Đề bài. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ và trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc vuông góc của $A$ trên $BM$. Chứng minh tứ giác $HDMC$ nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ và trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc vuông góc của $A$ trên $BM$. Chứng minh tứ giác $HDMC$ nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $BD, CE$ cắt nhau tại $H$. $M$ là một điểm thuộc cung BC không chứa $A$. $AM$ cắt $DE$ tại $K$. Chứng minh rằng các tứ giác $BEKM, CDKM$ là các tứ giác nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. (IMO 2010) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.

Đề bài. Cho tam giác $ABC$ nhọn, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H $ trên $AB$ và $AC$. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.
Chú ý. Tứ giác $ABCD$ có hai cạnh bên $AD, BC$ cắt nhau tại P, hai đường chéo cắt nhau tại $Q$. Khi đó $ABCD$ nội tiếp khi và chỉ khi:
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. (a) Chứng minh các tứ giác $AEHF$, $BDHE$ là tứ giác nội tiếp. (b) Chứng minh các tứ giác $BFEC$, $AEDC$ là tứ giác nội tiếp.
Định nghĩa: Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.
Dấu hiệu nhận biết tứ giác nội tiếp: Một tứ giác là tứ giác nội tiếp khi và chỉ khi:

Ví dụ 1. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. (a) Chứng minh các tứ giác $AEHF$, $BDHE$ là tứ giác nội tiếp. (b) Chứng minh các tứ giác $BFEC$, $AEDC$ là tứ giác nội tiếp.
Ví dụ 2. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.
Ví dụ 3. Cho tam giác $ABC$ nhọn, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H $ trên $AB$ và $AC$. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp.
Ví dụ 4. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$. (a) Chứng minh $\angle AED = \dfrac{180^\circ-\angle A}{2}$. (b) Chứng minh 4 điểm $I, E, M, C$ cùng thuộc một đường tròn. (c) Gọi $N$ là giao điểm của $CI$ và $DE$. Chứng minh 4 điểm $B, N, M, C$ cùng thuộc một đường tròn.
Ví dụ 5. Cho tam giác ABC. Trên cạnh BC lấy các điểm D, E sao cho $\angle BAD = \angle CAE$. Gọi $M, N$ là hình chiếu vuông góc của $B$ trên $AD, AE$; $P, Q$ là hình chiếu vuông góc của C trên $AD, AE$. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn có tâm là trung điểm $BC$.
Ví dụ 6. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.
Bài tập.
Định nghĩa. Hình vuông là tứ giác có bốn cạnh bằng nhau và bốn góc bằng nhau.
Tính chất. Hình vuông có mọi tính chất của hình thoi và hình chữ nhật.
Dấu hiệu nhận biết hình vuông:
Bài 1. Cho tam giác $ABC$ vuông tại $A$, phân giác trong góc $A$ cắt $BC$ tại $D$. Gọi $E$, $F$ là hình chiếu của $D$ trên các đường thẳng $AB$ và $AC$.
a) Tứ giác $AEDF$ là hình gì? Tại sao?
b) Vẽ đường cao $AH$ của tam giác $ABC$. Tính $\angle EHF$.
c) Đường trung trực cạnh $BC$ cắt $AD$ tại $M$. Tính $\angle CBM$.
Bài 2. Cho tam giác vuông $ABC$ vuông góc tại $A$. Dựng về phía ngoài tam giác các hình vuông $ABDE$ và $ACFG$. Gọi $K$ là giao điểm các tia $DE$ và $FG$; $M$ là trung điểm của $EG$.
a) Chứng minh ba điểm $K$, $M$, $A$ thẳng hàng.
b) Chứng minh $MA \bot BC$
c) Chứng minh các đường thẳng $DC$, $FB$, $AM$ đồng qui.
Bài 3. Cho hình vuông $ABCD$ có cạnh $a$. Trên các cạnh $BC, CD$ lấy các điểm $M, N$ sao cho $\widehat {MAN} = 45^\circ$. Đường thẳng qua $A$ vuông góc với $AM$ cắt $CD$ tại điểm $E$.
a) Chứng minh $DE = BM$.
b) Tính khoảng cách từ $A$ đến $MN$.
c) Chứng minh chu vi $CMN$ có độ dài không đổi.
Bài 4. Cho tam giác $ABC$ vuông tại $A$ có $AC = 3AB$. Trên $AC$ lấy $M,N$ sao cho $AM = MN = NC$. Chứng minh $\widehat {AMB} =\widehat {ANB} + \widehat{ ACB}$.
Bài 5. Cho hình vuông $ABCD$, $E$ là một điểm bất kỳ trên cạnh $AB$. Vẽ hình vuông $ DEFG $. Chứng minh $DB \bot DF$ [gợi ý].
Bài 6. Cho hai hình vuông cạnh nhau $ABCD$ và $DEFG$ (điểm $E$ thuộc cạnh $CD$). Đường thẳng $GE$ cắt $BC$ tại $H$. Kẻ $CM$ song song với $HG$ ($M$ thuộc $FG$). Chứng minh rằng (a) $AH = HM$, (b) $\angle AHM = 90^\circ$ [gợi ý].