Tag Archives: 2013

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM 2013

Bài 1. (a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$.

(b) Cho $x, y, z$ đôi một khác nhau thỏa mãn: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$. Tính giá trị biểu thực:

$P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Bài 2. Cho phương trình $x^{2}-5 m x-4 m=0$.

(a) Định $m$ để phương trình có hai nghiệm phân biệt.

(b) Gọi $x_{1}, x_{2}$ là hai nghiệm của phương trình. Tìm $m$ để biểu thức sau đạt giá trị nhỏ nhất:

$\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Bài 3. Cho tam giác $\triangle A B C$ có $B C$ là cạnh dài nhất. Trên $B C$ lấy hai điểm $D$ và $E$ sao cho $B D=B A, C E=C A$. Đường thẳng qua $D$ song song với $A B$ cắt $A C$ tại $M$. Đường thẳng qua $E$ song song với $A C$ cắt $A B$ tại $N$. Chứng minh rằng $A M=A N$.

Bài 4. Cho $x, y$ là hai số dương thỏa mãn: $x+y=1$. Chứng minh: $3(3 x-2)^{2}+\frac{8 x}{y} \geq$ $7 .$

Bài 5. Từ một điểm $A$ bên ngoài đường tròn $(O)$ vẽ các tiếp tuyến $A B, A C$ và cát tuyến $A E F$ (EF không đi qua $O, B$ và $C$ là các tiếp điểm). Gọi $D$ là điểm đôi xứng của $B$ qua $O . D E, D F$ lần lượt cắt $A O$ tại $M$ và $N$. Chứng minh rằng :

(a) Hai tam giác $\triangle C E F$ và $\triangle C M N$ đồng dạng.

(b) $O M=O N$.

Bài 6. Chữ số hàng đơn vị trong hệ thập phân của số $M=a^{2}+a b+b^{2}$ là $0\left(a ; b \in N^{*}\right)$.

(a) Chứng minh rằng $M$ chia hết cho 20 .

(b) Tìm chữ số hàng chục của $M$.

LỜI GIẢI

Bài 1.

a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$.

b) Cho $x, y, z$ đôi một khác nhau thỏa mãn: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$. Tính giá trị biểu thực:

$P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Lời giải.

a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$

ĐKXĐ: $x \geq 1$. Đặt $a=\sqrt{2 x-2}$ (ĐKXĐ: $a \geq 0$ )

Phương trình đã cho tương đương với:

$a x=9-5 x=9-\frac{5}{2}\left(a^{2}+2\right)=4-\frac{5}{2} a^{2}$

Ta có hệ phương trình sau:

$\left\{\begin{array} { l }{ 5 a ^ { 2 } + 2 a x = 8 } \\{ a ^ { 2 } – 2 x = – 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{a^{2}+2}{2} \\x=\frac{9}{a+5}
\end{array}\right.\right.$

$\Leftrightarrow \frac{9}{a+5}=\frac{a^{2}+2}{2} \Leftrightarrow a^{3}+5 a^{2}+2 a-8=0 \Leftrightarrow(a-1)(a+2)(a+4)=0$

Kết hợp với: ĐKXĐ: $a \geq 0$. Từ đó ta tính được: $a=1 \Leftrightarrow x=\frac{3}{2}$

b) Tính giá trị biểu thức: $P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Từ điều kiện của đề bài ta có: $x y+y z+z x=0$

Thêm vào đó: $x^{2}+2 y z=x^{2}+y z-x y-x z=(x-y)(x-z)$

Từ đó ta có:

$P=\sum_{x, y, z} \frac{y z}{x^{2}+2 y z}=\sum_{x, y, z} \frac{y z}{(x-y)(x-z)}=-\frac{y z(y-z)+x z(z-x)+x y(x-y)}{(x-y)(y-z)(z-x)}$

Vậy: $P=1$

Bài 2. Cho phương trình $x^{2}-5 m x-4 m=0$.

a) Định $m$ để phương trình có hai nghiệm phân biệt.

b) Gọi $x_{1}, x_{2}$ là hai nghiệm của phương trình. Tìm $m$ để biểu thức sau đạt giá trị nhỏ nhất:

$\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Lời giải.

a) Định $m$ để phương trình có hai nghiệm phân biệt

ĐKXĐ đề phương trình có hai nghiệm phân biệt là:

$\Delta=(-5 m)^{2}-4(-4 m)=25 m^{2}+16 m=m(25 m+16)>0$

$\Leftrightarrow\left\{\begin{array}{l}m>0 \\ m<\frac{-16}{25}\end{array}\right.$

b) Tìm $m$ để biếu thức sau đạt giá trị nhỏ nhất:

$P=\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Do $x_{1}, x_{2}$ là hai nghiệm của phương trình nên ta có: $\left\{\begin{array}{l}x_{1}^{2}=5 m x_{1}+4 m \\ x_{2}^{2}=5 m x_{2}+4 m\end{array}\right.$

Do phương trình đã cho có hai nghiệm phân biệt nên: $25 m^{2}+16 m>0$. Từ đó áp dụng bất đẳng thức Cauchy, ta có:

$P=\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

$P=\frac{m^{2}}{25 m^{2}+16 m}+\frac{25 m^{2}+16 m}{m^{2}} \geq 2$

Đẳng thức xảy ra khi và chỉ khi: $m^{2}=25 m^{2}+16 m \Leftrightarrow m=\frac{-2}{3}$

Bài 3. Cho tam giác $\triangle A B C$ có $B C$ là cạnh dài nhất. Trên $B C$ lấy hai điểm $D$ và $E$ sao cho $B D=B A, C E=C A$. Đường thẳng qua $D$ song song với $A B$ cắt $A C$ tại $M$. Đường thẳng qua $E$ song song với $A C$ cắt $A B$ tại $N$. Chứng minh rằng $A M=A N$.

Lời giải.

Do $D M | A B$, áp dụng định lí Talet:

$\frac{A M}{A C}=\frac{B D}{B C} \Leftrightarrow A M=\frac{B D}{B C} \cdot A C=\frac{B A \cdot A C}{B C}$

Do $E N | A C$, áp dụng định lí Talet:

$\frac{A N}{A B}=\frac{C E}{B C} \Leftrightarrow A N=\frac{C E}{B C} \cdot A B=\frac{B A \cdot A C}{B C}$

Từ đó ta có $A M=A N$. Đây chính là điều phải chứng minh.

Bài 4. Cho $x, y$ là hai số dương thỏa mãn: $x+y=1$. Chứng minh: $3(3 x-2)^{2}+\frac{8 x}{y} \geq 7$.

Lời giải. Do $x+y=1$ nên ta có điều phải chứng minh trở thành:

$3(3 x-2)^{2}+\frac{8 x}{1-x} \geq 7$

Bằng khai triển và biến đổi tương đương ta có: $(5-3 x)(3 x-1)^{2} \geq 0$. Bất đẳng thức này hiển nhiên đúng do $x<1$

Bài 5.Từ một điểm $A$ bên ngoài đường tròn $(O)$ vẽ các tiếp tuyến $A B, A C$ và cát tuyến $A E F$ ( $E F$ không đi qua $O, B$ và $C$ là các tiếp điểm). Gọi $D$ là điểm đối xứng của $B$ qua $O$. $D E, D F$ lần lượt cắt $A O$ tại $M$ và $N$. Chứng minh rằng :

a) Hai tam giác $\triangle C E F$ và $\triangle C M N$ đồng dạng.

b) $O M=O N$.

Lời giải.
a) Chứng minh rằng $\triangle C E F \backsim \triangle C M N$
Ta có: $A N | C D$ (cùng vuông góc với $B C$ )
$\angle D F C=\angle D B C=\angle B A O=\angle C A O$
Từ đó ta có: tứ giác $C F N A$ nội tiếp
Vậy: $\angle C F E=\angle C N M$
Ta có: $A N | C D$ nên: $\angle O M E=\angle C D E$
Do tứ giác $C D F E$ nội tiếp nên: $\angle C D E=\angle C F E$
Vậy: $\angle O M E=\angle C F E$
Mà: $\angle A C E=\angle C F E$ (Tính chất tiếp tuyến)
Từ đó ta có: $\angle A C E=\angle O M E$. Vậy tứ giác $A M E C$ nội tiếp. Nên: $\angle E A M=$ $\angle E C M$

Mà: $\angle E A M=\angle F C N$ (Tứ giác $A N F C$ nội tiếp)

Vậy: $\angle E C M=\angle F C N$

Từ đó ta có: $\angle E C F=\angle M C N$

Do: $\angle C F E=\angle C N M$ và $\angle E C F=\angle M C N$ nên ta có: $\triangle C E F \sim \triangle C M N$

b) Chứng minh rằng: $O M=O N$

Từ giác $A M E C$ nội tiếp: $\angle D C M=\angle C A F$

Từ giác $C F N A$ nội tiếp: $\angle C A F=\angle C N D$

Vậy ta có: $\angle D C M=\angle C N D$ và do: $A N | C D$. Vậy $C D N M$ là hình thang cân nên: $C N=D M$ và $\angle C N M=\angle D M N$

Do $A O$ là đường trung trực của $B C$ nên ta có: $\angle C N M=\angle B N M$ và $N C=N B$

Từ đó ta có: $\angle D M N=\angle B N M$ và $D M=B N$

Hay: $D M | B N$ và $D M=B N$. Từ đó $B M D N$ là hình bình hành. Mà $O$ là trung điểm của $B D$ nên $O$ cũng là trung điểm của $M N$ hay: $O M=O N$ (đpcm)

Bài 6. Chữ số hàng đơn vị trong hệ thập phân của số $M=a^{2}+a b+b^{2}$ là $0\left(a ; b \in N^{*}\right)$.

a) Chứng minh rằng $M$ chia hết cho 20 .

b) Tìm chữ số hàng chục của $M$.

Lới giải.

a) Chứng minh rằng: $M \vdots 20$

Do chữ số hàng đơn vị của $M$ là 0 nên ta có: $M \vdots 5$ và $M \vdots 2$

Giả sử cả $a$ và $b$ đều không chia hết cho 2 . Từ đó ta có:

$\left\{\begin{array} { l }{ a \equiv 1 } \\ { b \equiv 1 }\end{array} \Rightarrow \left\{\begin{array}{l}a^{2} \equiv 1 \\ b^{2} \equiv 1 \\ a b \equiv 1\end{array} \Rightarrow a^{2}+a b+b^{2} \equiv 1 \Rightarrow M \equiv 1(\bmod 2)\right.\right.$

Điều này vô lí: từ đó ta có trong hai số $a$ và $b$ phải có một số chia hết cho 2 .

Giả sử $a \vdots$ 2. Do $M \vdots 2$ nên $b^{2} \vdots 2$. Từ đó ta có: $b \vdots 2$

Vi $a \vdots 2$ và $b \vdots 2$ nên $M \vdots 4$

Do $M \vdots 4$ và $M \vdots 5$ nên ta có: $M \vdots 20$ (đpcm)

b) Nhận xét: Một số chính phương khi chia cho 5 dư 0,1 hoặc 4 .

Ta có $5 \mid a^{2}+a b+b^{2}$, suy ra $5 \mid 4 a^{2}+4 a b+4 b^{2}$ hay $5 \mid(2 a+b)^{2}+3 b^{2}$.

Từ nhận xét trên suy ra $5|b, 5| 2 a+b \Rightarrow 5 \mid a$. Do đó $a^{2}+a b+b^{2}$ chia hết cho $25 .$

Kết hợp với câu a ta có $M$ chia hết cho 100 nên chữ số hàng chục là số 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đáp án thi chọn Đội Tuyển Trường PTNK năm học 2013-2014

Đề thi và đáp án kì thi chọn đội tuyển Toán trường Phổ thông Năng khiếu – ĐHQG TPHCM được tổ chức vào tháng 10 năm 2013, chọn ra 6 học sinh dự thi kì thi HSG Quốc gia năm 2014. Các thí sinh từ các lớp 11, 12 (chủ yếu là học sinh chuyên toán), thực hiện bài thi trong 2 ngày, mỗi ngày 4 bài, mỗi bài 180 phút. Sau đây là đề thi và đáp án thực hiện bởi Star Education.

Ngày thi thứ 1

Bài 1. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thoả mãn

$$f(x^{3}+y+f(y))=2 y+x^{2} f(x), \forall x, y \in \mathbb{R}$$

Bài 2. Cho dãy $\left\{u_{n}\right\}$ thoả mãn $u_{1}=2013, u_{n+1}=u_{n}^{3}-4 u_{n}^{2}+5 u_{n} \forall n \in \mathbb{N}^{*}$. Tìm tất cả các số nguyên tố $p$ là ước của $\left(u_{2014}+2009\right)$ và $p \equiv 3(\bmod 4)$.

Bài 3. Trong một hội nghị khoa học có 5000 đại biểu tham dự, mỗi một đại biểu biết ít nhất một thứ tiếng. Một uỷ ban gồm một số đại biểu được gọi là “uỷ ban làm viẹc” nếu tất cả thành viên trong uỷ ban đều biết chung một thú tiếng; gọi là “uỷ ban thách thức” nếu không có hai thành viên nào của uỷ ban biết chung một thứ tiếng (uỷ ban có thểgồm 1 thành viên; uỷ ban này gọi là làm việc họ̆c thách thức đều được). Chứng minh rằng có thể chia các đại biểu thành 100 uỷ ban rời nhau (mỗi đại biểu thuộc một uỷ ban) sao cho các uỷ ban này họ̆c là uỷ ban làm việc hoặc là uỷ ban thách thức.

Bài 4. Tam giác $A B C$ có $B, C$ cố định còn $A$ di động sao cho $A B=A C$ và $\angle B A C>60^{\circ} .$ Đường thẳng đối xúng với $B C$ qua $A B$ cắt AC tai $P$. Trên đoạn $P C$ lấy $M$ sao cho $P M=P B$. Gọi $N$ là giao điểm của $A B$ với phân giác ngoài góc BCA. Chứng minh $M N$ luôn đi qua một điểm cố định.

Ngày thi thứ 2

Bài 5. Cho 2014 số thực $x_{1}, x_{2}, \ldots, x_{2014}$ thỏa mãn điều kiện $\sum_{i=1}^{2014} x_{i}=0$ và $\sum_{i=1}^{2014} x_{i}^{2}=2014$. Tìm giá trị lớn nhất của biểu thức $P=x_{1} x_{2} \cdots x_{2014}$.

Bài 6. Cho dãy số $u_{n}$ xác định bởi $u_{1}=1, u_{n+1}=\frac{u_{n}}{\sqrt{u_{n}^{2}+1}+\sqrt{2}}$ với mọi $n \in \mathbb{N}^{*}$. Tìm giới hạn $\lim \frac{u_{n+1}}{u_{n}}$.

Bài 7. Cho n nguyên dương và A là tập con khác rỗng của $X={1,2, \ldots, n}$.

  1. Tính giá trị của tổng $S(A)=\sum_{E C X} \cdot(-1)^{|E \cap A|}$,trong đó $E$ lấy trên tất cả các tập con của tập $X$ (kể cả tập rỗng).

  2. Cho $m \in \mathbb{N}^{*}$,xét $m$ tập con khác rỗng của $X$ là $A_{1}, A_{2}, \ldots, A_{m}$ và $m$ số nguyên khác không là $a_{1}, a_{2}, \ldots, a_{m}$ sao cho $a_{1}+a_{2}+\cdots+a_{m}<0$. Chứng minh tồn tại tập con $E$ của $X$ sao cho $\sum_{i=1}^{m}(-1)^{|E \cap A|} a_{i}>0$ (Kí hiệu $|A|$ chỉ số phần tử của tập $A$, số phần tử của tập rỗng là 0 ).

Bài 8. Cho tam giác $A B C$ nhọn có $H$ là trực tâm và $P$ là điểm di động bên trong tam giác $A B C$ sao cho $\angle B P C=\angle B H C$. Đường thẳng qua $B$ và vuông góc với $A B$ cắtPC tại $M$.Đường thẳng qua $C$ và vuông góc với $A C$ cắt $P B$ tại N. Chứng minh rằng trung điểm I của $M N$ luôn thuộc một đường cố định.

Hết

Giải

Bài 1.

Trong phương trình đã cho, thay $x=y=0$, ta có $f(f(0))=0$. \medskip

Lại thay $y=0$ thì $$f(f^3+f(0))=x^2f(x), \, \forall x.$$

Thay $y=f(0)$ thì $$f(x^3+f(0))=2f(0)+x^2f(x).$$

Từ đây suy ra $f(0)=0$. Thay $y=0$ vào đẳng thức đã cho ta được $f(x^3)=x^2f(x)$. Do đó ta có $$f(x^3+y+f(y))=2y+f(x^3) \text{ hay } f(x+y+f(y))=2y+f(x). \eqno{(*)}$$
Thay $y$ bởi $-y$, ta được $$f(x-y+f(-y))=-2y+f(x).$$
Với $x$ bất kì, ta lấy $2y=f(x)$ ta được $f(x-y+f(-y))=0$ suy ra $x-y+f(-y)=0$. Do đó, ta được $f(-x)=f(-y+f(-y))=-2y=-f(x).$
Từ đây suy ra
$$f(x+f(y)+f(f(y)))=2f(y)+f(x).$$
Trong $(*)$ thay $x=-y$ ta được $f(f(y))=2y+f(-y)=2y-f(y)$, kết hợp với đẳng thức trên, ta được $$f(x+2y)=2f(y)+f(x).$$ Đến đây cho $x=0$ ta được $f(2y)=2f(y)$ nên ta được $f(x+y)=f(x)+f(y)$, tức là $f(x)$ cộng tính.
Đến đây ta sẽ tính $f((x+1)^3+(x-1)^3)$ theo hai cách như sau

  • $f((x+1)^3+(x-1)^3)=f(2x^3+6x)=2x^2f(x)+6f(x).$
  • $f((x+1)^3+(x-1)^3)=(x+1)^2f(x+1)+(x-1)^2f(x-1)=(x+1)^2(f(x)+f(1))+(x-1)^2(f(x)-f(1))=2x^2f(x)+2f(x)+4xf(1).$

So sánh hai đẳng thức trên, ta được $f(x)=xf(1)=ax$ với mọi $x$. Thử lại ta được $a=1, a=-2$. \medskip

Vậy các hàm cần tìm là $f(x)=x, f(x)=-2x$.

Bài 2.

Ta có
$$\begin{aligned} u_{n+1}-2 & =(u_n-2)(u_{n-1}-1)^2 \\
& = (u_{n-2}-1)^2(u_{n-1}-1)^2(u_{n-2}-2) \\
&= (u_{n-1}-1)^2(u_{n-2}-1)^2 \cdots (u_2-1)^2(u_1-2). \end{aligned} $$

Do đó $$u_{2014}+2009= 2011 \left[ (u_{2013}-1)^2(u_{2012}-1)^2 \cdots (u_2-1)^2 +1 \right].$$

Gọi $B$ là biểu thức trong dấu ngoặc vuông thứ hai. Ta có bổ đề quen thuộc là nếu $a^2+b^2$ chia hết cho số nguyên tố $p=4k+3$ thì $a,b$ cùng chia hết cho $p.$ Từ đây suy ra số $B$ có dạng $a^2+1$ nên nó sẽ không có ước nguyên tố dạng $4k+3$. \medskip

Vậy $u_{2014}+9$ chỉ có một ước nguyên tố $p \equiv 3 \pmod{4}$ duy nhất là $2011$.

Bài 3. Trước hết, ta chứng minh bổ đề sau \medskip

Định lý Ramsey Với $s,t$ là các số nguyên dương, gọi $R(s,t)$ là số đỉnh ít nhất cần có của một graph để trong đó luôn tồn tại một tập độc lập $s$ đỉnh hoặc một graph con đầy đủ $t$ đỉnh. Khi đó
$$R(s,t)\le C_{s+t-2}^{s-1}. \eqno{(*)}$$

Chứng minh
Ta sẽ chứng minh rằng $$R(s,t)\le R(s-1,t)+R(s,t-1).$$
Để ý rằng với $s=1$ hoặc $t=1$ thì $R(s,t)=1$. Do đó, nếu chứng minh được đánh giá này thì chỉ cần dùng tính chất của tam giác Pascal để có $$R(s,t)\le C_{s+t-3}^{s-2}+C_{s+t-3}^{s-1}=C_{s+t-2}^{s-1}.$$
Đặt $n$ là vế phải của (*) và xét graph $G$ có $n$ đỉnh. Xét $v\in G$ thì

  • Nếu như có ít nhất $R(s,t-1)$ đỉnh kề với $v$. Khi đó, theo định nghĩa thì trong tập đỉnh đó, sẽ luôn có một tập độc lập $s$ đỉnh hoặc một graph con đầy đủ $t-1$ đỉnh, ghép thêm đỉnh $v$ vào thì thỏa mãn điều kiện của $R(s,t).$
  • Nếu như có ít nhất $R(s-1,t)$ đỉnh không kề với $v$. Tương tự trên, trong tập đỉnh đó, cũng sẽ có một một graph con đầy đủ $t$ đỉnh hoặc tập độc lập $s-1$ đỉnh, ghép thêm đỉnh $v$ vào thì thỏa mãn điều kiện của $R(s,t).$

    Từ đó, ta thấy graph $G$ này thỏa mãn điều kiện của $R(s,t)$ nên theo tính nhỏ nhất thì $R(s,t)\le n.$

Trở lại bài toán, \medskip

Xét graph đơn vô hướng $G=(V,E)$ đại diện cho hội nghị khoa học đã nêu, trong đó $V$ là tập hợp các đại biểu và hai đỉnh được nối nhau nếu hai đại biểu tương ứng quen nhau. Ta gọi $T$ là tập hợp đỉnh biểu diễn cho thành viên của ban tổ chức. \medskip

Khi đó một ủy ban gồm $5$ thành viên là đại diện nếu như đó là một graph đầy đủ, còn đó là thách thức nếu đó là graph không có cạnh. Ta gọi các graph con như thế là graph con “chuẩn”. \medskip

Trong các đỉnh $V\backslash T,$ ta xóa dần dần các graph con chuẩn đến khi không thực hiện được nữa. Ta gọi tập hợp còn lại là $S.$ Ta sẽ chứng minh rằng $S\cup T$ có thể phân hoạch thành các graph con chuẩn như trên. \medskip

Theo định lý Ramsey, rõ ràng $|S| \le C_{8}^{4}=70$. Xét một đỉnh $v \in S$ thì giả thiết, $v$ kề với cả $280$ đỉnh của $T$ nên ta chọn ra trong đó $4$ đỉnh để ghép với $v$ tạo thành một graph con “chuẩn”. Cứ như thế thực hiện cho đến hết các phần tử của $S$, còn lại bao nhiêu phần tử trong $T$ thì chia đều ra thành các graph con “chuẩn” là được. \medskip

Bài toán được giải quyết.

Bài 4.

Tam giác $PBM$ cân tại $P$ nên bằng biến đổi góc, ta có

$$\angle{PBM}=\angle{PMB} \Rightarrow 2\angle{ABC}-\angle{MBC}= \angle{ACB}+\angle{MBC}.$$

Do đó $\angle{ABC}=2\angle{MBC}$ nên $BM$ là tia phân giác của $\angle{ABC}.$ Theo tính chất đường phân giác thì
$$\frac{MC}{MA}=\frac{BC}{BA}=\frac{BC}{AC}.$$

Lại có $CN$ là phân giác ngoài của $\angle{ACB}$ nên ta cũng có
$\frac{NA}{NB}=\frac{CA}{CB}.$ Gọi $I$ là trung điểm của $BC$ thì $I$ là điểm cố định. \medskip

Xét tam giác $ABC$ với $I$ thuộc $BC$ , $M$ thuộc $AC$ và $N$ thuộc $AB$ với

$$\frac{IB}{IC} \cdot \frac{MC}{MA} \cdot \frac{NA}{NB}=1 \cdot \frac{BC}{AC} \cdot \frac{AC}{BC}=1$$

thì theo định lý Menelaus đảo, ta có $M , N , I$ thẳng hàng. \medskip

Vậy $MN$ luôn đi qua điểm $I$ cố định.

Bài 5. 

Rõ ràng có thể chọn giá trị các biến thích hợp để $P>0$ nên để tìm giá trị lớn nhất của $P$ thì ta chỉ xét các số ${{x}_{1}},{{x}_{2}},\ldots ,{{x}_{2014}}$ đều khác $0$ và số các số âm là chẵn. Không mất tính tổng quát, giả sử
${{x}_{1}}\ge {{x}_{2}}\ge \ldots \ge {{x}_{2m}}>0>{{x}_{2m+1}}\ge \ldots \ge {{x}_{2014}}.$
Đổi dấu các số ${{y}_{k}}=-{{x}_{k}}>0$ với $2m+1\le k\le 2014.$ Khi đó ta viết lại
$$\left\{ \begin{aligned}
& {{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{2m}}={{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{2n}}=A \\
& x_{1}^{2}+x_{2}^{2}+\cdots +x_{2m}^{2}+y_{1}^{2}+y_{2}^{2}+\cdots +y_{2n}^{2}=2014 \\
\end{aligned} \right.$$
trong đó $m+n=1007$ (ngoài ra $m,n>0$ vì các số đã cho không thể toàn bộ là dương hoặc toàn bộ là âm). Theo bất đẳng thức Cauchy-Schwarz thì
$$2014\ge \frac{{{A}^{2}}}{2m}+\frac{{{A}^{2}}}{2n} \text{ nên } {{A}^{2}}\le 4mn.$$
Lại theo bất đẳng thức AM-GM thì
$$\begin{aligned} P& =({{x}_{1}}{{x}_{2}}\ldots {{x}_{2m}})({{y}_{1}}{{y}_{2}}\ldots {{y}_{2n}})\le {{\left( \frac{A}{2m} \right)}^{2m}}{{\left( \frac{A}{2n} \right)}^{2n}} \\
&=\frac{{{A}^{2m+2n}}}{{{2}^{2m+2n}}{{m}^{2m}}{{n}^{2n}}}\le \frac{{{(4mn)}^{m+n}}}{{{2}^{2m+2n}}{{m}^{2m}}{{n}^{2n}}}={{\left( \frac{m}{n} \right)}^{n-m}}. \end{aligned}$$

Do $m,n$ khác tính chẵn lẻ nên với vai trò bình đẳng của $m,n,$ ta có thể giả sử $m<n$ nên $n-m\ge 1$ và $m\le 503.$ Khi đó, áp dụng bất đẳng thức Bernoulli thì

$${{\left( \frac{n}{m} \right)}^{n-m}}\ge 1+\left( \frac{n}{m}-1 \right)(n-m)=1+\frac{{{(n-m)}^{2}}}{m}\ge 1+\frac{1}{503}=\frac{504}{503}.$$
Suy ra $P\le {{\left( \frac{m}{n} \right)}^{n-m}}\le \frac{503}{504}.$ Đây chính là giá trị lớn nhất cần tìm, dấu bằng xảy ra khi
$m=503,n=504$ và $${{x}_{1}}={{x}_{2}}=\cdots ={{x}_{1006}}=\sqrt{\frac{504}{503}},{{x}_{1007}}={{x}_{1008}}=\cdots ={{x}_{2014}}=-\sqrt{\frac{503}{504}}.$$

Bài 6.

Xét hàm số $f(x)=\frac{x}{\sqrt{{{x}^{2}}+1}+\sqrt{2}}$ với $x\in \mathbb{R}$ thì $${f}'(x)=\frac{1+\sqrt{2+2{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}{{\left( \sqrt{2}+\sqrt{1+{{x}^{2}}} \right)}^{2}}}>0$$ nên hàm này đồng biến trên $\mathbb{R}.$
Dãy số đã cho được viết lại thành
$$\left\{ \begin{aligned}
& {{u}_{1}}=1, \\
& {{u}_{n+1}}=f({{u}_{n}}),n\ge 1 \\
\end{aligned} \right.$$ thì ${{u}_{1}}<{{u}_{2}}$ nên dễ dàng chứng minh quy nạp được rằng dãy này giảm. \medskip

Do dãy này bị chặn dưới bởi $0$ nên nó có giới hạn, đặt giới hạn đó là $L\ge 0$. Trong biểu thức xác định dãy, cho $n\to +\infty ,$ ta được $$L=\frac{L}{\sqrt{{{L}^{2}}+1}+\sqrt{2}}$$ nên $L=0.$
Từ đó suy ra
$$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{u}_{n+1}}}{{{u}_{n}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{\sqrt{u_{n}^{2}+1}+\sqrt{2}}=\frac{1}{1+\sqrt{2}}.$$

Bài 7.

(a) Nếu $A=X$ thì $$S(A)=\sum\limits_{E\subset X}(-1)^{|E|}=C_n^0-C_n^1+C_n^2-\cdots +(-1)^nC_n^n=0.$$

Còn nếu $A\neq X$, do $S(A)$ chỉ phụ thuộc vào số phần tử của $A$ nên không mất tính tổng quát, ta giả sử rằng $A=\{1,2,\ldots ,k\}$ với $k<n$. Khi đó, ta có
$$\begin{aligned} S(A) & =\sum_{E\subset X-\{k\}}(-1)^{|E\cap A|}+\sum_{E\subset X-\{k\}}(-1)^{|(E\cup\{k\})\cap A|} \\
& =\sum_{E\subset X-\{k\}}(-1)^{|E\cap A|}-\sum_{E\subset X-\{k\}}(-1)^{|E\cap A|}=0. \end{aligned} $$
Vậy $S(A)=0,\forall A\subset X$. \medskip

(b) Đặt $f(E)=\sum_{i=1}^{m}(-1)^{|E\bigcap A_i|}a_i$. Giả sử $f(E)\leq 0, \, \forall E$. Mà ta cũng có
$$\sum_{E\subset X}f(E)=\sum_{i=1}^ma_iS(A_i)=0.$$
Suy ra $f(E)=0,\, \forall E \subset X$, nhưng điều này là không thể vì $f(\varnothing)<0$. Vậy luôn tồn tại $E$ sao cho $f(E)>0$.

 

Bài 8. 

Vẽ đường kính $AA’$ của đường tròn $(ABC)$. Vì $A’B \perp AB$ nên $B,A’,M$ thẳng hàng. Tương tự thì $C,A’,N$ thẳng hàng. Giả sử
$BA’, CA’$ cắt lại $(BHC)$ lần lượt tại $E,F$. Mặt khác

$$\angle NPM=180{}^\circ -\angle BHC=\angle A=180{}^\circ -\angle B{A}’C=\angle M{A}’N$$

nên $PA’MN$ là tứ giác nội tiếp.

Ta sẽ chứng minh trung điểm của $A’F, A’E, MN$ là thẳng hàng. Theo định lý Menelaus đảo thì điều nào tương đương với $$ \dfrac{\overline{A’F}}{\overline{A’N}} = \dfrac{\overline{EA’}}{\overline{EM}} \Leftrightarrow \dfrac{\overline{A’F}}{\overline{A’E}} = – \dfrac{\overline{A’N}}{\overline{EM}} \Leftrightarrow \dfrac{A’B}{A’C} = \dfrac{A’N}{ME}. \eqno{(*)}$$

Vì $\angle BN{A}’=\angle CME$ và $\angle NB{A}’=\angle MCE$ nên hai tam giác $BN{A}’,CME$ đồng dạng với nhau. Do đó
$\frac{{A}’N}{ME}=\frac{{A}’B}{CE}$.
Mặt khác, bằng biến đổi góc, ta cũng có $C{A}’E$ cân tại $C$ nên $CE=C{A}’.$ Ta có được $$\frac{{A}’N}{ME}=\frac{{A}’B}{{A}’C}.$$
Do đó, khẳng định $(*)$ là đúng. Vậy nên điểm $I$ luôn nằm trên đường trung bình của tam giác $A’EF$ là đường cố định.

Bạn đọc có thể tìm thêm nhiều cách giải cho bài 8 này tại

link sau

Tham khảo từ sách “Tuyển tập đề thi môn Toán đội tuyển và dự tuyển trường PTNK”

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán

ĐỀ BÀI

BÀI 1. Cho phương trình $x^2-4mx+m^2-2m+1=0$ (1) với m là tham số .

a) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó hai
nghiệm không thể trái dấu.
b)  Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $|x_1 -x_2| =1$.

BÀI 2.  Giải hệ phương trình $\left\{ \begin{array}{l}
3{x^2} + 2y + 1 = 2z\left( {x + 2} \right)\\
3{y^2} + 2z + 1 = 2x\left( {y + 2} \right)\\
3{z^2} + 2x + 1 = 2y\left( {z + 2} \right)
\end{array} \right.$

BÀI 3. Cho $x, y$ là hai số không âm thỏa $x^3+y^3 < x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.
b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

BÀI 4.  Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

BÀI 5.  Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.

a) Chứng minh rằng các tứ giác $IFMK$ và $IMAN$ nội tiếp .
b) Gọi $J$ là trung điểm cạnh $BC$.Chứng minh rằng ba điểm $A,K,J$ thẳng hàng.
c) Gọi $r$ là bán kính của dường tròn $(I)$ và $S$ là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

BÀI 6.  Trong một kỳ thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kỳ thi , người ta nhận
thấy rằng: Với hai thí sinh bất kỳ luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải
được. Chứng minh rằng :

a) Nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà
mọi thí sinh đều giải được .
b) Có một bài toán mà có ít nhất 40 thí sinh giải được.

LỜI GIẢI

Nhìn vào đề này thấy độ phức tạp nhẹ nhàng, các câu dễ có thể một phát ăn ngay là bài 1, 3a, 4a, 4b ý đầu, 5a.

Tiếp theo là các câu khó hơn như 2,3b ý sau, 5b, 5c và khó nhằn nhất có lẽ là bài tổ hợp.

Bài hình trong đề này là một bài rất quen thuộc, do đó việc giải lại các bài toán đã học là một việc quan trọng. Chú ý những lỗi suy luận trong làm bài, các em tự làm và tự đánh giá điểm để xem được nhiêu điểm nhé, đáp án sẽ có sau vài ngày nữa.

Bài 1. (1,5 điểm) 

a) Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta ‘ = 3m^2+2m-1> 0 \Leftrightarrow m > \dfrac{1}{3}$ hoặc $m < – 1$. Khi đó tích hai nghiệm của phương trình $x_1x_2 = (m-1)^2 \geq 0$ nên phương trình không thể có hai nghiệm trái dấu.

b) Điều kiện để phương trình có hai nghiệm $x_1, x_2$ không âm:

$\Delta’ = 3m^2+2m-1\geq 0; S = x_1+x_2 \geq 0; P=x_1x_2 = m^2-2m+1 \geq 0$

$\Leftrightarrow m \geq \dfrac{1}{3} $
Ta có $|\sqrt{x_1}-\sqrt{2}| = 1 $
$\Leftrightarrow x_1 + x_2 – \sqrt{x_1x_2} = 1 $
$\Leftrightarrow 4m – 2\sqrt{m^2-2m+1} = 1 $
$\Leftrightarrow m = \dfrac{1}{2} (n), m = \dfrac{-1}{2} (l)$.

Bình luận Nhiều bạn xét $P \geq 0$ suy ra phương trình có hai nghiệm cùng dấu, cái này là suy luận sai, vì còn trường hợp bằng 0, tốt nhất là dùng phản chứng.

Bài 2. (1 điểm) Cộng ba phương trình lại ta có:
$3(x^2+y^2+z^2) + 2(x+y+z)+3 = 2(xy+yz+zx) + 4(x+y+z)$

$\Leftrightarrow 3(x^2+y^2+z^2)-2(xy+yz+xz) – 2(x+y+z)+3 = 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2 + (x-1)^2+(y-1)^2+(z-1)^2 = 0$
$\Leftrightarrow \left\{\begin{array}{l}x=1\\y=1\\z=1
\end{array} \right.$
Thử lại thấy $(1, 1,1)$ là nghiệm của hệ.

Bình luận: Bài này hệ hoái vị vòng quanh, bất đẳng thức là một trong những cách hay dùng.

Bài 3. (1,5 điểm) 

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.
Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. \Suy ra $0\leq x \leq 1$.
Do đó $0 \leq y \leq x \leq 1$.
b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.
Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.
Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.
Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Bình luận: Đây là bất đẳng thức tương đối dễ, chỉ dùng các biến đổi đơn giản, tuy vậy để làm được ý cuối trong điều kiện phòng thi thì không đơn giản.

Bài 4. (1,5 điểm) 

a)Ta có $M = a^2 + 3a + 1 = a(a+1) + 2a + 1$. Mà $a(a+1)$ là tích hai số tự nhiên liến tiếp nên chia hết cho 2, suy ra $M = a(a+1) + 2a +1$ là số lẻ, do đó mọi ước của $M$ đều là số lẻ.
b) Giả sử $M = a^2 + 3a + 1$ chia hết cho 5. Mà $M = (a-1)^2 + 5a$ nên $(a-1)^2$ chia hết cho 5. Suy ra $a = 5k + 1$ ($k$ là số tự nhiên).
Thử lại thấy với $a = 5k + 1$ thì M chia hết cho 5.
Giả sử $M = (a-1)^2+ 5a = 5^n$.
Nếu $n \geq $ ta có $M$ chia hết cho 25.
Từ M chia hết cho 5, tương tự trên ta có $a = 5k + 1$.
Khi đó $M = 25k^2 + 25k + 5 = 5(5k^2+5k+1)$. Ta có $5k^2 + 5k + 1$ không chia hết cho 5 nên M không chia hết cho 25. (mâu thuẫn).
Nếu $n = 1$. Khi đó $k = 0, a= 1$ và $A=5$ thỏa đề bài.
Đáp số $a = 1$.

Bình luận: Bài này thực chất là bài phương trình nghiệm nguyên, cách hay sử dụng là đồng dư, và đưa ra điều kiện của $a$, ta cũng có thể thử vài giá trị để đoán được nghiệm, từ đó cho ra cách giải.

Bên cạnh đó, nắm chắc một chút các phương pháp chia hết như biến đổi thành tổng.

Bài 5.  (3 điểm) 

a) Do $MN|| BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^\circ$ nên tứ giác $IFMK$ nội tiếp. Tam giác $AEF$ đều nên $\angle KFI = 30^\circ$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^\circ$ nên tứ giác $IMAN$ nội tiếp.
b) Ta có $\angle IMN = \angle INM = 30^\circ$ nên tam giác $IMN$ cân tại $I$.
Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.
b) Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF\cdot AF = r^2 \sqrt{3}$.

Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Bình luận. Đây là một mô hình quen thuộc của đường tròn nội tiếp, hầu hết các bạn đã gặp bài toán này, do đó nắm chắc các bài toán là một lợi thế.

Bài 6. (1,5 điểm) 

a) Kí hiệu các bài toán là BT1, BT2, BT3.
Từ giả thiết suy ra rằng mọi thí sinh đều giải được ít nhất một bài toán.
Ta giả sử, mọi thí sinh đều không giải được BT1. Khi đó mọi thí sinh đều giải được BT2 hoặc BT3. Nếu có một thí sinh chỉ giải được 1 bài toán, giả sử đó là bài toán 2. Khi đó theo đề bài thì mọi thí sinh khác đều giải được bài toán 2. Vậy mọi thí sinh đều giải được bài toán 2. Còn nếu tất cả các thí sinh đều giải được 2 bài toán thì cũng thỏa.

b) Ta xét hai trường hợp:
TH1: Có một thí sinh nào đó giải đúng một bài toán, theo câu a thì mọi thí sinh đều giải được bài toán đó, ta có điều cần chứng minh.
TH2: Mọi thí sinh đều giải được ít nhất 2 bài toán. Gọi $a$ là số thi sinh giải được cả 3 bài toán, $b$ là số thí sinh giải được BT1 và BT2, $c$ là số thí sinh giải được BT2 và BT3, $d$ là số thí sinh giải được BT1 và BT3.
Ta có $a + b+ c+ d = 60$.
Nếu $b, c, d > 20$, suy ra $b+c+d > 60$ vô lý. Do đó có một trong ba số $b, c, d$ phải nhỏ hơn hoặc bằng 20. Giả sử là $b \leq 20$. Suy ra $a+c+d \geq 40$.

Hay số thí sinh giải được bài BT3 không ít hơn 40. Điều cần chứng minh.

Bình luận: Đây là bài tổ hợp vừa phải, câu a, chỉ cần đọc kĩ giả thiết là làm được.

Câu b, là biểu đồ venn có thể suy nghĩ đến khi cần phân ra các tập rời nhau.

Bên cạnh đó phản chứng là phương pháp được sử dụng.

Nhìn chung đề này có nhiều câu dễ và quen thuộc, với những câu đó phải làm trước và làm thật chắc, khi đó mới có nhiều thời gian làm các câu khó.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2013

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2013

Bài 1.

a) Giải phương trình: $\sqrt{x+1}=x-2$

b) Tìm chiều dài của một hình chữ nhật có chu vi là $a$ (mét), diện tích là $a$ (mét vuông) và đường chéo là $3\sqrt{5}$ (mét).

Giải

a) Ta có:

$\sqrt{x+1}=x-2 \Leftrightarrow \left\{ \begin{array}{l} x-2 \ge 0 \\ x+1 = \left( x-2 \right) ^2 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ x^2 -5x+3 =0 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ \left[ \begin{array}{l} x=\dfrac{5+\sqrt{13}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{13}}{2} \,\, (l) \end{array}\right. \end{array}\right. $

Vậy $S= \left\{ \dfrac{5+\sqrt{13}}{2} \right\} $

b) Gọi kích thước của hình chữ nhật là $x$, $y$ (giả sử $x > y$). Ta có hệ:

$\left\{ \begin{array}{l} 2x+2y=a \\ xy=a \\ x^2 +y^2 =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x+y=\dfrac{a}{2} \\ xy=a \\ \dfrac{a^2}{4}-2a =45 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} a=18 \\ x+y =9 \\ xy=18 \end{array}\right.$

$\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=3 \end{array}\right. $

Vậy chiều dài hình chữ nhật là $6$.

Bài 2. Cho phương trình $\left( \sqrt{x}-1 \right) . \left( x^2 -5x +m-1 \right) =0 $ $(1)$

a) Giải phương trình $(1)$ khi $m=-1$

b) Tìm $m$ để phương trình $(1)$ có ba nghiệm phân biệt $x_1$, $x_2$, $x_3$ thỏa

$$x_1 + x_2 + x_3 +x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_3x_1 =31$$

Giải

a) Khi $m=-1$ ta có phương trình:

$ \left( \sqrt{x}-1 \right) \left( x^2 -5x-2 \right) =0 \,\, (\text{ĐK:} x\ge 0)$

$\Leftrightarrow \left[ \begin{array}{l} \sqrt{x}=1 \\ x^2-5x-2=0 \end{array}\right.$

$\Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=\dfrac{5+\sqrt{33}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{33}}{2} \,\, (l) \end{array}\right. $

b) Phương trình $(1)$ tương đương với $\left[ \begin{array}{l} x=1 \\ x^2 -5x +m-1=0 \,\, (2) \end{array}\right. $

Giả sử $x_1=1$ thì $x_2,x_3$ là nghiệm của $(2)$. Điều kiện phương trình $(1)$ có $3$ nghiệm phân biệt thì phương trình $(2)$ có hai nghiệm phân biệt dương khác $1$, tương đương với:

$\left\{ \begin{array}{l} \Delta = 25-4(m-1) >0 \\ S=5 >0 \\ P=m-1 >0 \\ 1-5+m-1 \ne 0 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} m<\dfrac{29}{4} \\ m>1 \\ m\ne 5 \end{array}\right. $

Khi đó $x_2 +x_3 =5$, $x_2x_3=m-1$.

Từ đó :$x_1 +x_2 +x_3 +x_1^2 +x_2^2 +x_3^2 +x_1x_2 +x_2x_3 +x_1x_3=31 $

$\Leftrightarrow 1+5+1+ \left( x_2+x_3 \right) ^2 -x_2x_3 +5=31 $

$\Leftrightarrow 1-m +37 =31 \Leftrightarrow m=7 \,\, (n) $

Bài 3.

a) Với $0<b<a$, hãy rút gọn biểu thức:

$$P=\left( \dfrac{1}{\sqrt{1+a}-\sqrt{a-b}}+ \dfrac{\sqrt{a+2+b}-\sqrt{a-b}}{b+1}-\dfrac{1}{\sqrt{1+a}+\sqrt{a-b}} \right) :\ \left( 1+ \sqrt{\dfrac{a+2+b}{a-b}} \right) $$

b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x-y \right) ^2 = \dfrac{1}{x} – \dfrac{1}{y} \\ x-y = xy-2 \end{array}\right. $

Giải

a) Ta có:

$P = \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}}{1+a-(a-b)} + \dfrac{\sqrt{a+b+2}-\sqrt{a-b}}{1+b}-\dfrac{\sqrt{1+a}-\sqrt{a-b}}{1+a-(a-b)} \right) :  \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{\sqrt{a-b}} \right) $

$= \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}+\sqrt{a+b+2}-\sqrt{a-b}-\sqrt{1+a}+\sqrt{a-b}}{1+b} \right) \cdot  \dfrac{\sqrt{a-b}}{\sqrt{a-b}+ \sqrt{a+b+2}} $

$= \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{1+b} \right) . \dfrac{\sqrt{a-b}}{\sqrt{a-b}+\sqrt{a+b+2}} $

$= \dfrac{\sqrt{a-b}}{1+b}$

b) Ta có:

$(x-y)^2 = \dfrac{1}{x} -\dfrac{1}{y} \Leftrightarrow (x-y)^2 = \dfrac{y-x}{xy}$

$\Leftrightarrow (x-y) \left( x-y+\dfrac{1}{xy} \right) =0 \Leftrightarrow \left[ \begin{array}{l} x=y \\ x-y+\dfrac{1}{xy} =0\end{array}\right. $

Với $x=y$, thế vào $(2)$ ta có $x^2=2 \Leftrightarrow \left[ \begin{array}{l} x=\sqrt{2} \Rightarrow y=\sqrt{2} \\ x=-\sqrt{2} \Rightarrow y= -\sqrt{2} \end{array}\right. $

Với $x-y+\dfrac{1}{xy}=0 \Rightarrow x-y= -\dfrac{1}{xy}$

Ta có $-\dfrac{1}{xy} =xy-2 \Leftrightarrow xy=1 \Rightarrow x-y=-1$, ta có:

$x(x+1)=1 \Leftrightarrow \left[ \begin{array}{l} x=\dfrac{-1+\sqrt{5}}{2} \Rightarrow y= \dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{-1-\sqrt{5}}{2} \Rightarrow y=\dfrac{1-\sqrt{5}}{2} \end{array}\right. $

Vậy hệ có $4$ nghiệm.

Bài 4. Có hai vòi nước $A$, $B$ cùng cung cấp cho một hồ cạn nước và vòi $C$ (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng $6$ giờ, hai vòi $A$, $B$ được mở; đến $7$ giờ vòi $C$ được mở; đến $9$ giờ thì đóng vòi $B$ và vòi $C$; đến $10$giờ $45$ phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi $B$ ngay từ đầu thì đến $13$ giờ hồ mới đầy. Biết lưu lượng vòi $B$ là trung bình cộng lưu lượng vòi $A$ và $C$, hỏi một mình vòi $C$ tháo cạn hồ nước đầy trong bao lâu?

Giải

Gọi $x$ là thời gian vòi $A$ làm đầy bể, $y$ là thời gian vòi $B$ làm đầy bể và $z$ là thời gian vòi $C$ làm cạn bể (hay đầy bể).

Ta có $\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z}$

Ta có $\dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1$ và $\dfrac{7}{x}-\dfrac{2}{z} =1$. Từ đó ta có:

$\left\{ \begin{array}{l} \dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z} \\ \dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1 \\ \dfrac{7}{x}-\dfrac{2}{z} =1 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=8 \\ z=12 \end{array}\right. $

Vậy thời gian vòi $C$  tháo cạn hồ là $12$ giờ.

Bài 5. Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.

a) Tính $BC$ và $CN$ theo $a$.

b) Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$. Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo $a$.

c) $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Giải

a) Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.

$\angle{BOC}=2\angle{BAC}=60^\circ $ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.

$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$

suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 + \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$

b) Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.

Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^\circ $ nên $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.

Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.

Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c) Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.

Do đó $\angle{KMI}=\angle{KFM}$. \hfill $(1)$

Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\angle{xMI}=\angle{IFM} $ \hfill $(2)$

Từ $(1)$ và $(2)$ suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.

Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^\circ $, mà $KF // ND$, suy ra $\angle{IND} =90^\circ $.

 

 

 

Đề thi và đáp án thi vào lớp 10 TPHCM 2013

I. Đề thi vào lớp 10 TPHCM 2013

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-5x+6 = 0$.
b) $x^2-2x-1=0$
c) $x^4+3x^2-4=0$
d) $2x-y=3$ và $ x+2y=-1 $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D): y = -x+2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ các giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{3}{{\sqrt x – 3}}} \right).\dfrac{{\sqrt x + 3}}{{x + 9}}$ với $x \ge 0,x \ne 9$
b) $B = 21{\left( {\sqrt {2 + \sqrt 3 } + \sqrt {3 – \sqrt 5 } } \right)^2} – 6{\left( {\sqrt {2 – \sqrt 3 } + \sqrt {3 + \sqrt 5 } } \right)^2} – 15\sqrt {15} $
Bài 4. Cho phương trình $8x^2-8x+m^2+1=0$ (1) ($x$ là ẩn số).

a) Định $m$ để phương trình (1) có nghiệm $x = \dfrac{1}{2}$.
b) Định $m$ để phương trình (1) có hai nghiệm $x_1, x_2$ thỏa điều kiện $x_1^4 -x_2^4 =x_1^3- x_2^3$.
Bài 5. Cho tam giác $ABC$ không có góc tù $(AB < AC)$, nội tiếp đường tròn $(O;R)$. $B, C$ cố định, $A$ di động trên cung lớn $BC$). Các tiếp tuyến tại $B$ và $C$ cắt nhau tại điểm $M$. Từ $M$ kẻ đường thẳng song song với $AB$, đường thẳng này cắt $(O)$ tại $D$ và $E$ ($D$ thuộc cung nhỏ $BC$), cắt $BC$ tại $F$, cắt $AC$ tại $I$.
a) Chứng minh $\angle MBC = \angle BAC$. Từ đó suy ra $MBIC$ nội tiếp.
b) Chứng minh $FI.FM = FD.FE$.
c) Đường thẳng $OI$ cắt $(O)$ tại $P$ và $Q$ với $P$ thuộc cung nhỏ $AB$. Đường thẳng $QF$ cắt $(O)$ tại $T$ khác $Q$. Chứng minh ba điểm $P, T, M$ thẳng hàng.
d) Tìm vị trí điểm $A$ trên cung lớn $BC$ sao cho tam giác $IBC$ có diện tích lớn nhất.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 5x+6=0$
$\Delta = 25-24 =1 $
$\Leftrightarrow  x=\dfrac{5-1}{2}=2 $ hoặc $x=\dfrac{5+1}{2} =3 $
b)  $x^2 -2x -1 =0 $
$\Delta ‘ = 1+1 =2 $
$\Leftrightarrow x= 1- \sqrt{2}  hoặc x=1+ \sqrt{2}  $
c) Đặt $u= x^2 \ge 0$ phương trình trở thành:
$u^2 +3u-4=0$

$\Leftrightarrow u=1  hoặc u=-4  (l)$
Do đó phương trình $\Leftrightarrow x^2 =1 \Leftrightarrow x= \pm 1 $
Cách khác:
Phương trình tương đương: $\left( x^2 -1 \right) \cdot \left( x^2 + 4 \right) =0$

$\Leftrightarrow x^2 -1 =0 \Leftrightarrow x= \pm 1$
d)  $2x-y=3  (1)$  và   $x+ 2y = -1  (2)$
$\Leftrightarrow  2x-y=3  (1) và   5x=5 (3)\left( (2)+2(1) \right) $
$\Leftrightarrow  x=1 $ và   $y=-1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $( \pm 2; 4 )$
$(D)$ đi qua $(1;1)$, $(0;2)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = -x + 2 \Leftrightarrow x^2 +x-2=0 $

$\Leftrightarrow  x=1 hoặc x=-2$
$y(1) = 1$, $y(-2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-2;4)$, $(1;1)$.
Bài 3. Thu gọn các biểu thức sau:
a) Với $x \ge 0;  x\ne 9$
$A=\left( \dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3} \right) \cdot \dfrac{\sqrt{x}+3}{x+9}$
$A= \dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left( \sqrt{x}+3 \right) \cdot \left( \sqrt{x}-3 \right) } \cdot \dfrac{\sqrt{x}+3}{x+9} $
$=\dfrac{1}{\sqrt{x}-3}$

b) $B=21 \left( \sqrt{2+ \sqrt{3}} + \sqrt{3- \sqrt{5}} \right) ^2 -6 \left( \sqrt{2-\sqrt{3}} + \sqrt{3+\sqrt{5}} \right) ^2 -15\sqrt{15}$
$= \dfrac{21}{2}\left( \sqrt{4+2\sqrt{3}} + \sqrt{6-2\sqrt{5}} \right) ^2 -3 \left( \sqrt{4-2\sqrt{3}} + \sqrt{6+2\sqrt{5}} \right) ^2 – 15\sqrt{15} $
$=\dfrac{21}{2} \left( \sqrt{3}+1+\sqrt{5}-1 \right) ^2 -3 \left( \sqrt{3} -1 + \sqrt{5}+1 \right) ^2 – 15\sqrt{15} $
$= \dfrac{15}{2}\left( \sqrt{3}+\sqrt{5}\right) ^2 – 15 \sqrt{15}=60$
Bài 4.

a) Phương trình (*) có nghiệm $x=\dfrac{1}{2} \Leftrightarrow 2-4+m^2+1=0$

$\Leftrightarrow m^2=1 \Leftrightarrow m= \pm 1$
b) $\Delta ‘ = 16-8m^2 -8 = 8 \left( 1-m^2 \right) $
Khi $m= \pm 1$ thì ta có $\Delta ‘ =0 $ tức là: $x_1=x_2$ khi đó $x_1^4 – x_2^4 = x_1^3 -x_2^3$ (thỏa điều kiện).
Để phương trình có hai nghiệm phân biệt thì $m^2 <1 \Leftrightarrow -1 < m < 1$.
Khi đó ta có:
$x_1^4 – x_2^4 = x_1^3-x_2^3 $

$\Leftrightarrow \left( x_1^2 -x_2 ^2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 -x_2 \right) \left( x_1 ^2 + x_2 ^2 +x_1 x_2 \right) $

$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 ^2 + x_2 ^2 + x_1 x_2 \right) \;\; \left( \text{Do } x_1 \text{ khác } x_2 \right) $
$\Leftrightarrow \left( x_1 + x_2 \right) \left[ \left( x_1 + x_2 \right) ^2 – 2x_1 x_2 \right] = \left( x_1 + x_2 \right) ^2 – x_1 x_2 $
$\Leftrightarrow S\left( S^2 -2P \right) = S^2 – P $
$\Leftrightarrow 1 \left( 1^2 -2P \right) = 1^2 – P  \left( Vì  S=1 \right) $
$\Leftrightarrow P=0 \Leftrightarrow m^2 + 1 =0  (VN)$

Vậy $m= \pm 1 $
Cách khác
Khi $\Delta \ge 0$ ta có:
$x_1 + x_2 =1$ và $x_1 x_2 =\dfrac{m^2+1}{8}$
$x_1 ^4 – x_2 ^4 = x_1 ^3 – x_2 ^3 \Leftrightarrow x_1 ^3 \cdot \left( x_1 -1 \right) – x_2 ^3 \left( x_2 -1 \right) =0 $
$\Leftrightarrow -x_1 ^3x_2 + x_1 x_2 ^3 =0 \;\; \left( \text{thế } x_1 -1 = -x_2 \text{ và } x_2 -1 = – x_1 \right) $
$\Leftrightarrow x_1 x_2 \left( x_1 ^2 – x_2 ^2 \right) =0$
$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 – x_2 \right) =0 \;\; \left( \text{vì } x_1 x_2 \ne 0 \right)$
$\Leftrightarrow x_1 = x_2 \;\; \left( \text{vì } x_1 + x_2 =1 \ne 0 \right) $
$\Leftrightarrow m= \pm 1$
Bài 5.


a) Ta có $\angle BAC = \angle MBC$ do cùng chắn cung $BC$
Và $\angle BAC = \angle MIC$ do $AB // MI$
Vậy $\angle MBC = \angle MIC$, nên bốn điểm $I$, $C$, $M$, $B$ cùng nằm trên đường tròn đường kính $OM$. (vì 2 điểm $B$, $C$ cùng nhìn $OM$ dưới một góc vuông)
b) Do 2 tam giác $FBD$ và $FEC$ đồng dạng nên $FB \cdot FC = FE \cdot FD$.
Và 2 tam giác $FBM$ và $FIC$ đồng dạng nên $FB \cdot FC = FI \cdot FM $.
Từ đó suy ra: $FI \cdot FM = FD \cdot FE$
c) Ta có $\angle PTQ = 90^ \circ$
$\triangle FIQ \backsim \triangle FTM$ ($\angle IFQ = \angle TFM$ và $\dfrac{FI}{FQ}= \dfrac{FT}{FM}$ vì $FI\cdot FM = FD \cdot FE = FT \cdot FQ$)
Nên $\angle FIQ = \angle FTM$ mà $\angle FIQ = \angle OIM = 90^ \circ $
Do đo $P$, $T$, $M$ thẳng hàng.
d) Ta có $BC$ không đổi nên $S_{IBC}$ lớn nhất khi và chỉ khi khoảng cách từ $I$ đến $BC$ lớn nhất.
Do đo $I$ trùng với $O$ thỏa yêu cầu bài toán vì $I$ nằm trên cung $BC$ của đường tròn đường kính $OM$. Khi $I$ trùng $O$ thì $\triangle ABC$ vuông tại $B$.
Vậy diện tích tam giác $IBC$ lớn nhất khi và chỉ khi $AC$ là đường kính của đường tròn $(O;R)$.

 

Đáp án toán PTNK 2013

Bài 1. (Toán chung)  Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a. Tính $BC$ và $CN$ theo $a$.
b. Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$.
Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo a.
c. $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Gợi ý

a.

  • Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.
  • $\angle{BOC}=2\angle{BAC}=60^0$ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$, suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$.

b.

  • Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.
  • Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^0$ nên 5 điểm $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.
  • Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.
  • Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c.

  • Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.
  • Do đó $\angle{KMI}=\angle{KFM}$. (1)
  • Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\angle{xMI}=\angle{IFM} $  (2)
  • Từ (1) và (2) suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^0$, mà $KF // ND$, suy ra $\angle{IND} =90^0$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.
a. Chứng minh rằng các tứ giác IFMK và IMAN nội tiếp .
b. Gọi J là trung điểm cạnh BC.Chứng minh rằng ba điểm A,K,J thẳng hàng.
c. Gọi r là bán kính của dường tròn (I) và S là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

Gợi ý

a.

  • Do $MN||BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^o$ nên tứ giác $IFMK$ nội tiếp.
  • Tam giác $AEF$ đều nên $\angle KFI = 30^o$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^o$ nên tứ giác $IMAN$ nội tiếp.

b.

  • Ta có $\angle IMN = \angle INM = 30^o$ nên tam giác $IMN$ cân tại $I$.
  • Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
  • Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.

c.

  • Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF.AF = r^2 \sqrt{3}$.
  • Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
  • Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
  • Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.