Category Archives: Đại số

Bài toán hàm số trong kì thi tuyển sinh vào 10

Trong các kì thi tuyển sinh vào 10 có dạng toán liên quan đến hàm số, chủ yếu là hàm bậc hai dạng $y = ax^2$ (1) và đường thẳng $y = mx + n$ (2)Trong bài viết này chủ yếu xét các bài toán tương giao giữa đồ thị hàm số (1) và (2).

Nếu hàm số $y =ax^2$ có đồ thị là parabol $(P)$ và hàm số $y = mx + n$ có đồ thị là đường thẳng $d$, thì phương trình hoành độ giao điểm của $(P)$ và $(d)$ là

$$ax^2 = mx + n \Leftrightarrow ax^2 – m x – n =0 (*)$$

$(*)$ là một phương trình bậc hai, nên có 3 trường hợp xảy ra:

  • TH1: Nếu $(*)$ vô nghiệm thì $(d)$ và $(P)$ không có giao điểm.
  • TH2: Nếu $(*)$ có 1 nghiệm thì $(d)$ và $(P)$ có 1 giao điểm, ta nói $d$ tiếp xúc với $(P)$.
  • TH3: Nếu $(*)$ có hai nghiệm phân biệt thì ta nói $(d)$ cắt $(P)$, và nghiệm của $(*)$ là hoành độ của hai giao điểm, từ hoành độ ta có thể tính tung độ của giao điểm dựa vào phương trình của $(d)$ hoặc của $(P)$.

Ta xét một vài ví dụ sau:

Bài 1. (Thi vào lớp 10 trường PTNK năm 2018) Gọi $(P),(d)$ lần lượt là đồ thị của các hàm số $y=x^2$ và $y=2 m x+3$.
a) Chứng minh đường thẳng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ và tính $y_1+y_2$ theo $m$.
b) Tìm $m$ sao cho $y_1-4 y_2=x_1-4 x_2+3 x_1 x_2$.

Lời giải bài 1.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:
$$
x^2=2 m x+3 \Leftrightarrow x^2-2 m x-3=0 \quad(1)
$$

Xét phương trình (1), ta có: $\Delta^{\prime}=m^2+3>0$ với mọi $m \in \mathbb{R}$
Suy ra phương trình (1) luôn có hai nghiệm phân biệt $x_1, x_2$ với mọi $m$ hay $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
Theo định lý Viete, ta có: $\left\{\begin{array}{l}x_1+x_2=2 m \\\ x_1 x_2=-3\end{array}\right.$
Khi đó $y_1=2 m x_1+3, y_2=2 m x_2+3$
$y_1+y_2=2 m x_1+3+2 m x_2+3=2 m\left(x_1+x_2\right)+6=4 m^2+6$
b) Ta có:
$y_1-4 y_2=x_1-4 x_2+3 x_1 x_2 $
$\Leftrightarrow 2 m x_1+3-8 m x_2-12=x_1-4 x_2-9 $
$ \Leftrightarrow 2 m\left(x_1-4 x_2\right)=x_1-4 x_2 $
$ \Leftrightarrow\left(x_1-4 x_2\right)(2 m-1)=0 $
$ \Leftrightarrow\left[\begin{array}{l}
x_1=4 x_2 \\\
m=\frac{1}{2} \quad(n)
\end{array}\right. $
Với $x_1=4 x_2 $ lại có $x_1 x_2=-3 \Rightarrow 4 x_2^2=-3 $ (vô lý)
Vậy $m=\frac{1}{2} $

Bài 2. (Đề thi vào 10 trường PTNK năm 2019) Cho $(P),(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y=2 x+m$.
a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ sao cho $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5$.

Lời giải bài 2.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$
$$
x^2=2 x+m \Leftrightarrow x^2-2 x-m=0 \quad(1)
$$
$(P)$ cắt $(d)$ tại 2 điểm phân biệt $A, B \Leftrightarrow (1)$ có 2 nghiệm phân biệt

$\Leftrightarrow \Delta^{\prime}>0 \Leftrightarrow 1+m>0 $
$ \Leftrightarrow m>-1(*)$
Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.


b) Với điều kiện $(*)$ theo Viete ta có: $S=x_1+x_2=2, P=x_1 \cdot x_2=-m$

Ta có: $A\left(x_1 ; y_1\right) \in(d) \Leftrightarrow y_1=2 x_1+m ; B\left(x_2 ; y_2\right) \in(d) \Leftrightarrow y_2=2 x_2+m$

Ta có: $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5 $

$\Leftrightarrow\left(x_1-x_2\right)^2+\left(2 x_1-2 x_2\right)^2=5$

$\Leftrightarrow\left(x_1-x_2\right)^2+4\left(x_1-x_2\right)^2=5 $

$\Leftrightarrow\left(x_1-x_2\right)^2=1 \Leftrightarrow\left(x_1+x_2\right)^2-4 x_1 x_2=1$

$\Leftrightarrow 4+4 m=1 \Leftrightarrow m=\frac{-3}{4} $ thỏa (*)
Vậy $m = \dfrac{-3}{4}$.

Bài 3. Đồ thị của hàm số $f(x)=a x^2$ và $g(x)=-a x+b(a ; b$ là các số thực), điểm chung thứ nhất có hoành độ bằng 1 và tung độ điểm chung thứ 2 là 8 . Tìm hoành độ của điểm chung thứ hai của hai đồ thị và tính $a, b$.

Lời giải bài 3.

  • Phương trình hoành độ giao điểm $a x^2=-a x+b \Leftrightarrow a x^2+a x-b=0$ thì phương trình nhận 1 là nghiệm nên $a 1^2+a \cdot 1-b=0 \Rightarrow b=2 a$.
  • Khi đó gọi nghiệm còn lại là $x_2$ ta có $1 \cdot x_2=\frac{-b}{a}=-2$
  • Do đó tung độ $a(-2)^2=8$, suy ra $a=2$ và $b=4$.

Bài 4. (TS chuyên Đăk Lăk 2020 – 2021) Trong mặt phẳng $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2(m+1) x+3$ với $m$ là tham số. Tìm tất cả các giá trị của tham số $m$ để đường thẳng $(d)$ cắt parabol tại hai điểm phân biệt có hoành độ $x_1, x_2$ thoả mãn điều kiện $x_1^2-2 m x_1+2 x_2-x_1 x_2=2$.

Lời giải bài 4.

  • Phương trình hoành độ giao điểm $x^2-2(m+1) x-3=0\left(^*\right)$ $\Delta^{\prime}=(m+1)^2+3>0$ với mọi $m$.
  • Theo định lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=-3$.
    Ta có $x_1^2-2(m+1) x_1-3=0$, suy ra $x_1^2-2 m x_1=2 x_1+3$ $x_1^2-2 m x_1+2 x_2-x_1 x_2=2 \Leftrightarrow 2 x_1+3+2 x_2-(-3)=2 \Leftrightarrow m=-2$.
  • Vậy $m=-2$.

Bài 5. (TS chuyên Khánh Hoà 2020 – 2021) Trên mặt phẳng toạ độ $O x y$, cho parabol $(P)$ có phương trình $y=2 x^2$ và đường thẳng $(d): y=-2 m x+m+1$ với $m$ là tham số.
a) Chứng minh đường thẳng $(d)$ luôn cắt Parabol $(P)$ tại hai điểm phân biệt.
b) Gọi $x_1, x_2$ lần lượt là hoành độ giao điểm của đường thẳng $(d)$ và parabol $(P)$, tìm $m$ thoả mãn đẳng thức $\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=66$.

Lời giải bài 5 .
a) Phương trình hoành độ giao điểm của $d$ và $P$ là
$$
2 x^2+2 m x-m-1=0
$$
$\Delta^{\prime}=m^2-2(-m-1)=(m+1)^2+1>0$ với mọi $m$, do đó $d$ cắt $P$ tại hai điểm phân biệt với mọi $m$.
b) Theo định lý Viete ta có $x_1+x_2=-m, x_1 x_2=\frac{-m-1}{2}$.
Suy ra $x_1^2+x_2^2=\left(x_1+x_2\right)^2-2 x_1 x_2=m^2+m+1$
Ta có $66=\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=\frac{\left(2 x_1-1\right)^2+\left(2 x_2-1\right)^2}{\left(2 x_1-1\right)^2\left(2 x_2-1\right)^2}=\frac{4\left(x_1^2+x_2^2\right)-4\left(x_1+x_2\right)+2}{\left(4 x_1 x_2-2\left(x_1+x_2\right)+1\right)^2}$
$$
=\frac{4\left(m^2+m+1\right)-4(-m)+2}{(-2 m-2-2(-m)+1)^2}=\frac{4 m^2+8 m+6}{1}
$$

Giải ra được $m=-5, m=3$.

Bài 6. (TS chuyên Thái Bình 2020 – 2021) Trong mặt phẳng toạ độ $O x y$, cho parabol $(P): y=\frac{x^2}{2}$ và hai đường thẳng $\left(d_1\right): y=5 x+2,\left(d_2\right): y=\left(m^2+1\right) x+m$ với $m$ là tham số.
a) Tìm $m$ để $\left(d_1\right)$ song song với $\left(d_2\right)$.
b) Tìm $m$ để $\left(d_2\right)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_1, x_2$ sao cho $Q=x_1+x_2-4 x_1 x_2$ đạt giá trị nhỏ nhất.

Lời giải bài 6 .
a) Điều kiện để $d_1 || d_2$ là $m^2+1=5, m \neq 2$, giải ra được $m=-2$.
b) Phương trình hoành độ giao điểm của $d_2$ và $P$ là
$$
\frac{x^2}{2}=\left(m^2+1\right) x+m \Leftrightarrow x^2-2\left(m^2+1\right) x-2 m=0
$$

Điều kiện $\Delta^{\prime}=\left(m^2+1\right)^2-(-2 m)>0 \Leftrightarrow m^4+2 m^2+1+2 m>0 \Leftrightarrow m^4+m^2+(m+1)^2>0$ (Đúng với mọi $m)$

Theo định lý Viete ta có $x_1+x_2=2\left(m^2+1\right), x_1 x_2=-2 m$

Ta có $P=x_1+x_2-4 x_1 x_2=$ $2\left(m^2+1\right)-4(-2 m)=2\left(m^2+1+4 m\right)=2(m+2)^2-6 \geq-6$, đẳng thức xảy ra khi $m=-2$.

Bài 8. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2 x-m-2$. Tìm tất cả các giá trị của tham số $m$ để $(d)$ cắt $(P)$ tại hai điểm phân biệt lần lượt có hoành độ $x_1, x_2$ thỏa mãn $x_1^2+1=2 x_2$.

Lời giải bài 8 .

  • Phương trình hoành độ giao điểm
    $$
    x^2=2 x-m-2 \Leftrightarrow x^2-2 x+m+2=0
    $$
  • Điều kiện $\Delta^{\prime}=1-(m+2)>0 \Leftrightarrow m<-1$.
  • Theo định lý Viete ta có $x_1+x_2=2, x_1 x_2=m+2$.

Ta có $x_1^2=2 x_1-m-2$, suy ra $x_1^2+1=2 x_2 \Leftrightarrow 2 x_1-m-2+1=2 x^2 \Leftrightarrow 2\left(x_1-x_2\right)=m+1$ Kết hợp với Viete ta có $x_1=\frac{m+5}{4}, x_2=\frac{3-m}{4}$
Khi đó $x_1 x_2=m+2 \Leftrightarrow \frac{m+5}{4} \frac{3-m}{4}=m+2 \Leftrightarrow m=-1(l), m=-17(n)$.

  • Vậy $m=-17$.

Bài 9. Cho $(P): y=x^2$ và đường thẳng $(d): y=(m+2) x-2 m$.
a) Tìm $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ để $x_1+2 y_2=7$.

Lời giải bài 9 .
a) Phương trình hoành độ giao điểm

$\quad x^2-(m+2) x+2 m=0 $
$\Delta=(m+2)^2-8 m=(m-2)^2>0 \Leftrightarrow m \neq 2 .$

b) Khi đó phương trình có nghiệm $x=2, x=m$.
3

  • TH1: $x_1=2, x_2=m$ suy ra $y_1=4, y_2=m^2$. Ta có $2+2 m^2=7$ giải ra được $m=\sqrt{2,5}, m=$ $-\sqrt{2,5}$.
  • TH2: $x_1=m, x_2=2$, suy ra $y_1=m^2, y_2=4$. Ta có $m+2.4=7 \Leftrightarrow m=-1$.
  • Vậy có 3 giá trị $m$ thỏa đề bài $m=\sqrt{2,5}, m=-\sqrt{2,5}, m=-1$.

Bài 10. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P)$ có phương trình $y=x^2$ và đường thẳng $(d)$ có phương trình $y=2 m x-m^2-m-2$ (với $m$ là tham số).
a) Tìm tọa độ điểm $M$ thuộc $(P)$ biết điểm $M$ có hoành độ bằng -3 .
b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và parabol $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$.

Lời giải bài 10.

b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai đie biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$. Ta có phương trình hoành độ giao điểm của $(d)$ và $(P)$ là

$ x^2=2 m x-m^2-m-2 \Leftrightarrow x^2-2 m x+m^2+m+2=0(1) $
$ \Delta^{\prime}=(-m)^2-\left(m^2+m+2\right)=-m-2$

$(d)$ cắt parabol $(P)$ tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt $\Leftrightarrow \Delta^{\prime}>$ $0 \Leftrightarrow-m-2>0 \Leftrightarrow m<-2(*)$

$ \text { Ta có } x_1+x_2=2 m, x_1 x_2=m^2+m+2 $
$x_1 y_2+x_2 y_1=x_1 \cdot x_2^2+x_2 \cdot x_1^2=x_1 \cdot x_2\left(x_1+x_2\right)=2$ $m\left(m^2+m+2\right) $
$=2 m^3+2 m^2+4 m $
$2 m^3+2 m^2+4 m=2 m^3+6 \Leftrightarrow 2 m^2+4 m-6=0 $

$\Leftrightarrow\left[\begin{array}{l}
m=1 \\\
m=-3
\end{array}\right.$

Đối chiếu (*) vậy $m=-3$.

Tỉ lệ thức và dãy tỉ số bằng nhau – Phần 2

Bài 1. Cho $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}$. Chứng minh rằng $a=b=c$.
Lời giải.
$$
\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1
$$

Khi đó, $a=b ; b=c ; c=a \Rightarrow a=b=c$.
Bài 2. Cho ba tỉ số bằng nhau là $\dfrac{a}{b+c}, \dfrac{b}{c+a}, \dfrac{c}{a+b}$. Tìm giá trị của mỗi tỉ số đó.
Lời giải.
$$
\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2 a+2 b+2 c}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \text {. }
$$

Bài 3. Cho $a+b+c+d \neq 0$ và $\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}$.

Tính giá trị của: $A=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$.

Lời giải.
$$
\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3 a+3 b+3 c+3 d}=\frac{a+b+c+d}{3(a+b+c+d)}=\frac{1}{3} \text {. }
$$

Khi đó, $3 a=b+c+d \quad ; 3 b=a+c+d \quad ; 3 c=a+b+d \quad ; 3 d=a+b+c$
$$
4 a=a+b+c+d \quad ; 4 b=a+b+c+d \quad ; 4 c=a+b+c+d \quad ; 4 d=a+b+c+d
$$

Khi đó, $4 a=4 b=4 c=4 d \Rightarrow a=b=c=d$.
Vậy $A=4$.

Bài 4. Cho tỉ lệ $\frac{a}{b}=\frac{c}{d}$. Chứng minh rằng: $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
Lời giải.
$$
\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}
$$

Bài 5. Cho tỉ lệ thức $\dfrac{a}{b}=\dfrac{c}{d}$. Chứng minh rằng $\dfrac{a b}{c d}=\dfrac{a^2-b^2}{c^2-d^2}$.
Lời giải.
$ \dfrac{a}{b}=\dfrac{c}{d} \Rightarrow \dfrac{a}{c}=\dfrac{b}{d}=k .$
$k^2=\dfrac{a}{c} \cdot \dfrac{b}{d}=\dfrac{a b}{c d} . $
$k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2} $

Khi đó, $\dfrac{a b}{c d}=\dfrac{a^2-b^2}{c^2-d^2}$.

Bài 6. Cho $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$.

Chứng minh rằng: $\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}$.

Lời giải.

$\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=k $

$\Rightarrow k^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3 . $
$k^3=\dfrac{a}{b} \cdot \dfrac{b}{c} \cdot \dfrac{c}{d}=\dfrac{a}{d} $
$\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d} $

Bài tập tự luyện.


Bài 1. Cho tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$. Chứng minh rằng ta có các tỉ lệ thức sau: (với giả thiết các tỉ số đều có nghĩa).
(a) $\dfrac{3 a+5 b}{3 a-5 b}=\dfrac{3 c+5 d}{3 c-5 d}$;
(b) $\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}$;
(c) $\dfrac{a b}{c d}=\dfrac{(a-b)^2}{(c-d)^2}$;
(d) $\dfrac{7 a^2+5 a c}{7 a^2-5 a c}=\dfrac{7 b^2+5 b d}{7 b^2-5 b d}$.

Bài 2. Cho $\dfrac{a}{2018}=\dfrac{b}{2019}=\dfrac{c}{2020}$.

Chứng minh rằng: $ 4(a-b)(b-c)=(c-a)^2$.

Bài 3. Cho dãy tỉ số bằng nhau: $\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\ldots=\dfrac{a_{2018}}{a_{2019}}$.

Chứng minh rằng: Ta có đẳng thức: $\dfrac{a_1}{a_{2019}}=\left(\dfrac{a_1+a_2+a_3+\ldots+a_{2018}}{a_2+a_3+a_4+\ldots+a_{2019}}\right)^{2018}$

Tỉ lệ thức – Dãy tỉ số bằng nhau (Phần 1)

Lý Ngọc Vy – Giáo viên Star Education

Định nghĩa 1. Thương trong phép chia số $a$ cho số $b(b \neq 0)$ gọi là tỉ số của $a$ và $b$.

Định nghĩa 2. Tỉ lệ thức là đẳng thức giữa hai tỉ số.
$$
\dfrac{a}{b}=\dfrac{c}{d} \Leftrightarrow a: b=c: d
$$

Trong đó:

  • $a$ và $d$ gọi là ngoại tỉ.
  • $b$ và $c$ gọi là trung tỉ.

Tinh chất 1. Cho $a, b, c, d$ là các số khác 0 . Ta có một số tính chất sau:
(a) $\dfrac{a}{b}=\dfrac{c}{d} \Leftrightarrow a d=b c$
(b) $\dfrac{a}{b}=\dfrac{c}{d} \Leftrightarrow \dfrac{a}{c}=\dfrac{b}{d}$
(c) $\dfrac{a}{b}=\dfrac{c}{d} \Leftrightarrow \dfrac{b}{a}=\dfrac{d}{c}$.

Dãy tỉ số bằng nhau.

$$
\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{a-b+c}{x-y+z}
$$

Với điều kiện là mẫu thức khác 0 .

Ví dụ 1. Tìm $x$ để tạo thành các tỉ lệ thức
(a) $\dfrac{3}{4}=\dfrac{x}{20}$
(b) $\dfrac{2}{2,5}=\dfrac{4}{x}$
(c) $\dfrac{3,5}{4 x}=\dfrac{5}{200}$

Lời giải.
(a) $\dfrac{3}{4}=\dfrac{x}{20} \Rightarrow x=20: 4.3 \Rightarrow x=15$.
(b) $\dfrac{2}{2,5}=\dfrac{4}{x} \Rightarrow x=4: 2.2,5 \Rightarrow x=5$.
(c) $\dfrac{3,5}{4 x}=\dfrac{5}{200} \Rightarrow x=3,5: 5.200: 4 \Rightarrow x=35$.

Ví dụ 2. Tìm $x, y$ biết:
(a) $x: y=20: 9$ và $x-y=-22$;
(b) $3 x=4 y$ và $x+2 y=35$;
(c) $x: 2=2 y: 3$ và $x y=27$;

Lời giải.
(a) $\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-22}{11}=-2 \Rightarrow x=-40 ; y=-18$.
(b) $\dfrac{x}{4}=\frac{y}{3}=\dfrac{x+2 y}{4+2.3}=\dfrac{35}{10}=\dfrac{7}{2} \Rightarrow x=14 ; y=\dfrac{21}{2}$.
(c) $\dfrac{x}{2}=\dfrac{2 y}{3}=k$
$k^2=\dfrac{x}{2} \cdot \dfrac{2 y}{3}=\dfrac{x \cdot 2 y}{6}=\dfrac{27 \cdot 2}{6}=9 \Rightarrow k=3$ hoặc $k=-3 \Rightarrow x=6 ; y=\dfrac{9}{2}$ hoặc $x=-6 ; y=\dfrac{-9}{2}$.

Ví dụ 3. Tìm $a, b$ và $c$ trong mỗi trường hợp sau:
(a) $5 a-3 b-3 c=-536$ và $\dfrac{a}{4}=\dfrac{b}{6}, \dfrac{b}{5}=\dfrac{c}{8}$;
(b) $3 a-5 b+7 c=86$ và $\dfrac{a+3}{5}=\dfrac{b-2}{3}=\dfrac{c-1}{7}$;
(c) $5 a=8 b=3 c$ và $a-2 b+c=34$;
(d) $3 a=7 b$ và $a^2-b^2=160$;

Lời giải.

(a)
$\dfrac{a}{4}=\dfrac{b}{6} \Rightarrow \frac{a}{20}=\dfrac{b}{30} ; \dfrac{b}{5}=\dfrac{c}{8} \Rightarrow \dfrac{b}{30}=\dfrac{c}{48} $
$\dfrac{a}{20}=\dfrac{b}{30}=\dfrac{c}{48}=\dfrac{5 a-3 b-3 c}{5.20-3.30-3.48}=\dfrac{-536}{-134}=4$

$\Rightarrow a=80 ; b=120 ; c=192$
(b)
$ \dfrac{a+3}{5}=\dfrac{b-2}{3}=\dfrac{c-1}{7}=\dfrac{3(a+3)-5(b-2)+7(c-1)}{3.5-5.3+7.7}=\dfrac{3 a-5 b+7 c+12}{49}=2 $
$ \Rightarrow a=7 ; b=8 ; c=15 $
(c)
$5 a=8 b=3 c \Rightarrow \dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{8}}=\dfrac{c}{\dfrac{1}{3}}$

$=\dfrac{a-2 b+c}{\dfrac{1}{5}-2 \cdot \dfrac{1}{8}+\dfrac{1}{3}}=\dfrac{34}{34}=1$

$\Rightarrow a=24 ; b=15 ; c=40 .
$
(d)
$3 a=7 b \Rightarrow \dfrac{a}{7}=\dfrac{b}{3}=k $
$k^2=\dfrac{a^2}{49}=\dfrac{b^2}{9}=\dfrac{a^2-b^2}{49-9}=\dfrac{160}{40}=4$
$\Rightarrow k=2$ hoặc $k=-2 \Rightarrow a=14$ hoặc $a=-14 ; b=6$ hoặc $b=-6$.

Ví dụ 4. Hưởng ứng phong trào quyên góp sách giáo khoa cũ giúp đỡ học sinh có hoàn cảnh khó khăn, ba lớp 7A, 7B. 7C đã quyên góp số sách tỉ lệ với $3: 4: 5$. Tính số sách giáo khoa mỗi lớp quyên góp, biết số sách quyên góp của lớp 7 hơn lớp 7A là 22 quyển.

Lời giải. Gọi $x, y, z$ lần lượt là số sách của các lớp 7A, 7B, 7C. Ta có
$$
\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{22}{2}=11 \Rightarrow x=33 ; y=44 ; z=55
$$

Ví dụ 5. Tìm $a ; b ; c$ biết $\dfrac{12 a-15 b}{7}=\dfrac{20 c-12 a}{9}=\dfrac{15 b-20 c}{11}$ và $a+b+c=48$.
Lời giải.
$\dfrac{12 a-15 b}{7}=\dfrac{20 c-12 a}{9}=\dfrac{15 b-20 c}{11}=\dfrac{12 a-15 b-20 c+12 a-15 b+20 c}{7+9+11}=0 $
$\Rightarrow 12 a=15 b ; 20 c=12 a ; 15 b=20 c . $
$\Rightarrow \dfrac{a}{5}=\dfrac{b}{4} ; \dfrac{c}{3}=\dfrac{a}{5} ; \dfrac{b}{4}=\dfrac{c}{3} $
$\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{5+4+3}=\dfrac{48}{12}=4 $

$\Rightarrow a=20 ; b=16 ; c=12 $

Bài tập.

Bài 1. Tìm số hữu tỉ $x$ trong các tỉ lệ thức sau:
(a) $6: x=6,5:(-29,25)$;
(b) $14 \frac{2}{3}:\left(-80 \frac{2}{3}\right)=(0,5 . x): 35 \frac{3}{4}$;
(c) $4: x=x: 0,16$;
(d) $(1-x)^3:(-0,5625)=0,525: 0,7$;

Bài 2. Có thể lập được một tỉ lệ thức từ từng nhóm bốn số sau không?
(a) $-1 ;-3 ;-9 ; 27$;
(b) $-1 ; \frac{-1}{2} ; \frac{-1}{3} \frac{-1}{6}$;
(c) 0,$4 ; 0,04 ; 0,004 ; 0,0004$;
(d) $3^{-3} ; 3^{-5} ; 3^{-7} ; 3^{-11}$

Bài 3. Tìm $a, b, c$ biết

(a) $15 a=10 b=6 c$ và $a b c=-1920$;
(b) $a^2+3 b^2-2 c^2=-16$ và $\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}$;

Bài 4. Tìm $x ; y ; z$ biết $2 x=3 y ; 4 y=5 z$ và $4 x-3 y+5 z=7$
Bài 5. Tìm $x ; y ; z$ biết $3 x=4 y ; 5 y=6 z$ và $x y z=30$.

Cấp số cộng

Lý Ngọc Vy – Giáo viên Star Education

Dãy số (hữu hạn hoặc vô hạn) $a_1, a_2, a_3, \ldots, a_n, \ldots,$ được gọi là cấp số cộng nếu lấy số hạng thứ hai trừ số hạng đứng trước nó bằng một số $c$ không đổi, nghĩa là $a_{n+1}-a_n=c$ với $n=1,2,3, \ldots$. Số $c$ được gọi là công sai của cấp số cộng.

Từ đó, ta có số hạng tổng quát của cấp số cộng sau:
$$
a_n=a_1+(n-1) c
$$

Ví dụ 1 Cho tập hợp các số tự nhiên
$$
1,2,3,4,5, \ldots,
$$
là một cấp số cộng với công sai $c=1$.
Cho tập hợp các số chẵn
$$
2,4,6,8,10,12, \ldots
$$
là một cấp số cộng với $c=2$ không đổi.
Tổng $n$ số hạng đầu tiên của cấp số cộng
Carl Fried Gauss (1777-1855) là một trong những nhà toán học vĩ đại nhất trong lịch sử. Tên ông ấy xuất hiện ở mọi lĩnh vực toán học. Chuyện kể rằng, lúc Gauss 7 tuổi, ông đã khám phá ra cách tính nhanh tổng các số từ 1 đến 100 .

Phương pháp tính của Gauss như sau: $S=1+2+3+\ldots+98+99+100$.
Đảo thứ tự các số, ta có: $S=100+99+98+\ldots+3+2+1$.
$$
\text { Vì } 1+100=2+99=3+98=\ldots=98+3=99+2=100+1=101 \text {. }
$$

Khi có, $2 S=100 \times 101$.
Vậy $S=5050$.

Ta áp dụng phương pháp này cho cấp số cộng.
Giả sử, cho cấp số cộng như sau:
$$
a_1, a_2, a_3, . ., a_n
$$

Ta có:
$S =a_1+a_2+\ldots+a_{n-1}+a_n . $
$S =a_n+a_{n-1}+\ldots+a_2+a_1 .$

Vì $a_1+a_n=a_2+a_{n-1}=\ldots=a_{n-1}+a_2=a_n+a_1$. Khi đó, $2 S=n \times\left(a_1+a_n\right)$.
Vậy
$$
S=a_1+a_2+\ldots+a_n=\sum_{i=1}^n a_i=\dfrac{\left(a_1+a_n\right) \cdot n}{2} .
$$
$\sum$ : Tổng của 1 phép toán nhiều hạng tử.
Ví dụ 2: [AMC8.2015.9] Ngày đầu tiên đi làm, Janabel bán được 1 sản phẩm. Ngày thứ 2, cô ấy bán được 3 sản phẩm. Ngày thứ 3 , cô ây bán được 5 sản phẩm và những ngày tiếp theo cô ấy bán được nhiều hơn ngày trước đó 2 sản phẩm. Trong 20 ngày, Janabel bán được tất cả bao nhiêu sản phẩm?

Lời giải.
Biểu diễn $a_n$ là số sản phẩm Janabel bán được ở ngày thứ $n$. Theo giả thuyết, dãy số sau là dãy cấp số cộng với $a_1=1$ và công sai $c=2$
1
$$
1,3,5,7, \ldots
$$

Từ (1) và (2), suy ra ngày thứ 20 , cô ấy đã bán được số sản phẩm $a_{20}=a_1+2 \times 19=39$. Số sản phẩm cố ấy bán được trong 20 ngày là $S=\frac{(1+39) \times 20}{2}=400$.
Ví dụ 3: [AMC10A.2011.4] Cho $X$ và $Y$ là tổng của cấp số cộng như sau:
$X=10+12+14+\ldots+100$
$Y=12+14+16+\ldots+102 .$

Tính $Y-X$ ?
Lời giải.
Cách 1: $X$ và $Y$ là tổng của cấp số cộng có 46 số hạng. Dùng công thức (2), ta tính được $X$ và $Y$.

Cách 2: $Y-X=(12-10)+(14-12)+\ldots+(102-100)=2 \times 46=92$.
Cách 3:

Cách 3:
$$
\begin{aligned}
& X=10+12+14+\ldots+100 \
& Y=\quad 12+14+\ldots+100+102 .
\end{aligned}
$$

Khi lấy $Y-X$, các số hạng từ 12 dến 100 sẽ triệt tiêu cho nhau nên $Y-X=102-10=92$
Ví dụ 4: [AMC10.2001.11] Xét hình vuông tối màu trong một mảng các hình vuông đơn vị được biểu thị như hình dưới. Vòng thứ nhất bao quanh hình vuông trung tâm gồm 8 hình vuông đơn vị. Vòng thứ hai gồm 16 hình vuông đơn vị. Cứ tiếp tục như thế thì đến vòng thứ 100 sẽ có bao nhiêu hình vuông đơn vị?

Lời giải.
Gọi $a_n$ là số hình vuông đơn vị ở vòng thứ $n$.
Khi đó, dãy số
$$
8,16,24, \ldots
$$
là một cấp số cộng với công sai
$$
c=8
$$

Từ (1), ta tính được $a_{100}=a_1+99 \times 8=800$.

Ví dụ 5. Cho dãy số $1 ; 4 ; 7 ; \ldots$ là một cấp số cộng với công sai là 3 .
(a) Tìm số hạng thứ 10.
(b) Tìm số hạng thứ 2023.
(c) Tính tổng 10 số hạng đầu.
(d) Tính tổng 100 số hạng đầu tiên.
(e) Tính tổng các số hạng từ số hạng 11 đến số hạng 100 .

Lời giải.
$$
u_1=1 ; d=3 \text {. }
$$
(a) $u_{10}=u_1+(10-1) d=1+9.3=28$.
(b) $u_{2023}=u_1+(2023-1) d=1+2022.3=6067$.
(c) $S_{10}=\frac{\left(u_{10}+u_1\right) \cdot 10}{2}=\frac{(28+1) \cdot 10}{2}=145$.
(d) $S_{100}=\frac{\left(u_{100}+u_1\right) \cdot 100}{2}=\frac{(298+1) \cdot 100}{2}=14950$.
(e) $u_{11}+\ldots+u_{100}=S_{100}-S_{10}=14950-145=14805$.

Ví dụ 6. (Số tam giác) Ta gọi tổng của $n$ số nguyên dương đầu tiên là một số tam giác (thứ $n$ ). Ví dụ 10 là một số tam giác thứ tư vì $10=1+2+3+4$.
1
(a) Liệt kê 10 số tam giác đầu tiên.
(b) Số 200 có phải là một số tam giác không? Tại sao?
(c) Tính tổng của hai số tam giác thứ 11 và 12 .
(d) Có nhận xét gì về tổng hai số tam giác liên tiếp, chứng minh nhận xét đó.
(e) Ngoài số 1, có số tam giác nà là bình phương của một số nguyên dương không? Tìm một số như thế.

Lời giải

(a) 10 số tam giác đầu tiên: ${1 ; 3 ; 6 ; 10 ; 15 ; 21 ; 28 ; 36 ; 45 ; 55}$.
(b) $200=S_n=\frac{\left[2 u_1+(n-1) d\right] \cdot n}{2} \Rightarrow 200=\frac{[2+(n-1)] n}{2} \Rightarrow n^2-n-398=0$.
Ta thấy, $n \approx 20,46$ không là số nguyên dương.
Vậy 200 không là một số tam giác.
(c) $S_{11}+S_{12}=\frac{(11+1) \cdot 11}{2}+\frac{(12+1) \cdot 12}{2}=144$.
(d) Tổng hai số tam giác liên tiếp: ${4 ; 9 ; 16 ; 25 ; 36 ; \ldots} . \Rightarrow$ Tổng hai số tam giác liên tiếp luôn là số chính phương.
$ S_n+S_{n+1}=\frac{\left[2 u_1+(n-1) d\right] n}{2}+\frac{\left(2 u_1+n d\right)(n+1)}{2}=\frac{4 u_1 n+2 u_1+2 n^2 d}{2}=n^2+2 n+1
$ =(n+1)^2 $
(e) $x^2=S_n \Rightarrow x^2=\frac{\left[2 u_1+(n-1) d\right] n}{2} \Rightarrow x^2=\frac{n^2+n}{2}$.
Ta thấy, số tam giác thứ 8 là bình phương của một số nguyên dương là 36 .

Ví dụ 7. Cho các tập sau: $S_1={1}, S_2={2,3}, S_3={4,5,6}, \ldots$
(a) Tính tổng các số của $S_5, S_6$.
(b) Tìm số lớn nhất của $S_{100}$.
(c) Tính tổng các số của $S_{100}$.
(d) Số 2023 thuộc tập nào?
(e) Đặt $m_1, m_2, \ldots$ lần lượt là số lớn nhất trong các tập $S_1, S_2, \ldots$, . Ví dụ $m_1=1, m_2=3, m_3=6$. Có nhận xét gì về $m_1, m_2, \ldots$, . Có số nào trong dãy có giá trị bằng 210 không? Tại sao?

Lời giải.
Gọi $A_n={1 ; 2 ; 3 ; \ldots ; n}$.
Số nhỏ nhất trong tập $S_n=K_n-(n-1)$ với $K_n$ là tổng $n$ số đầu tiên trong dãy $A_n$. Số lớn nhất trong tập $S_n=K_n$ với $K_n$ là tổng $n$ số đầu tiên trong dãy $A_n$.
(a) Số nhỏ nhất trong tập $S_5=K_5-4=\frac{(5+1) .5}{2}-4=11$.
Số lớn nhất trong tập $S_5=K_5=15$.
Tổng các số của $S_5=\frac{(15+11) \cdot 5}{2}=65$.
Số nhỏ nhất trong tập $S_6=16$.
Số lớn nhất trong tập $S_6=21$.
Tổng các số của $S_6=\frac{(16+21) \cdot 6}{2}=111$.

Số lớn nhất trong tập $S_6=21$.
Tổng các số của $S_6=\frac{(16+21) \cdot 6}{2}=111$.
(b) Số lớn nhất của $S_{100}=K_{100}=\frac{(100+1) \cdot 100}{2}=5050$.
(c) Số nhỏ nhất của $S_n<2023<$ Số lớn nhất của $S_n$

Ta có $K_n-(n-1)<20234046$, suy ra 63,11<n<64,09\right. \
Vậy $n=64$, do đó $2023 \in S_{64} $
(d) $m_1 ; m_2 ; \ldots$ là tổng $n$ số đầu tiên của $A_n$.
$210=\frac{(1+n) \cdot n}{2} \Rightarrow n^2+n-420=0 \Rightarrow n=20$ là số nguyên dương.
Vậy $m_{20}$ là số lớn nhất trong tập có giá trị bằng 210.

Ví dụ 8. Bạn Bảo Huy có một kế hoạch học tập vào tháng 5 (31 ngày) đối với môn toán như sau: giai đoạn khởi động 15 ngày đầu, mỗi ngày Huy làm 4 bài toán, giai đoạn tăng tốc kể từ ngày 16 thì Huy mỗi ngày Huy làm nhiều hơn ngày trước đó một số bài không đổi, sau khi tăng tốc làm bài đến về đích, Huy làm mỗi ngày giảm 10 bài so với ngày trước đó và nghỉ hẳn, không làm toán vào ngày cuối cùng. Sau khi thực hiện theo kế hoạch thì Huy thấy mình làm được là 402 bài toán trong tháng năm. Hỏi ngày Huy làm được nhiều nhất là bao nhiêu bài toán?

Lời giải.

Giai đoạn khởi động: Tổng số bài bạn Bảo Huy làm trong 15 ngày là $4.15=60$ bài.

Giai đoạn tăng tốc: Số bài bạn Bảo Huy làm từ ngày 16 là
$ u_{16}=4+d, u_{17}=4+2 d, u_{18}=4+3 d, \ldots $
$\Rightarrow u_{16+n}=4+(n+1) d $

Giai đoạn về đích:
$$
u_{16+n+1}=4+(n+1) d-10, u_{16+n+2}=4+(n+1) d-2.10, \ldots
$$

Ngày 30: $u_{16+n+m-1}=4+(n+1) d-(m-1) .10$.

Ngày $31: u_{16+n+m}=4+(n+1) d-m .10$ với $16+n+m=31 \Rightarrow m=15-n$ và $n, m$ là các số nguyên dương.

Vì bạn Bảo Huy không làm toán vào ngày cuối cùng nên

$4+(n+1) d-10 m=0 \Rightarrow 4+(n+1) d-10(15-n)=0 \Rightarrow d=\frac{146-10 n}{n+1} $

Bạn Bảo Huy làm được 402 bài toán trong tháng năm nên

Giai đoạn khởi động + Giai đoạn tăng tốc + Giai đoạn về đích (dến ngày 30)=402
$\Rightarrow 60+\dfrac{4+(n+1) d+(4+d)}{2}+\dfrac{4+(n+1) d-10(14-n)+4+(n+1) d-10}{2}=402 $
$\Rightarrow-n^2 d-10 n^2+29 n d+290 n+30 d=2664 .

Mà $ d=\frac{146-10 n}{n+1}$
Khi đó, $n=11$ và $d=3$.
Vậy 1 ngày bạn Bảo Huy làm nhiều nhất $4+(11+1) \cdot 3=40$ bài toán.

Phần trăm

Bài tập 1. Có ba bài kiểm tra, bài số 1 có 25 câu, bài số 2 có 40 câu, bài số 3 có 10 câu. Đức là được $80 \%$ câu đúng bài số 1, $90 \%$ câu đúng bài số 2 và $70 \%$ câu đúng bài số 3. Mỗi câu đúng bài số 1 được 3 điểm, bài số 2 được 5 điểm và bài số 3 được 7 điểm.
a) Tính số câu đúng Đức làm được.
b) Tính số điểm của Đức đạt được.

Lời giải.

a) Số câu đúng Đức làm được: $80 \%.25 + 90 \%.40 + 70 \%.10=63$ câu.

b) Số điểm Đức làm được: $80 \%.25.3 + 90 \%.40.5 + 70 \%.10.7=289$ điểm.

Bài tập 2. Một số nam sinh và nữ sinh đang rửa xe để quyên tiền cho chuyến tham quan Hà Nội của lớp. Ban đầu $40 \%$ của nhóm là con gái. Ngay sau đó, hai cô gái rời đi và hai chàng trai đến, sau đó $30 \%$ trong nhóm là các cô gái. Lúc đầu trong nhóm có bao nhiêu bạn nữ?

Lời giải.
Gọi $x$ (bạn) là số bạn nữ lúc đầu trong nhóm có, $(x>0)$
$$
40 \% \cdot x-2=30 \% . x \Rightarrow x=20
$$

Vậy có 20 bạn nữ.

Bài tập 3. Giả sử trường $\mathrm{A}$ có 1000 học sinh và trường $\mathrm{B}$ có 1200 học sinh. Hỏi số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là bao nhiêu phần trăm?

Lời giải.
Số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $1200-1000=200$ (học sinh).
Phần trăm số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $\frac{200}{1000} \cdot 100=20 \%$
Vậy có $20 \%$

Bài tập 4. Thuế thu nhập của TPHCM được đánh ở mức $p \%$ của 28.000.000 đầu tiên của thu nhập hàng năm cộng với $(p+2) \%$ của bất kỳ số tiền nào trên 28.000.000. Nam nhận thấy rằng thuế thu nhập ở TPHCM mà ba bạn phải trả lên tới $(p+0,25) \%$ thu nhập hàng năm của ba. Thu nhập hàng năm của ba Nam ấy là bao nhiêu?

Lời giải.
Gọi $x$ (đồng) là thu nhập hàng năm của ba Nam, $(x>0)$
Thuế thu nhập của TPHCM là $p \% .28000000+(p+2) \%(x-28000000)$
Thuế thu nhập của TPHCM mà ba Nam trả là $(p+0,25) \% . x$
Giải phương trình:
$ p \% .28000000+(p+2) \%(x-28000000)=(p+0,25) \% . x $
$\Leftrightarrow p \% .28000000+x p \%-28000000 p \%+x .2 \%-56000000 \%=x p \%+x .0,25 \% $
$\Leftrightarrow x=32000000$

Bài tập 5. Giá cổ phiếu của công ty $T T C$ là $\$ 100$ vào năm 2021 . Nó đã giảm $25 \%$ vào năm 2022 và sau đó tăng $25 \%$ vào năm 2023 . Giá cổ phiếu cuối năm 2023 là bao nhiêu?

Lời giải.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 100.25 \%=\$ 25$.
$\Rightarrow$ Giá cổ phiếu vào năm 2022 là $\$ 100-\$ 25=\$ 75$.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 75.25 \%=\$ 18,75$.
$\Rightarrow$ Giá cổ phiếu vào năm 2023 là $\$ 75+\$ 18,75=\$ 93,75$.

Bài tập 6. Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng 2,5 chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3 \%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5 \mathrm{~m}$ và tăng chiều rộng $2 \mathrm{~m}$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20 m^2$. Hãy tính các cạnh của mảnh vườn.

Lời giải.
Gọi $x(\mathrm{~m})$ là chiều rộng của mảnh vườn, $(x>0)$.
Vì chiều dài bằng 2,5 chiều rộng nên chiều dài của mảnh vườn là $2,5 x(\mathrm{~m})$.
Gọi $y(\mathrm{~m})$ là chiều rộng của mặt hồ ban đầu.
Gọi $z(\mathrm{~m})$ là chiều dài của mặt hồ ban đầu.
Vì diện tích của mặt hồ chiếm 3\% diện tích mảnh vườn nên diện tích của mặt hồ là
$$
y . z=3 \% .2,5 x^2 \Rightarrow y z=0,075 x^2\left(\mathrm{~m}^2\right)
$$

Nếu giảm chiều dài $5 m$ và tăng chiều rộng $2 m$ thì mặt hồ là hình vuông nên
$$
y+2=z-5 \Rightarrow z=y+7
$$

Diện tích của mặt hồ giảm $20 \mathrm{~m}^2$ nên
$$
y z-(y+2)(z-5)=20 \Rightarrow y \cdot(y+7)-(y+2)^2=20 \Rightarrow y=8 \Rightarrow z=8+7=15
$$

Thay $y=8$ và $z=15$ vào $y z=0,075 x^2$, ta được $8.15=0,075 x^2 \Rightarrow x^2=1600 \Rightarrow x=40$ hoặc $x=-40$.

Vì $x>0$ nên nhận $x=40$.
Vậy chiều rộng của mảnh vườn là $40(\mathrm{~m})$ và chiều dài của mảnh vườn là $100(\mathrm{~m})$

Bài tập 7. Tổng kết học kì 2 , trường trung học cơ sở $\mathrm{N}$ có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1 , số học sinh giỏi của học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 . Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải thích:
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Nhóm 1 và nhóm $4=x$ học sinh
60 học sinh không đạt học sinh giỏi học kì 2.
Nhóm 2 và nhóm $3=60$ học sinh

6 học sinh từng đạt học sinh giỏi học kì 1 trong số học sinh không giỏi ở hk2.
Nhóm $3=6$ họ sinh
$8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 .
Nhóm $4=8 \%$ học sinh toàn trường

Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 .
Nhóm 1 và $4=\frac{40}{37}$ nhóm 1 và 3

Lời giải.
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Số học sinh toàn trường là $x+60$ (học sinh)
Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 nên
$$
x=\frac{40}{37} \text { số học sinh giỏi của học kì } 1 \text {. }
$$

Số học sinh giỏi của học kì 1 là
$$
x-\frac{8}{100}(x+60)+6=\frac{23}{25} x+\frac{6}{5}(\text { học sinh })
$$

Khi đó, $x=\frac{40}{37} \cdot\left(\frac{23}{25} x+\frac{6}{5}\right) \Rightarrow x=240$. Vậy số học sinh giỏi học kì 2 của trường là 240 học sinh.

Sử dụng đánh giá bất đẳng thức để giải hệ phương trình

Một trong các phương pháp khác đặc biệt để giải các hệ phương trình là sử dụng bất đẳng thức, kiểu $A \geq 0$, khi đó $A = 0$ chỉ tại các dấu $=$ xảy ra, hoặc $x \geq y \geq z \geq x$, do đó hệ có nghiệm chỉ khi các dấu $=$ đồng thời xảy ra.

Ta cùng tìm hiểu phương pháp này thông qua một số ví dụ, từ đó rút ra kinh nghiệm giải các hệ phương trình khác.

Ví dụ 1. Giải hệ phương trình

$\left\{\begin{array}{l}
x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}=x^2+y \\\\
y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}}=y^2+x
\end{array}\right.$

Lời giải.

$$
\left\{\begin{array}{l}
x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}=x^2+y(1) \\\\
y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}}=y^2+x(2)
\end{array}\right.
$$
Ta có: $x^2-2 x+9 \geq 8 \Rightarrow \sqrt[3]{x^2-2 x+9} \geq 2 \Rightarrow \frac{2 x y}{\sqrt[3]{x^2-2 x+9}} \leq x y$ Tương tự: $\frac{2 x y}{\sqrt[3]{y^2-2 y+9}} \leq x y$
Do đó: $x+\frac{2 x y}{\sqrt[3]{x^2-2 x+9}}+y+\frac{2 x y}{\sqrt[3]{y^2-2 y+9}} \leq x+y+2 x y \leq x+y+x^2+y^2$
(Dấu “=” xảy ra khi và chỉ khi $x=y$ Từ $(1),(2)$ và $(3)$ suy ra $x=y$ Thay $x=y$ vào (1) ta được:
(4) $\Leftrightarrow \sqrt[3]{x^2-2 x+9}=2 \Leftrightarrow x^2-2 x+9=8 \Leftrightarrow(x-1)^2=0 \Leftrightarrow x=1 \Rightarrow$ $y=1$
Vậy nghiệm của hệ phương trình là $(x, y) \in{(0,0) ;(1,1)}$.

Ví dụ 2. (Hệ hoán vị vòng quanh) Giải hệ phương trình

$$\left\{\begin{array}{l}
x^3+3 x^2+2 x-5=y \\\\
y^3+3 y^2+2 y-5=z \\\\
z^3+3 z^2+2 z-5=x
\end{array}\right.$$

Lời giải. Do vai trò bình đẳng trong hoán vị vòng quanh của $x, y, z$ trong hệ trên, ta có thể giả sử
$$
\begin{aligned}
& x=\max {x ; y ; z} \text {. } \\\\
& \text { Vì } y \leq x \text { nên } x^3+3 x^2+2 x-5 \leq x \\\\
& \Leftrightarrow x^3+3 x^2+x-5 \leq 0 \\\\
& \Leftrightarrow(x-1)\left(x^2+4 x+5\right) \leq 0 \text {. } \\\\
& \text { Vì } x^2+4 x+5=(x+2)^2+1>0 \text { nên } x \leq 1 \text {. } \\\\
& \text { Mà } z \leq x \text { nên } z \leq 1 \text {. } \\\\
& \text { Lập luận ngược lại quá trình trên ta được } \\\\
& (z-1)\left(z^2+4 z+5\right) \leq 0 \\\\
& \Leftrightarrow z^3+3 z^2+2 z-5 \leq z \Leftrightarrow x \leq z \text {. } \\\\
& \text { Do đó } x=z \text {. } \\\\
& \text { Suy ra } x=y=z \text {. } \\\\
& \text { Từ đó ta được phương trình } \\\\
& \quad x^3+3 x^2+2 x-5=x \\\\
& \Leftrightarrow(x-1)\left(x^2+4 x+5\right)=0 \Leftrightarrow x=1 \text {. }
\end{aligned}
$$

Ví dụ 3 (Chuyên Toán PTNK 1997) Tìm tất cả các số dương $x, y, z$ thỏa : $\left\{\begin{array}{l}
\frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3 \\\\
x+y+z \leq 12
\end{array}\right.$

Lời giải.

\begin{aligned}
& \text { Ta có }(x+y+z)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right) \leq 36 \Leftrightarrow \frac{y}{x}+\frac{4 x}{y}+\frac{z}{x}+\frac{9 x}{z}+\frac{4 z}{y}+\frac{9 y}{z}-22 \leq 0 \Leftrightarrow \\\\
& \frac{(y-2 x)^2}{x y}+\frac{(z-3 x)^2}{x z}+\frac{(3 y-2 z)^2}{y z} \leq 0 \Leftrightarrow y=2 x, z=2 x, 3 y=2 z \text { Từ đó ta } \\\\
& \text { có } x=2, y=4, z=6
\end{aligned}

Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l}
3 x^2+2 y+1=2 z(x+2) \\\\
3 y^2+2 z+1=2 x(y+2) \\\\
3 z^2+2 x+1=2 y(z+2)
\end{array}\right.$

Lời giải. Cộng ba phương trình lại ta có:
$3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $

$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $
$\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $
$\Leftrightarrow\left\{\begin{array}{l}
x=1 \\\\
y=1 \\\\
z=1
\end{array}\right.
$
Thử lại thấy $(1,1,1)$ là nghiệm của hệ.

Bài tập rèn luyện

Bài 1. Giải hệ phương trình

$\left\{\begin{array}{l}
x+\dfrac{2 x y}{\sqrt{x^2-2 x+5}}=x^2+y \\\\
y+\dfrac{2 x y}{\sqrt{y^2-2 y+5}}=y^2+x
\end{array}\right.$

Bài 2. Giải hệ phương trình $\left\{\begin{array}{l}
y^{3}-6 x^{2}+12 x-8=0 \\\\
z^{3}-6 y^{2}+12 y-8=0 \\\\
x^{3}-6 z^{2}+12 z-8=0
\end{array}\right.$

Bài 3. Tìm các số không âm $x, y, z$ thỏa
$$
\left\{\begin{aligned}
x y z & =1 \\\\
x^3+y^3+z^3 & =x+y+z
\end{aligned}\right.
$$

Định lý Viete và áp dụng

Định lý 1. (Định lý Viete thuận) Cho phương trình bậc hai $a x^2+b x+c=0$ (a,b, c là các hệ số). Nếu phương trình có nghiệm $x_1, x_2$ thì
$$
S=x_1+x_2=\frac{-b}{a}, \text { và } P=x_1 x_2=\frac{c}{a}
$$
Định lý 2. (Định lý Viete đảo) Nếu có hai số $a, b$ thỏa $a+b=S, a b=P$ thì $a, b$ là nghiệm của phương trình
$$
x^2-S x+P=0
$$

Chú ý: Điều kiện để áp dụng định lý Viete là phương trình bậc hai phải có nghiệm, tức là $\Delta \geq 0$.

Ví dụ 1. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt $x_1, x_2$
(b) Tính giá trị các biểu thức sau theo $m$
$$
A=x_1^2+x_2^2+x_1+x_2
$$
(c) Tìm $m$ để $A=18$.
Lời giải. $a=1, b=-2(m+1), b^{\prime}=-(m+1), c=m$
a) Ta có $\Delta^{\prime}=b^{\prime 2}-a c=(-m-1)^2-1 \cdot m=m^2+m+1$.

$\Delta=m^2+m+1=m^2+2 \cdot m \cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}=$ $\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0$ với mọi $m$. Vậy phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
b) Ta có $A=x_1^2+x_2^2+x_1+x_2$
$=\left(x_1+x_2\right)^2-2 x_1 x_2+x_1+x_2$
$=4(m+1)^2-2 m+2(m+1)$
$=4 m^2+8 m+6$.

c) $A=18 \Leftrightarrow 4 m^2+8 m-12=0 \Leftrightarrow m=$ $1, m=-3$.
Vậy $m$ cần tìm là 1 và -3 .

Ví dụ 2. Tìm $m$ để phương trình $x^2-2(m+1) x+m^2-3=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=$ $m+7$
Lời giải. $a=1, b=-2 m-2, c=m^2-3$.

Ta có $\Delta^{\prime}=b^2-a c=(m+1)^2-\left(m^2-3\right)=2 m+4$. Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta^{\prime}=2 m+4>0 \Leftrightarrow m>-2$.

Theo dịnh lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=$ $m^2-3$

$x_1^2+x_2^2+x_1 x_2=m+7 \Leftrightarrow\left(x_1+x_2\right)^2-x_1 x_2=m+7$ $\Leftrightarrow 4(m+1)^2-\left(m^2-3\right)=m+7 \Leftrightarrow 3 m^2+7 m=0 \Leftrightarrow$ $m=0(n), m=\frac{-7}{3}(l)$.

Vậy giá trị cần tìm của $m$ là $m=0$.

Ví dụ 3. Cho phương trình $x^2-4 m x+3 m^2+1=0$.
a) Tìm $m$ để phương trình có nghiệm.
b) Gọi $x_1, x_2$ là nghiệm của phương trình, tìm hệ thức độc lập $m$ liên hệ giữa $x_1$ và $x_2$.
Lời giải
a) Ta có $\Delta^{\prime}=4 m^2-\left(3 m^2+1\right)=m^2-1$. Phương trình có nghiệm khi và chỉ khi $\Delta^{\prime} \geq 0 \Leftrightarrow m^2-$ $1 \geq 0 \Leftrightarrow m \leq-1$ hoặc $m \geq 1$.
b) Với điều kiện của a) theo định lý Viete ta có $S=x_1+$ $x_2=4 m(1), P=x_1 x_2=3 m^2+1(2)$.
Từ (1), suy ra $m=\frac{1}{4} S$, thế vào (2) ta có $P=3 m^2+1=$ $\frac{3}{16} S^2+1$.
Hay $x_1 x_2=\frac{3}{16}\left(x_1+x_2\right)^2+1$ là hệ thực liên hệ giữa $x_1, x_2$ độc lập với $m$.

Ví dụ 4. Cho phương trình $x^2-2 m x-2 m-3=0$. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$ và tìm giá trị nhỏ nhất của biểu thức $A=x_1^2+x_2^2-$ $x_1 x_2$.
Lời giải

Ta có $\Delta^{\prime}=m^2+2 m+3$.
Vì $m^2+2 m+3=(m+1)^2+2>0 \forall m$ nên $\Delta^{\prime}>0 \forall m$. Vậy phương trình luôn có hai nghiệm phân biệt với mọi $m$.

Theo định lý Viete ta có $x_1+x_2=2 m, x_1 x_2=-2 m-3$. Khi đó $A=\left(x_1+x_2\right)^2-3 x_1 x_2=(2 m)^2-3(-2 m-3)=$ $4 m^2+6 m+9$.

$A=(2 m)^2+2.2 m \cdot \frac{3}{2}+\frac{9}{4}+\frac{27}{4}=\left(2 m+\frac{3}{2}\right)^2+\frac{27}{4} \geq \frac{27}{4}$. Đẳng thức xảy ra khi $m=\frac{-3}{4}$.

Vậy giá trị nhỏ nhất của $A$ là $\frac{27}{4}$ khi $m=\frac{-3}{4}$.

Bài tập rèn luyện

Bài 1. Cho phương trình $x^2-\sqrt{2} x-\sqrt{3}=0$.
(a) Không giải phương trình, chứng minh phương trình có hai nghiệm $x_1, x_2$.
(b) Tính giá trị của $A=x_1^2+x_2^2-3 x_1 x_2 .(A=2+5 \sqrt{3})$
(c) Tính giá trị của biểu thức $B=\frac{1}{x_1^3-4 x_1 x_2+x_2^3}$
Bài 2. Cho phương trình $x^2-2 m x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi $m$
(b) Gọi $x_1, x_2$ là nghiệm của phương trình. Tính $A=$ $x_1^2-3 x_1 x_2+x_2^2$ theo $m$. $\left(A=4 m^2+5\right)$
(c) Tìm $m$ để $A=9 .(m= \pm 1)$
Bài 3. Cho phương trình $x^2-2(m-3) x-2 m+5=0$.
(a) Chứng minh rằng phương trình luôn có nghiệm $x_1, x_2$.
(b) Tìm $m$ để $x_1^2+x_2^2-3 x_1 x_2+x_1+x_2=17$. $\left(m=\frac{3 \pm \sqrt{21}}{2}\right)$

Bài 4. Cho phương trình $x^2-3(m+1) x+9 m^2+2=0$. Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2-3\left(x_1+x_2\right)+1=0$.
(Không có giá trị $m$ nào thỏa mãn)
Bài 5. Cho phương trình $x^2-3 x-4 m=0$
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $\left(m>\frac{-9}{16}\right)$
(b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1+x_2-x_1 x_2=13\left(m=\frac{5}{2}\right)$
(c) Tính giá trị biểu thức $A=x_1^2+x_2^2-4 x_1 x_2$ theo $\mathrm{m}$ và tìm $\mathrm{m}$ để $\mathrm{A}=14$. $\left(A=9+24 m, m=\frac{5}{24}\right)$
Bài 6. Cho phương trình $x^2-2(m-1) x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
(b) Tìm $\mathrm{m}$ để $x_1^2+x_2^2=5\left(m=\frac{2 \pm \sqrt{3}}{2}\right)$
(c) Tìm giá trị nhỏ nhất của biểu thức $x_1^2+x_2^2+x_1 x_2$ (GTNN là 1 khi và chỉ khi $m=1$ )

Bài 7. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$
(b) Tìm m để $x_1^2+x_2^2-3 x_1 x_2-x_1-x_2=7$
$$
\left(m=\frac{-5 \pm \sqrt{41}}{8}\right)
$$
(c) Tìm giá trị nhỏ nhất của biểu thức $B=x_1^2+x_2^2$ $\left(B_{\min }=\frac{7}{4}\right.$ khi và chỉ khi $\left.x=\frac{-3}{4}\right)$
Bài 8. Cho phương trình $x^2-2 m x-m-3=0$.
(a) Tìm $m$ dể phương trình có hai nghiệm $x_1, x_2$ thỏa
$$
\begin{aligned}
& \frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{2}=0 \
& \left(m=\frac{-3}{5}\right)
\end{aligned}
$$

(b) Tìm $m$ để phương trình có nghiệm thỏa $x_1^3-x_2^3=$ $10\left(x_1-x_2\right)$ $\left(m=\frac{-1 \pm \sqrt{113}}{8}\right)$
Bài 9. Cho phương trình $(m-1) x^2-2 x+1=0$.
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $(m \neq 1, m>2)$
(b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=3\left(m=\frac{-1}{3}\right)$
Bài 10. Cho phương trình $x^2+2(m+2) x+2 m=0$.
(a) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2 x_2+x_2^2 x_1+x_1+x_2=4$
(không có giá trị $m$ thỏa mãn)
(b) Tìm giá trị lớn nhất của biểu thức $A=x_1 x_2-x_1^2-$ $x_2^2\left(A_{\max }=\frac{-63}{4}\right.$ khi và chỉ khi $\left.m=\frac{-1}{4}\right)$

Hệ phương trình ba ẩn

Trong các bài trước mình đã làm quen với các hệ phương trình hai ẩn, phương pháp chủ yếu cũng là thế, cộng đại số, đặt ẩn phụ. Trong bài này chúng ta tiếp tục với các hệ phương trình nhiều ẩn hơn, chủ yếu là các hệ phương trình ba ẩn, trong các hệ phương trình này có hai dạng ta quan tâm và xuất hiện nhiều là hệ đối xứng và hệ hoán vị vòng quanh.

Hệ ba ẩn đối xứng

Hệ đối xứng ba biến là hệ có dạng

$\left\{\begin{array}{l}
f(x,y,z)=0 \\\\
g(x,y,z)=0 \\\\
h(x,y,z)=0
\end{array}\right.$

trong đó $f, g, h$ là các biểu thức đối xứng với $x, y, z$ tức là khi ta hoán vị $x, y, z$ thì $f, g, h$ vẫn không đổi.

Các biểu thức đối xứng 3 biến cơ bản nhất là $x+y+z, xy+yz+xz, xyz$.

Từ đó ta xét ví dụ sau

Ví dụ 1. Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=6 (1)\\\\
xy+yz+xz=11 (2)\\\\
xyz=6 (3)
\end{array}\right.$

Lời giải

Từ (1) ta có $y +z = 6-z$, từ (2), $ yz = 11-x(y+z) = 11 – x(6-x) = x^2-6x+11$.

Thế vào (3) ta có $x(x^2-6x+11) = 6$ $\Leftrightarrow x^3 -6x^2+ 11x – 6 = 0$

Giải ra được $x = 1, x = 2, x= 3$.

Với $x = 1$ ta có $y+z = 5, yz = 6$ giải ra được $y = 2, z= 3$ và $y=3, z=2$.

Các trường hợp khác tương tự, hệ phương trình có nghiệm $(1, 2, 3)$ và các hoán vị.

Do đó nếu hệ phương trình ba ẩn đối xứng, có một cách giải là ta tìm được giá trị của các biểu thức đối xứng cơ bản như bài trên.

Ví dụ 2. (PTNK Chuyên toán 2010) Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=3 \\\\
x y+y z+x z=-1 \\\\
x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)
\end{array}\right.$

Lời giải

Ta chỉ cần tính được $xyz$ thì có thể đưa về ví dụ 1.

Từ (1) và (2) ta tính được $x^2+y^2+z^2 = (x+y+z)^2 – 2(xy+yz+xz) = 11$

Suy ra $x^3+y^3+z^3 = 27$

Mà $x^3+y^3+z^3 – 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz) \Rightarrow xyz = -3$

do đó ta có $x+y+z = 3, xy+yz+xz = -1, xyz = -3$ tương tự ví dụ 1, ta giải được nghiệm là $(1,-1,3)$ và các hoán vị.

Ngoài cách trên ta có thể giải như sau

$x^3+y^3+z^3 = (x+y+z)^3 – 3(x+y)(y+z)(x+z)$, khi đó $(x+y)(y+z)(z+x) = 0$, tổng hai số bằng 0, ta suy ra số còn lại bằng 3, tiếp tục ta cũng có kết quả như trên.

Hệ hoán vị vòng quanh

Các hệ phương trình nhiều ẩn thường gặp là hệ hoán vị vòng quanh có dạng sau:

Phương pháp thường dùng là cộng đại số,phân tích thành tích, sử dụng đánh giá bất đẳng thức để chứng minh $x=y=z$.

Ta xét một số ví dụ sau:

Ví dụ 3. Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^2=2 z-z^2(1) \\\\(y-z)^2=2 x-x^2(2)\\\\ (z-x)^2=2 y-y^2(3)\end{array}\right.$

Lời giải Lấy (1) trừ (2) ta có:

$(x-2 y+z)(x-z)=x^2-z^2-2(x-z)=(x-z)(x+z-2) \Leftrightarrow 2(x-z)(y-1)= 0$

$\Leftrightarrow x=z$ hoặc $y=1$
– $y=1$ ta có $(3) \Leftrightarrow(x-z)^2=1 \Leftrightarrow z=x+1, z=x-1$
+ $z=x+1$ giải được $ x=0, z=1$ và $x=1, z=2 $Khi đó ta có nghiệm $(0,1,1),(1,1,2)$
+ $z=x-1 $ giải ra được $x=1, z=0 $ và $ x=2, z=1 $Ta có nghiệm $(1,1,0)$ và $(2,1,1)$
Với $x=z$ từ (3) ta có $ y^2-2 y=0 \Leftrightarrow y=0, y=2$

Với $y=0$ ta có $\left\{\begin{array}{l}x^2=2 z-z^2 \\\\ z^2=2 x-x^2\end{array} \Leftrightarrow \left\{\begin{array}{l}2 z^2=2 z \\\\ x-z\end{array}\right.\right.$.

Giải được nghiệm $(0,0,0)$ và $(1,0,1)$.

+Với $y=2$, giải ra được nghiệm $(1,2,1)$ và $(2,2,2)$. Vậy hệ phương trình có 8 nghiệm.

Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l}
3 x^2+2 y+1=2 z(x+2) \\\\
3 y^2+2 z+1=2 x(y+2) \\\\
3 z^2+2 x+1=2 y(z+2)
\end{array}\right.$

Lời giải Cộng ba phương trình lại ta có:
$3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $

$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $
$\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $
$\Leftrightarrow\left\{\begin{array}{l}
x=1 \\\\
y=1 \\\\
z=1
\end{array}\right.
$
Thử lại thấy $(1,1,1)$ là nghiệm của hệ.

Ví dụ 5. Giải hệ phương trình $\left\{\begin{array}{l}
2 x=y^2-z^2 \\\\
2 y=z^2-x^2 \\\\
2 z=x^2-y^2
\end{array}\right.$

Lời giải

Lấy (1) $+(2)$ ta có $(x+y)(x-y+2)=0 \Leftrightarrow x+y=0$ hoặc $x=2-y$.
Với $x+y=0$, từ (3) ta có $z=0$, từ (1) ta có $x=0$ hoặc $x=2$. Ta có nghiệm $(x, y, z)$ là $(0,0,0)$ và $(2,-2,0)$.
Với $x=y-2$, từ (3) ta có $2 z=(y-2)^2-y^2=4-4 y \Leftrightarrow z=2-2 y$. Thế vào (1) ta có: $2(y-2)=y^2-(2-2 y)^2 \Leftrightarrow y^2-2 y=0 \Leftrightarrow y=0, y=2$. Từ đó ta có nghiệm $(-2,0,2)$ và $(2,-2,0)$. Vậy hệ có 4 nghiệm.

Hệ nhiều ẩn không mẫu mực

Một số hệ không mẫu mực thì không có cách giải chung, do đó ta phải để đặc điểm của các hệ phương trình này để có cách giải phù hợp, chủ yếu cũng là giảm được ẩn, phân tích nhân tử, . ..

Ví dụ 6. Giải hệ phương trình sau: $\left\{\begin{array}{l}
(x-2 y)(x-4 z)=55 \\\\
(y-2 z)(y-4 x)=-39 \\\\
(z-2 x)(z-4 y)=-16
\end{array}\right.$

Lời giải

$\left\{\begin{array}{l}(x-2 y)(x-4 z)=55 \\\\ (y-2 z)(y-4 x)=-39 \\\\ (z-2 x)(z-4 y)=-16\end{array} \Leftrightarrow\left\{\begin{array}{l}x^2-2 x y-4 x z+8 y z=55(1) \\\\ y^2-2 y z-4 x y+8 x z=-39(2) \\\\ z^2-2 x z-4 y z+8 x y=-16(3)\end{array}\right.\right.$

Cộng (1),(2),(3) ta có $(x+y+z)^2=0 \Leftrightarrow x+y+z=0 \Leftrightarrow z=-x-y$
Thế vào (1),(2) ta có $\left\{\begin{array}{l}(x-2 y)(5 x+4 y)=55 \\\\ (3 y+2 x)(y-4 x)=-39\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}5 x^2-6 x y-8 y^2=55 \\\\ 3 y^2-10 x y-8 x^2=-39\end{array}\right.$
Nhận thấy $y=0$ không thỏa hpt:
Đặt $x=k y$, ta có hệ

$\left\{\begin{array}{l}
y^2\left(5 k^2-6 k-8\right)=55 \\\\
y^2\left(-8 k^2-10 k+3\right)=-39
\end{array}\right. $
$\Rightarrow-39\left(5 k^2-6 k-8\right)=55\left(-8 k^2-10 k+3\right) $
$\Leftrightarrow 245 k^2+784 k+147=0$
$ \Leftrightarrow\left[\begin{array}{l}
k=-3 \\\\
k=\frac{-1}{5}
\end{array}\right.
$
Với $k=-3$, ta có $y=1$, hoặc $y=-1$. Từ đó ta có nghiệm là $(-3,1,2),(3,-1,-2)$
Với $k=-\frac{1}{5}$ (vô nghiệm)

Chìa khóa trong lời giải này chính là đặc điểm của các hệ số tự do bên phải của các phương trình.

Qua một số ví dụ , hi vọng các em rút ra kinh nghiệm trong việc giải một số hệ phương trình nhiều ẩn, cùng rèn luyện các bài toán sau nhé.

Bài tập rèn luyện

Bài 1. Giải các hệ phương trình sau

1)$\begin{cases} x^2(y+z)^2=(3x^2+x+1)y^2z^2&\\\\y^2(z+x)^2=(4y^2+y+1)z^2x^2&\\\\z^2(x+y)^2=(5z^2+z+1)=x^2y^2 \end{cases}$ 2)$\left\{ \begin{array}{l}xy = x + 3y\\\\yz = 2\left( {y + z} \right)\\\\xz = 3\left( {3z + 2x} \right)\end{array} \right.$ 3) $\left\{ \begin{array}{l}
{\left( {x + y + z} \right)^3} = 12t\\\\
{\left( {y + z + t} \right)^3} = 12x\\\\
{\left( {z + t + z} \right)^3} = 12y\\\\
{\left( {t + x + y} \right)^3} = 12z
\end{array} \right.$

Bài 2. Giải hệ phương trình sau:

1)$\left\{\begin{array}{l}
x^{3}+x^{2}+x-2=y \\\\
y^{3}+y^{2}+y-2=z \\\\
z^{3}+z^{2}+z-2=x
\end{array}\right.$
2) $\left\{\begin{array}{l}
y^{3}-6 x^{2}+12 x-8=0 \\\\
z^{3}-6 y^{2}+12 y-8=0 \\\\
x^{3}-6 z^{2}+12 z-8=0
\end{array}\right.$
Bài 3. Giải hệ phương trình $\begin{cases}ab+c+d=3&\\\\bc+d+a=5&\\\\cd+a+b=2&\\\\da+b+c=6 \end{cases}$

Bài 4.

Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\\\
x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\
…&\\\\
x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1
\end{cases}$

Hệ phương trình chứa tham số

Hệ phương trình và các phương pháp giải của nó chúng ta đã nghiên cứu trong các bài giảng trước, bài viết này ta tiếp tục với các hệ phương trình nhưng chứa thêm tham số, việc giải các hệ phương trình chứa tham số căn bản cũng dựa trên các phương pháp đã biết, tuy vậy ta phải xét nhiều trường hợp hơn đòi hỏi suy luận tốt và sự cẩn thận nhất định của học sinh.

Ví dụ 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$
(a) Giải hệ với $m=7$
(b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$

Lời giải
a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$
ĐKXĐ: $x \geq 2, y \geq 1$
Đặt $ a=\sqrt{x-2}, b = \sqrt{y-1}$ ta có $a, b \geq 1$ và $a+b = 2, a^2+b^2 = 4$.

Từ đó ta có $b = 2-a, a^2+(2-a)^2 = 4$, giải ra được $a= 2, b=0$ và $a=0, b=2$.

Với $a = 2,b=0$ ta có $x=6, y=1$

Với $a=0,b=2$ ta có $x=2, y = 5$.

Vậy hệ phương trình có hai nghiệm $(2 ; 5),(6 ; 1)$

b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$
Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\\\ u^2+v^2=m-3\end{array}\right.$ $\Rightarrow 2 u^2-4 u+7-m=0 \quad(2)$
Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:
$$
\left\{\begin{array} { l }
{ \Delta ^ { \prime } \geq 0 } \\\\
{ S > 0 } \\\\
{ P \geq 0 } \\\\
{ ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\\\
{ S \leq 4 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
m \geq 5 \\\\
m \leq 7
\end{array}\right.\right.
$$
Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$

Ví dụ 2. Giải và biện luận hệ phương trình sau: $\left\{\begin{array}{l}\frac{x y z}{x+y}=m \\\\ \frac{x y z}{y+z}=1 \ \frac{x y z}{z+x}=2\end{array}\right.$

Lời giải

Lời giải. Đặt $a=x y, b=y z, c=x z$ ta tính được: $\frac{1}{a}=\frac{3 m-2}{4 m}, \frac{1}{b}=\frac{m+2}{4 m}, \frac{1}{c}=\frac{2-m}{4 m}$.
Khi đó $\frac{1}{(x y z)^2}=\frac{1}{a b c}=\frac{(3 m-2)(m+2)(2-m)}{64 m^3}=P$.
Nếu $P \leq 0 \Leftrightarrow m \leq-2,0 \leq m \leq \frac{2}{3}$ hoặc $m \geq 2$ thì hệ vô nghiệm.
Ta có $P>0 \Leftrightarrow-2<m<0$ hoặc $\frac{2}{3}<m<2$.
Khi đó $(x y z)^2=\frac{64 m^3}{(3 m-2)(m+2)(2-m)}=\frac{1}{P}$. Suy ra $x y z= \pm \sqrt{\frac{1}{P}}$.

  • Nếu $x y z=\sqrt{\frac{1}{P}}$ thì $x=\frac{2-m}{4 m} \sqrt{\frac{1}{P}}$,
    $$
    y=\frac{m+2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{3 m-2}{4 m} \sqrt{\frac{1}{P}} \text {. }
    $$
  • Nếu $x y z=-\sqrt{\frac{1}{P}}$ thì $x=\frac{m-2}{4 m} \sqrt{\frac{1}{P}}$,
    $$
    y=\frac{-m-2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{2-3 m}{4 m} \sqrt{\frac{1}{P}} \text {. }
    $$

Ví dụ 3. Cho hệ phương trình $\left\{\begin{array}{l}(x-2 y)(x+m y)=m^2-2 m-3 \\\\ (y-2 x)(y+m x)=m^2-2 m-3\end{array}\right.$

a) Giải hệ phương trình khi $m=-3$

b) Tìm $m$ để hệ có ít nhất một nghiệm $\left(x_\circ, y_\circ \right)$ thỏa $x_\circ>0, y_\circ>0$.

Lời giải
a) Khi $m=-3$ ta có hệ:
$$
\left\{\begin{array} { l }
{ ( x – 2 y ) ( x – 3 y ) = 1 2 } \\\\
{ ( y – 2 x ) ( y – 3 x ) = 1 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^2-5 x y+6 y^2=12(1) \\\\
y^2-5 x y+6 x^2=12(2)
\end{array}\right.\right.
$$
Lấy (1) – (2) ta có $5\left(y^2-x^2\right)=0 \Leftrightarrow x=y, x=-y$.
Với $x=y$ thế vào (1) ta có $x^2=6 \Leftrightarrow x=\sqrt{6}, y=\sqrt{6}$ hoặc $x=-\sqrt{6}, y=$ $-\sqrt{6}$
Với $x=-y$ thế vào (1) ta có $x^2=1 \Leftrightarrow x=1, x=-1$. Với $x=1, y=-1$, với $x=-1, y=1$.
Vậy hệ phương trình có 4 nghiệm.
b) Hệ có thể viết lại $\left\{\begin{array}{l}x^2+(m-2) x y-2 m y^2=m^2-2 m-3(1) \\\\y^2+(m-2) x y-2 m x^2=m^2-2 m-3(2)\end{array}\right.$
Lấy (1) – (2) ta có $(2 m+1)\left(y^2-x^2\right)=0$.
Xét $m=\frac{-1}{2}$ ta có hệ trở thành: $x^2-\frac{5}{2} x y+y^2+\frac{7}{4}=0$, có nghiệm $\left(\frac{5+\sqrt{2}}{2}, 2\right)$ thỏa đề bài.
Xét $m \neq \frac{-1}{2}$ ta có $x=y$ hoặc $x=-y$. Trường hợp $x=-y$ không thỏa đề bài.
Trường hợp $x=y$, thế vào (1) ta có:
$$
-(m+1) x^2=m^2-2 m-3=(m+1)(m-3)
$$
Nếu $m=-1$ ta có $(x-2 y)(x-y)=0,(y-2 x)(y-x)=0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$.
Nếu $m \neq-1$ ta có $x^2=3-m$ để có nghiệm $x_o=y_o>0$ thì $m<3$. Khi đó phương trình có nghiệm $x_0=\sqrt{3-m}, y_o=\sqrt{3-m}$ thỏa đề bài.
Kết luận $m=\frac{-1}{2}, m=-1$ và $m<3$.

Ví dụ 4. Cho hệ phương trình với $k$ là tham số:
$$\left\{\begin{array}{l}
\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\\\
\frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\\\
\frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k
\end{array}\right.
$$
(a) Giải hệ với $k=1$.
(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

Lời giải

Điều kiện xác định là: $x, y, z$ cùng dương hoặc cùng âm.
Đặt $a=\sqrt{\frac{x}{y}}, b=\sqrt{\frac{y}{z}}, c=\sqrt{\frac{z}{x}}$ thì $a, b, c>0$ và $a b c=1$.
Ta có: $\frac{a}{c}=\frac{|x|}{\sqrt{y z}}, \frac{b}{a}=\frac{|y|}{\sqrt{z x}}, \frac{c}{b}=\frac{|z|}{\sqrt{x y}}$.
a) Khi $k=1$, nếu $x, y, z>0$ thì $\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=1$.
Cộng lại suy ra $\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(\frac{c}{c}+\frac{b}{a}+\frac{c}{b}\right)=3$
Theo bất đẳng thức Cô-si thì rõ ràng $a+\frac{1}{a} \geq 2, b+\frac{1}{b} \geq 2, c+\frac{1}{c} \geq 2$ nên đẳng thức trên không thể xảy ra.
Xét trường hợp $x, y, z$ cùng âm thì
$$
-\frac{a}{c}+a+\frac{1}{c}=-\frac{b}{a}+b+\frac{1}{a}=-\frac{c}{a}+c+\frac{1}{b}=1
$$
Trừ vào các vế và phân tích, ta suy ra:
$$
\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=0
$$
Từ đây dễ dàng suy ra ít nhất 2 trong $a, b, c$ phải là 1 mà $a b c=1$ nên $a=b=c=1$. Vì thế nên thay vào ta có $x=y=z<0$. Và mọi bộ số như thế đều thỏa mãn hệ.

b) Với $k \geq 2$, giả sử hệ có nghiệm $(x, y, z)$. Nếu như $x, y, z<0$ thì ta có $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=k-1>0$.
Từ đó suy ra $a-1, b-1, c-1$ dều cùng dấu, kéo theo $a, b, c>1$ hoặc $a, b, c<1$ Tuy nhiên $a b c=1$ nên điều này không thể xảy ra. Do đó, ta phải có $a, b, c>0$ nên đưa về
$$
\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=k
$$
Trong các số $a, b, c$ giả sử $a=\max {a, b, c}$ thì $k=\frac{a}{c}+a+\frac{1}{c} \geq$ $\frac{a}{c}+2 \sqrt{\frac{a}{c}} \geq 1+2=3$ nên ta cần có $k \geq 3$. Vì $k \neq 3$ nên $k>3$.
Vì $a=\max {a, b, c} \geq 1$ nên ta có $2 b+1 \geq \frac{b}{a}+b+\frac{1}{a}=k>3$ kéo theo $b>1$. Tương tự từ $2 c+1>\frac{c}{b}+c+\frac{1}{b}=k>3$ nên $c>1$. Từ đây suy ra $a, b, c>1$ trong khi $a b c=1$, vô lý.
Vậy hệ luôn vô nghiệm với $k \geq 2$ và $k \neq 3$.

Bài tập rèn luyện

Bài 1. Cho hê phương trình $\left\{\begin{array}{l}x+y=m-2 \\\\x^2+y^2+2 x+2 y=-m^2+4\end{array}\right.$ (trong đó $m$ là tham số $x$ và y là ẩn)
a) Tìm $m$ để hệ phương trình trên có nghiệm.
b) Tìm giá trị lớn nhất, nhỏ nhất của biểu thúc $A=x y+2(x+y)+2011$.

Bài 2. Cho hệ phương trình $\left\{\begin{array}{c}x^2+y^2+x y=m^2-2 m+4 \\\\ x^2+y^2-3 x y=5 m^2-10 m+4\end{array} \quad\right.$ (m là tham số)
a) Giải hệ phương trình khi $m=-1$.
b) Chứng minh rằng hệ phương trình luôn có nghiệm với mọi giá trị của $m$. Tìm $m$ để phương trình có nghiệm $(x ; y)$ thỏa $y>x>0$ và $5 x^2-2 x y+y^2$ đạt giá trị nhỏ nhất.

Bài 3. Tìm $a$ để hệ phương trình
$\left\{\begin{array}{c}
& \frac{a x+y}{y+1}+\frac{a y+x}{x+1}=a \\\\
& a x^2+a y^2=(a-2) x y-x
\end{array} \quad\right.$
có nghiệm duy nhất.

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$