Category Archives: Lớp 9

Đề ôn thi vào lớp 10 Chuyên Toán.

Thời gian làm bài 150 phút.

Bài 1. (1, 5 điểm) Cho phương trình $(\sqrt{x} – 1)(x^2 – (m^2+1)x + 1) = 0$
a) Giải phương trình khi $m = -2$.
b) Tìm $m$ để phương trình có 3 nghiệm phân biệt $x_1<x_2<x_3$ và thỏa $x_1^2 + 4x_2^2+x_3^2 = 27$.

Bài 2. (2 điểm) Cho các số dương $a, b, c$ thỏa $a+ b+ c = abc$.
a) Tìm $a, b, c$ nếu $a, b, c$ là các số nguyên dương.
b) Chứng minh $ab+ac+bc \geq 9$ và $ab+ac+bc\geq 3 + \sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3.  (1, 5 điểm) Số nguyên dương $n$ được gọi là số đẹp nếu tồn tại các số nguyên dương $x, y, z$ không nhất thiết phải khác nhau sao cho: $$n = \left[ {x;y} \right] + \left[ {y;z} \right] + \left[ {z;x} \right]$$ với $\left[ {a;b} \right]$ là bội chung nhỏ nhất của hai số $a, b$
a) Chứng minh rằng $n=2021$ là số đẹp.
b) Chứng minh rằng mọi số lẻ khác 1 đều là số đẹp.
c) Chứng minh rằng $n=2^{2021}$ không phải là số đẹp.

Bài 4. (3 điểm) Cho đoạn thẳng $BC$ cố định và điểm $A$ thay đổi sao cho $\angle BAC = \alpha < 60^\circ$ không đổi và $AB, AC >BC$. Trên $BC$ lấy các điểm $M, N$ sao cho $BM = MN = NC$. Đường tròn ngoại tiếp các tam giác $ABN$ và $ACM$ cắt nhau tại $D$ và cắt các cạnh $AC, AB$ lần lượt tại $E, F$.

a) Tìm vị trí của $A$ sao cho $AE \cdot AC + AF \cdot AB$ lớn nhất.

b) Chứng minh rằng $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $I$ luôn thuộc một đường cố định.

Bài 5. (2 điểm) Một giải đấu bóng đá gồm 8 đội đá với nhau. Mỗi lượt, 8 đội chia làm 4 cặp đấu, thắng được 3 điểm, hòa 1 điểm và thua 0 điểm.
a) Giải đấu diễn ra hai lượt.
i)  Chứng minh rằng có 2 đội có điểm bằng nhau.
ii) Chứng minh rằng có thể tìm được 4 đội $A, B, C, D$ đôi một chưa đấu với nhau.
b) Kết thúc giải người ta thấy rằng không có trận nào kết thúc với tỉ số hòa. Chứng minh rằng có thể tồn tại 5 đội $A, B, C, D, E$ xếp thành một hàng sao cho đội đứng trước thắng đội đứng sau.

HẾT

Lời giải

Bài 1. 

a) Khi $m = -2$ ta có phương trình $(\sqrt{x}-1)(x^2-5x+1) = 0$.

Giải phương trình ta có nghiệm $x = 1, x = \dfrac{5+\sqrt{21}}{2}, x= \dfrac{5-\sqrt{21}}{2}$.

b) Điều kiện $x \geq 0$. Ta có $x = 1$ là một nghiệm của phương trình.

Phương trình (1) có ba nghiệm phân biệt khi và chỉ khi phương trình

$x^2-(m^2+1)x + 1 = 0$. (2) có hai nghiệm phân biệt không âm và khác 1.

  • $\Delta (m^2+1)^2 – 4 = (m^2-1)(m^2+3) > 0$.
  • $1^2 -(m^2+1)1 + 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Khi đó phương trình có hai nghiệm là $a<b$ thỏa $a+b = m^2+1 > 0, ab = 1$.

Do đó $a, b > 0$ và có tích bằng 1, nên một số nhỏ hơn 1, 1 số lớn hơn 1.

Từ đó ta có $x_2 = 1$, $x_1  =a, x_3 = b$. Khi đó

$x_1^2+4x_2^2 + x_3^2 = 27$

$(a+b)^2 – 2ab = 23$

$m^2 = 25$

$m = \pm 5$. (Nhận)

Bài 2.

a) Do vai trò $a, b, c$ như nhau nên giả sử $a \geq b geq c > 0$. Khi đó

$a + b+ c = abc \Leftrightarrow \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1 \leq \dfrac{3}{c^2}$.

Suy ra $c = 1$. Khi đó $ab = a+b +1 \Leftrightarrow (a-1)(b-1) = 2$. Giải ra được $a = 3, b=2$.

Vậy phương trình có nghiệm $(3;2;1)$ và các hoán vị.

b)

Áp dụng bdt $(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y}+ \dfrac{1}{z}) \geq 9$ và từ $\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1$.

Suy ra $ab+bc+ac \geq 9$.

Ta có bdt $3(x^2+y^2+z^2) \geq (x+y+z)^2 \geq 3(xy+yz+xz)$. (Tự chứng minh)

Ta có $P = (ab+bc+ac-3)^2 = (ab+bc+ac)^2 – 6(ab+bc+ac)+9$.

Mà $(ab+bc+ac)^2 \geq 3abc(a+b+c)$ và $abc = a+b+c$.

Suy ra $(ab+bc+ac)^2 \geq 3(a+b+c)^2$.

Do đó $P \geq 3(a^2+b^2+c^2) + 9 \geq (\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2})^2$.

Từ đó

$ab+bc+ac-3 \geq \sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$

$ab+bc+ac \geq 3+\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3. 

a) $ 2021 = [1;1] + [1010;1] + [1010;1]$.

b) Nếu $ n = 2k + 1$ và $k \geq 1$. Chọn $x = y =1,z=k$ ta có $n = [1;1] + [k;1] + [k;1]$.

c) Chú ý các nhận xét sau:

  • Mọi số nguyên dương đều biểu diễn với dạng $p\cdot 2^n$ trong đó $p$ là số lẻ.
  • Bội chung nhỏ nhất của $p\cdot 2^n$ và $q\cdot 2^m$ với $n>m$ là $r\cdot 2^n$ với $r=[p;q]$ lẻ.

Giả sử $n =2^{2021}$ là số đẹp, tức là tồn tại $x, y, z$ nguyên dương sao cho $2^{2021} = [x;y] + [y;z] + [z;x]$.

Do $2^{2021}$ là số chẳn nên chỉ có hai trường hợp xảy ra, hoặc cả ba số $\left[ {x;y} \right],\left[ {y;z} \right],\left[ {z;x} \right]$ đều là số chẳn, hoặc trong ba số này có hai số lẻ và một số chẳn.

Nếu 3 số $x, y, z$ lẻ thì $[x;y] + [y;z] + [z;x]$ lẻ vô lý.

Nếu 1 số lẻ, hai số chẵn cũng tương tự.

Trường hợp 2 số chẵn. Giả sử $x, y$ chẵn. Ta xét các trường hợp sau:

  • Nếu $z$ lẻ. Khi đó ta có: $\left[ {x;y} \right] = {2^a}{m_1}$ với $m_1$ là số lẻ, $\left[ {y;z} \right] = {2^b}{m_2}$, với $m_2$ là số lẻ, $\left[ {z;x} \right] = {2^a}{m_3}$, với $m_2$ là số lẻ. Dễ thấy $a, b < 2021$.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.
  • Nếu $z$ là số chẵn. Như vậy, $x, y, z$ đều là số chẳn, đặt: $z=2^{c}t_{3}$, với ($t_{3}$ là số tự nhiên lẻ) không mất tính tổng quát, giả sử: $2021 > a \ge b \ge c \ge 0$. Vậy: $\left[ {x;y} \right] = {2^a}{m_1}$, $\left[ {y;z} \right] = {2^b}{m_2}$, $\left[ {z;x} \right] = {2^a}{m_3}$ với $m_1, m_2, m_3$ là ba số tự nhiên lẻ.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.

Bài 4. 

a) Ta có $BF\cdot BA = BM \cdot BC = \dfrac{1}{3}BC^2$ và $CE \cdot CA = \dfrac{1}{3}BC^2$.

Do $AB, AC > BC$ nên $F, E$ nằm giữa $AB$ và $AC$.

Khi đó $X = AF \cdot AB + AE \cdot AC = AB^2-BF \cdot BC + AC^2-CE \cdot CA = AB^2+AC^2-\dfrac{2}{3}BC^2$.

Do đó $X$ lớn nhất khi và chỉ khi $AB^2+AC^2$ lớn nhất.

Ta có $BC^2=BH^2+CH^2 = (AB\sin \alpha)^2+(AC – AB \cos \alpha)^2$

$= AB^2+AC^2-2AB\cdot AC \cos \alpha$

$\geq (AB^2+AC^2) – (AB^2+AC^2)\cos \alpha$.

$\geq (AB^2+AC^2)(1-\cos \alpha)$

Suy ra $AB^2+AC^2$ lớn nhất bằng $\dfrac{BC^2}{1-\cos\alpha}$ khi $AB = AC$.

Vậy $AF \cdot AB + AE \cdot AC $ lớn nhất khi và chỉ khi $AB = AC$.

b) Ta có $\angle DBF  = \angle DEC, \angle DFB = \angle DCE$.

Suy ra $\triangle DBF = \triangle DCE$, do đó $\dfrac{DB}{DC} = \dfrac{BF}{CE}$ (1)

Mà $BF \cdot AB = CE \cdot AC = \dfrac{1}{3}BC^2$.

Suy ra $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. (2)

Từ (1) và (2) ta có $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $K$ là giao điểm thứ hai của $(AEF)$ và $(ABC)$. Khi đó

$\triangle KFB \backsim \triangle KEC$, suy ra $\dfrac{KB}{KC} = \dfrac{BF}{CE}$.

Mà $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. Suy ra $\dfrac{KB}{KC} = \dfrac{AC}{AB}$.

Do đó $\triangle KBC \backsim \triangle ACB$, suy ra $KB = AC, KC = AB$.

từ đó $AKCB$ là hình thang cân, nên trung trực của $AK$ và $BC$ trùng nhau.

Do đó tâm $I$ của đường tròn ngoại tiếp tam giác $AEF$ thuộc trung trực của $AK$ hay thuộc trung trực $BC$ cố định.

Bài 5.

a) Nếu mỗi đội đá nhau được 2 trận.

  • Thì số điểm mội đội có thể nhận là $0, 1, 2, 3, 4, 6$. Do đó theo nguyên lý Dirichlet cho ít nhất 2 đội có cùng số điểm.
  • Gọi 8 đội là $A, B, C, D, E, F, G, H$, sau hai vòng mỗi đội đá đúng hai trận.
    • Không có ba đội nào đôi một đá với nhau, vì giả sử $A, B, C$ đôi một đá với nhau, thì vòng 1, $A$ đá với $B$ thì $C$ không đá với ai, nên phải cần ít nhất 3 vòng để điều này xảy ra.
    • Giả sử $A$ đá với $B, C$ thì $BC$ không đá với nhau nên $B, C$ đá với đội khác.
      • Nếu $B, C$ đá cùng một đội $D$. Khi đó nhóm $E, F, G, H$ cũng có hai đội chưa đá với nhau và cũng không đá với nhóm $A, B, C, D$. Giả sử là $E, F$ chưa đá với nhau. Khi đó 4 đội $A, D, E, F$ đôi một chưa đá với nhau trận nào.
      • Nếu $B, C$ đá với hai đội khác nhau là $D, E$. Lý luận tương tự ta chỉ suy ra được là $E, D$ cùng đấu với $F, G$ và $G,F$ đấu với $H$. Khi đó $A – B  – D – F – H – G – E – C – A$. Chọn 4 đội $A, D, H, E$ thỏa đề bài.

b)  Xét đội $A$ thắng nhiều nhất trong đó thắng $B, C$, xét đội $B$ và $C$ thì nếu $B$ thắng $C$ ta có $A – B – C$ là dãy mà đội trước thắng đội sau, ngược lại ta có dãy $A – C – B$.

Vậy giả sử ta có $A$ thắng $B$,$B$ thắng $C$, ta kí hiệu $A -> B -> C$.

Xét tới đội $D$ nào đó. Có các trường hợp sau:

  • $D -> A$ hoặc $C -> D$. Khi đó ta có $D ->A->B->C$ hoặc $A-> B -> C-> D$.
  • Nếu không có điều này, thì $A ->D$ và $D->C$. Khi đó $B, D$.
    • Nếu $D->B$ thì ta có $A->D->B->C$.
    • Nếu $B ->D$ thì ta có $A -> B ->D ->C$.

Trong các trường hợp ta đều có dãy 4 người mà người này thắng người kia. Vậy ta đã có $A-> B-> C->D$.

Xét $E$, tương tự như $D$.

  • Nếu $E$ thắng $A$ hoặc $D$ thắng $E$ thì bài toán được chứng minh.
  • Ngược lại, $A$ thắng $E$ và $E$ thắng $D$. Khi đó ta xét mối quan hệ giữa $E$ và $B,C$.
    • Nếu $E$ thắng $B$. Khi đó ta có $A-E-B-C-D$.
    • Nếu $E$ thua $B, C$, khi đó $A-B-C-E-D$.
    • Nếu $E$ thua $B$ và thắng $C$, khi đó $A-B-E-C-D$.

Vậy lúc nào cũng tìm được 5 đội xếp thành một hàng mà đội trước thắng đội sau.

 

Phương trình nghiệm nguyên – P3

Trong bài viết này ta bàn về phương pháp sử dụng bất đẳng thức và đánh giá. Đây là một trong những phương pháp rất hay và hữu dụng khi giải phương trình nghiệm nguyên, chủ yếu ta đánh giá chặn trên, chặn dưới của biết để đưa về hữu hạn trường hợp để xét. Chú ý các tính chất sau:

  • Giữa hai số nguyên có hữu hạn các số nguyên.
  • Giữa hai số chính phương có hữu hạn các số chính phương.
  • Một tập con các số nguyên dương bị chặn trên thì có hữu hạn phần tử.

Ta xét các ví dụ sau.

Ví dụ 1. Giải phương trình trong tập các số nguyên dương: $x+y+z = xyz$.

Lời giải. Do vai trò của $x, y, z$ là như nhau, ta có thể giả sử $x \geq y \geq z$.

Khi đó $x+y+z = xyz \Leftrightarrow \dfrac{1}{xy} + \dfrac{1}{yz} + \dfrac{1}{xz} = 1$.

Mà $\dfrac{1}{xy},\dfrac{1}{xz}, \dfrac{1}{zy} \leq \dfrac{1}{z^2}$.

Do đó $1 \leq \dfrac{3}{z^2}$, suy ra $z^2 \leq 3$, suy ra $z = 1$.

Khi đó ta có phương trình: $x+y +1 = xy$, giải ra được $(x;y)$ là $(3;2)$.

Do vai trò $x, y, z$ là như nhau nên phương trình có nghiệm $(3;2;1)$ và các hoán vị.

Ví dụ 2. Tìm nghiệm nguyên dương của phương trình sau: ${(x + y)^2} + 3x + y + 1 = {z^2}$.

Lời giải. Ta có $(x+y)^2 < (x+y)^2 + 3x + y + 1 < (x+y+2)^2$.

Mà $(x+y)^2 + 3x + y + 1 = z^2$ là số chính phương nên:

$(x+y)^2 + 3x+y +1 = (x+y+1)^2 \Leftrightarrow x = y$.

Khi đó $z = 2x+1$.

Vậy phương trình có nghiệm $(x, x, 2x+1)$ với $x$ nguyên dương.

Ví dụ 3. Tìm nghiệm nguyên của phương trình $(x^2-y^2)^2 = 1+ 16y$.

Lời giải. Rõ ràng $y>0$, nếu $x$ thỏa thì $-x$ cũng thỏa. Ta xét $x\geq 0$.

  • Nếu $x=y$ thì $0 = 1+16y$ (vô lý).
  • Do đó đặt $x = y+a$ với $a\geq 1$. Khi đó
    • $(a^2+2ay)^2 = 1+16y \Leftrightarrow a^2+4a^3y +4a^2y^2 = 1+16y$. Suy ra $a < 2$.
    • Suy ra $a= 1$. Khi đó ta có $4y^2-12y = 0$, giải ra $y = 0, y=3$.
      • Nếu $y = 0, x = 1$.
      • Nếu $y=3, x=4$.
  • Vậy phương trình có nghiệm $(1;0), (-1;0), (4;3), (-4;3)$.

Một số bài toán khó hơn, phải kết hợp nhiều phương pháp. Ta xét ví dụ sau:

Ví dụ 4. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$

Lời giải.

  •  Có một nghiệm là $(0;0)$.
  • Dễ thấy $y$ chẵn nên $y^4+4y+1 \equiv 1 (\mod 8)$. Suy ra $x$ chẵn, $x = 2k$. Khi đó $(5^k)^2 = y^4 + 4y+1$ là số chính phương.
  • Ta có $y\geq 1$ nên $y^4 < y^4+4y + 1 < (y^2+2)^2$. Suy ra $y^4+4y + 1 = (y^2+1)^2 \Leftrightarrow y = 2$, suy ra $x = 2$.
  • Vậy có 2 cặp nghiệm $(0;0), (2;2)$.

Bài tập rèn luyện.

Các bài tập tương tự.

Bài 1. Tìm nghiệm nguyên dương của phương trình $xy+yz+xz = 3xzy$.

Bài 2. Tìm nghiệm nguyên dương của phương trình $(1+\dfrac{1}{x})(1+\dfrac{1}{y})(1+\dfrac{1}{z}) = 2$.

Bài 3.  Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Bài 4. Tìm tất cả các số nguyên tố $p$ sao cho hệ phương trình $p+1=2x^2,p^2+ 1=2y^2$ có nghiệm nguyên.

Bài 5. Tìm nghiệm nguyên dương của phương trình $5(x+y+z+t) + 10 = 2xyzt$.

Bài 6. Tìm nghiệm nguyên của phương trình $1+x+x^2+x^3 = y^3$.

Bài 7. Tìm $m, n$ nguyên dương để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

 

Toán đố – P2

Tiếp theo phần 1, phần này tôi xin đưa ra những ví dụ phức tạp hơn, đòi hỏi cao hơn trong việc đưa ra phương trình, hoặc việc giải phương trình hệ phương trình ở mức khó hơn.

Ví dụ 1. Tổng kết học kì 2, trường trung học cơ sở N có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1, số học sinh giỏi của học kì 2 bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2. Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Lời  giải. 

Nhận xét: Bài toán có sự thay đổi về số học sinh giỏi của học kì 2 so với học kì 1, đó là số học sinh mới được và số học sinh bị rớt danh hiệu.

Ta có lời giải như sau:

Gọi $x$ $(x>0)$ là số học sinh giỏi học kì $2$ của trường.

Tổng số học sinh của trường là: $x+60$ (học sinh).

Số học sinh giỏi học kì $1$ là: $\dfrac{37}{40}x$ (học sinh).

$8\%$ số học sinh toàn trường không đạt giỏi học kì $1$ nhưng đạt giỏi học kì $2$: $(x+60).8\%=\dfrac{2x}{25}+\dfrac{24}{5}$ (học sinh).

Theo đề bài ta có phương trình $x = \dfrac{37}{40} x + \dfrac{2x}{25} + \dfrac{24}{5} – 6$.

Giải ra được $x = 240$.
Vậy số học sinh giỏi học kì $2$ của trường là $240$ học sinh.

Ví dụ 2. Bạn An dự định trong khoảng thời gian từ ngày 1/3 đến ngày 30/4 mỗi ngày sẽ giải 3 bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng 3 (tháng 3 có 31 ngày) thì A bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải 16 bài toán; sau đó, A cố gắng giải 4 bài một ngày và đến 30/4 thì A cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Lời giải. 

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Ví dụ 3. Lớp $9A$ có 28 học sinh đăng ký dự thi vào các lớp chuyên Toán, Lý, Hóa của trường Phổ thông Năng khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hóa; có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa; số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ chọn thi vào lớp Toán; có 6 học sinh chọn thi vào lớp Toán và Hóa; số học sinh chọn thi vào lớp Lý và Hóa gấp 5 lần số học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa. Hỏi số học sinh chọn thi vào từng lớp là bao nhiêu?

Lời giải.

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Bài tập rèn luyện.

Bài 1. Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi 240 mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được 2400 con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Bài 2. Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại rau sạch, các phần còn lại trồng hoa. Diện tích phần trồng rau sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

Bài 3. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Bài 4. Hai thị trấn $A$ và $B$ cùng nằm trên một dòng sông, cách nhau $D$ $km$. Thị trấn $B$ có địa thế cao hơn nên dòng nước luôn chảy từ $B$ đến $A$ với vận tốc $d$ $(km/h)$ không đổi. Nếu nước không chảy, tàu \textit{Hi vọng} có vận tốc $x$ $(km/h)$ không đổi, tàu \textit{Tương lai} có vận tốc $y$ $(km/h)$ không đổi. Vào lúc 8 giờ sáng, tàu \textit{Hi vọng} xuất phát từ $A$ đi về hướng $B$ và tàu \textit{Tương lai} xuất phát từ $B$ đi về hướng $A$. Vào lúc 12 giờ trưa hai tàu gặp nhau lần đầu tiên tại một điểm cách $A$ một khoảng cách là $\dfrac{1}{3}D$. Khi đến $A$ tàu \textit{Tương lai} nghỉ nửa giờ rồi quay về $B$; tương tự khi đến $B$ tàu \textit{Hi vọng} cũng nghỉ nửa giờ rồi quay về $A$. Hai tàu gặp nhau lần thứ hai tại một điểm cách $B$ một khoảng cách là $\dfrac{5}{27}D$. Hãy tìm vận tốc của các tàu \textit{Hi vọng} và \textit{Tương lai} biết rằng nếu ngay từ đầu, mỗi tàu tăng vận tốc thêm $7,5km/h$ thì hai tàu sẽ gặp nhau lần đầu vào lúc 11 giờ trưa.

Toán đố – P1

Dạo này các bài toán thực tế xuất hiện nhiều trong trong đề thi và được nhiều học sinh quan tâm, tuy vậy đây không phải là các bài toán trong đời sống bắt các em phải giải mà chỉ là những bài toán đốnhiều chữ, các em đọc hiểu và sử dụng kiến thức toán để giải, chứ chẳng có mấy về ý nghĩa thực tế, mà dạng toán này đã xuất hiện rất nhiều trong chương trình toán của mình, và trong các kì thi, đặc biệt là kì thi vào trường Phổ thông Năng khiếu.

Những bài toán này thường là những bài toán như mối liên quan giữa số lượng, thời gian, năng suất, …để giải các bài toán dạng này ta chú ý:

  • Đọc kĩ đề bài, gạch dưới những cụm từ quan trọng.
  • Tìm các mối liên hệ giữa các đối tượng có trong bài toán.
  • Đặt ẩn phù hợp và thiết lập được phương trình, hệ phương trình.
  • Giải các pt, hpt này cho ra kết quả.

 

Ví dụ 1. Lớp 9T có 30 bạn, mỗi bạn dự định đóng góp mỗi tháng 70000 đồng và sau 3 tháng sẽ đủ tiền mua tặng cho mỗi em ở “Mái ấm tình thương X” ba gói quà (giá tiền các món quà đều như nhau). Khi các bạn đóng đủ số tiền như dự trù thì “Mái ấm tình thương X” đã nhận chăm sóc thêm 9 em và có giá tiền của mỗi món thêm $5\%$ nên chỉ tặng mỗi em hai gói quà. Hỏi có bao nhiêu em của “Mái ấm tình thương X” được nhận quà ?

Lời giải.

  • Gọi $x$ $(x>0)$ là số em ban đầu ở “Mái ấm tình thương X” và $t$ $(t>0)$ là giá tiền mỗi món quà.
  • Số tiền lớp 9T đóng được sau $3$ tháng là: $6300000$.
  • Mỗi em nhận được $3$ món quà ta có: $3tx=6300000$ (1).
  • Sau khi mái ấm có thêm $9$ em và giá mỗi món quà tăng thêm $5\%$ ta có: $2\left( t+5\% t\right) \left( x+9\right) =6300000$ (2).
  • Từ (1) và (2) ta có: $3tx=2.1,05t.\left( x+9\right) $
    $\Leftrightarrow x=21$.
  • Vậy có $30$ em ở “Mái ấm tình thương X nhận được quà.

Ví dụ 2. Có hai vòi nước A, B cùng cung cấp cho một hồ cạn nước và vòi C (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng 6 giờ, hai vòi A, B được mở; đến 7 giờ vòi C được mở; đến 9 giờ thì đóng vòi B và vòi C; đến 10 giờ 45 phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi B ngay từ đầu thì đến 13 giờ hồ mới đầy. Biết lưu lượng vòi B là trung bình cộng lưu lượng vòi A và C, hỏi một mình vòi C tháo cạn hồ nước đầy trong bao lâu?

Lời giải. 

$10$ giờ $45$ phút $=\dfrac{43}{4}$ giờ.
Gọi $x$, $y$, $z$ $(x,\ y,\ z>0)$ lần lượt là thời gian vòi A, vòi B một mình làm đầy hồ và vòi C tháo hết nước trong hồ.
Từ $6$ giờ đến $10$ giờ $45$ phút vòi A chảy được $\dfrac{19}{4x}$ hồ.
Từ $6$ giờ đến $9$ giờ vòi B chảy được $\dfrac{3}{y}$ hồ.
Từ $7$ giờ đến $9$ giờ vòi C tháo được $\dfrac{2}{z}$ hồ.
Từ $6$ giờ đến $13$ giờ vòi A chảy được $\dfrac{7}{x}$ hồ.
Theo đề bài ta có hệ phương trình:

$\left\{ \begin{array}{l}
\dfrac{19}{4x}+\dfrac{3}{y}-\dfrac{2}{z}=1\ (1)\\\\
\dfrac{7}{x}-\dfrac{2}{z}=1\ (2)\\\\
\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}\ (3)
\end{array}\right. $.

Từ (2) ta có: $\dfrac{1}{x}=\dfrac{1}{7}+\dfrac{2}{7z}$.

Lấy (1) trừ (2) ta có: $-\dfrac{9}{4x}+\dfrac{3}{y}=0\Leftrightarrow \dfrac{1}{y}=\dfrac{3}{4x}=\dfrac{3}{28}+\dfrac{3}{14z}$.

Thay $\dfrac{1}{x}$, $\dfrac{1}{y}$ vào (3) ta có: $\dfrac{1}{7}+\dfrac{2}{7z}+\dfrac{1}{z}=\dfrac{3}{14}+\dfrac{3}{7z} \Leftrightarrow z=12$.

Vậy vòi C tháo cạn hồ nước đầy trong $12$ giờ.

Ví dụ 3. Một công ty may giao cho tổ $A$ may $16800$ sản phẩm, tổ $B$ may $16500$ sản phẩm và bắt đầu thực hiện công việc cùng lúc. Nếu sau $6$ ngày, tổ $A$ được hỗ trợ thêm $10$ công nhân may thì họ hoàn thành công việc cùng lúc với tổ $B$. Nếu tổ $A$ được hỗ trợ thêm $10$ công nhân may ngay từ đầu thì họ sẽ hoàn thành công việc sớm hơn tổ $B$ $1$ ngày. Hãy xác định số công nhân ban đầu của mỗi tổ. Biết rằng, mỗi công nhân may mỗi ngày được $20$ sản phẩm.

Lời giải.

Gọi số công nhân ban đầu của tổ $A$, $B$ lần lượt là $x$, $y$ (công nhân) ($x,y\in \mathbb{N}$).

Mỗi ngày tổ $A$ may được $20x$ sản phẩm, tổ $B$ may được $20y$ sản phẩm.

Sau $6$ ngày tổ $A$ may được $120x$ sản phẩm.

Số công nhân tổ $A$ sau khi được tăng $10$ công nhân là $x+10$ (công nhân).

Khi đó số sản phẩm tổ $A$ may được mỗi ngày là $20\left( x+10\right) $ (sản phẩm).

Thời gian tổ $A$ hoàn thành công việc là:
$6+\dfrac{16800-120x}{20\left( x+10\right) }$ (ngày).

Thời gian tổ $B$ hoàn thành công việc là: $\dfrac{16500}{20y}$ (ngày).

Tổ $A$, tổ $B$ hoàn thành công việc cùng lúc nên ta có phương trình:
$$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16500}{20y} \text { } (1).$$

Thời gian tổ $A$ hoàn thành công việc nếu được hỗ trợ thêm $10$ công nhân ngay từ đầu là: $$\dfrac{16800}{20\left( x+10\right) } \text{ (ngày)}.$$

Tổ $A$ hoàn thành công việc trước tổ $B$ $1$ ngày nên ta có phương trình:
$$\dfrac{16800}{20\left( x+10\right) }+1=\dfrac{16500}{20y} \text{ } (2).$$

Từ $(1)$ và $(2)$, ta có:

$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16800}{20\left( x+10\right) }+1$

$\Leftrightarrow \dfrac{6x}{x+10}=5$
$\Leftrightarrow x=50$.

Thay $x=50$ vào $(2)\Rightarrow y=55$.

Vậy số công nhân ban đầu của tổ $A$ là $50$ công nhân, số công nhân ban đầu của tổ $B$ là $55$ công nhân.

Bài tập rèn luyện.

Bài 1. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Bài 2. Một nhóm học sinh định chia một số kẹo thành các phần quà cho các em nhỏ tại một đơn vị trẻ mồ côi. Nếu mỗi phần quà giảm đi 6 viên thì các em có thêm 5 phần quà, nếu giảm đi 10 viên thì các em có thêm 10 phần quà. Hỏi số kẹo mà nhóm học sinh này có.

Bài 3. Trong một cuộc đua môtô có ba xe khởi hành cùng lúc. Xe thứ nhì trong mỗi giờ chạy chậm hơn xe thứ nhất $10$km và nhanh hơn xe thứ ba $5$km, đến đích trễ hơn xe thứ nhất $10$ phút, sớm hơn xe thứ ba $6$ phút. Tính vận tốc mỗi xe, chiều dài quãng đường đua.

Bài 4. Tìm số gồm hai chữ số, biết rằng tổng của hai chữ số là $9$ và tổng lập phương của hai chữ số đó là $189$.

Bài 5. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Phương trình nghiệm nguyên – P3

Ta tiếp tục với phương pháp giải phương trình nghiệm nguyên, nay ta sẽ bàn tới phương pháp sử dụng đồng dư, chú ý một số cách tiếp cận sau:

  • Sử dụng đồng dư để chứng minh phương trình vô nghiệm.
  • Sử dụng đồng dư để suy ra tính chất của biến (tính chẵn lẻ, …), đưa về các dạng đã biết.

Ví dụ 1.  Giải phương trình $ x^3 +21y^3+5=0 $.

Lời giải
  • Ta có với mọi $x$ thì
    $ x^3\equiv 0, 1, -1\ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $
  • Do đó phương trình vô nghiệm.

Ví dụ 2. Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $.

Lời giải
  • Với mọi số nguyên x thì $ 6^x \equiv 1\ (mod\ 5) $.
  • Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3. Tìm nghiệm nguyên dương của phương trình $$7^x – 9^y = 4$$

Lời giải
  • Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv 2 (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.
  • Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.
  • Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4. Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$.

Lời giải
  • Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.
  • Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).
  • Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.
  • Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ. Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.
  • $3^x + 5^x = y^3$. $5^6 \equiv 1 (\mod 9)$, suy ra $5^x \equiv 5 (\mod 9)$ nếu $x \equiv 1 (\mod 6)$; $5^x \equiv -1 (\mod 9)$ khi $x \equiv 3 (\mod 6)$; $5^x \equiv 7 (\mod 9)$ khi $x \equiv 5(\mod 6)$.
  • Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó $x \equiv 3 (\mod 6)$.
  • Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.
    Do đó phương trình vô nghiệm.
  • Kết luận $(1,2,3)$.

Bài tập rèn luyện

Bài 1. Tìm nghiệm nguyên của các phương trình sau:
a) $2^x-3^y=1$;

b) $2^x-3^y=7$;
c) $2^x+3^y=z^2$;
d) $3^x+4^y=5^z$;
e) $3^x+4^y=7^z$.
Bài 2. (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.
a)  Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?
Bài 3. (PTNK 2009)
a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$
b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Phương pháp chứng minh quy nạp – Các dạng khác

Trong bài này, chúng ta tiếp tục tìm hiểu thêm và phương pháp quy nạp. Ngoài dạng quy nạp như đã biết ta còn một số dạng quy nạp khác như: Quy nạp mạnh, quy nạp bước nhảy, quy nạp lùi.

Quy nạp mạnh được phát biểu như sau: Để chứng minh mệnh đề $P(n)$ đúng với mọi số tự nhiên $n$, ta thực hiện theo hai bước sau:

  • Chứng minh $P(n)$ đúng với $n=1$.
  • Giả sử $P(n)$ đúng với $1, 2, \cdots, n$. Chứng minh $P(n+1)$ đúng.

Ví dụ 1. Cho $x$ thỏa $x+\dfrac{1}{x}$ là số nguyên. Chứng minh rằng $x^n+\dfrac{1}{x^n}$ là số nguyên với mọi $n$.

Lời giải. 

  • Ta có $x + \dfrac{1}{x}$ là số nguyên  đúng (theo giả thiết).
  • Giả sử $x^k + \dfrac{1}{x^k}$ là số nguyên với mọi $k = \overline{1,n}$. Ta cần chứng minh $x^{n+1} + \dfrac{1}{x^{n+1}}$.
    • $(x^{n+1} + \dfrac{1}{x^{n+1}} = (x+\dfrac{1}{x})(x^n + \dfrac{1}{n})  – (x^{n-1}+\dfrac{1}{x^{n-1}})$.
    • Theo giả thiết quy nạp thì $x^{n+1} + \dfrac{1}{x^{n+1}}$ là số nguyên.
  • Vậy ta có $x^n + \dfrac{1}{x^n}$ là số nguyên với mọi $n$.

 

Dạng kế tiếp là Quy nạp bước nhảy  được phát biểu như sau: Chứng minh mệnh đề $P(n)$ đúng với mọi $n$, ta làm như sau:

  • Chứng minh $P(1), P(2), \cdots, P(k)$ đúng.
  • Giả sử $P(n)$ đúng. Ta chứng minh $P(n+k)$ đúng.

Ví dụ 2. Chứng minh rằng với mọi số tự nhiên $M$ tồn tại số tự nhiên $n$ và cách chọn các dấu $+$ hoặc $-$ sao cho

$M = \pm 1^2 \pm 2^2 \cdots \pm n^2$.

Lời giải.

  • Khi $M = 1, 2, 3, 4$ ta có $1 = 1^2$, $2 = -1^2-2^2-3^2+4^2$, $3 = -1^2+2^2$ và $4 = 1^2-2^2-3^2+4^2$.
  • Giả sử đúng với $M$, tức là tồn tại $n$ thỏa $M = \pm 1^2 \pm 2^2 \cdots \pm n^2$, khi đó $M + 4 = \pm 1^2 \pm 2^2 \cdots \pm n^2 +(n+1)^2-(n+2)^2-(n+3)^2 + (n+4)^2$.

Ví dụ 3.  Chứng minh rằng với mọi số tự nhiên $n$ thì phương trình $a^2 + b^2 = c^n$ luôn có nghiệm trong tập các số nguyên dương.

Lời giải. 

  • Rõ ràng nếu $n=1, 2$ thì phương trình luông có nghiệm nguyên dương.
  • Giả sử phương trình có nghiệm nguyên dương là $a, b, c$ với $n$ nào đó, tức là $a^2 + b^2 = c^n$.
    • Khi đó với $n+2$ thì xét $(ac), (bc), c$: $(ac)^2+(bc)^2 = c^2 (a^2+b^2) = c^{n+2}$.
    • $(ac, bc, c$ là nghiệm.
  • Vậy phương trình luôn có nghiệm với mọi $n$.

Dạng kế tiếp là Quy nạp lùi được phát biểu như sau:

  • Chứng minh $P(a_i)$ đúng với dãy $(a_i)$ là dãy con tăng thực sự của tập các số tự nhiên.
  • Giả sử $P(n)$ đúng, chứng minh $P(n-1)$ đúng.

Ví dụ 4. 

a) Hãy chỉ ra cách sắp 8 số nguyên dương đầu tiên 1, 2, …, 8 thành một dãy $a_1, a_2 ,…, a_8$ sao cho 2 số $a_i, a_j$ bất kì $(i < j)$ thì mọi số trong dãy nằm giữa $a_i$ và $a_j$ đều khác $\dfrac{a_i + a_j}{2}$.
b) Chứng minh rằng với $N$ số nguyên dương đầu tiên $1, 2, …, N$ luôn tìm được cách sắp thành dãy $a_1, a_2, …, a_N$ sao cho dãy thỏa mãn điều kiện như câu a).
Lời giải.

a) Một cách xếp thỏa đề bài là 26481537.\
b)

Bước 1.Ta chứng minh bằng quy nạp với $n = 2^k$ thì luôn tồn tại một cách xếp thỏa đề bài.

  • Nếu $k = 1$, hiển nhiên đúng.
    Giả sử luôn tồn tại một cách xếp thỏa đề bài với $n = 2^k$, cách xếp đó là $a_1, a_2, …, a_n$.
    Ta chứng minh tồn tại một cách xếp với $n = 2^{k+1}$.
    Thật vậy xét hoán vị $(2a_1, 2a_2,…, 2a_n, 2a_1-1, 2a_2-1, …, 2a_n-1)$ là một hoán vị của $1, 2, …, 2^{k+1}$. Ta chứng minh hoán vị trên thỏa đề bài.

    • Ta có nếu $a_i, a_j \in \{2a_1, 2a_2, …, 2a_n\}$ theo giả thiết quy nạp không có số nào nằm giữa $a_i, a_j$ bằng $\dfrac{1}{2}(a_i+a_j)$.
    • Nếu $a_i \in \{2a_1, …, 2a_n\}, a_j \in \{2a_1-1, 2a_2-1, …, 2a_n-1\}$ thì $\dfrac{1}{2}(a_i +a_j)$ không phải số nguyên.
    • Nếu $a_i, a_j \in \{2a_1-1, 2a_2-1, …, 2a_n-1\}$ theo giả thiết quy nạp thì cũng có số nào nằm giữa $a_i, a_j$ bằng $\dfrac{1}{2}(a_i + a_j)$.

Vậy bài toán đúng với $n = 2^k$.(1)
Bước 2. Nếu bài toán đúng với $n$, ta chứng minh bài toán đúng với $n-1$.

Xét các số $a_1, a_2, …, a_n$ là một hoán vị thỏa đề bài của $1,2,…,n$.

Khi đó nếu xóa bất kì số nào trong các số $a_1, …, a_n$ thì dãy còn lại vẫn thỏa điều kiện. (2)
Từ (1) và (2) ta có điều cần chứng minh.

Quy nạp lùi cũng là một trong những cách chứng minh bất đẳng thức Cauchy tổng quát: $\dfrac{a_1+a_2 + \cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$.

Các bạn tự làm thử nhé.

Trên đây là một số dạng quy nạp thường gặp trong chứng minh toán. Tùy theo tình huống mà ta sử dụng cho phù hợp, các bạn cần làm thêm nhiều bài tập để rèn luyện.

Bài tập rèn luyện.

Bài 1. Ta gọi tổng các số tự nhiên từ 1 đến n là số tam giác. Chứng minh rằng tồn tại vô hạn các số tam giác đồng thời là số chính phương.

Bài 2. (Chọn đội tuyển PTNK 2014)Tìm số nguyên dương $n$ lớn nhất thỏa mãn các điều kiện sau:

  • $n$ không chia hết cho 3;
  • Bảng vuông $n \times n$ ô không thể được phủ kín bằng 1 quân tetramino $1 \times 4$ và các quân trimino kích thước $1 \times 3$. Trong phép phủ các quân tetramino và trimino được phép quay dọc nhưng không được phép chườm lên nhau hoặc nằm ngoài ra bảng vuông.

Bài 3. Có $n$ số tự nhiên từ 1 đến $n$ được viết thành một dòng theo một thứ tự nào đó. Mỗi bước thực hiện biến đổi như sau: nếu số đầu tiên là $k$ thì $k$ số đầu tiên sẽ được viết theo thứ tự ngược lại. Chứng minh rằng sau hữu hạn bước thì số đầu tiên của dòng là số 1.

Bài 4. Trong cuộc họp có $2n$ ($n \geq 2$) người, một số người bắt tay nhau và người ta đếm được có $n^2+1$ cái bắt tay. Chứng minh rằng có $n$ bộ ba, mà mỗi bộ ba đôi một bắt tay nhau.

Bài 5. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số nguyên $x, y, z$ phân biệt sao cho $x^2+y^2+z^2 = 14^n$.

Bài 6. Trong một giải đấu tennis có 10 người tham dự, hai đối thủ gặp nhau đúng một trận. Chứng minh rằng, sau khi kết thúc giải có thể sắp xếp các tay vợt thành một hàng mà người đứng trước thắng người đứng sau.

Phương pháp chứng minh quy nạp – P2

Trong phần trước ta đã làm quen với phương pháp chứng minh quy nạp và áp dụng vào chứng minh một vài đẳng thức, bất đẳng thức hay các bài toán chia hết. Bài này tiếp tục là ứng dụng của quy nạp trong việc chứng minh các bài toán khác, trong cái đề thi học sinh giỏi hay tuyển sinh.

Ví dụ 1. Người ta lát nền nhà hình vuông kích thước $n \times n$ ô bằng các viên gạch như hình vẽ dưới sao cho còn chừa lại một ô không lát.
a) Hãy chỉ ra một cách lát như trên với nền nhà kích thước $4 \times 4$ và $8 \times 8$.
b) Hãy chứng minh rằng luôn tồn tại một cách lát nền nhà có kích thước $2^k \times 2^k$ (k nguyên dương) với ô trống còn lại nằm ở vị trí $(i,j)$ bất kì.

Lời giải

a) Các bạn tự làm.
b) Ta chứng minh bằng quy nạp.

  • Với $k = 2$ hiển nhiên đúng.
  • Giả sử với $k$ thì nền $2^k \times 2^k$ bỏ ô $(i;j)$ bất kì thì luôn phủ được. Ta chứng minh đúng với $k+1$.
    Với nền nhà $2^{k+1} \times 2^{k+1}$ ta chia thành 4 hình vuông $2^k \times 2^k$. Khi đó ô bỏ đi thuộc một trong 4 hình vuông đó, ta phủ được hình vuông này theo giả thiết quy nạp. Tiếp tục,theo giả thiết quy nạp, với 3 hình vuông còn lại, bỏ đi ô ở góc (hình vẽ) thì ta có thể phủ được. Khi đó 3 ô ở góc ta phủ tiếp bằng một viên gạch.
  • Với cách thực hiện đó thì ta có thể phủ được nền nhà $2^{k+1} \times 2^{k+1}$ khi bỏ ô bất kì.

Ví dụ 2. Trong cuộc họp có $2n$ ($n \geq 2$) người, một số người bắt tay nhau và người ta đếm được có $n^2+1$ cái bắt tay. Chứng minh rằng có 3 người đôi một bắt tay nhau.

Lời giải
  • Rõ ràng bài toán đúng khi $n=2$.
  • Giả sử bài toán đúng với $n$, ta chứng minh bài toán đúng với $n+1$. Xét hai người $A, B$ bắt tay.
    Nếu số bắt tay của $A$ và $B$ với $2n$ người còn lại không vượt quá $2n$ thì $n$ người kia có $n^2+1$ cái bắt tay, ta có điều cần chứng minh.
    Nếu số người bắt tay với $A, B$ là hơn $2n$ cái.
  • Do đó trong $2n$ người kia thì sẽ có ít nhất một người bắt tay với cả $A$ và $B$, ta có điều cần chứng minh.

Ví dụ 3.  a) Cho bốn số nguyên dương $a_1, a_2, a_3, a_4$ sao cho $1 \leq a_k \leq k$ với mọi $ k= 1,2, 3, 4$ và tổng $S = a_1 + a_2 + a_3 + a_4$ là một số chẵn. Chứng minh rằng có ít nhất một trong các số dạng $\pm a_1 \pm a_2 \pm a_3 \pm a_4$ có giá trị bằng 0.
b) Cho 1000 số nguyên dương $a_1, a_2,…, a_{1000}$ sao cho $1 \leq a_k \leq k$ với $k = 1, 2, …, 1000$ và tổng $S = a_1 + a_2 + …+a_{1000}$ là một số chẵn.\
Hỏi trong các số có dạng $\pm a_1 \pm a_2 … \pm a_{1000}$ có số nào bằng 0 hay không? Giải thích vì sao?

Lời giải

a) Ta có $4 \leq S \leq 10$ và $S$ chẵn, suy ra $S = 4, 6, 8, 10$. Xét các trường hợp sau:

  • $S = 4$, suy ra $a_1 = a_2 = a_3 = a_4 = 1$. Suy ra $- 1 – 1+ 1 + 1 = 0$.
  • $S = 6$ ta có $6 = 1 + 1 + 1 + 3 = 1 + 1 + 2 + 2$, suy ra có một cách thỏa đề bài.
  • $S = 8$ ta có $8 = 1 + 1 + 2 + 4 = 1 + 1 + 3 + 3 = 1 + 2 + 2 + 3 = 2 + 2 + 2 + 2$. Suy ra mỗi cách đều tồn tại một cách chọn dấu $ + , – $ thỏa đề bài.
  • $S = 10 = 1 + 2 + 3 + 4$. Suy ra có một cách thỏa đề bài.

a) Ta chứng minh bằng quy nạp mệnh đề sau: Cho $n$ các số nguyên dương thỏa $1 \leq a_k \leq k$ thỏa $S_n = a_1 + …+a_n$ chẵn. Khi đó tồn tại số có dạng $\pm a_1 \pm a_2 … \pm a_{n}$ bằng 0.

  • Khi $n = 2$ ta có $a_1 + a_2$ chẵn, suy ra $a_1 = a_2 = 1$. Suy ra $a_1 – a_2 = 0$.
  • Giả sử bài toán đúng với $k\leq n$. Ta chứng minh bài toán đúng với $n + 1$. Ta có $S_{n+1} = a_1 + …+a_{n} + a_{n+1}$ chẵn. Ta có $0\leq |a_{n} – a_{n+1}| \leq n$.
    • Nếu $a_n – a_{n+1} = 0$ ta áp dụng giả thiết quy nạp với $n-1$ số $a_1, …, a_{n-1}$ ta có điều cần chứng minh.
    • Nếu $a_n – a_{n+1} \neq 0$. Áp dụng giả thiết quy nạp với $n$ số $a_1, a_2, …, a_{n-1}, |a_n-a_{n+1}|$ ta thấy $a_1 + …+a_{n+1}$ chẵn nên $a_1 + …+a_{n-1} + |a_n – a_{n+1}|$ chẵn.
    • Suy ra tồn tại số có dạng $\pm a_1 \pm a_2 … \pm |a_{n}-a_{n+1}| = \pm a_1 \pm a_2 … \pm a_{n+1}$ bằng 0.

 

Ví dụ 4. (USAMO 2002) Cho tập S có 2002 phần tử, số tự nhiên $k$ thỏa $0 \leq k \leq 2^{2002}$ chứng minh rằng tồn tại cách tô màu các tập con của S bằng hai màu xanh và đỏ thỏa:
a)  Có đúng $k$ tập được tô màu đỏ.
b) Hợp của hai tập đỏ là một tập đỏ.
c) Hợp của hai tập xanh là một tập xanh.

Lời giải
  • Ta chứng minh bài toán đúng với tập $S$ có số phần tử $n$ bất kì bằng quy nạp.

    Rõ ràng bài toán đúng với $n=1$, $S=\{1\}$. Nếu $k=0$ tô màu xanh cả hai tập con. Nếu $k=1$ tô màu đỏ tập $S$, xanh tập rỗng. Nếu $k=2$ thì tô $S$ và rỗng đều màu đỏ.

  • Giả sử $S$ có $n$ phần tử thì với mọi $k$ đều tồn tại cách tô thỏa đề bài.
    Ta chứng minh bài toán đúng với $S$ có $n+1$ phần tử.
    Giả sử $S = \{1, 2, \cdots, n, n+1\}$, $0 \leq k \leq 2^{n+1}$.

    • Nếu $k \leq 2^n$.Theo giả thiết quy nạp các tập con của $\{1, 2, \cdots, n\}$ được tô thỏa đề bài và các tập con chứa $n+1$ ta tô màu xanh. Rõ ràng cách tô này thỏa đề bài.
    • Nếu $ 2^n < k \leq 2^{n+1}$. Thì ta chỉ cần đổi màu các tập tô như trường hợp trên, tập nào tô màu xanh thì đổi thì màu đỏ và ngược lại. Rõ ràng thỏa đề bài.

Trên đây là một vài ví dụ khá hay về áp dụng của Quy nạp, tất nhiên còn nhiều bài tập khác cũng hấp dẫn không kém, các bạn tự tìm hiểu nhé. Chúng ta sẽ trở lại trong bài viết sau về một số dạng quy nạp thường gặp.

Bài tập rèn luyện. 

Bài 1. Lúc đầu có $n$ lít nước để vào một số lu, mỗi lu chứa đúng một số nguyên dương lít nước, ta thực hiện cách đong nước như sau: nếu số nước ở lu $A$ nhỏ hơn hoặc bằng lu $B$ thì ta có thể cho hết nước của $B$ vào $A$ một lượng bằng lượng nước lu $A$ đang có.
a) Nếu có 3 lu nước chứa lần lượt $2, 3, 8$ thì có thể đưa về hai lu không? Tại sao?
b) Nếu $n=1024 $. Chứng minh rằng ta có thể đưa số nước hết về một lu. Giả sử lu này là lu lớn, chứa đủ số nước đã có.
Bài 2. Cho $n$ đội bóng, $n$ là số chẵn lớn hơn 2.  Mỗi một lượt, các đội chia cặp để đấu với nhau một trận. Chứng minh rằng sau hai lượt thì có thể tìm được $\dfrac{n}{2}$ đội mà không có hai đội nào đấu với nhau.

Bài 3. Cho $n = 2^k$, chứng minh rằng người ta có thể chọn $n$ số nguyên từ $2n-1$ số nguyên để tổng của chúng chia hết cho $n$.

Bài 4. Gọi $x_1, x_2$ là nghiệm của phương trình $x^2 + 2017 x – 1 = 0$. Đặt $S_n = x_1^2+x_2^n$. Chứng minh rằng $S_n$ và $S_{n+1}$ là nguyên tố cùng nhau với mọi $n$.

Phương pháp chứng minh quy nạp – P1

Phương pháp chứng minh quy nạp là một trong những phương pháp chứng minh quan trọng trong toán học. Trong bài viết nhỏ này dành cho các bạn THCS chúng tôi xin trình bày một số dạng của phương pháp này trong việc chứng minh các bài toán ở các lĩnh vực như: Đại số, số học, tổ hợp. Hy vọng các em có thể nắm bắt vận dụng phù hợp trong các tình huống cụ thể.

Để chứng minh một mệnh đề $P(n)$ là đúng với mọi số nguyên dương $n$, ta thực hiện các bước sau:

  • Bước cơ sở:      Chứng minh $P(1)$ đúng.
  • Bước quy nạp: Giả sử $P(n)$ đúng với $n$ nào đó (giả thiết quy nạp), chứng minh $P(n+1)$ đúng.

Ví dụ 1. Chứng minh rằng với mọi số nguyên dương $n$ thì $1 + 2 + \cdots + n = \dfrac{n(n+1)}{2}$.

Lời giải. 

  • Khi $n=1$ rõ ràng : $1 = \dfrac{1(1+1)}{2}$.
  • Giả sử đẳng thức đúng với $n$, ta chứng minh đẳng thức đúng với $n+1$.
    • Thật vậy áp dụng giả thiết quy nạp ta có: $1+2+\cdots+n+n+1 = \dfrac{n(n+1)}{2} + n+1 = \dfrac{(n+1)(n+2)}{2}$.
  • Vậy đẳng thức đúng với mọi $n$.

Ví dụ 2. Chứng minh $n^3+11n$ chia hết cho 6 với mọi số tự nhiên $n$.

Lời giải. 

  • Khi $n = 0$ ta có $0^3+11\cdot 0 = 0$ chia hết cho 6.
  • Giả sử $n^3+11n$ chia hết cho 6, ta chứng minh $(n+1)^3+11(n+1$ chia hết cho 6.
    • Thật vậy $(n+1)^3 + 11(n+1) = n^3 + 11n + 3n(n+1)+12$.
    • Theo giả thiết quy nạp thì $n^3+11n$ chia hết cho 6, và $3n(n+1), 12$ cũng chia hết cho 6 nên $(n+1)^3+11n$ chia hết cho 6.
  • Vậy $n^3+11n$ chia hết cho 6 với mọi $n$.

Trong một số trường hợp ta cần chứng minh $P(n)$ đúng với mọi số tự nhiên $n \geq n_o$ nào đó, ta cũng làm tương tự, chỉ thay bước cơ sở thành: Chứng minh $P(n_o)$ đúng.

Ví dụ 3. Chứng minh rằng $2^n > n^2$ với mọi $n \geq 5$.

Lời giải. 

  • Khi $n = 5$ ta có $2^5 > 5^2 $( đúng)
  • Giả sử $2^n > n^2$ với $n> 5$. Ta cần chứng minh $2^{n+1} > (n+1)^2$.
    • Thật vậy áp dụng giả thiết quy nạp ta có $2^{n+1} = 2\cdot 2^n > 2n^2$.
    • Mà $2n^2 > (n+1)^2 \Leftrightarrow  n^2-2n+1 > 0$ (đúng với $n > 5$).
    • Do đó $2^{n+1} > (n+1)^2$.
  • Vậy $2^n > n^2$ với mọi $n \geq 5$.

Bài tập rèn luyện.

Bài 1. Chứng minh các đẳng thức sau:

a) $1^2 + 2^2 + …+ n^2 = \dfrac{n(n+1)(2n+1)}{6}.$

b) $1^3 + 2^3 + …+n^3 = \dfrac{n^2(n+1)^2}{4}$.

c) $\dfrac{1}{1.2.3} + \dfrac{1}{2.3.4} + …+ \dfrac{1}{n(n+1)(n+2)} = \dfrac{n(n+3)}{4(n+1)(n+2)}$.

Bài 2.

a) Chứng minh rằng $n! > 3^n$ với mọi $n > 7$.

b) Chứng minh rằng với số thực $a > – 1$, thì với mọi số tự nhiên $n$ ta có $(1+a)^n \geq 1+ na$.

Bài 3. Chứng minh rằng với mọi số tự nhiên $n$ thì:

a) $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

b) Với $ n $ là số tự nhiên chẵn, chứng minh rằng: $$ (20^n+16^n-3^n-1)\ \vdots \ 323. $$

Định lý Viete với các biểu thức nghiệm không đối xứng

Tiếp theo các bài toán về tìm giá trị của tham số để nghiệm của phương trình thỏa một đẳng thức, trong bài này ta xét trường hợp mà biểu thức nghiệm không chỉ là bậc nhất, hoặc không thể tính theo tham số một cách dễ dàng.

Ta xét ví dụ sau:

Ví dụ 1. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Lời giải
  •  $\Delta = (m+2)^2 – 4(m+1) = m^2 \geq 0, \forall m$. Nên phương trình luôn có nghiệm,
    khi đó phương trình có nghiệm là $1$ và $m+1$.
  • $x_1 = 1, x_2 = m+1$ ta có $3x_1x_2 -4x_1 = 2 \Leftrightarrow 3(m+1) – 4 = 2 \Leftrightarrow m = 1$.
  • $x_1 = m+1, x_2 = 1$ ta có $3x_1x_2 – 4x_1 = 2 \Leftrightarrow 3(m+1) – 4(m+1) = 2 \Leftrightarrow m = -3$.
    Vậy có hai giá trị $m$ là $1$ và $-3$.

Ta thấy trong bài toán trên, $\Delta=m^2$ có dạng là $A^2$ trong đó $A$ là một số hay một biểu thức. Khi đó ta có thể tính nghiệm theo $m$ và xét trường hợp nghiệm nào là $x_1$, nghiệm nào là $x_2$ để thế vào biểu thức nghiệm.

Tiếp theo ta xem thêm một ví dụ khác.

Ví dụ 2. (PTNK 2014) Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ (1)
a) Giải phương trình (1) khi $m=-1$.
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt $x_1$, $x_2$ sao cho $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $

Lời giải

a) Khi m=-1 ta có phương trình:
$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{đk: } x \ne 3) \\
\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l}
x=-1 \,\,(n) \\\\
x=-3 \,\, (l)
\end{array} \right. $
Vậy $S=\left\{ -1 \right\} $

b)    $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ (1)

  • Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$
    $\left\{ \begin{array}{l}
    m \ne 0 \\\\
    \Delta = (m-3)^2 -4m(2m-1) >0 \\\\
    m(-3)^2+(m-3)(-3)+2m-1 \ne 0
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m \ne 0\\\\
    7m^2 +2m-9 <0 \\\\
    m \ne -1
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m\ne 0\\\\
    m \ne -1 \\\\
    -\dfrac{9}{7} < m < 1
    \end{array} \right. $
  • Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$
  • Do đó $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58$
    $\Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58$
    $\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \\ \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $
    $\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7}\\ \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $
    Vậy $m=\dfrac{7}{8}$

Ta thấy trong bài toán trên, ta phải sử dụng $x_2$ là nghiệm của phương trình nên thỏa phương trình và từ đó ta mới tính được biểu thức chứa $x_2$ trong giả thiết. Mục đích là ta đưa về những dạng dễ hơn mà ta đã biết làm.

Ví dụ 3. (PTNK 2016) Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 (1)$.
Tìm $m$ để phương trình (1) có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Lời giải
  • Điều kiện $x > 0$.
  • Phương trình (1) tương đương $x^2+mx+2m+14 = 0$ (2).
    Để (1) có 2 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0, S = -m > 0, P = 2m + 14 >0 $ (*)
  • Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.
  • Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}\\ \Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$
    • $\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9 \\\Leftrightarrow 2\sqrt{2m+14}=9+m $
    • $\Leftrightarrow 4(2m+14) = m^2+18m+81 \Leftrightarrow m^2 +10m+25 = 0 \Leftrightarrow m = -5 (n)$ vì thỏa (*).
      Kết luận $m = -5$.

Ví dụ 4: Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.

Giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.

Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.

Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1 \Leftrightarrow x_2^2+ax_2-a^2-a+2=0 \Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ $(1)$.

Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.

Lấy $(1) – (2)$ ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.

Thế vào phương trình $(1)$ ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.

Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài tập rèn luyện

Bài 1. Tìm $m$ để phương trình $(x-1+m)(x+2m-3) = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 – 4x_2 =1$.\ ($m=-3\pm \sqrt{21},m=1$)
Bài 2.  Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.\($m=1,m=-3$)
Bài 3. Cho phương trình $x^2 – (2m-1)x + 4 = 0$. Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+(2m-1)x_2 + 8-17m = 0$. ($m= 5$)
Bài 4. Cho phương trình $x^2 – (2m-1)x + m^2 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $x_1^2 + (2m-1)x_2 = 8$.($m=-1$)
Bài 5. Cho phương trình ${x^2} – \left( {3m – 2} \right)x + 2{m^2} – 3m + 1 = 0$ (m là tham số)
a)Tìm m để phương trình có hai nghiệm phân biệt dương $x_1$, $x_2$ ($m>1$)
b) Tìm m để phương trình có hai nghiệm $x_1$, $x_2$ thỏa $x_1^2 + x_2 =5$ ($m=\dfrac{3+\sqrt{89}}{8},m=\sqrt{5}$)

Bài 6. Tìm $m$ để phương trình $\dfrac{x^2-mx +(2m-1)(1-m)}{x-2} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 + 2x_2 = 13$. ($m=\dfrac{5}{2},m=-1 \pm \sqrt{5}$)
Bài 7.  Tìm $m$ để phương trình $\dfrac{x^2 – 2mx -2m-1}{\sqrt{x}} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $\sqrt{x_1^2+2mx_2} + \sqrt{x_2^2+2mx_1} =2\sqrt{5}$. ($m=\dfrac{-1+\sqrt{7}}{4}$)
Bài 8.  Cho phương trình $\dfrac{x^2-(m+1)x +m^2 – 6)}{\sqrt{x}-2} = 0$ (1).
a) Giải phương trình khi $m = 1$. ($ x= 1+\sqrt{6}$)
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [ \sqrt{x_2^2-mx_2+m^2-5}+\sqrt{x_1+1} = 2+\sqrt{2}] \ ($m=3$)

Định lý Viete và các đẳng thức về nghiệm.

Trong các bài toán liên quan  đến ứng dụng của định lý Viete, bài toán tìm giá trị tham số $m$ để các nghiệm thỏa mãn một đẳng thức là dạng toán thường gặp.

Nếu biểu thức mà vai trò hai nghiệm là như nhau, ta có thể biểu diễn theo tổng và tích. Trong bài này chúng ta xét các bài toán mà biểu thức không phải là các biểu thức đối xứng, đòi hỏi cách xử lí khó hơn một chút. Ta bắt đầu với ví dụ sau:

Ví dụ 1. Tìm $m$ để phương trình $x^2 + 4x – m = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 4x_2 =-19$

Lời giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta’ = 4 + m > 0 \Leftrightarrow m > -4$ (1).

Khi đó, theo định lý Viete ta có: $x_1 + x_2 = -4, x_1x_2=-m$.

Từ $x_1+x_2=-4$ với giả thiết $x_1+4x_2 = -19$, giải ra được $x_2=-5$.

Thế $x_2=-5$ vào phương trình ta có:$(-5)^2+4(-5)-m = 0 \Leftrightarrow m = 5$ (thỏa (1)).

Kết luận: $m=5$.

Ta thấy rằng để làm dạng toán này, có các bước giải sau:

  • Tìm điều kiện để phương trình có nghiệm (hai nghiệm phân biệt,….)
  • Áp dụng định lý Viete và giả thiết để tính nghiệm (có thể theo tham số)
  • Thay nghiệm vào phương trình và giải. (So lại điều kiện để nhận loại phù hợp). (Hoặc tính $x_1$ và thế vào biểu thức Viete).

Ví dụ 2. Cho phương trình $x^2 -x +3m-11=0$ $(1)$
a) Với giá trị nào của $m$ thì phương trình $(1)$ có nghiệm kép? Tìm nghiệm đó.
b) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ sao cho:

$2017x_1 + 2018x_2 =2019$

Lời giải

a) Phương trình $(1)$ có nghiệm kép $\Leftrightarrow \left\{ \begin{array}{l}
1\ne 0 \text{ (hiển nhiên)} \\\\
\Delta = 0
\end{array} \right. \\\\ \Leftrightarrow 1-4(3m-11) =0 \Leftrightarrow 45-12m =0 \Leftrightarrow m=\dfrac{45}{12}$

Với $m=\dfrac{45}{12}$ thì phương trình $(1)$ trở thành:
$x^2-x+\dfrac{1}{4}=0 \Leftrightarrow x=\dfrac{1}{2}$

Vậy khi $m=\dfrac{45}{12}$ thì phương trình $(1)$ có nghiệm $x=\dfrac{1}{2}$.
b) Để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ thì
$\Delta >0 \Leftrightarrow 45-12m >0 \Leftrightarrow m < \dfrac{45}{12}$

Theo định lý Viete, ta có: $\left\{ \begin{array}{l}
S=x_1+x_2 = 1 \\\\
P=x_1x_2=3m-11
\end{array} \right. $

$2017x_1+2018x_2=2019 \Leftrightarrow 2017 \left( x_1 + x_2 \right) +x_2 =2019
\Leftrightarrow 2017+x_2=2019 \Leftrightarrow x_2 = 2$

Mà $x_1+x_2 =1$ nên $x_1=-1$

Lại có $x_1x_2 = 3m-11 \Rightarrow 3m-11 = -2 \Rightarrow m=3$ (thỏa)

Vậy $m=3$ thì phương trình có hai nghiệm thỏa mãn đề bài.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$.

Lời giải

Ta có $\Delta’ = (m+1)^2 – 3m = (m-1/2)^2 + 3/4 > 0$ với mọi $m$, nên pt luôn có hai nghiệm phân biệt.

Khi đó ta có $x_1+ x_2 = 2m+2, x_1x_2 = 3m=0$.

Kết hợp $x_1-2x_2 = 1$, suy ra $x_2 = \dfrac{2m+1}{3}$.

Thế $x_2 = \dfrac{2m+1}{3}$ vào pt ta có:

$\dfrac{(2m+1)^2}{9} – 2(m+1)\dfrac{2m+1}{3} + 3m = 0$, giải ra được $m = 1, m= \dfrac{5}{8}$.

Kết luận. $m = 1$ và $m = \dfrac{5}{8}$.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx + 3m-2}{x-1} =0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 3x_2 = 8$.

Lời giải

Điều kiện $x \neq 1$. Phương trình tương đương với

$x^2-2mx + 3m-2 =0$. (2)

Pt (1) có hai nghiệm phân biệt khi và chỉ khi Pt (2) có hai nghiệm phân biệt khác 1,

$\Delta’ = m^2-3m+2 > 0, 1^2-2m(1)+3m -2 \neq 0$ (*).

Khi đó $x_1+x_2 = 2m, x_1x_2 = 3m-2$.

Từ $x_1+3x_2 = 8$ ta có $x_2 = 4-m$, thế vào (2) ta có:

$(4-m)^2 -2m(4-m) + 3m-2 = 0 \Leftrightarrow m = 2, m = \dfrac{7}{3}$.

So với (*), ta nhận $m = \dfrac{7}{3}$.

Kết luận: $m = \dfrac{7}{3}$.

Bài tập rèn luyện. 

Bài 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$

Bài 2. Tìm $m$ để phương trình $x^2 – 3x + m-27=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – x_2 = 11m$.

Bài 3. Tìm $m$ để phương trình $x^2 + 2(m-1)x + m+1=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2x_2 = -m-1$.

Bài 4. Cho phương trình $x^2-(m+2)x+m+1 = 0$. \
Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Bài 5.  Cho phương trình: $9x^2-3\left( m+2\right) x+m-7=0$. Tìm $m$ để phương trình có hai nghiệm $x_1$, $x_2$ phân biệt thỏa: $x_1+\dfrac{7}{5}x_2=2$.