Tag Archives: CoBan

Phương trình bậc nhất

1. Phương trình một ẩn

Định nghĩa: Một phương trình với ẩn $x$ có dạng $A(x)=B(x)$, trong đó vế trái là $A(x)$ và vế phải là $B(x)$ là hai biểu thức của cùng một biến.

Ví dụ: $ 2(x+1)+6 = 4x$ là phương trình ẩn $x$.

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc có vô số nghiệm. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

2. Phương trình tương đương

Định nghĩa: Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

Ví dụ: $ x+3 = 0 \Leftrightarrow x=-3$

3. Phương trình bậc nhất một ẩn

Định nghĩa: Phương trình có dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \ne 0$, được gọi là phương trình bậc nhất một ẩn.

Ví dụ: $2x+1=0$ là phương trình bậc nhất một ẩn.

4. Hai quy tắc biến đổi phương trình

  • Quy tắc chuyển vế: Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
  • Quy tắc nhân với một số:
    • Trong cùng một phương trình, ta có thể nhân cả hai vế với cùng một số khác $0$.
    • Trong cùng một phương trình, ta có thể chia cả hai vế với cùng một số khác $0$.

5. Cách giải phương trình bậc nhất một ẩn $ax+b=0$
Phương trình bậc nhất một ẩn $ax+b=0$, được giải theo các bước sau:

  • Chuyển vế $ax=-b$
  • Chia hai vế cho $a$, ta được: $x=- \dfrac{b}{a}$
  • Kết luận nghiệm $S= \left \{ \dfrac{-b}{a} \right \}$

Tổng quát phương trình $ax+b=0$ $(a \ne 0)$ được giải theo các bước sau:

$ ax+b=0 $
$ \Leftrightarrow ax=-b $
$\Leftrightarrow a= \dfrac{-b}{a} $

Vậy $S= \left \{ \dfrac{-b}{a} \right \}$

6. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a) $2x-1 =1$
b) $x-7 = 4 $
c) $7x-35=0$
d) $ 4x-x -18=0$

Giải

a) $2x-1 =1  \Leftrightarrow 2x=2  \Leftrightarrow x=1 $6
Vậy $ S= \{1 \}$

b) $x-7 = 4  \Leftrightarrow x=11 $
Vậy $ S= \{11 \}$

c) $7x-35=0  \Leftrightarrow 7x = 35  \Leftrightarrow x=5 $
Vậy $ S= \{5 \}$

d) $4x-x -18=0  \Leftrightarrow 3x = 18  \Leftrightarrow x = 6$
Vậy $ S= \{6 \}$

Ví dụ 2: Giải các phương trình sau:

a) $x-6=8-x$
b) $3x-2=2x-3$
c) $7-2x = 22-3x$
d) $x-12-4x=25+3x-1$
e) $2x-1+2(2+x)=1$
f) $2(x+3)=2(4-x)+14$

Giải

a) $x-6=8-x$
$\Leftrightarrow 2x=14$
$\Leftrightarrow x= 7 $
Vậy $ S = \{ 7 \}$

b) $3x-2=2x-3$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

c) $7-2x = 22-3x$
$\Leftrightarrow x = 15 $
Vậy $ S = \{ 15 \}$

d) $x-12-4x=25+3x-1$
$\Leftrightarrow -6x = 36$
$\Leftrightarrow x= -6 $
Vậy $ S = \{ -6 \}$

e) $2x-1+2(2+x)=-1$
$\Leftrightarrow 2x-1 +4+2x = 1$
$\Leftrightarrow \ 4x = -4$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

f) $2(x+3)=2(4-x)+14$
$\Leftrightarrow 2x+6 = 8-2x +14$
$\Leftrightarrow 4x = 16$
$\Leftrightarrow x= 4 $
Vậy $ S = \{ 4 \}$

Ví dụ 3:

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.
b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24 $ nhận $x=5$ là nghiệm.
c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Giải

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.

Thay $x=-5$ vào phương trình, ta được:
$2(-5) -2m = -5 +9 $
$\Leftrightarrow -2m = 14$
$\Leftrightarrow m = -7 $
Vậy $m=-7$ là giá trị cần tìm.

b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24$ nhận $x=5$ là nghiệm.

Thay $x=5$ vào phương trình, ta được:
$ 4 \cdot 5 +m^2 = 24$
$\Leftrightarrow m^2 = 4$
$\Leftrightarrow m = \pm 2 $
Vậy $m=2$ và $m=-2$ là giá trị cần tìm.

c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Ta có:
$2(mx+5)+4 (x+m)=m $
$\Leftrightarrow 2mx+10 +4x+4m = m $
$\Leftrightarrow (2m+4)x=-3m -10 $

Biện luận:

  • Nếu $2m+4 \ne 0 \Leftrightarrow m \ne -2 \Rightarrow $ Phương trình có nghiệm $ x=\dfrac{-3m-10}{2m+4}$
  • Nếu $2m+4 =0 \Leftrightarrow m = -2 \Rightarrow $ Phương trình có dạng $ 0x = -4 \Rightarrow $ Phương trình vô nghiệm.

Kết luận:

  • Với $m \ne -2$, phương trình có tập nghiệm $S=\left \{ \dfrac{-3m-10}{2m+4} \right \}$
  • Với $m=-2$, phương trình vô nghiệm hay $S = \{ \varnothing \}$

 

7. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a) $ 12-6x = 0$
b) $ 3x+3=-3$
c) $ 4x+6 = 14$
d) $ x-7x -18 = 6$
e) $ 3x+ 9 – 6x =27 $
f) $ 2x+x+120 = -3 $

Đ/A:
a) $x = 2$
b) $ =-2$
c) $ x= 2$
d) $x=-4 $
e) $ x= – 6$
f) $x=-41$

Bài 2: Giải các phương trình sau:

a) $x – 5 = 3 – x $
b) $ 7 – 3 x = 9 – x $
c) $ \frac{-5}{9} x + 1 = \frac{2}{3} x – 10 $
d) $ 2 (x + 1) = 6 – 2 x $
e) $ 11 – 8 x – 3 = 5 x – 20 + x $
f) $ 3 – 4 y + 24 + 6 y = y + 27 + 3 y $
g) $ x + 2 x + 3 x = 3 x + 9 $
h) $ 4 – 2 x + 15 = – (9 x + 1 – 2 x) $

Đ/A:
a) $ x = 4 $
b) $ x = -1 $
c) $ x = 9 $
d) $ x = 1 $
e) $ x = 2 $
f) $ x = 0 $
g) $ x = 3 $
h) $ x = -4 $

Bài 3: 

a) Tìm giá trị của $m$, biết rằng phương trình $5x+2m=22 $ nhận $ x = 2$ làm nghiệm.
b) Tìm $m$ để phương trình $(m^2-m)x=2x+m^2-1$ có nghiệm duy nhất.
c) Tìm $m$ để phương trình $m(4mx-3m+2)=x(m+3)$ có nghiệm duy nhất.
d) Tìm $m$ để phương trình $ m^2(x-m)=x-3m+2$ vô nghiệm.

Đ/A:
a) $ m = 6 $
b) $ m \ne -1 $ và $ne m \ne 2 $. Tập nghiệm $ S = \left \{ \dfrac{m-1}{m-2} \right \} $
c) $ m \ne 1 $ và $ m \ne \dfrac{-3}{4} $. Tập nghiệm $ S = \left \{ \dfrac{3m^2-2m}{4m^2-m-3} \right \} $
d) $ m = \pm 1 $

Bài 4: Giải và biện luận phương trình sau, với $m$ là tham số:

a) $ (2m-4)x+2-m=0$
b) $ (m+1)x=(3m^2-1)x+m-1$

Đ/A:
a)
Nếu $m = 2$ thì phương trình có vô số nghiệm
Nếu $ m \ne 2 $ thì phương trình có tập nghiệm $ S = \left \{\dfrac{1}{2} \right \} $
b)
Nếu $ m = 1 $, phương trình vô số nghiệm
Nếu $ m = \dfrac{-2}{3} $, phương trình vô nghiệm
Nếu $ m \ne 1 $ và $ m \ne \dfrac{-2}{3} $, phương trình có nghiệm duy nhất với tập nghiệm $ S = \left \{ \dfrac{-1}{3m+2} \right \} $

Góc trong đường tròn (tt)

 

 

 

 

 

 

 

 

Ví dụ 1.
Tính số đo góc $\angle BAC$ và $\angle BDC$ như hình vẽ.

Giải
  •  Ta có $\angle BAC = \dfrac{1}{2} \angle BOC = 60^\circ$.
  • Và $\angle BDC 180^\circ – \angle BAC = 180^\circ – 60^\circ = 120^\circ$.

Ví dụ 2.
Trên đường tròn $(O;R)$ lấy các điểm $A, B$ sao cho $\text{sđ} \arc{AB} = 120^\circ$ và $C$ thuộc cung nhỏ cung ${AB}$ và $\text{sđ} \text{cung}{AC} = 30^\circ$.
a) Tính số đo cung $BC$.
b) Tính độ dài $AB, BC$ theo $R$.

Giải
  • Nếu $C$ thuộc cung nhỏ $AB$ thì $\text{sđ} \arc{AB} = \text{sđ} \arc{AC}+\text{sđ} \arc{CB}$, suy ra $\text{sđ} \arc{BC} = 120^\circ – 30^\circ = 90^\circ$.
    Gọi $\arc{AmB}$ là cung lớn $AB$. Suy ra $\text{sđ} \arc{AmB} = 240^\circ$.
  • Gọi $M$ là trung điểm $AB$ ta có $OM \bot AB$ và $OM$ là phân giác $\angle AOB$.\\
    $\angle AOB = \text{sđ} \arc{AOB} = 120^\circ$, suy ra $\angle AOM = 60^\circ$. Suy ra $AM = OA.\sin AOM = \dfrac{R\sqrt{3}}{2}$. Do đó $AB = 2AM = R\sqrt{3}$.
  • Tam giác $OBC$ vuông cân tại O nên $BC=\sqrt{OB^2+OC^2} = R\sqrt{2}$.

Ví dụ 3. Cho tam giác ABC nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Chứng minh $DB = DC$ và $OD \bot BC$.

Giải


Ta có $\text{sđ} \text{cung} {DB} = 2\angle DAB$, $\text{sđ} \text{cung} {DC} = 2\angle DAC$. Mà $\angle DAB = \angle DAC$(gt) nên $\text{sđ} {DB}= \text{sđ} {CD}$, suy ra $DB = DC$. \\
Ta có $OB = OC, DB = DC$ nên $OD$ là trung trực của $BC$, do đó $OD \bot BC$.

Ví dụ 4. Cho đường tròn tâm $O$ đường kính $AB$. Hai điểm $C, D$ khác phía đối với $AB$ sao cho $\angle CAB = 60^\circ, \angle DAB = 45^\circ$.
a) Tính $\angle ACB, \angle ADB$.
b) Tính $\angle DCB$ và $\angle CDB$.
c) Tính $\angle COD$.

Giải

a) Ta có $\angle ACB = 90^\circ$ (góc nội tiếp nửa đường tròn)\\
$\angle ADB = 90^\circ$ (góc nội tiếp nửa đường tròn).
b) Ta có $\angle DCB = \angle DAB$ (góc nội tiếp cùng chắn cung DB), mà $\angle DAB = 60^\circ$ nên $\angle DCB = 60^\circ$.\\
Ta có $\angle ADC = \angle ABC$(góc nội tiếp cùng chắc cung AC).\\
Mà $\angle ABC = 90^\circ – \angle CAB = 45^\circ$, nên $\angle ADC =45^\circ$.
b) Ta có $\angle ABD = 90^\circ – \angle DAB = 30^\circ$, suy ra $\angle CBD = \angle ABC + \angle ABD = 75^\circ$.\\
Khi đó $\angle COD = 2\angle CBD = 150^\circ$.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $\angle A = 60^\circ, \angle B = 75^\circ$. Tiếp tuyến tại $A$ cắt $BC$ tại $D$.
a) Tính $\angle DAB$.
b) Phân giác góc $BAC$ cắt $BC$ tại $E$. Chứng minh tam giác $DAE$ cân.
c) Chứng minh $DA^2 = DB\cdot DC$.

Giải

a) Ta có $\angle ACB = 180^\circ – \angle ABC – \angle BAC = 45^\circ$. \\
Suy ra $\angle DAB = \angle ACB$ (góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung đó). Suy ra $\angle DAB = 45^\circ$.
b) Ta có $\angle DEA = \angle ACB + \angle EAC = 45^\circ + 30^\circ = 75^\circ$.\\
Và $\angle DAE = \angle DAB + \angle BAE = 75^\circ$.\\
Do đó $\angle DAE = \angle DEA$, suy ra tam giác $DAE$ cân tại $D$.
c)  Xét tam giác $DAB$ và tam giác $DCA$ có $\angle DAB$ chung và $\angle DAB = \angle DCA$, suy ra $\triangle DAB \backsim \triangle DCA \Rightarrow \dfrac{DA}{DC} = \dfrac{DB}{DA} \Rightarrow DB\cdot DC = DA^2$.

Bài tập rèn luyện

Bài 1. Hai tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $M$. Biết $\angle AMB = 60^\circ$.
a) Tính số đo góc ở tâm tạo bởi hai bán kính $OA, OB$.
b) Tính số đo mỗi cung $AB$ (cung lớn và cung nhỏ).

Bài 2. Cho tứ giác $ABCE$ nội tiếp đường tròn $(O)$. $BE$ và $AC$ cắt nhau tại $I$. Cho $\angle ABE = 40^\circ, \angle BAE = 100^o$.

a)Tính $\angle AOE$ và $\angle OAE$.
b)Tính $\angle ACE$.
c) Tính $\angle BCE$.
d) Chứng minh $IA\cdot IC = IB\cdot IE$.

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$, thỏa $\widehat {BAC} = {75^0},\widehat {ACB} = {45^0}$.
a) Tính $\widehat {AOB}$ và $AB$.
b) Tính $AC$.
c) Tính diện tích tam giác $ABC$.

Bài 4. Cho tam giác $ABC$ có $\angle BAC = 60^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Vẽ đường kính $BD$.
a) Tính các góc của tam giác $BCD$.
b) Tính $BC$ theo $R$.
c) Gọi $H$ là trực tâm tam giác $ABC$. Chứng minh $AH = R$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $D$ là điểm
chính giữa cung $AC$ không chứa $B$. Ta kẻ dây $DE$ song
song với cạnh $AB$, cắt $BC$ tại $I$. Chứng tỏ các tam giác
$ICE$ và $IBD$ cân.

Một số phương trình lượng giác thường gặp (tt)

I. Lý thuyết

3. Phương trình đẳng cấp với $\sin x$ và $\cos x$

Dạng: $a\sin^2 x+b \sin x \cos x+ c \cos^2 x=d$  (*)

(hoặc $a\cos^2 x+b \sin x \cos x+ c \sin^2 x=d$.)

Cách làm:

  • Với $\cos x=0 \Rightarrow \sin x=1$ nếu (*) đúng thì $\cos x=0$ là nghiệm.

  • Với $\cos x \ne 0$, chia cả hai vế của phương trình cho $\cos^2 x$, ta được:

$(a-d)\tan^2 x+b \tan x+ c-d =0$

Ví dụ 3. Giải phương trình:

$2\sin^2 x-5\sin x\cos x+3\cos^2 x=0$

Đáp số

+ Nếu $\cos x =0$ thì phương trình trở thành $\sin x=0$, không xảy ra.

+ Nếu $\cos x \ne 0$, chia hai vế phương trình cho $\cos^2$ ta được:

$2\tan^2 x-5\tan x+3=0 \Leftrightarrow \tan x=1$ hoặc $\tan x=\dfrac{3}{2}$.

Với $\tan x=1 \Leftrightarrow x=\dfrac{\pi}{4}+k\pi, k \in \mathbb{Z}$

Với $\tan x =\dfrac{3}{2}$, có số $\alpha$ để $\tan \alpha =\dfrac{3}{2}$ ta có: $\tan x=\tan \alpha \Leftrightarrow x=\alpha + k\pi .$

Vậy phương trình có các nghiệm: $x=\dfrac{\pi}{4}, x=\alpha+k\pi, k \in \mathbb{Z}$.

4. Phương trình đối xứng với $\sin x$ và $\cos x$

Dạng: $a(\sin x \pm \cos x)+b\sin x\cos x=c$

Cách làm:

Đặt: $t=\sin x+ \cos x \Rightarrow \sin x\cos x=\dfrac{t^2-1}{2}.$ Điều kiện: $|t| \le \sqrt{2}$

Hoặc $t=\sin x- \cos x \Rightarrow \sin x\cos x=\dfrac{1-t^2}{2}.$ Điều kiện: $|t| \le \sqrt{2}$

Ví dụ 4. Giải phương trình: $\sin 2x -12(\sin x-\cos x)+12=0$

Đáp số

Đặt: $t= \sin x -\cos x,$ với $-\sqrt{2} \le t \le \sqrt{2}$

$\Rightarrow t^2=1-\sin 2x \Rightarrow \sin 2x=1-t^2$

PT $\Leftrightarrow 1-t^2-12t+2=0 \Leftrightarrow -t^2-12t+13=0 \Leftrightarrow t=1$ hoặc $t=-13$ (loại).

$\Rightarrow \sin x-\cos x =1 \Leftrightarrow \sin \left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}$

$\Leftrightarrow \left[ \begin{matrix} x-\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\ x-\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi \end{matrix} \right.$

$\Leftrightarrow  \left[ \begin{matrix} x=\dfrac{\pi}{2}+k2\pi\\x=\pi +k2\pi \end{matrix} \right. k \in \mathbb{Z}$

II. Bài tập

  1. Giải các phương trình sau:

a) $\cos^2 x-\sqrt{3}\sin2x=1+\sin^2 x$

b) $1+2\sin 2x=6\cos^2 x$

c) $\cos^3 x-4\sin^3 x-4\cos x \sin^2 x+\sin x=0$

d) $\sqrt{2}\sin^3 \left(x+\dfrac{\pi}{4}\right)=2\sin x$

  1. Giải các phương trình sau:

a) $\sin 2x-4(\cos x-\sin x)=4$

b) $\sin 2x+\sqrt{2}\sin \left(x-\dfrac{\pi}{4}\right)=1$

c) $-1+\sin^3 x+\cos^3 x=\dfrac{3}{2}\sin 2x$

d) $\sqrt{2}(\sin x+\cos x)=\tan x+\cot x)$

Đáp số

1. a) $x=k\pi; x=-\dfrac{\pi}{3}+k\pi$

b) $x=\dfrac{\pi}{4}+k\pi; x= \arctan (-5)+k\pi$

c) $x=-\dfrac{\pi}{4}+k\pi; x=\pm \dfrac{\pi}{6}+k\pi$

d) $x=-\dfrac{\pi}{4}+k\pi$

2. a) $x=\dfrac{\pi}{2}+k2\pi; x=\pi+k2\pi, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{2}+k2\pi; x=\pi+k2\pi; x=\dfrac{\pi}{4}+k\pi, k \in \mathbb{Z}$

c) $x=k2\pi; x=\dfrac{\pi}{2}+k2\pi; x=\varphi-\dfrac{\pi}{4}+k2\pi;$

$x=\dfrac{3\pi}{4}-\varphi +k2\pi, k \in \mathbb{Z}$ với $\sin \varphi=\dfrac{\sqrt{3}-2}{2}$.

d) $x=\dfrac{\pi}{4}+k2\pi$

 

 

Một số phương trình lượng giác thường gặp

I. Lý thuyết

1. Phương trình thuần nhất với một hàm số lượng giác

  • Bậc nhất: $a\sin x+b=0$ (hoặc $a\cos x+b=0, a\tan x+b=0, a\cot x+b=0$).
  • Bậc hai: $a\sin^2 x+b\sin x+c=0$

(hoặc $a\cos^2 x+b\cos x+c=0, a\tan^2 x+b\tan x+c=0, a\cot^2 x+b\cot x+c=0)$

Cách giải: Đặt ẩn phụ $t=\sin x (t=\cos x, t=\tan x, t=\cot x)$, đưa về phương trình bậc nhất hoặc bậc hai theo $t$.

Chú ý: Với ẩn phụ $t=\sin x  (t=\cos x)$ thì phải có điều kiện $|t| \le 1$.

Ví dụ 1. Giải các phương trình sau:

a) $\sqrt{3} \cot (3x-30^o)-1=0$

b) $\cot^2 x+(\sqrt{3}-1)\cot x-\sqrt{3}=0$

c) $6\sin^2 x+5\cos x-4=0$

d) $\cos 2x+3\sin x -1=0$

e) $\dfrac{\sqrt{3}}{\cos^2 x}=3\tan x+\sqrt{3}$

Đáp số

a) $\sqrt{3} \cot (3x-30^o)-1=0 \Leftrightarrow \cot (3x-30^o)=\dfrac{1}{\sqrt{3}}=\cot 60^o$

$\Leftrightarrow 3x-30^o=60^o+k180^o \Leftrightarrow x=30^o+k60^o (k \in \mathbb{Z})$

b) Điều kiện: $x \ne k\pi$. Ta có: $\cot^2 x+(\sqrt{3}-1)\cot x-\sqrt{3}=0$

$\Leftrightarrow \left[ \begin{matrix} \cot x=1=\cot \dfrac{\pi}{4} \\ \cot x= -\sqrt{3}=\cot \left(-\dfrac{\pi}{6} \right) \end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{4}+k\pi \\ x=-\dfrac{\pi}{6}+k\pi \end{matrix} \right. (k \in \mathbb{Z})$

c) $6\sin^2 x+5\cos x-4=0 \Leftrightarrow 6(1-\cos^2x)+5\cos x -4=0$

$\Leftrightarrow 6\cos^2 x -5\cos x -2 =0 (*).$

Đặt $t=\cos x$, điều kiện $|t| \le 1$. Phương trình (*) trở thành:

$ 6t^2-5t-2=0 \Leftrightarrow t=\dfrac{5-\sqrt{73}}{12}$ (thỏa mãn) hoặc $t=\dfrac{5+\sqrt{73}}{12}$ (loại vì không thỏa điều kiện).

Do đó: $\cos x=\dfrac{5-\sqrt{73}}{12}=\cos \alpha \Leftrightarrow x=\pm \alpha +k2\pi$ với $\cos \alpha =\dfrac{5-\sqrt{73}}{12}.$

Vậy phương trình đã cho có các họ nghiệm: $x=\pm \alpha +k2\pi, k \in \mathbb{Z}$.

c) $\cos 2x +3\sin x -1=0 \Leftrightarrow 1-2\sin^2 x+3\sin x-1=0$

$\Leftrightarrow \sin x(-2\sin x+3)=0 $

$\Leftrightarrow \left[ \begin{matrix} \sin x=0 \ (nhận) \\ \sin x=\dfrac{3}{2}  \   (loại) \end{matrix} \right.$

$\Leftrightarrow \sin x=0 \Leftrightarrow x=k\pi$

Vậy phương trình có nghiệm: $x=k\pi, k \in \mathbb{Z}$.

e) Điều kiện: $x \ne \dfrac{\pi}{2}+k\pi.$ Vì $\dfrac{1}{\cos^2 x}=1+\tan^2 x$ nên:

$\dfrac{\sqrt{3}}{\cos^2 x}=3\tan x+\sqrt{3}$

$\Leftrightarrow \sqrt{3} (1+\tan^2 x)=3\tan x+\sqrt{3} \Leftrightarrow \sqrt{3} \tan^2 x-3\tan x =0$

Đặt $t=\tan x$, khi đó phương trình đã cho trở thành:

$ \sqrt{3} t^2-3t=0 \Leftrightarrow t=0$ hoặc $t=\sqrt{3}$

+ Với $t=0$ ta có $\tan x =0 \Leftrightarrow x=k\pi, k \in \mathbb{Z}$.

+ Với $t=\sqrt{3}$ ta có $\tan x=\sqrt{3}=\tan \dfrac{\pi}{3} \Leftrightarrow x=\dfrac{\pi}{3}+k\pi, k \in \mathbb{Z}.$

Vậy phương trình có các họ nghiệm: $x=k\pi; x=\dfrac{\pi}{3}+k\pi.$

2. Phương trình bậc nhất với $\sin x$ và $\cos x$

$a \sin x+b\cos x =c  \   (1)$

($a,b$ là các số đã cho khác 0).

Cách giải. Chia vế của (1) cho $\sqrt{a^2+b^2}$ ta được:

$(1) \Leftrightarrow \dfrac{a}{\sqrt{a^2+b^2}}\sin x+ \dfrac{b}{\sqrt{a^2+b^2}} \cos b =\dfrac{c}{\sqrt{a^2+b^2}}$     (2)

Vì $\left(\dfrac{a}{\sqrt{a^2+b^2}}\right)^2+\left(\dfrac{b}{\sqrt{a^2+b^2}}\right)^2=1$ nên có số $\alpha$ sao cho:

$\cos \alpha =\dfrac{a}{\sqrt{a^2+b^2}}, \sin \alpha=\dfrac{b}{\sqrt{a^2+b^2}},$ phương trình (2) trở thành:

$\sin x \cos \alpha+\sin \alpha \cos x=\dfrac{c}{\sqrt{a^2+b^2}}$

$\Leftrightarrow \sin (x+\alpha)=\dfrac{c}{\sqrt{a^2+b^2}} $       (3)

Phương trình (3) có nghiệm $\Leftrightarrow \left|\dfrac{c}{\sqrt{a^2+b^2}} \right| \le 1 \Leftrightarrow a^2+b^2 \ge c^2.$

Khi đó (3) $\Leftrightarrow \sin (x+\alpha)=\sin \beta$ (trong đó $\sin \beta=\dfrac{c}{\sqrt{a^2+b^2}}$

Ví dụ 2. Giải các phương trình sau:

a) $5\sin x-12\cos x =13$

b) $\sqrt{3} \sin x-\cos x=2$

c) $\left(\sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)^2+\sqrt{3}\cos x=2$

d) $4\cos^2 x+3\sin 2x=7$

Đáp số

a) Chia hai vế phương trình cho $\sqrt{a^2+b^2}=\sqrt{5^2+12^2}=13$ ta được:

$\dfrac{5}{13}\sin x-\dfrac{12}{13}\cos x=1 (*).$ Đặt $\cos \varphi =\dfrac{5}{13}$ với $0< \varphi<\dfrac{\pi}{2}.$

Khi đó $\sin \varphi =\dfrac{12}{13}.$ Phương trình (*) trở thành:

$\sin x\cos x-\sin x \cos x=1 \Leftrightarrow \sin (x-\varphi)=1 \Leftrightarrow x-\varphi =\dfrac{\pi}{2}+k2\pi$

Vậy phương trình có nghiệm: $x=\varphi +\dfrac{\pi}{2}+k2\pi, k \in \mathbb{Z}$.

b) $\sqrt{3} \sin x-\cos x=2 \Leftrightarrow \dfrac{\sqrt{3}}{2}\sin x-\dfrac{1}{2}\cos x=1$

$\Leftrightarrow \sin x\cos \dfrac{\pi}{6}-\sin\dfrac{\pi}{6}\cos x=1 \Leftrightarrow \sin\left(x-\dfrac{\pi}{6}\right)=1$

$x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi \Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi, k \in \mathbb{Z}$.

c) $\left(\sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)^2+\sqrt{3}\cos x=2 \Leftrightarrow \sin^2 \dfrac{\pi}{2}+\cos^2 \dfrac{\pi}{2}+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}+\sqrt{3}\cos x=2$

$\Leftrightarrow \sin x+\sqrt{3}\cos x=1 \Leftrightarrow \dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x=\dfrac{1}{2} \Leftrightarrow \sin \left(x+\dfrac{\pi}{3}\right)=\sin\dfrac{\pi}{6}$

$\Leftrightarrow \left[\begin{matrix} x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\ x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi \end{matrix} \right.$

$\Leftrightarrow \left[\begin{matrix} x=-\dfrac{\pi}{6}+k2\pi\\ x=\dfrac{\pi}{2}+k2\pi \end{matrix} \right. (k\in \mathbb{Z})$.

d) $4\cos^2 x+3\sin 2x=7 \Leftrightarrow 4\left(\dfrac{1+\cos 2x}{2}\right)+3\sin 2x=7$

$\Leftrightarrow 2\cos 2x+3\sin 2x=5$

Ta thấy phương trình có $a^2+b^2=13<c^2=25$.

Vậy phương trình đã cho vô nghiệm.

II. Bài tập

1. Giải các phương trình sau:

a) $\dfrac{2\sin x+1}{2\cos x-\sqrt{3}}=0$

b) $\sqrt{\sin x}.(2\cos x+1)=0$

c) $\cos 2x \sin\left(\dfrac{\pi}{6}-3x\right)-\sin2x\sin\left(\dfrac{\pi}{6}-3x\right)=\dfrac{\sqrt{3}}{2}$

2. Giải các phương trình sau:

a) $-2\sin^2 x+5\sin x+3=0$

b) $\cos 2x+\sin^2 x+2\cos x+1=0$

c) $\dfrac{\sqrt{3}}{\sin^2x}=3\cot x+\sqrt{3}$

3. Giải các phương trình sau:

a) $\sin x -\sqrt{3}\cos x=\sqrt{3}$

b) $(\sqrt{3}-2)\cos 3x+\sin 3x-2=0$

c) $\sin(x+45^o)+\cos(x+45^o)=\sqrt{2}\sin 4x$

Đáp số

1. a) $x=\dfrac{7\pi}{6}+k2\pi$

b) $x=\dfrac{2\pi}{3}+k2\pi; x=k\pi$

c) $x=-\dfrac{\pi}{30}+k\dfrac{2\pi}{5}; x=-\dfrac{\pi}{10}+k\dfrac{2\pi}{5}$

2. a) $x=-\dfrac{\pi}{6}+k2\pi; x=\dfrac{7\pi}{6}+k2\pi$

b) $x=\pi+k2\pi$

c) $x=\dfrac{\pi}{2}+k\pi; x=\dfrac{\pi}{6}+k\pi$

3. a) $x=\dfrac{5\pi}{6}+k2\pi$

b) Vô nghiệm.

c) $x=30^o+k120^o; x=18^o+k72^o$.

 

 

 

 

Phương trình lượng giác cơ bản

I. Lý thuyết

Với $\alpha$ là một số cho trước.

  • $\sin x =\sin \alpha \Leftrightarrow \left[ \begin{matrix} x=\alpha +k2\pi\\x=\pi – \alpha +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\cos x =\cos \alpha \Leftrightarrow \left[ \begin{matrix} x=\alpha +k2\pi\\x=- \alpha +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\tan x=\tan \alpha \Leftrightarrow x=\alpha +k\pi, k \in \mathbb{Z}$
  • $\cot x=\cot \alpha \Leftrightarrow x= \alpha +k\pi, k \in \mathbb{Z}$

Với điều kiện $m \in [-1;1]$ ta có:

  • $\sin x =m \Leftrightarrow \left[ \begin{matrix} x=\arcsin m +k2\pi\\x=\pi – \arcsin m +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\cos x =m \Leftrightarrow \left[ \begin{matrix} x=\arccos m +k2\pi\\x= – \arccos m +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$

Nếu $|m|>1$ thì các phương trình $\sin x=m, \cos x=m$ vô nghiệm.

Ví dụ 1. Giải các phương trình sau:

a) $2\sin x-1=0$

b) $2\cos(x-15^o)+1=0$

c) $\sqrt{3} \tan x=3$

d) $3\cot  (2x+1)=-1$

Đáp số

a) $2\sin x-1-0 \Leftrightarrow \sin x=\dfrac{1}{2}=\sin \dfrac{\pi}{6}$

$\Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{6} +k2\pi\\x=\pi – \dfrac{\pi}{6} +k2\pi \end{matrix} \right.  $

$ \Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{6} +k2\pi\\x=\dfrac{5 \pi}{6} +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$

b) $2\cos (x-15^o)+1=0 \Leftrightarrow \cos (x-15^o)=-\dfrac{1}{2}=\cos 120^o$

$\Leftrightarrow \left[ \begin{matrix} x-15^o=120^o+k360^o\\x-15^o=-120^o+k360^o \end{matrix} \right.$

$\Leftrightarrow \left[\begin{matrix} x=135^o+k360^o\\ x=-105^o+k360^o \end{matrix} \right. (k \in \mathbb{Z})$

c) $\sqrt{3} \tan x=3 \Leftrightarrow \tan x=\sqrt{3}=\tan \dfrac{\pi}{3} $

$\Leftrightarrow x= \dfrac{\pi}{3}+k\pi, k \in \mathbb{Z}.$

d) $3\cot (2x+1)=-1 \Leftrightarrow \cot (2x+1)=\dfrac{-1}{3} \Leftrightarrow 2x+1=arccot \left(-\dfrac{1}{3}\right)+k\pi   $

$\Leftrightarrow x=-\dfrac{1}{2}+\dfrac{1}{2} arccot \left(-\dfrac{1}{3} \right)+\dfrac{k\pi}{2}, k \in \mathbb{Z}$

II. Bài tập

1. Giải các phương trình sau

a) $\sin 4x -\sin x=0$

b) $\cot (x+3)=\tan (x-1)$

c) $\sin 2x=\cos \left( \dfrac{\pi}{3}-x \right)$

d) $\sin 4x+\cos x =0$

Đáp số

a) $x=\dfrac{\pi}{5}+k2\pi; x=\dfrac{k2\pi}{3}, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{4}-1+k\dfrac{\pi}{2}, k \in \mathbb{Z}$

c) $ x=\dfrac{\pi}{6}+k2\pi; x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}, k \in \mathbb{Z}$

d) $x=-\dfrac{\pi}{6}+\dfrac{k2\pi}{3}; x=-\dfrac{\pi}{10}+\dfrac{k2\pi}{5}, k \in \mathbb{Z}$

2. Giải  các phương trình sau:

a) $\dfrac{2\sin x-1}{\sqrt{\cos x}}=0$

b) $\dfrac{(2\cos 2x-1)(\sin x-3)}{\sqrt{\sin x}}=0$

Đáp số

a) $x=\dfrac{\pi}{6}+k2\pi, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{6}+k2\pi; x= \dfrac{5\pi}{6}+k2\pi , k \in \mathbb{Z}$.

3. Giải các phương trình sau với điều kiện của nghiệm đã cho:

a) $\sin 2x -1=0$ với $0 <x<2\pi$;

b) $\tan (x+30^o)+1=0$ với $-90^o<x<360^o$

Đáp số

a) Tập nghiệm của phương trình $S=\left\{ \dfrac{\pi}{12}; \dfrac{13\pi}{12}; \dfrac{5 \pi}{12}; \dfrac{17\pi}{12} \right\}$

b) Tập nghiệm của phương trình  $S=\left\{-75^o; 105^o; 285^o \right\}$

Phương trình bậc nhất: $ax + b = 0$.

Giải và biện luận phương trình $ax + b = 0$. 

  • Nếu $a \neq 0$ thì phương trình có nghiệm duy nhất $x = \dfrac{-b}{a}$.
  • Nếu $a = 0, b \neq 0$ thì phương trình vô nghiệm.
  • Nếu $a = 0, b = 0$ thì mọi $x \in \mathbb{R}$ đều là nghiệm.

Ví dụ 1. Giải và biện luận phương trình $(m-1)x + 2m – 3 = 0$.

Giải
  • Khi $m -1 \neq 0 \Leftrightarrow m = 1$, phương trình có nghiệm $x = \dfrac{3-2m}{m-1}$.
  • Khi $m = 1$, ta có phương trình $0x -1 = 0$ (Vô nghiệm).

Ví dụ 2. Giải và biện luận phương trình $(m^2-3m + 2)x – m^2 +1 = 0$.

Giải
  • Khi $m^2 – 3m + 2 \neq 0 \Leftrightarrow m \neq 1, m\neq 2$ thì phương trình có nghiệm $x = \dfrac{m^2-1}{m^2-3m+2} = \dfrac{m+1}{m-2}$.
  • Khi $m^2 – 3m + 2 = 0 \Leftrightarrow m = 1$ hoặc $m = 2$.
    • Với $m = 1$ thì $ 1-m^2 = 0$ nên mọi $x \in \mathbb{R}$ đều là nghiệm.
    • Với $m = 2$ thì $1 – m^2 \neq 0$ nên phương trình vô nghiệm.

Ví dụ 3. Tìm $m$ để phương trình $\dfrac{3mx – 1}{x-m} =2 $ có nghiệm duy nhất.

Giải

Điều kiện $x \neq m$. Phương trình tương đương với $3mx – 1 = 2(x-m) \Leftrightarrow (3m-2)x = -2m+1$.

Phương trình có nghiệm duy nhất khi và chỉ khi $3m – 2 \neq 0$ và $x = \dfrac{-2m-1}{3m-2} \neq m \Leftrightarrow m \neq \pm \dfrac{1}{\sqrt{3}}$.

Kết luận: $m \neq \dfrac{2}{3}, \dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}$.

Bài tập

Bài 1. Giải và biện luận các phương trình sau:

a) $(m^2-4m+2)x=m-2$
b) $m^2(x-1)=mx-1$
c) $m(x-m+3)=m(x-2)+6$
d) $m(mx-1)=4x+2$

Bài 2. Định $m$ để các phương trình sau vô nghiệm
a) $(4m^2-2)x=1+2m-x$
b) $(m+1)^2x-2=(4m+9)x-m$
c) $\dfrac{x-2}{x-3}=\dfrac{x}{x+m}$
d) $\dfrac{x+1}{x-m+1}=\dfrac{x}{x+m+2}$

Bài 3. Định $m$ để phương trình sau có nghiệm
a) $m^2(x-1)=4x-3m+2$
b) $\dfrac{2x+m}{x-1}-\dfrac{x+m-1}{x}=1$
c) $\dfrac{x+m}{x+3}=\dfrac{x}{x+1}$

[WpProQuiz 4]

 

 

 

 

 

 

 

 

 

Phép nhân đa thức với đa thức – Phần 1

Muốn nhân đa thức với đa thức ta nhân từng đơn thức của đa thức này với đa thức kia.

Cho $A, B, C, D$ là các đơn thức. Khi đó:

$(A+B)\cdot (C+D) = A(C+D) + B(C+D)$

Ví dụ 1. Thực hiện các phép tính sau:

a) $(x-1)(x+2)$;
b) $(2-x)(3x+2)$;
c) $-4x(x-2)(x+2)$;

Giải
a)$(x-1)(x-2) = x(x-2) + (-1)(x-2)$

$= x^2 – 2x +(-x+2) = x^2-3x+2$

b)$(2-x)(3x+2) = 2(3x+2)+(-x)(3x+2)$

$= 6x+4+(-3x^2-2x) = -3x^2+4x+4$

c)$-4x(x-2)(x+2) = -4x[x(x+2)+(-2)(x+2)]$

$= -4x(x^2+2x-2x-4) = -4x(x^2-4)$

$= -4x^3+16x$

Ví dụ 2. Thực hiện các phép nhân.

a) $(2x^2-y)(y+3x)$

b)$(3xy^2+4x-3y)(x+6y)$

c)$(3x^2-2z-6y)(x+z)$

Giải
a) $(2x^2-y)(y+3x) = 2x^2(y) +(-y)(y) + (2x^2)(3x)+(-y)(3x)$

$ = 2x^2y -y^2 + 6x^3 -3xy$

b) $(3xy^2+4x-3y)(x+6y) = $

$=3xy^2(x) + 4x(x) +(-3x)(x ) +3xy^2(6y)+4x(6y) -(3y)(6y) $

$ = 3x^2y^2-3x^2+18xy^3+24xy-18y^2$

c)$(3x^2-2z-6y)(x+z) =$

$=2x^2 \cdot x +(-2z)\cdot x +(-6y)\cdot x + (3x^2)\cdot z +(-2z)\cdot z +(-6y)\cdot z$

$ = 2x^3 – 2xz -6xy + 3x^2z – 2z^2 – 6yz$

[WpProQuiz 2]

 

 

 

 

 

Nhân đơn thức với đa thức- Phần 1

Quy tắc.

Muốn nhân đơn thức với đa thức, ta lấy đơn thức nhân với từng đơn thức của đa thức và cộng các kết quả lại.

Nếu $A$ là đơn thức $B, C$ là các đơn thức thì ta có:

 

Ví dụ 1. Thực hiện các phép nhân sau:

a) $2x(3x +\dfrac{3}{2})$.

b) $3y(3- 4y)$

Gợi ý
  • $2x (3x+ \dfrac{3}{2}) $
  • $ = 2x\cdot (3x) + 2x \cdot \dfrac{3}{2}$
  • $=6x^2 + 3x$.
  • $3y(3-4y)$
  • $=3y \cdot 3 + 3y\cdot (-4y)$
  • $=9y – 12y^2$.

Ví dụ 2.Thực hiện các phép toán sau:

a) $-2x^3y(2x^2-3y+5xy)$
b) $\dfrac{2}{3}x^2y(3xy-x^2+y).$

Gợi ý

a)

  • $-2x^3y(2x^2-3y+5xy)$
  • $=-2x^3y\cdot(2x^2)+(-2x^3y)\cdot (-3y) + (-2x^3y)(5xy)$
  • $=-4x^5y +6x^3y^2-10x^4y^2$

b)

  • $\dfrac{2}{3}x^2y(3xy-x^2+y)$
  • $=\dfrac{2}{3}x^2y\cdot(3xy) +\dfrac{2}{3}x^2y\cdot(-x^2)+\dfrac{2}{3}x^2y\cdot(y)$
  • $=2x^3y^2 -\dfrac{2}{3}x^4y +\dfrac{2}{3}x^2y^2$.

Bài tập tương tự.

Bài 1. Thực hiện phép tính: a

a) $-3x(4x + 2)$.

b) $-\dfrac{1}{3}y^2(6y  – 9y^2)$.

c) $-2x^2y(4x^2 – 5xy^2 + z)$.

d) $3x^2y^2(5x – 4y^2 + 2xy)$.

Đáp số

a) $-12x^2-6x$

b) $-2y^3+3y^4$

c) $-8x^4y+10x^3y^3 -2x^2yz$.

d) $15x^3y^2-12x^2y^4+6x^3y^3$

Bài 2. Thực hiện phép tính

a) $-2x^2y(4x-5y^2+z)$

b) $-\dfrac{3}{4}xy (-8x^2y^2 + 3x^4y-12)$

c) $2z^2y(zx+3xyz – 5y^2)$

d) $\dfrac{1}{2}xy(\dfrac{4}{3}x^2 – \dfrac{9}{2}xy^2)$

Đáp số

a) $-8x^3y + 10x^2y^3 -2x^2yz$

b) $6x^3y^3 -\dfrac{9}{4}x^5y^2 +9xy$

c) $2xyz^3+6xy^2z^3 – 10y^3z^2$

d) $\dfrac{2}{3}x^3y – 9x^2y^3$