một lần, tổng các số cùng một hàng, một cột và đường chéo chia hết cho 9. Chứng minh rằng ô chính giữa bảng luôn là một số chia hết cho 3.

Giải

Giả sử các số là $a, b, c, d, e, f, g, h,i$ trong đó $e$ là ô chính giữa.

a  b  c
d  e  f
g  h  i

Ta có $a+e+i + d+e+f + c+e+g + b+e+h = (a+b+c+d+e+f+g+h+i) +3e \vdots 9$, mà $a +b+c+d+e+f+g+h+i = 1+2+\cdots + 9 = 45$ chia hết cho 9.
Suy ra $3e\, \, \vdots 9$, do đó $e \,\vdots \, 3$.

Tứ giác nội tiếp – Phần 2

(Bài viết dành cho học sinh lớp 9 chuyên toán – Lời giải bài tập chương 1 sách [1]) Chứng minh 4 điểm cùng nằm trên một đường tròn là dạng toán thường xuất hiện nhất trong các đề thi, đây cũng là kĩ năng quan trọng để chứng minh các ý toán khác trong một bài toán, có nhiều cách chứng minh 4 điểm cùng thuộc đường tròn trong đó chủ ý các các dấu hiệu một tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi có một trong các dấu hiệu sau:
  • 4 đỉnh cách đều một điểm
  • Tổng hai góc đối bằng $180^\circ$ (đặc biệt hai góc đối vuông)
  • Góc ngoài bằng góc đối trong
  • Hai đỉnh kề cùng nhìn cạnh còn lại với hai góc bằng nhau (đặc biệt hai góc nhìn là góc vuông).
Ngoài ra còn có bổ đề thường dùng. Bổ đề 1. Cho tứ giác $ABCD$ có hai đường chéo cắt nhau tại $P$ và hai đường thẳng $AB, CD$ cắt nhau tại $P$. Khi đó $ABCD$ nội tiếp khi và chỉ khi $PA \cdot PC = PB \cdot PD$ hoặc $QA \cdot QB=QC \cdot QD$. Bổ đề 2. Phân giác trong góc $A$ của tam giác $ABC$ cắt trung trực của $BC$ tại $D$, khi đó $D$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Ta bắt đầu với các bài toán sau: Bài 1. Hai dây $AB$ và $CD$ của một đường tròn cắt nhau tại $I$. Gọi $M$ là trung điểm của $IC$ và $N$ đối xứng với $I$ qua $D$. Chứng minh rằng $AMBN$ nội tiếp một đường tròn. Lời giải. Xét tam giác $IAC$ và $IBD$ có $\angle AIC = \angle BID$ và $\angle IAC = \angle IBD$, suy ra $\triangle IBD \backsim \triangle IAC$; $\Rightarrow IA \cdot IB = IC \cdot ID = 2 IM \cdot \dfrac{IN}{2} = IM \cdot IN \Rightarrow \dfrac{IM}{IB} = \dfrac{IA}{IN}$. Suy ra $\triangle IMA \backsim \triangle IBN \Rightarrow \angle IAM = \angle INB$; Do đó tứ giác $AMBN$ nội tiếp. Bài 2. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. $AO$ cắt $EF$ tại $K$ và cắt $(O)$ tại $L$ khác $A$. Gọi $P$ là điểm đối xứng của $A$ qua $K$. Chứng minh rằng các tứ giác $DHKL$ và $DHOP$ nội tiếp.
Lời giải. Dễ thấy tứ giác $BCEF$ nội tiếp, suy ra $\angle AEF = \angle ABC$; Mà $\angle ABC = \angle ALC$, suy ra $\angle AEF = \angle ALC$, từ đó $KECL$ nội tiếp; Theo chú ý trên ta có $AK \cdot AL = AE \cdot AC$ \hfill (1) Mặt khác tứ giác $CDHE$ nội tiếp nên $AH \cdot AD = AE \cdot AC$ \hfill (2) Từ (1) và (2) suy ra $AK \cdot AK = AH \cdot AD \Rightarrow DHKL$ nội tiếp. Ta có $AP = 2AK, AL = 2AO \Rightarrow AP \cdot AO = AK \cdot AL = AH \cdot AD$, suy ra $DHOP$ nội tiếp. Bài 3. Cho hình vuông $ABCD$. Trên các cạnh $BC, CD$ lấy điểm $M,N$ sao cho $\angle MAN = 45^\circ$. $AM, AN$ cắt $BD$ lần lượt tại $P$ và $Q$. a) Chứng minh các tứ giác $ADNP, ABMQ$ nội tiếp. b) Chứng minh $MNQP$ nội tiếp. Lời giải.
Tứ giác $APND$ có $\angle PAN = \angle PDN = 45^\circ$ nên là tứ giác nội tiếp. Tương tự thì $ABMQ$ cũng là tứ giác nội tiếp. Từ $ADNP, ABMQ$ nội tiếp suy ra $\angle APN = 180^\circ – \angle ADN = 90^\circ$ và $\angle AQM = 180^\circ -\angle ABM = 90^\circ$. Tứ giác $MPQN$ có $\angle MPN = \angle MQN = 90^\circ$ nên là tứ giác nội tiếp. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Gọi $M, N$ lần lượt là trung điểm $AB, AC$. $DM, DN$ cắt $(O)$ tại $E, F$ khác $M$, $AD$ cắt $MN$ tại $S$. a) Chứng minh rằng 4 điểm $M, N, E, F$ cùng thuộc một đường tròn. b) $OD$ cắt $BC$ tại $P$, đường tròn ngoại tiếp tam giác $DPS$ cắt $BC$ tại $Q$ khác $P$. Chứng minh $QA$ là tiếp tuyến của $(O)$. Lời giải. 
Gọi $K$ là giao điểm của $AD$ và $BC$. a) Ta có $\angle AED = \angle ABD = \angle AKC$. Mà $MN \parallel BC \Rightarrow \angle AKC = \angle ASN$. Suy ra $\angle AED = \angle ASN \Rightarrow AEMS$ nội tiếp. Do đó $DM \cdot DE = DS \cdot DA$. Chứng minh tương tự ta có $MN \cdot DF = DS \cdot DA$. Suy ra $DM \cdot DE = DN \cdot DF$, từ đó dẫn đến tứ giác $MNFE$ nội tiếp. b) Ta có $OD \bot BC$ tại $P$. Suy ra $\angle QPD = \angle QPD = 90^\circ$. Tam giác $AQK$ có $QS \bot AK$ và $S$ là trung điểm $AK$ nên $QAK$ cân tại $Q$. Suy ra $\angle QAK = \angle AKQ = \angle ACD$, suy ra $QA$ là tiếp tuyến của $(O)$. Bài 5. Cho tam giác $ABC$ cân tại $A$. Từ một điểm $M$ tùy ý trên cạnh $BC$ kẻ các đường song song với các cạnh bên cắt $AB$ tại $P$ và cắt $AC$ tại $Q$. $D$ là điểm đối xứng của $M$ qua $PQ$. Chứng minh rằng $ADBC$ nội tiếp đường tròn. Lời giải. Tứ giác $APMQ$ là hình bình hành, $D$ đối xứng với $M$ qua $PQ$ ta suy ra được $ADPQ$ là hình thang cân. Suy ra $\angle DAP = 180^\circ – \angle DPQ$.\hfill (1) Ta có $PB = PM = PD$ nên $B, M, D$ thuộc đường tròn tâm $P$, suy ra $\angle MBD = \dfrac{1}{2}(360^\circ – \angle DPM) = \angle DPQ$. \hfill (2) Từ (1) và (2) ta có $\angle DAQ + \angle MBD = 180^\circ$, suy ra $ADBC$ nội tiếp. Bài 6. Cho hai đường tròn $(O)$ và $(O’)$ cắt nhau tại $A, B$. Qua điểm $I$ nằm trên $AB$ vẽ cát tuyến $IMN$ đến $(O)$ và cát tuyến $IPQ$ đến $(O’)$. Chứng minh rằng $M, N, P, Q$ cùng thuộc một đường tròn. Lời giải. Ta có $\angle INA = \angle IBN$, suy ra $\triangle INA \backsim \triangle IBN$ (g.g), khi đó $\dfrac{IA}{IB} = \dfrac{IA}{IN} \Rightarrow IN^2 = IA \cdot IB \Rightarrow IN = \sqrt{IA \cdot IB}$. Chứng minh tương tự thì $IP = \sqrt{IA \cdot IB}$. Mặt khác $IM = IN, IP = IQ$ nên $IM = IN = IP = IQ$, do đó $M, N, P, Q$ cùng thuộc đường tròn tâm $I$. Bài 7. Cho tam giác $ABC$ nhọn, $D$ thuộc cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt cạnh $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $F$. $BE, CF$ cắt nhau tại $K$. Chứng minh đường tròn ngoại tiếp tam giác $BKC$ qua trực tâm $H$ của tam giác $ABC$. Lời giải. Các tứ giác $AEDB, ADDC$ nội tiếp nên ta có $\angle AFB = \angle ADB$ và $\angle AEC = \angle ADC$; Suy ra $\angle AFB + \angle AEC = \angle ADB + \angle ADC = 180^\circ$, suy ra $AEKF$ nội tiếp. Suy ra $\angle EKF = 180^\circ – \angle BAC$, mà $\angle BKC = \angle EKF$ nên $\angle BKC= 180^\circ – \angle BAC$.\hfill (1) Mặt khác, từ $H$ là trực tâm của tam giác $ABC$ nên $\angle BHC = 180^\circ – \angle BAC$. \hfill (2) Từ (1) và (2), ta có $\angle BHC = \angle BKC$, suy ra $BHKC$ nội tiếp. Bài 8. Cho tam giác $ABC$ có đường tròn nội tiếp tiếp xúc với $AB, BC$,$AC$ lần lượt tại $M, D, N$. Lấy điểm $E$ thuộc miền trong của tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $EBC$ cũng tiếp xúc với $BC$ tại $D$ và tiếp xúc với $EB, EC$ tại $P, Q$. Chứng minh rằng $MNPQ$ nội tiếp đường tròn. Lời giải.
Gọi $T$ là giao điểm của $MN$ và $BC$. Chứng minh được $\dfrac{TB}{TC} = \dfrac{TB}{TC}$ và $PM \cdot PN = PD^2$. Gọi $T’$ là giao điểm của $PQ$ và $BC$ ta cũng có $\dfrac{T’B}{T’C} = \dfrac{DB}{DC}$. Suy ra $\dfrac{TB}{TC} = \dfrac{T’B}{T’C} = \dfrac{DB}{DC}$, do đó $T’ \equiv T$. Và $TP \cdot TQ = TD^2$. Từ đó ta có $TM \cdot TN = TP \cdot TQ$. Suy ra 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. Bài tập tự luyện.  Bài 9. Cho đường tròn tâm $O$ và dây cung $AB$ khác đường kính. $C$ là một điểm thuộc cung nhỏ $AB$. Tiếp tuyến tại $A$ và $B$ của $(O)$ cắt nhau tại $P$. $AC$ cắt $BP$ tại $D$ và $BC$ cắt $AP$ tại $E$. Gọi $Q$ là giao điểm của đường tròn ngoại tiếp tam giác $AEC$ và $BCD$. a) Chứng minh $Q$ là giao điểm của đường tròn ngoại tiếp các tam giác $APD$ và $BPE$. b) Chứng minh $Q$ thuộc đường tròn ngoại tiếp tam giác $OPC$. Bài 10. Cho hình bình hành $ABCD$ có góc $A$ tù. Gọi $F$ là trung điểm cạnh $AD, CF$ cắt đường tròn ngoại tiếp tam giác $ACD$ tại $K$ khác $C$. Đường tròn ngoại tiếp tam giác $BCK$ cắt $CD$ tại $E$. a) Chứng minh $AE \bot CD$. b) $BD$ cắt $AC$ tại $I$ và đường tròn ngoại tiếp tam giác $BCK$ tại $G$. Chứng minh 4 điểm $E, F, G, I$ cùng thuộc một đường tròn. Tài liệu tham khảo. 
  1. Chuyên đề hình học 9 – Bồi dưỡng học sinh năng khiếu, Nguyễn Tăng Vũ, NXB GD 2018.

Bất biến và nửa bất biến – Phần 2

(Bài viết của GS Lê Anh Vinh)

3/ Nâng cao:

Trong phần này chúng ta sẽ thảo luận một số bài toán nâng cao có sử dụng phương pháp bất biến. Trong 29 bài toán chúng ta đã đề cập từ đầu đến giờ, các bài toán gần như được giải quyết ngay lập tực khi đã chỉ ra được bất biến phù hợp. Các bài toán trong phần này, ngoài ý tưởng chính là bất biến, sẽ yêu cầu thêm một số bước biến đổi khác làm tăng độ khó và thú vị của chúng.

Bài toán 3.1. Các ô vuông được xếp kề nhau tạo thành một dải hình chữ nhật vô hạn về cả hai phía. Ta xếp vào các ô vuông một số hữu hạn các viên đá. Mỗi bước, chọn hai viên đá ở cùng ô và chuyển chúng sang hai ô bên cạnh khác hướng nhau.

a) Có thể sau một số hũ̃u hạn bước quay lại ví trí ban đầu không?

b) Có thể thực hiện vô hạn bước như vậy không?

c) Nếu quá trình dừng lại thì trạng thái sắp xếp cuối cùng có phụ thuộc vào quá trình thực hiện các bước không?

Giải

Gán cho viên đá ở ô thứ $n$ số $n^{2}$. Xét tổng tất cả các số thu được. Rõ ràng mỗi phép biến đổi ta thay hai số $n^{2}$ bởi số $(n-1)^{2}$ và $(n+1)^{2}$. Do đó tổng này tăng 2 đơn vị trong mỗi phép biến đổi. Suy ra sau một số hữu hạn bước không thể quay lại vị trí ban đầu.

Tiếp theo, chúng ta đi chứng minh rằng tổng không thể tăng vô hạn bằng phương pháp quy nạp. Lưu ý rằng nếu tổng tăng vô hạn, có nghĩa là một số viên đá sẽ phải tiến ra xa vô hạn. Viên đá cuối cùng bên phải nhất luôn tăng chỉ số và viên đá cuối cùng bên trái luôn giảm chỉ số. Do đó khoảng cách giữa hai viên đá này tăng vô hạn. Và đến một lúc nào đó, sẽ có một viên không chịu tác động của các viên còn lại! Lập luận hoàn chỉnh của phần b và lời giải của phần $c$ được dành cho bạn đọc.

Bài toán 3.2. Hình tròn được chia thành 2011 hình dẻ quạt. Xếp 2012 viên kẹo vào các phằn dẻ quạt. Mỗi bước, cho phép chuyển hai viên ở cùng một phần sang hai phần kề khác hướng. Chứng minh rằng đến một lúc nào đó có ít nhất 1006 phần có chứa kẹo.

Giải

Trước hết, chúng ta có 03 nhận xét quan trọng:

a) Do số kẹo lớn hơn một nửa số ô, quá trình ở đây thực hiện được vô hạn lần;

b) Bài toán sẽ được giải quyết xong nếu ta chứng minh được một lúc nào đó hai ô kề nhau bất kì có kẹo. Thật vậy, lúc đó số ô có chứa kẹo sẽ $\geq 2011 / 2$ và do là số nguyên nên số ô có chứa kẹo ít nhất là 1006 .

c) Đến một lúc nào đó, nếu hai ô kề nhau có ít nhất một viên kẹo thì kể từ đó, hai ô này luôn luôn có kẹo. Điều này là hiển nhiên từ phép chuyển.

Theo Nhận xét c) nếu tại mọi thời điểm đều tồn tại hai ô liền nhau không có kẹo thì sẽ tồn tại hai ô liền nhau không bao giờ có kẹo trong tất cả các phép biến đổi. Ta đánh số các dẻ quạt bởi $1,2, \ldots, 2011$ sao cho hai ô đó là 1 và 2011 . Gán cho mỗi chiếc kẹo một số tương ứng với số của ô chứa nó và xét $X$ là tổng bình phương các số đó.

Tương tự như bài trên, $X$ tăng trong mỗi phép biến đổi. Theo Nhận xét a), $X$ tăng vô hạn. Nhưng lại có $X \leq 1006 \times 2010^{2}$, dẫn đến mâu thuẫn. Vậy, đến một lúc nào đó hai ô kề nhau bất kì luôn có kẹo. Bài toán được suy ra từ Nhận xét b).

Bài toán 3.3. Giả thiết và câu hỏi như ở Bài 30 , chỉ khác cách chuyển viên đá được thực hiện như sau:

a) Bỏ một viên ở ô thứ $n-1$ và một viên ở ô thứ $n$, thêm vào một viên ở ô thứ $n+1$.

b) Bỏ hai viên ở ô thứ $n$ và thêm một viên vào ô thứ $n-2$, một viên vào ô thứ $n+1$.

Giải

Nhận xét rằng viên đá ở ô phải nhất sẽ luôn di chuyển về bên phải và viên đá ở bên trái nhất sẽ luôn đi về bên trái. Nếu như quay lại trạng thái ban đầu sau hữu hạn bước thì chúng ta sẽ không được tác động đến hai viên này. Khi đó, có thể bỏ đi hai viên này và lặp lại lập luận trên để suy ra mâu thuẫn. Do đó, không thể quay lại trạng thái ban đầu sau hữu hạn bước.

Chọn $\alpha>1$ là nghiệm của $\alpha^{2}-\alpha-1=0$. Gán cho viên đá ở ô thứ $n$ số $\alpha^{n}$ và xét $X$ là tổng các số này. Khi đó tổng $X$ không đổi. Giả sử có thể chuyển viên đá vô hạn lần thì theo nhận xét trên, các viên đá sẽ tiến ra vô cùng và khi đó tổng $X$ cũng vậy $(\operatorname{do} \alpha>1)$. Điều này mâu thuẫn với tính bất biến của $X$.

Để chứng minh trạng thái sắp xếp cuối cùng không phụ thuộc vào quá trình các bước chuyển, ta chỉ cần chứng minh nếu từ một trạng thái thu được hai trạng thái khác nhau thì tổng $X$ sẽ khác nhau. Chi tiết của lập luận này (thật ra là một bài toán bất đẳng thức đơn giản) được dành cho bạn đọc.

Bài toán 3.4. Có 119 người ở trong 120 căn hộ. Một căn hộ được gọi là quá tải nếu có nhiều hơn 14 thành viên. Mỗi ngày, các thành viên của một căn hộ quá tải xảy ra mẫu thuẫn và chuyển sang các căn hộ khác nhau. Hỏi quá trình có buộc phải kết thúc không?

Giải

Trước khi chuyển nhà cho các thành viên ở căn hộ quá tải bắt tay nhau. Có thể chứng minh được rằng tổng số cái bắt tay sẽ giảm thực sự. Và do đó quá trình sẽ buộc phải kết thúc sau hữu hạn bước.

Bài toán 3.5. Trên vòng tròn có 20 số. Cho phép chọn 3 số liên tiếp $X, Y, Z$ và thay bởi $X+Y,-Y, Z+Y$. Có thể từ

$$ [1,2, \ldots, 10,-1,-2, \ldots,-10] $$

thu được $[10,9, \ldots, 1,-10, \ldots,-1]$ hay không?

Giải

Chọn $x_{1}, \ldots, x_{20}$ sao cho $x_{1}-x_{2}, \ldots, x_{20}-x_{1}$ là bộ 20 số ban đầu. Khi đó dễ dàng kiểm tra được rằng, phép biến đổi đã cho trên bộ 20 số $x_{1} – x_{2}, \ldots, x_{20}-x_{1}$ sẽ tương ứng với việc đổi chỗ hai số cạnh nhau trên bộ $x_{1}, \ldots, x_{20}$. Từ $x_{1}, \ldots, x_{20}$ tương ứng với $[1,2, \ldots, 10,-1,-2, \ldots,-10]$, đổi chỗ liên tiếp các số cạnh nhau ta thu được $x_{20}, \ldots, x_{1}$ ương ứng với bộ $[10,9, \ldots, 1,-10, \ldots,-1]$. Do đó, câu trả lời là khẳng định.

Bài toán 3.6. Giả sử tổng của 20 số là dương. Cho phép biến đổi như ở bài trên, liệu có thể thu được một bộ gồm 20 số không âm hay không?

Giải

Y tưởng chứng minh tương tự như trên. Chỉ có điều chúng ta không điền các số trên vòng tròn mà điền trên đường thẳng vô hạn $\ldots, x_{-n}, \ldots, x_{n}, \ldots$ sao cho chọn 21 số liên tiếp trên đường thẳng thì hiệu các cặp giữa chúng sẽ là 20 số tương ứng. Ta chỉ cần chỉ ra rằng với các đồi chỗ như trong giả thuyết của đề bài, ta có thể sắp xếp lại dãy theo thứ tự tăng. Khi đó, ta sẽ có câu trả lời khẳng định cho bài toán.

Bài toán 3.7. Trên vòng tròn có một số điểm Xanh, Đỏ. Cho phép thêm vào một điểm $Đ$ và đổi màu hai điểm kề nó, hoặc bớt đi một điểm $D$ và đổi màu hai điểm kề nó. Lúc đầu có hai điểm $\mathrm{D}$ và quá trình ko được phép làm cho có ít hơn hai điểm. Hỏi có thể thu được:

a) 2 điểm $\mathrm{X}$, Đ.

b) 8 điểm $\mathrm{D}$.

c) 1 điểm $Đ, 6$ điểm $X$.

d) 2 điểm X.

Giải

a) Không thể thu được 2 điểm $\mathrm{X}, \mathrm{D}$ do tính chẵn lẻ của số điểm X không thay đổi.

b) c) Xây dựng được cụ thể.

d) Không được thể thu được 2 điểm $\mathrm{X}$. Do lúc đầu không có điểm $\mathrm{X}$ nào nên số điểm X luôn là chã̄n. Đánh số các điểm xanh bởi $x_{1}, \ldots, x_{2 n}$ và gọi $d_{1}, \ldots, d_{2 n}$ là số điểm đỏ giữa các điểm $\mathrm{X}$. Bất biến là tính chia hết cho 3 của

$$ S=\left|d_{1}-d_{2}+\ldots+d_{2 n-1}-d_{2 n}\right| $$

Nếu không có điểm $X$ nào thì đặt $S$ là số điểm đỏ. Đây là một bài toán rất khó và chúng tôi khuyến khích bạn đọc tìm hiểu xem với các cấu hình nào thì có thể nhận được từ một cặp điểm $Đ$ ? Gợi ý rằng đại lượng $S$ sẽ giúp xác định chính xác các cấu hình như vậy.

Hết

Giải bài toán bằng đại lượng cực biên – Phần 2

(Bài viết dành cho các em học sinh lớp 8, 9, 10)

Ví dụ 1. Tìm $n$ lớn nhất sao cho tồn tại $n$ điểm mà 3 điểm bất kì đều tạo thành tam giác vuông.

Lời giải. 

Ta thấy $n=3, n=4$ đều tồn tại. Ta chứng minh $n\geq 5$ thì không tồn tại. \
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.

Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp $ n = 5$, để chứng minh không tồn tại, ta sử dụng cực biên, kết hợp với phản chứng để cho lời giải trọn vẹn, chọn độ dài lớn nhất giúp mình gôm hết các điểm vào thành một đường tròn, từ đó giúp giải được bài toán.

Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.

Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.

Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó $A$ là tâm đường tròn, tâm các đường tròn còn lại là $A_1, \cdots, A_6$. Khi đó tồn tại $A_iA_{i+1} \leq 60^\circ$, suy ra $A_iA_{i+1} < AA_i$ vô lý, vì bán kính của $(A)$ là nhỏ nhất.

Ví dụ 3. Cho $n$ điểm trong mặt phẳng biết rằng cứ 3 điểm bất kì tạo thành một tam giác có diện tích không lớn hơn 1. Chứng minh rằng $n$ điểm thuộc một hình tam giác có diện tích không lớn hơn 4.

Lời giải. Gọi $A, B, C$ là 3 điểm tạo thành tam giác sao cho $ABC$ có diện tích lớn nhất. Từ $A, B, C$ vẽ các đường song song với các cạnh đối diện, các đường thẳng cắt nhau tại $A’, B’, C’$ ta chứng minh các điểm thuộc cạnh hoặc miền trong tam giác $A’B’C’$. \
Thật vậy, nếu có điểm nào nằm ngoài tam giác $A’B’C’$ thì điểm đó kết hợp với hai trong 3 điểm $A, B, C$ sẽ có diện tích lớn hơn diện tích tam giác $ABC$, vô lý. \
Do $S_{A’B’C’} = 4S_{ABC} \leq 4$.

Ví dụ 4. (Sylvester) Trong mặt phẳng cho $n$ điểm phân biệt, sao cho mỗi đường thẳng đi qua hai điểm thì đi qua ít nhất một điểm khác. Chứng minh rằng $n$ điểm này cùng thuộc một đường thẳng.

Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử $P$ là điểm có khoảng cách từ $P$ đến $d$ là nhỏ nhất, với $d$ là đường thẳng qua các điểm $A, B, C$ theo thứ tự. \
Gọi $H$ là hình chiếu của $P$ trên $d$, $D, E$ là hình chiếu của $A, B$ trên $B$ trên $PA, PC$. Nếu $H$ thuộc tia $BA$ thì $BE < PH$, nếu $H$ thuộc đoạn $BC$ thì $BD < PH$. Mâu thuẫn với $PH$ là nhỏ nhất. \
Vậy tất cả các điểm cùng thuộc một đường thẳng.

Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.

Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.

Ví dụ 5. Cho 3 trường, mỗi trường có $n$ học sinh, biết rằng cứ mỗi học sinh thì quen ít nhất $n + 1$ học sinh của hai trường khác. Chứng minh rằng có thể chọn được từ mỗi trường một bạn sao cho 3 bạn này đôi một quen nhau.

Lời giải. Giả sử 3 trường là $X, Y, Z$. Tồn tại một người có số người quen ở cùng một trường khác là nhiều nhất, giả sử $A$ thuộc $X$ có số người quen ở trường $Y$ nhiều nhất là $k$. Khi đó số người quen của $A$ ở $Z$ ít nhất là $n+1-k$. Nếu nhóm người quen $A$ ở $Z$ quen với số người quen $A$ ở $X$ có hai người quen nhau thì ta có điều chứng minh.\
Ngược lại xét người quen $A$ ở $Z$, đặt là $B$ quen số người ở $Y$ tối đa là $n-k$, khi đó $B$ quen ở $X$ ít nhất là $n+1 – (n-k) = k+1$, mâu thuẫn với cách chọn $A$. (Mâu thuẫn).

Ví dụ 6. Một bảng $2n \times 2n$ ô, người ta đánh dấu bất kì $3n$ ô trong bảng. Chứng minh rằng tồn tại $n$ dòng và $n$ cột sao cho $3n$ ô được đánh dấu thuộc $n$ dòng và $n$ cột này.

Lời giải. Chọn $n$ dòng sao cho số ô được tô là lớn nhất, ta chứng minh rằng số ô được tô trong $n$ dòng này là không ít hơn $2n$ ô.
Thực vậy giả sử số ô được tô là ít hơn $2n$, khi đó $n$ dòng còn lại có nhiều hơn $n$ ô được tô, nên có ít nhất một một dòng có 2 ô được tô.

Do đó $n$ dòng đã chọn, mỗi dòng ít nhất 2 ô được tô nên tổng số ô hơn hoặc bằng $2n$ (mâu thuẫn).
Vậy ta chỉ cần chọn $n$ cột chứa các ô được tô màu nhưng chưa được chọn trong $n$ dòng trên thì sẽ có điều cần chứng minh.

Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.

Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là $k$, $A_1A_2…A_k$, ta thấy các người còn lại không ai quen $A_1, A_k$ nên suy ra $k \geq 6$. \
Nếu $k = 6$, suy ra $A_1$ và $A_6$ quen nhau, khi đó trong các người còn lại $A_7$ quen một trong cái người giả sử là $A_i$, khi đó ta có chuỗi $A_7A_iA_{i-1}A_1A_6A_{i+1}$ có độ dài hơn 6, vô lý.\
Nếu $k =7$, khi đó $A_1$ quen từ $A_2$ đến $A_6$ và $A_7$ quen $A_2$ tới $A_6$, khi đó có một vòng $A_2A_7A_6A_5A_4A_3A_1A_2$. Khi đó sẽ có một người trong nhóm còn lại thì ta sẽ có chuỗi dài hơn, mâu thuẫn.\
Nếu $k=8,9$ xét tương tự, ta sẽ có $k=10$. Giả sử có chuỗi $A_1\cdots A_{10}$. Khi đó tồn tại $k>i$ sao cho $A_1$ quen $A_k$ và $A_{10}$ quen $A_i$, khi đó có cách xếp thỏa đề bài là $A_1A_k\cdot A_iA_{10}A_9…A_k$.

Bài tập Bài tập nguyên lý cực biên

Tài liệu tham khảo. 

  1. Problems – Solving Stretagies – Arthur Hegel
  2. Giải bài toàn bằng đại lượng cực biên – Nguyễn Hữu Điển

Đề thi học kì 1 lớp 10 chuyên toán PTNK năm 2016

Thời gian làm bài: 120 phút

Câu 1.
a) Giải phương trình $x^{2}-x+2-(x+2) \sqrt{x-1}=0$.
b) Tìm $m$ để hệ phương trình $\left\{\begin{array}{l}x+y+x y=m \\ x^{2}+y^{2}=m\end{array}\right.$ có nghiệm.

Câu 2. Cho hàm số $y=f(x)=-x^{2}+2 x+3(1)$.
a) Khảo sát và vẽ đồ thị hàm số (1).
b) Từ đồ thị hàm số $(1)$, suy ra đồ thị hàm số $y=g(x)=-x^{2}+2|x|+3$. Tìm $k$ để phương trình $g(x)=m^{3}-3 m^{2}+m$ có đúng 3 nghiệm.

Câu 3.
a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
$$
y=\sqrt{x+1}+\sqrt{1-x}-\frac{4}{3} \sqrt{1-x^{2}}
$$
b) Cho các số $a, b, c>0$. Chứng minh rằng
$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \geq \frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)
$$
Bài 4. Cho tam giác $A B C$ cân tại $A, \angle B A C=120^{\circ}$ nội tiếp đường tròn tâm $O$ bán kính $R . A O$ cắt $(O)$ tại $D .$
a) Chứng minh rằng với mọi $M$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M A} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$.
b) Tìm quỹ tích điểm $M$ sao cho $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M A} \cdot \overrightarrow{M D}=\frac{R^{2}}{4}$.
c) Xác định điểm $N$ trên cạnh $B D$ thỏa $P_{D /(A B N)}=R^{2}$.
d) $P$ là điểm thay đổi trên cạnh $B C .$ Gọi $\left(O_{1}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $B ;\left(O_{2}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $C .\left(O_{1}\right)$ và $\left(O_{2}\right)$ cắt nhau tại $Q$ khác $P$. Chứng minh đường thẳng $P Q$ đi qua một điểm cố định $T$. Tính $P_{T /(O)}$.
Kí hiệu $P_{M /(O)}$ là phương tích của $M$ đối với đường tròn $(O)$.

Đề thi học kì 1 lớp 10 chuyên toán trường PTNK năm 2014

Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.

Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$
Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$

Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?

Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đề thi Học kì 1 Toán 10 PTNK năm 2018 (CS2)

Bài 1. Giải các phương trình sau:
a) $\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
Bài 3. Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 4. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 5. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 6. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.
Bài 7. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.
a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Lời giải

Bài 1.
a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x \\
\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) \\
\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\
x^2-x-1=3-2x
\end{array} \right. $

Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.
$P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.

Bài 3. Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2 \Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 4. $D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 5. $\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$
Bài 6.
a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 7.
a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $