Category Archives: Đề thi

Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2

Thời gian làm bài 150 phút.

Bài 1. (2,0 diểm)
a) Tìm $m$ để phương trình $\frac{x^{2}-(3 m+1) x+2 m^{2}+2 m}{x}=0$ có hai nghiệm $x_{1}, x_{2}$ phân biệt thỏa $\left(\sqrt{x_{1}-m}+\sqrt{x_{2}-m}\right)^{4}=(2 m-1)^{2}$
b) Giải hệ phương trình $\left\{\begin{array}{l}\sqrt{x^{2}-y}=z-1 \\ \sqrt{y^{2}-z}=x-1 \\ \sqrt{z^{2}-x}=y-1\end{array}\right.$
Bài 2. (1,5 diểm) Cho các số $x, y, z$ nguyên dương thỏa $x>y>z$.
a) Cho $(x ; y ; z)$ thỏa $y z+x(x+y+z)=2021$.
Tìm giá trị nhỏ nhất của biểu thức $A=(x-y)^{2}+(x-z)^{2}+(y-z)^{2}$
b) Chứng minh rằng nếu $y$ không nhỏ hơn trung bình cộng của $x$ và $z$ thì
$$
(x+y+z)(x y+y z+x z-2) \geq 9 x y z
$$
Bài 3. (2,0 diềm) Cho $x, y$ là các số nguyên không đồng thời bằng 0 sao cho $x^{3}+y$ và $x+y^{3}$ chia hết cho $x^{2}+y^{2}$.
a) Tìm $x, y$ nếu $x y=0$.
b) Chứng minh rằng $x y \neq 0$ thì $x, y$ là nguyên tố cùng nhau.
c) Tìm tất cả cặp số nguyên $(x, y)$ thỏa đề bài.
Bài 4. (3,0 diểm) Cho tam giác $A B C$ nhọn, có trực tâm $H ; A H$ cắt $B C$ tại $D$. Trên tia đối tia $D H$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $M B H$ cắt $A B$ tại $E$ cắt $B C$ tại $K$; đường tròn ngoại tiếp tam giác $M C H$ cắt $A C$ tại $F$ và $B C$ tại $L$.
a) Chứng minh $B E F C$ nội tiếp và $\angle E M A=\angle F M A$.
b) $M E$ cắt $C H$ tại $P, M F$ cắt $B H$ tại $Q$. Chứng minh $P Q$ vuông góc $O A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $A B C$.
c) $H K$ cắt $A C$ tại $U, H L$ cắt $A B$ tại $V$. Chứng minh $U V$ luôn song song với một đường thẳng cố định khi $M$ thay đổi.

Bài 5. (1,5 diểm) Trong một hội nghị Toán quốc tế có n người, mỗi người trong họ có thể nói được nhiều nhất 3 ngôn ngữ. Trong 3 người bất kì thì luôn có 2 người có thể nói chung một ngôn ngữ.
a) Cho $n \geq 9$, chứng minh răng cố một ngôn ngữ được nói bởi ít nhất 3 người.
b) Nếu $n=8$, diều kết luận của câu a) còn đúng không? Tại sao?

Đáp án có sau một tuần

 

Đề thi chuyên toán vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình bậc hai $x^{2}-(m+3) x+m^{2}=0$ trong đó $m$ là tham số sao cho phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$.
(a) Khi $m=1$. Chứng minh rằng ta có hệ thức $\sqrt[8]{x_{1}}+\sqrt[8]{x_{2}}=\sqrt{2+\sqrt{2+\sqrt{6}}}$
(b) Tìm tất cả các giá trị của $m$ sao cho $\sqrt{x_{1}}+\sqrt{x_{2}}=\sqrt{5}$
(c) Xét đa thức $P(x)=x^{3}+a x^{2}+b x$. Tìm tất cả các cặp số $(a, b)$ sao cho ta có hệ thức $P\left(x_{1}\right)=P\left(x_{2}\right)$ với mọi giá trị của tham số $m$.
Bài 2. (a) Cho $a, b$ là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức
$$
P=\frac{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}{1+a b}
$$
(b) Cho các số $x, y, z$ thỏa $|x| \leq 1,|y| \leq 1,|z| \leq 1$. Chứng minh rằng:
$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+\sqrt{1-z^{2}} \leq \sqrt{9-(x+y+z)^{2}}
$$
Bài 3. Cho tam giác $A B C$ nhọn có $A B=b, A C=c . M$ là một điểm thay đổi trên cạnh $A B$. Đường tròn ngoại tiếp tam giác $B C M$ cắt $A C$ tại $N$.
(a) Chứng minh rằng tam giác $A M N$ đồng dạng với tam giác $A C B$. Tính tỉ số $\frac{M A}{M B}$ để diện tích tam giác $A M N$ bằng $\frac{1}{2}$ diện tích tam giác $A C B$.
(b) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A M N$. Chứng minh rằng $I$ luôn thuộc một đường cố định.
(c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $M B C$. Chứng minh rằng đoạn thẳng $I J$ có độ dài không đổi.
Bài 4. Cho các số nguyên $a, b, c$ sao cho $2 a+b, 2 b+c, 2 c+a$ đều là các số chính phương.
(a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho $3 .$ Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27 .
(b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện $\left(^{*}\right)$ mà $(a-b)(b-c)(c-a)$ không chia hết cho 27 ?
Bài 5. Cho hình chữ nhật $A B C D$ có $A B=3, A D=4$.
(a) Chứng minh rằng từ 7 điểm bất kì trong hình chữ nhật $A B C D$ luôn tìm được hai điểm mà khoảng cách giữa chúng không lớn hơn $\sqrt{5}$
(b) Chứng minh khẳng định ở câu $\mathrm{a}$ ) vẫn còn đúng với 6 điểm bất kì nằm trong hình chữ nhật $A B C D$.

Đáp án

 

Đề thi chọn học sinh giỏi quốc gia 2021 – 2022

Ngày 1 (04/3/2022)

Bài 1 (5,0 điểm)

Cho $a$ là một số thực không âm và dãy số $(u_{n})$ được xác định bởi

$u_{1}=6, u_{n+1}=\dfrac{2n+a}{n} + \sqrt{\dfrac{n+a}{n} u_{n} + 4},  \,\, \forall n \geq 1.$

a) Với $a=0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn và tìm giới hạn đó.

b) Với mọi $a\geq 0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)

Tìm tất cả các hàm số $f: \left( 0; + \infty \right) \rightarrow \left( 0; + \infty \right)$ thỏa mãn

$f\left( \dfrac{f(x)}{x} + y \right) = 1+f(y), \,\, \forall x,y \in \left( 0; + \infty \right).$

Bài 3 (5,0 điểm)

Cho tam giác nhọn $ABC$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $BA, CA$ sao cho $BF = CE \,\, (E \ne B, F\ne C)$. Gọi $M, N$ tương ứng là trung điểm của $BE, CF$ và $D$ là giao điểm của $BF$ với $CE$.

a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $DBE, DCF$. Chứng minh rằng $MN$ song song với $IJ$.

b) Gọi $K$ là trung điểm của $MN$ và $H$ là trực tâm của tam giác $AEF$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)

Với mỗi cặp số nguyên dương $(n, m)$ thỏa mãn $n < m$, gọi $s(n,m)$ là số các số nguyên dương thuộc đoạn $[n;m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thỏa mãn đồng thời hai điều kiện sau:

i) $\dfrac{s(n,m)}{m-n} \geq \dfrac{s(1,m)}{m}$ với mọi $n = 1,2,…,m-1$;

ii) $2022^{m} + 1$ chia hết cho $m^{2}$.

 

Ngày 2 (05/3/2022)

Bài 5 (6,0 điểm)

Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022) = Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \ne 0 \, (p,q \in \mathbb{Z}$; $p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $| p | + n | q | \leq Q(n) – P(n)$ với mọi $n = 1, 2, …, 2021$.

Bài 6 (7,0 điểm)

Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_{i} \, (1\leq x_{i} \leq 6)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i \, (i=1,2,3,4).$

a) Tính số các bộ $(x_{1}, x_{2}, x_{3}, x_{4})$ có thể có.

b) Tính xác suất để có một số trong $x_{1}, x_{2}, x_{3}, x_{4}$ bằng tổng của ba số còn lại.

c) Tính xác suất để có thể chia $x_{1}, x_{2}, x_{3}, x_{4}$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)

Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ($B C$ không đi qua tâm $O$) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_{a}$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, \,L$ là giao điểm của $I_{a} D$ với $O I$ và $E$ là điềm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_{a} B C$ lấy điểm $M$ sao cho $I_{a} M$ song song với $A D,\, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.

Đáp án đề thi chọn đội dự tuyển trường PTNK năm 2020

Thời gian làm bài 120 phút

Đề bài.

Bài 1. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a^{4}+b^{4}+2}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}$, với $a, b \in \mathbb{R}$.
Bài 2. Tìm tất cả các hàm $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$thỏa mãn
$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y), \text { với mọi } x, y \in \mathbb{Q}^{+} .
$$
Bài 3. Cho $x_{1}, x_{2}, x_{3}, \ldots$ là dãy số nguyên thỏa mãn đồng thời hai điều kiện $1=$ $x_{1}<x_{2}<x_{3} \ldots$ và $x_{n+1} \leq 2 n$ với $n=1,2,3 \ldots$ Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Cho tam giác $A B C$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $A B$ sao cho $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$. Đường tròn tâm $M$ bán kính $M B$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $A D$ cắt $A C$ tại $N$. Chứng minh rằng $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.

Đáp án

Bài 1. Với mọi $x \in \mathbb{R}$, ta có
$$
x^{4}+1-\frac{2}{9}\left(x^{2}-x+1\right)^{2}=\frac{1}{9}(x+1)^{2}\left(7 x^{2}-10 x+7\right) \geq 0 .
$$
Vì thế nên ta có
$$
P \geq \frac{2}{9} \frac{\left(a^{2}-a+1\right)^{2}+\left(b^{2}-b+1\right)^{2}}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}=\frac{2}{9}\left(\frac{a^{2}-a+1}{b^{2}-b+1}+\frac{b^{2}-b+1}{a^{2}-a+1}\right) \geq \frac{4}{9} .
$$
Suy ra giá trị nhỏ nhất của $P$ là $\frac{4}{9}$, đạt được khi $a=b=-1$.

Bài 2. Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán. Đặt $f(1)=a>$ 0 , trong phương trình đề cho, thay $x=y=1$ ta có $f\left(a^{2}\right)=a^{3}$.
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^{2}, y$ bởi 1 và $x$ bởi $1, y$ bởi $c^{2}$ vào phương trình ấy, ta thu được
$$
a^{7}=f\left(a^{6}\right)=a^{5} .
$$
Chú $\hat{y} a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi 1 vào phương trình đề cho, ta có
$$
f\left(f(y)^{2}\right)=f(y) \text {, với mọi } y \in \mathbb{Q}^{+} \text {. }
$$
Lại thay $y$ bởi 1 vào phương trình đề cho, ta có
$$
f(x)^{2}=f\left(x^{2}\right), \text { với mọi } x \in \mathbb{Q}^{+} .
$$
Suy ra
$$
f(x)=f\left(f(x)^{2}\right)=f(f(x))^{2}=\ldots=f^{n+1}(x)^{2^{n}}, \text { với mọi } x \in \mathbb{Q}^{+},
$$
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q}^{+}$sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_{p}(f(q)) \neq 0$ thì ta có
$$
v_{p}(f(q))=v_{p}\left(f^{n+1}(q)^{2^{n}}\right)=2^{n} v_{p}\left(f^{n+1}(q)\right) \neq 0 .
$$
Trong đẳng thức trên, cho $n \rightarrow+\infty$ ta thấy điều vô lý. Suy ra $v_{p}(f(q))=0$ với mọi $q \in \mathbb{Q}^{+}, p \in \mathbb{P}$, hay $f(x) \equiv 1$.
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.

Bài 3. Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_{1}, x_{2}, \ldots, x_{k+1}$. Ta có $x_{1}=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_{q} \leq k$ thì ta có $q<k+1$ và
$$
1 \leq x_{1}<x_{1}<\cdots<x_{q} \leq k<x_{q+1}<\cdots<x_{k+1}<2 k \text {. }
$$
Nếu tồn tại $1 \leq j<i \leq k+1$ sao cho $x_{i}-x_{j}=k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số
$$
x_{1}+k, x_{2}+k, \ldots, x_{q}+k, x_{q+1}, \ldots, x_{k+1}
$$
là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2 k$, vô lí!

Từ đó suy ra với mọi $k$ nguyên dương, luôn tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Ta có $O B=O D, M B=M D$ nên dễ thấy $O M$ là phân giác ngoài của góc $A M D$, mà $O A=O D$ nên suy ra $O \in(A M D)$.

Gọi $N^{\prime}$ là giao điểm khác $A$ của $(A M D)$ và $A C$. Ta chứng minh $N$ trùng $N^{\prime}$. Thật vậy, ta có $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$ nên $\angle A M O$ tù, do đó nếu $N^{\prime}$ nằm ngoài tia $A C$ thì $N^{\prime}$ nằm khác phía $O$ so với $A M$ nên
$$
\angle A M O=\angle A N^{\prime} O=\angle C A O-\angle A O N^{\prime}<\angle C A O<90^{\circ},
$$
vô lý. Suy ra $N^{\prime}$ nằm trên tia $A C$, kéo theo $A O$ là phân giác trong góc $M A N^{\prime}$ nên $O M=O N^{\prime}$, mà $O A=O D$ nên $M N^{\prime}$ song song $A D$, suy ra $N$ trùng $N^{\prime}$.

Từ đó, dễ thấy $A M N D$ là hình thang cân nên $A N=M D=M B$, hơn nữa $N$ nằm trên tia $A C$ nên ta thu được
$$
\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}
$$
Ta có điều cần chứng minh.

Tài liệu tham khảo

[1] Nguyễn Tăng Vũ, Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển và đội tuyển PTNK 2008-2021

Đáp án đề thi chọn đội dự tuyển PTNK năm 2021

Thời gian làm bài 120 phút

Đề thi

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$.

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Đáp án.

Bài 1. Ta có
$$
P-\frac{7}{2}=\frac{7}{2}(a-1)+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}
$$
Theo bất đẳng thức AM-GM, ta có
$$
a^{2} b^{2} c^{2} \leq a b^{2} c^{2} \leq a\left(\frac{b^{2}+c^{2}}{2}\right)^{2}=\frac{a\left(1-a^{2}\right)^{2}}{4} \leq \frac{a\left(1-a^{2}\right)}{4}=(1-a) \frac{a+a^{2}}{4} .
$$
Do đó, suy ra
$$
P-\frac{7}{2} \leq(1-a)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\frac{a+a^{2}}{4}-\frac{7}{2}\right)
$$
Vì $\sqrt{a}+\sqrt{b}+\sqrt{c}+\frac{a+a^{2}}{4} \leq 1+1+1+\frac{1+1^{2}}{4}=\frac{7}{2}$ và dấu bằng không xảy ra nên biểu thức trong dấu ngoặc thứ hai luôn âm. Vì thế nền ta có $P \leq \frac{7}{2}$.
Giá trị lớn nhất cần tìm là $\frac{7}{2}$, đạt được khi $(a, b, c)=(1,0,0)$.

Bài 2.  Đặt $a=f(0)$, ta thay $y=0$ vào đề bài, ta đưa về $f(x-a)-4 f(x)=3 x+a$, kéo theo $f(u)-4 f(v)$ toàn ánh với $u, v \in \mathbb{R}$. Ta thực hiện các phép thế sau
– Thay $x=f(y)$, ta có $f(0)=4 f(f(y))+4 f(y)$ với mọi $y$.
– Thay $x=2 f(y)$, ta có $f(f(y))=4 f(2 f(y))+7 f(y)$ với mọi $y$.
– Thay $x=3 f(y)$, ta có $f(2 f(y))=4 f(3 f(y))+10 f(y)$ với mọi $y$.
– Thay $x=4 f(y)$, ta có $f(3 f(y))=4 f(4 f(y))+13 f(y)$ với mọi $y$.

Từ đó suy ra
$$
\begin{aligned}
&4 f(4 f(y))=f(3 f(y))-13 f(y) \
&=\frac{1}{4}(f(2 f(y))-10 f(y))-13 f(y) \
&=\frac{1}{4}\left(\frac{1}{4}(f(f(y))-7 f(y))-10 f(y)\right)-13 f(y) \
&=\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{4}(a-4 f(y))-7 f(y)\right)-10 f(y)\right)-13 f(y) \
&=\frac{a}{64}-16 f(y)
\end{aligned}
$$
Thay $x=4 f(x)$, ta có
$$
f(4 f(x)-f(y))=4 f(4 f(x))+12 f(x)+f(y)
$$
hay
$$
f(4 f(x)-f(y))=\frac{a}{64}-4 f(x)+f(y)
$$
với mọi $x, y \in \mathbb{R}$. Đặt $t=4 f(x)-f(y)$ thì $t$ nhận giá trị trên $\mathbb{R}$, ta có $f(t)=-t+\frac{a}{64}$ với mọi $t \in \mathbb{R}$. Thay $t=0$, ta có $a=0$ nên $f(t)=-t$. Thử lại thấy thỏa. Vậy tất cả hàm số cần tìm là $f(x)=-x, \forall x \in \mathbb{R}$.

Bài 3. Trước hết, với mỗi số nguyên dương $n$, ta ký hiệu $T(n)$ là ước dương lớn nhất không chia hết cho 5 của $n$. Ta chia tất cả các số nhỏ hơn $30 n$, nguyên tố cùng nhau với 6 ra thành các nhóm sao cho $m, n$ thuộc cùng nhóm khi và chỉ khi $T(m)=T(n) .$ Do
$$
\phi(30)=(2-1)(3-1)(5-1)=8
$$
nên từ 1 đến $30 n$ có tổng cộng $8 n$ số nguyên tố cùng nhau với 30 , suy ra có tổng cộng $8 n$ nhóm.

Do $|A|=8 n+1$ nên theo nguyên lý Dirichlet trong $A$ sẽ có 2 số thuộc cùng một nhóm, và số lớn sẽ chia hết cho số nhỏ.

Bài 4. (a) Ta thấy hai tam giác vuông $A M H, O A H$ dồng dạng và có các cạnh tương ứng vuông góc nên hai trung tuyến tương ứng của hai tam giác này sẽ vuông góc với nhau. Gọi $K$ là trung điểm $A H$ thì ta sẽ có $A D \perp O K$. Giả sử đường thẳng qua $H$, vuông góc với $A D$ cắt $O A$ ở $N$ thì ta có $O K | H N$, suy ra $O$ là trung điểm của $A N$ hay $N$ là điểm đối xúng với $A$ qua $O$, là điểm cố định.

(b) Ta có
$$
O A^{2}=O N^{2}=O H \cdot O M
$$
nên $O N$ tiếp xúc với đường tròn $(H M N)$. Gọi $I$ là tâm của $(H M N)$ thì $I N \perp O A$ nên $I$ luôn thuộc một đường thẳng cố định.

Gọi $J$ là trung điểm $O A$ thì $J$ là tâm đường tròn $(O H A)$. Giả sử $(I)$ tiếp xúc $(J)$ thì tiếp điểm là $H$, chứng tỏ các điểm $I, H, J$ thẳng hàng. Ta có
$$
\angle I M H=\angle I H M=\angle J H O=\angle J O H
$$
nên $I M | O A$. Khi đó, tứ giác $I N A M$ là hình vuông và ta tính được tỷ số $\frac{A M}{O A}=$ $\frac{A N}{O A}=2$.

Tài liệu tham khảo.

[1] Nguyễn Tăng Vũ – Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển, đội tuyển trường Phổ thông Năng khiếu 2008 – 2021,NXB ĐHQG HN, 2021

Đề thi Học kì 1 lớp 10 chuyên Toán PTNK năm 2018

Bài 1. Cho hàm số $y=x^{2}-4 x+3$. (1)
a) Khảo sát sự biến thiên và vē đồ thị hàm số.
b) Từ đồ thị hàm số (1), suy ra đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$. (2)
c) Dựa vào đồ thị hàm số (2), tìm $m$ để phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm.

Bài 2. Giải phương trình và hệ phương trình sau:
a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5$
b) $\left\{ \begin{array}{l} \left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right.$.

Bài 3. Tìm tham số $m$ để hệ phương trình $\left\{ \begin{array}{l} m x+(m-1) y=m+1 \\ (m-1) x+m y=m+1 \end{array}\right.$ có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thóa $x_{0}^{2}+y_{0}^{2}=2$.

Bài 4. Cho $x$ là số thực dương, đặt $A=x+\dfrac{1}{x}$.
a) Chứng minh rằng $A$ là số nguyên thì $A_{n}=x^{n}+\dfrac{1}{x^{n}}$ cūng là số nguyên với mọi số nguyên dương $n$.
b) Tìm giá trị lớn nhất của $B=-A^{2}+6 A+1$.

Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn tâm $O$ đường kính $B C=2 R, \widehat{A B C}=60^{\circ} . D$ là điểm đối xứng của $A$ qua $B C$.
a) Chứng minh rằng với mọi điểm $M$ ta có: $\overrightarrow{M A} \cdot \overrightarrow{M D}=\overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}$.
b) Tìm $M$ để $S=M A^{2}-4 M B^{2}+M D^{2}$ đạt giá trị lớn nhất. Tìm giá trị lớn nhất theo $R$.
c) Cho $M$ thay đổi trên $A C . D M$ cắt $(O)$ tại $N$. Xác định $M$ để $\mathcal{P} {C/(AMB)}=2 \mathcal{P} {B/(CMN)}$. $a_12$
d) Tìm quy tích $M$ thỏa $\overrightarrow{M A} \cdot \overrightarrow{M D}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2}$.

Lời giải

Bài 1.
a) Ta có $a=1>0, \dfrac{-b}{2 a}=2$ và $\dfrac{-\Delta}{4 a}=-1$.
Bảng biến thiên:

Vậy hàm số (1) đồng biến trên $(2 ;+\infty)$ và nghịch biến trên $(-\infty ; 2)$.

Đồ thị hàm số:

b) Từ đồ thị hàm số (1), ta suy ra đồ thị hàm số $y=x^{2}-4|x|+3$  như sau:

Khi đó, ta có được đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$ như sau:

c) Theo đồ thị hàm số (2), phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm phân biệt khi và chỉ khi $m^{2}+2 m=3 \Leftrightarrow\left[\begin{array}{l}m=1 \\ m=-3\end{array}\right.$.

Bài 2. 

a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5 \quad (1)$.

ĐKXĐ: $\left\{\begin{array}{l}x-1 \geq 0 \\ 6-x \geq 0 \\ 7 x-6-x^{2} \geq 0\end{array} \quad \Leftrightarrow 1 \leq x \leq 6\right.$

Đặt $a=\sqrt{x-1} \geq 0$ và $b=\sqrt{6-x} \geq 0$, khi đó $\left\{\begin{array}{l}a b=\sqrt{7 x-6-x^{2}} \\ a^{2}+b^{2}=5\end{array}\right.$.

Kết hợp với (1), ta có hệ phương trình sau: $\left\{\begin{array}{l}a+b+a b=5 \\ a^{2}+b^{2}=5 .\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=5-a b \quad (2) \\ a^{2}+b^{2}=5\end{array}\right.\right.$

Ta có: $5=a^{2}+b^{2}=(a+b)^{2}-2 a b=(5-a b)^{2}-2 a b=a^{2} b^{2}-12 a b+25$.

Do đó: $a^{2} b^{2}-12 a b+20=0 \Leftrightarrow\left[\begin{array}{l}a b=2 \\ a b=10\end{array}\right.$.

– Nếu $a b=2$, từ (2) ta suy ra $a+b=3$. Khi đó $a, b$ là nghiệm của phương trình:

$$X^{2}-3 X+2=0 \Leftrightarrow \left[ \begin{array}{l} X=1 \\ X=2 \end{array}\right.$$

Khi đó $(a ; b)=(1 ; 2)$ hoặc $(a ; b)=(2 ; 1)$.

+) Nếu $\left\{\begin{array}{l}a=1 \\ b=2\end{array} \Rightarrow\left\{\begin{array}{l}\sqrt{x-1}=1 \\ \sqrt{6-x}=2\end{array} \Leftrightarrow x=2\right.\right.$. Thử lại thấy nghiệm $x=2$ thỏa (1).

+) Nếu $\left\{\begin{array}{l}a=2 \\ b=1\end{array} \Leftrightarrow\left\{\begin{array}{l}\sqrt{x-1}=2 \\ \sqrt{6-x}=1\end{array} \Leftrightarrow x=5\right.\right.$. Thử lại thấy nghiệm $x=5$ thỏa (1).

– Nếu $a b=10$, từ (1) ta suy ra $a+b=-5$ (Loại vì $a, b \geq 0$ nên $a+b \geq 0)$.

Vậy tập nghiệm của phương trình (1) là $S=\{2 ; 5\}$.

b) $\left\{\begin{array}{l}\left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right. \quad (I)$

Đặt $a=x^{2}+y$ và $b=x+y^{2}$ thì (I) trở thành:

$$\left\{\begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 8 } \\ { a + b = 4 } \end{array} \Leftrightarrow \left\{\begin{array} { l } { ( a + b ) ^ { 2 } – 2 a b = 8 } \\ { a + b = 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l} a b=4 \\ a+b=4 \end{array}\right.\right.\right. $$

Do đó $a, b$ là nghiệm của phương trình:

$$X^{2}-4 X+4=0 \Leftrightarrow X=2 $$

Suy ra $\left\{\begin{array}{l}a=2 \\ b=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}+y=2 \\ x+y^{2}=2\end{array}\right.\right.$

Từ (1) và (2) ta suy ra $x^{2}+y=x+y^{2} \Leftrightarrow(x-y)(x+y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=x \\ y=1-x\end{array}\right.$.

– Nếu $y=x$, thay vào $(1)$, ta được: $x^{2}+x+2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\ x=-2\end{array}\right.$.

+) Với $x=1$, suy ra $y=1$.

+) Với $x=-2$, suy ra $y=-2$.

– Nếu $y=1-x$, thay vào $(1)$, ta được: $x^{2}+1-x=2 \Leftrightarrow x^{2}-x-1=0 \Leftrightarrow\left[\begin{array}{l}x=\dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{1-\sqrt{5}}{2}\end{array}\right.$

+) Với $x=\dfrac{1+\sqrt{5}}{2}$, suy ra $y=\dfrac{1-\sqrt{5}}{2}$.

+) Với $x=\dfrac{1-\sqrt{5}}{2}$, suy ra $y=\dfrac{1+\sqrt{5}}{2}$.

Thử lại thấy các cặp nghiệm trên đều thỏa.

Vậy tập nghiệm của (I) là $(x ; y)=\left\{(1 ; 1),(-2 ;-2),\left(\dfrac{1+\sqrt{5}}{2} ; \dfrac{1-\sqrt{5}}{2}\right),\left(\dfrac{1-\sqrt{5}}{2} ; \dfrac{1+\sqrt{5}}{2}\right)\right\}$.

Bài 3.

$\left\{\begin{array}{l} m x+(m-1) y=m+1 \\ (m-1) x+m y=m+1 \end{array}\right. \quad (I)$

Ta có:

$D=m^{2}-(m-1)^{2}=2 m-1$

$D_{x}=(m+1) m-(m+1)(m-1)=m+1 $

$D_{y}=m(m+1)-(m-1)(m+1)=m+1$

Để (I) có nghiệm duy nhất $\Leftrightarrow D \neq 0 \Leftrightarrow 2 m-1 \neq 0 \Leftrightarrow m \neq \dfrac{1}{2}$.

Khi đó nghiệm của (I) là $\left\{\begin{array}{l}x_{0}=\dfrac{D_{x}}{D}=\dfrac{m+1}{2 m-1} \\ y_{0}=\dfrac{D_{y}}{D}=\dfrac{m+1}{2 m-1}\end{array}\right.$

Vì $x_{0}^{2}+y_{0}^{2}=2$ nên $\left(\dfrac{m+1}{2 m-1}\right)^{2}+\left(\dfrac{m+1}{2 m-1}\right)^{2}=2 \Leftrightarrow\left(\dfrac{m+1}{2 m-1}\right)^{2}=1 \Leftrightarrow\left[\begin{array}{ll}m=0 & \text { (Nhận) } \\ m=2 & \text { (Nhận) }\end{array}\right.$

Vậy $m=0$ hoặc $m=2$ thì (I) có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thỏa $x_{0}^{2}+y_{0}^{2}=2$.

Bài 4.

a) – Ta có: $A_{1}=x+\dfrac{1}{x}=A \in \mathbb{Z}, A_{2}=x^{2}+\dfrac{1}{x^{2}}=\left(x+\dfrac{1}{x}\right)^{2}-2 \in \mathbb{Z}$.

– Giả sử $A_{k} \in \mathbb{Z}$ với mọi $k \leq n$ ( $n$ nguyên dương và $n \geq 2$ ), hay $x^{k}+\dfrac{1}{x^{k}} \in \mathbb{Z}$.

Ta chứng $\operatorname{minh} A_{n+1} \in \mathbb{Z}$, tức là $x^{n+1}+\dfrac{1}{x^{n+1}} \in \mathbb{Z}$.

– Thật vậy, vì $x^{n}+\dfrac{1}{x^{n}}$ và $x+\dfrac{1}{x}$ là các số nguyên nên $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right) \in \mathbb{Z}$.

Mặt khác, $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=x^{n+1}+x^{n-1}+\dfrac{1}{x^{n-1}}+\dfrac{1}{x^{n+1}}=\left(x^{n+1}+\dfrac{1}{x^{n+1}}\right)+\left(x^{n-1}+\dfrac{1}{x^{n-1}}\right)$.

Do đó $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=A_{n+1}+A_{n-1}$.

Suy ra $A_{n+1}+A_{n-1} \in \mathbb{Z}$, mà $A_{n-1} \in \mathbb{Z}$ nên $A_{n+1} \in \mathbb{Z}$.

Như vậy, theo nguyên lí quy nạp, ta có $A_{n} \in \mathbb{Z}$ với mọi số nguyên dương $n$.

b) Ta có $B=-A^{2}+6 A+1=-(A-3)^{2}+10 \leq 10$.

Dấu “=” xảy ra $\Leftrightarrow A=3 \Leftrightarrow x+\dfrac{1}{x}=3 \Leftrightarrow\left[\begin{array}{l}x=\dfrac{3+\sqrt{5}}{2} \\ x=\dfrac{3-\sqrt{5}}{2}\end{array}\right.$.

Vậy giá trị lớn nhất của $B$ là 10 khi $x=\dfrac{3+\sqrt{5}}{2}$ hoặc $x=\dfrac{3-\sqrt{5}}{2}$.

Bài 5. 

a) Ta có $\Delta A B O$ cân tại $O(O A=O B)$ và $\widehat{A B O}=60^{\circ}$ nên $\Delta A B O$ là tam giác đều.

Suy ra $O A=O B=A B$. (1)

Do $D$ đối xứng với $A$ qua đường kính $B C$ nên $D \in(O)$ và $\widehat{A O B}=\widehat{B O D}=60^{\circ}$.

Kết hợp với $O D=O B=R$, suy ra $\Delta B O D$ là tam giác đều,

kéo theo $B O=O B=O D$. (2)

Từ (1) và (2) suy ra $A B=A O=O D=D B$, dẫn đến $A O D B$ là hình thoi. Do đó $\overrightarrow{A B}=\overrightarrow{O D}$.

Với điểm $M$ bất kì, ta có:

$\overrightarrow{M A} \cdot \overrightarrow{M D} =(\overrightarrow{M B}+\overrightarrow{B A})(\overrightarrow{M O}+\overrightarrow{O D}) $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{M B} \cdot \overrightarrow{O D}+\overrightarrow{B A} \cdot \overrightarrow{M O}+\overrightarrow{B A} \cdot \overrightarrow{O D} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{M B} \cdot \overrightarrow{O D}-\overrightarrow{O D} \cdot \overrightarrow{M O}-\overrightarrow{O D} \cdot \overrightarrow{O D} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{O D}(\overrightarrow{M B}-\overrightarrow{M O})-\overrightarrow{O D}^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+\overrightarrow{O D} \cdot \overrightarrow{O B}–\overrightarrow{O D}^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}+O D \cdot O B \cos 60^{\circ}-O D^{2} $

$=\overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}$

b) Gọi $H$ là giao điểm của $A D$ và $B C$. Vì $A O D B$ là hình thoi nên $H$ là trung điểm của $A D$ và $B C$.

Lấy $I$ đối xứng với $H$ qua $B$, khi đó $\overrightarrow{I H}=2 \overrightarrow{I B}$.

Mặt khác, $\overrightarrow{I A}+\overrightarrow{I D}=2 \overrightarrow{I H}$ (do $H$ là trung điểm của $A D)$.

Suy ra $\overrightarrow{I A}+\overrightarrow{I D}=4 \overrightarrow{I B} \Leftrightarrow \overrightarrow{I A}-4 \overrightarrow{I B}+\overrightarrow{I D}=0$

Ta có:

$M A^{2}-4 M B^{2}+M D^{2} $

$=\overrightarrow{M A}^{2}-4 \overrightarrow{M B}^{2}+\overrightarrow{M D}^{2} $

$=(\overrightarrow{M I}+\overrightarrow{I A})^{2}-4(\overrightarrow{M I}+\overrightarrow{I B})^{2}+(\overrightarrow{M I}+\overrightarrow{I D})^{2} $

$=-2 \overrightarrow{M I}^{2}+2 \overrightarrow{M I}(\overrightarrow{I A}-4 \overrightarrow{I B}+\overrightarrow{I D})+\overrightarrow{I A}^{2}-4 \overrightarrow{I B}^{2}+\overrightarrow{I D}^{2}$

$=-2 M I^{2}+I A^{2}-4 I B^{2}+I D^{2} $

$ \leq I A^{2}-4 I B^{2}+I D^{2} .$

Ta có:

$I A^{2}-4 I B^{2}+I D^{2}=2 I A^{2}-4 I B^{2}=2\left(I K^{2}+K A^{2}\right)-4 I B^{2}=2\left(R^{2}+\dfrac{3}{4} R^{2}\right)-4 \cdot \dfrac{R^{2}}{4}=\dfrac{5}{2} R^{2} .$

Vậy giá trị lớn nhất của $M A^{2}-4 M B^{2}+M D^{2}$ là $\dfrac{5}{2} R^{2}$ khi và chỉ khi $M \equiv I$.

d) Lấy $L$ đối xứng với $O$ qua $C$. Khi đó $\overrightarrow{L O}=2 \overrightarrow{L C}$.

Do đó $\overrightarrow{M O}-2 \overrightarrow{M C}=\overrightarrow{M L}+\overrightarrow{L O}-2 \overrightarrow{M L}-2 \overrightarrow{L C}=-\overrightarrow{M L}$.

Ta có:

$\overrightarrow{M A} \cdot \overrightarrow{M D}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2} $

$\Leftrightarrow \overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2} $

$ \Leftrightarrow \overrightarrow{M B} \cdot \overrightarrow{M O}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=0 $

$ \Leftrightarrow \overrightarrow{M B}(\overrightarrow{M O}-2 \overrightarrow{M C})=0 $

$ \Leftrightarrow-\overrightarrow{M B} \cdot \overrightarrow{M L}=0$

Do đó $M L \perp M B$, vậy $M$ thuộc đường tròn đường kính $B L$.

Lời giải của bạn Trần Thái Hưng – Star Education

Đề thi học kì 1 lớp 10 chuyên toán PTNK năm 2016

Thời gian làm bài: 120 phút

Câu 1.
a) Giải phương trình $x^{2}-x+2-(x+2) \sqrt{x-1}=0$.
b) Tìm $m$ để hệ phương trình $\left\{\begin{array}{l}x+y+x y=m \\ x^{2}+y^{2}=m\end{array}\right.$ có nghiệm.

Câu 2. Cho hàm số $y=f(x)=-x^{2}+2 x+3(1)$.
a) Khảo sát và vẽ đồ thị hàm số (1).
b) Từ đồ thị hàm số $(1)$, suy ra đồ thị hàm số $y=g(x)=-x^{2}+2|x|+3$. Tìm $k$ để phương trình $g(x)=m^{3}-3 m^{2}+m$ có đúng 3 nghiệm.

Câu 3.
a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
$$
y=\sqrt{x+1}+\sqrt{1-x}-\frac{4}{3} \sqrt{1-x^{2}}
$$
b) Cho các số $a, b, c>0$. Chứng minh rằng
$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \geq \frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)
$$
Bài 4. Cho tam giác $A B C$ cân tại $A, \angle B A C=120^{\circ}$ nội tiếp đường tròn tâm $O$ bán kính $R . A O$ cắt $(O)$ tại $D .$
a) Chứng minh rằng với mọi $M$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M A} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$.
b) Tìm quỹ tích điểm $M$ sao cho $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M A} \cdot \overrightarrow{M D}=\frac{R^{2}}{4}$.
c) Xác định điểm $N$ trên cạnh $B D$ thỏa $P_{D /(A B N)}=R^{2}$.
d) $P$ là điểm thay đổi trên cạnh $B C .$ Gọi $\left(O_{1}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $B ;\left(O_{2}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $C .\left(O_{1}\right)$ và $\left(O_{2}\right)$ cắt nhau tại $Q$ khác $P$. Chứng minh đường thẳng $P Q$ đi qua một điểm cố định $T$. Tính $P_{T /(O)}$.
Kí hiệu $P_{M /(O)}$ là phương tích của $M$ đối với đường tròn $(O)$.

Đề thi học kì 1 lớp 10 chuyên toán trường PTNK năm 2014

Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.

Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$
Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$

Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?

Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đề thi Học kì 1 Toán 10 PTNK năm 2018 (CS2)

Bài 1. Giải các phương trình sau:
a) $\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
Bài 3. Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 4. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 5. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 6. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.
Bài 7. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.
a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Lời giải

Bài 1.
a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x \\
\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) \\
\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\
x^2-x-1=3-2x
\end{array} \right. $

Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.
$P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.

Bài 3. Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2 \Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 4. $D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 5. $\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$
Bài 6.
a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 7.
a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $