Tag Archives: HinhHoc

Sách tham khảo hình học

Hình hình học phẳng là một trong các nội dung quan trọng trong các kì thi học sinh giỏi các cấp, đặc biệt trong các năm gần đây bài hình học chiếm khá nhiều, và nhiều bài toán hay được đề xuất, các em học sinh có thể tìm được nhiều sách, nhiều tài liệu hay một cách dễ dàng, nhân đây mình cũng muốn giới thiệu một số sách hình học cho các bạn đam mê và muốn tham khảo.

Sách tham khảo trung học phổ thông

Sách tham khảo trung học cơ sở

Góc định hướng và ứng dụng

Góc định hướng. 

Góc giữa hai tia. Cho hai tia $Ox, Oy$, ta cho tia $Ot$ lúc đầu trùng với $Ox$ và cho $Ot$ quay quanh $O$, đến khi $Ot$ trùng với $Oy$, ta nó $Ot$ tạo ra một góc lượng giác (góc định hướng) có tia đầu là $Ox$ tia cuối là $Oy$, kí hiệu $(Ox, Oy)$.

Chú ý: Với hai tia $Ox, Oy$ thì có vô số góc lượng giác có tia đầu $Ox$ tia cuối $Oy$ và hơn kém nhau $k2 \pi$.

Góc giữa hai đường thẳng. Cho hai đường thẳng $a, b$ cắt nhau tại $O$, ta cho đường thằng $t$ qua $O$ lúc đầu trùng với $O$, quay $t$ quanh $O$ đến khi $t$ trùng $a$, ta nói $t$ tạo ra góc giữa đường thẳng $a, b$, kí hiệu là $(a;b)$.

Các góc lượng giác tạo giữa $a, b$ hơn kém nhau $k\pi$.

Một số tính chất thường sử dụng. 

Tính chất 1. Hệ thức Charles
a) Cho $a, b, c$ là ba đường thẳng bất kì thì $(a, b)=(a, c)+(c, b)(\bmod \pi)$
b) $\mathrm{Cho} O x, O y, O z$ là ba tia thì $(O x, O y)=(O x, O z)+(O z, O y)(\bmod 2 \pi)$

Tính chất 2. (Điều kiện 3 điểm thẳng hàng) Cho 3 điểm $A, B, C$ và đường thẳng $d$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi $(A B, d)=(A C, d)(\bmod \pi)$

Tính chất 3. (Điều kiện 4 điểm đồng viên) Cho 4 điểm $A, B, C, D .$ Khi đó $A, B, C, D$ cùng thuộc một đường tròn khi và chỉ khi $(A C, A D)=(B C, B D)(\bmod \pi)$.

Tính chất 4. Nếu $a$ là phân giác của góc tạo bởi hai đường thẳng $b, c$ thì $(b, a)=-(c, a)=\frac{1}{2}(b, c)\left(\bmod \frac{\pi}{2}\right)$

Tính chất 5. Nếu $a$ và $a^{\prime}$ đỗi xứng nhau qua đường thẳng $d$ thì $(a, d)=-\left(a^{\prime}, d\right)(\bmod \pi)$.

Tính chất 6 . Nếu $a^{\prime}$ là ảnh của $a$ qua phép quay với góc quay $\alpha$ thì $\left(a, a^{\prime}\right)=\alpha(\bmod \pi)$

Các ví dụ

Bài 1. (Định lý Migel) Cho tam giác $A B C$; Gọi $D, E, F$ lần lượt là các điểm thuộc các đường thẳng $B C, A C$ và $A B$
a) Chứng minh rằng các đường tròn ngoại tiếp các tam giác $A E F, B F E, C D E$ cùng đi qua một điểm $M$.
b) Nếu $D, E, F$ thẳng hàng thì điểm $M$ thuộc đường tròn ngoại tiếp của tam giác $A B C$; hơn nữa tâm các đường tròn $(A B C),(A E F),(B F E),(C D E)$ cùng thuộc một đường tròn và đường tròn đó qua $\mathrm{M}$.

Lời giải

a) Gọi $M$ là giao điểm của $(A E F)$ và $(B D F)$, ta chứng minh $C, D, E, M$ đồng viên.
Ta có $(E M ; E C)=(E M ; E A)=(F M ; F A)(\bmod \pi)($ Do $A, E, M, F$ đồng viên $)$
Mà $(F M, F A)=(F M ; F B)=(D M: D B)(\bmod \pi)($ Do $D, M, F, B$ đồng viên $)$
Suyra $(E M ; E C)=(D M ; D B)=(D M ; D C)(\bmod \pi)$
Do đó $M, E, C, D$ đồng viên.

b) $\operatorname{Tacó}(A M: A F)=(E M ; E F)(\bmod \pi),(A M: A F)=(C M ; C B)(\bmod \pi)$ và $(C M ; C B)=(E M ; E D)(\bmod \pi)$
Do đó $E, D, F$ thẳng hàng khi và chỉ khi $(E M ; E F)=(E M: E D)$ khi và chỉ khi $(A M ; A F)=(C M ; C B)$ khi và chỉ khi $A \cdot B, C, M$ đồng viên.
Gọi $O, O_{a}, O_{b}, O_{c}$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $A B C, A E F, B D F, C D E$. Ta chứng minh $O, M, O_{a}, O_{b}, O_{c}$ đồng viên.
Thật vậy ta có $\left(O_{a} M ; O_{a} O_{b}\right)=(E M ; E F)=(C M ; C D)=\left(O M ; O O_{b}\right)(\bmod \pi)$. Do đó $O_{a}, M, O, O_{b}$ đồng viên. Tương tự $O_{a}, M, O, O_{c}$ đồng viên. Suy ra điều cần chứng minh.

Bài 2. (Đường thẳng Steiner – Điểm Antisteiner)

a) Cho tam giác $A B C$ nội tiếp đường tròn $(O), M$ là một điểm thuộc $(O)$. Gọi \$latex $A^{\prime}, B^{\prime}, C^{\prime} \$$ lần lượt là điểm đối xúng của $M$ qua $B C, A C, A B$. Chứng minh rằng $A^{\prime}, B^{\prime}, C^{\prime}$ cùng thuộc một đường thẳng và đường thẳng đó qua trực tâm $\mathrm{H}$ của tam giác $A B C$.
b) Ngược lại lấy $d$ là một đường thẳng qua $H$. Gọi $d_{a}, d_{b}, d_{c}$ lần lưọt là các đường thẳng đối xứng của d qua BC, $A C, A B$. Chúng minh rằng $d_{a}, d_{b}, d_{c}$ đồng qui tai một điểm thuộc đường tròn $(O)$.

Lời giải

a) Gọi $H_{c}, H_{b}$ là điểm đõi xứng của $H$ qua $A B: A C$. Ta có $H_{c}, H_{b} \in(A B C)$
a) $\left(H C^{\prime} ; H B^{\prime}\right)=\left(H C^{\prime} ; H A\right)+\left(H A ; H B^{\prime}\right)=-\left(H_{c} M ; H A\right)-\left(H_{b} A ; H_{b} M\right)=0($ $\bmod \pi)$
Vầy $H, B^{\prime}, C^{\prime}$ thẳng hàng.

b) Ta thấy $H_{a} \in d_{a}, H_{b} \in d_{b} \cdot$ Gọi $M$ là giao điểm của $d_{a}, d_{b}$. Ta chứng minh $M \in(A B C)$. Ta có:
$$
\begin{aligned}
&\left(M H_{a} ; M H_{b}\right)=\left(A^{\prime} H_{a} ; A^{\prime} C\right)+\left(A^{\prime} C ; C A\right)+\left(C A ; M H_{b}\right) \\
&=-\left(A^{\prime} H ; B C\right)+(C B ; C A)-\left(C A ; B^{\prime} H\right) \\
&=\left(B C ; A^{\prime} H\right)+\left(B^{\prime} H ; C A\right)+(C B ; C A) \\
&=2(B C ; C A)(\bmod \pi) \\
&=\left(C H_{a} ; C H_{b}\right)(\bmod \pi)
\end{aligned}
$$
Do đó $M \in(A B C)$.

Bài 3. 
a) Cho tam giác $A B C$ nội tiếp đương tròn $(O), P Q$ là đương kính. Chứng minh rằng đường thẳng Simson của tam giác ABC úng vói các điểm $P, Q$ vuông góc nhau.
b) Tổng quát hơn, nếu $P Q$ là dây cung bất kì thì góc tạo bởi hai đương thẳng Simson ứng với $P$ và $Q$ bằng nủa số đo chung nhỏ $P Q$.

Lời giải

b)
$$
\begin{aligned}
(\mathrm{DI} ; \mathrm{JK}) &=(\mathrm{DI} ; \mathrm{DP})+(\mathrm{DP} ; \mathrm{AC})+(\mathrm{AC} ; \mathrm{CJ})+(\mathrm{CJ} ; \mathrm{JK})(\bmod \pi) \\
&=(\mathrm{CI} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{QC} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{CQ} ; \mathrm{CK})+(\mathrm{CK} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+(\mathrm{AC} ; \mathrm{CB})+(\mathrm{CQ} ; \mathrm{CA})(\bmod \pi) \\
&=(\mathrm{CQ} ; \mathrm{CP})(\bmod \pi) \square
\end{aligned}
$$

Bài 4. (Chọn đội dự tuyển PTNK 2008) Cho tam giác ABC. Các điểm $M, N, P$ lần luợt thuộc các đt $B C, C A$, AB sao cho tam giác MNP và tam giác $A B C$ đồng dạng. Chúng minh ràng tâm đưòng tròn ngoại tiếp của tam giác $B C$ là thục tâm của tam giác $M N P$.

Lời giải

Theo định lý Migel thì các đường tròn (ANP), (BMP) và (CMN) cắt nhau tại $O$. Ta có
$$
\begin{aligned}
(\overline{O B} ; \overrightarrow{O C}) &=(\overline{O B} ; \overline{O P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=(\overline{M B} ; \overline{M P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \quad(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M N})-(\overline{M N} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{M N})+(\overline{M N} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{B P} ; \overline{C N})=2(A B ; A C) \quad(\bmod \pi)
\end{aligned}
$$
Từ đó ta có $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $\mathrm{ABC}$.

Mặt khác
$$
\begin{aligned}
(O N ; P M) &=(O N ; O P)+(O P ; P M) & &(\bmod \pi) \\
&=(A N ; A P)+(B O ; B M) & &(\bmod \pi) \\
&=(A C ; A B)+(B O ; B C) & &(\bmod \pi) \\
&=\frac{\pi}{2} \quad &(\bmod \pi)
\end{aligned}
$$
Suy ra $\mathrm{ON} \perp \mathrm{PM}$. Chứng minh tương tự ta có $\mathrm{MO} \perp \mathrm{NP}$. Hay $\mathrm{O}$ là trực tâm của tam giác $\mathrm{ABC}$.

Bài 5. Cho hai hình vuông $A B C D$ và $A E F G$ cùng hướng, $A, B, E$ không thẳng hàng. Chứng minh rẳng $B E, C F, D G$ đồng quy.

Lời giải

 

Xét phép quay tâm A góc quay $(A B: A D)=90^{\circ}$. Khi đó $B$ biên thành $D, E$ biên thành $G$. Gọi $H$ là giao điểm của $\mathrm{BE}$ và $\mathrm{GD}$. Khi đó $(B E ; G D)=(A B ; A D)=(C B ; C D)=90^{\circ}(\bmod \pi)$. Suy ra $A, H, B, C, D$ đồng viên.
Từ đó ta có $(H B: H C)=(A B: A C)(\bmod \pi)$,
Hơn nữa, $(H G ; H E)=(A G ; A E)=90^{\circ}(\bmod \pi)$ nên $A, E, H, G, F$ cũng đồng viên. Suy ra $(H E ; H F)=(A B: A C)(\bmod \pi)$
Ta có $(H B ; H C)=(H E ; H F)(\bmod \pi)$ mà $H, E, B$ thẳng hàng nên $H, C, F$ thẳng hàng, hay $B E . C F, D G$ đồng quy.

Bài tập rèn luyện

Bài 1 (VMO 2006) Cho tứ giác lồi $A B C D$. Xét một điểm $M$ di động trên đường thẳng $A B$ sao cho $M$ không trùng với $A$ và B. Gọi $N$ là giao điểm thứ hai khác $M$ của đường tròn đi qua 3 điểm $M, N, C$ và đường tròn đi qua 3 điếm $M, B$, D. Chứng minh:
a) Điểm $\mathrm{N}$ di động trên một đường tròn cố định.
b) Đường thẳng MN luôn đi qua một điểm cố định.

Bài 2. Cho tứ giác lồi $A B C D$ nội tiếp một đường tròn. Gọi $P, Q, R, S$ là giao điểm của các đường phân giác ngoài của Các góc ADB và ADB, DAB Và DBA, ACD và ADC, DAC và DCA tương ứng. Chứng minh rẳng $P, Q, R, S$ đồng viên.

Bài 3. Cho tứ giác $A B C$. Chứng minh rằng đường tròn Euler của các tam gíác $A B C, A C D, A B D$ và $B C D$ cùng đi qua một điểm.

Bài 4. Cho hai đường tròn (O) và (O’) cắt nhau tại $A$ và B. Một đường thẳng qua A cắt $(O)$ và $\left(O^{\prime}\right)$ tai $M$ và N. Một đường thẳng qua $B$ cắt $(O)$ và $(O)$ tai $P$ và Q. Chứng minh $M P / / N Q .$

Bài 5. Cho tam giác $A B C$, đưòng cao $A H$ (H thuộc BC). Gọi $D, E$ là hình chiếu của H trên $A B$ và $A D$, đương thẳng $D E$ cắt $B C$ tại $F$. Goi $O_1, O_2$ là tâm đương tròn ngoại tiếp các tam giác BDF và CEF; gọi I là trung điểm $\mathrm{AH}$ và $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $A B C$. Chúng minh rằng 4 điểm $I, O, O_1$ và $O_2$ cùng thuộc một đương tròn.

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Tứ giác

Định nghĩa. Tứ giác $ABCD$ là hình gồm các đoạn thẳng $AB, BC, CD, DA$.

Định lí. Tổng 4 góc trong một tứ giác bằng $360^\circ$.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$ có $\angle A = 70^\circ$. Các tia phân giác $BD, CE$ của các góc $B$ và $C$ cắt nhau tại điểm $I$; các tia phân giác ngoài của các góc $B$ và $C$ cắt nhau tại điểm $J$.

a)Tính số đo các góc của tứ giác $BICJ$.
b) hứng minh $A$, $I$, $J$ là ba điểm thẳng hàng.
c) Tứ giác $ABIC$ có phải là tứ giác lồi không? Vì sao?

Bài 2. Cho tứ giác $ABCD$. Gọi $I, J$ theo thứ tự là giao điểm của các phân giác trong và phân giác ngoài của các góc $A, B$.

a) Chứng minh rằng $\angle AIB = \dfrac{1}{2}(\angle C+ \angle D)$; $\angle AJB = \dfrac{1}{2}(\angle A + \angle B)$.
b) Chứng minh rằng $\angle AIB $ và $\angle AJB$ là hai góc bù nhau.

Bài 3. Cho tứ giác $ABCD$ có $\angle ACB = \angle ADB = 25^\circ, \angle BDC = 60^\circ, \angle ACD = 30^\circ$, góc ngoài của góc $A$ bằng $55^\circ$. Tính số đo các góc $\angle CAB, \angle DBA, \angle ABC$.

Bài 4.  Cho tứ giác $ABCD$. Chứng minh rằng:

a) $AC + BD < AB + BC + CD + DA$.
b) $AB + BC+ CD + DA < 2(AC + BD)$.

Bài 5.  Cho tứ giác $ABCD$ có $\widehat A + \widehat C = 180^\circ$, các tia $DA, CB$ cắt nhau tại $E$, tia $BA, CD$ cắt nhau tại $F$. Phân giác của góc $\widehat {DEC}$ và phân giác của góc $\widehat {CFB}$ cắt nhau tại $H$. Tính $\widehat {EHF}$.

Bài 6. Cho tứ giác $ABCD$ có $\widehat{ADB} = 10^\circ, \widehat {BDC} = 50^\circ, \widehat {ACD} = 60^o\circ , \widehat {ACB }= 20^o\circ$. Tính số đo các góc còn lại của tứ giác $ABCD$.

Bài 7. Cho tứ giác $ABCD$ có tam giác $ACD$ đều, tam giác $ACB$ cân tại $C$ và $\angle ACB = 20^0$.

a) Tính số đo góc $A,B$ của tứ giác.
b) Gọi $O$ là giao điểm của $AC, BD$. Tính số đo các góc $\widehat {ABD}, \widehat {COD}$.

Bài 8.  Cho tứ giác $ABCD$ có $AB+BD$ không lớn hơn $AC+CD$. Chứng minh $AB < AC$.

Bài 9. Cho tứ giác $ABCD$ và một điểm $O$ nằm trong tứ giác. Chứng minh rằng tổng khoảng cách từ $O$ đến các đỉnh của tứ giác thì lớn hơn nửa chu vi của tứ giác.

Đường thẳng Euler

Định lý. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng.

(Đường thẳng qua 3 điểm này được gọi là đường thẳng Euler của tam giác)

Chứng minh định lý.

Cách 1. (THCS) Cho tam giác $ABC$, gọi $H, G, O$ lần lượt là trực tâm, trọng tâm và tâm đường tròn ngoại tiếp tam giác $ABC$. Ta chứng minh $H, G, O$ thẳng hàng.

Gọi $M$ là trung điểm $BC$ và $D$ là đối xứng của $A$ qua $O$. Ta có $HBDC$ là hình bình hành.

Do đó $M$ là trung điểm $BC$ cũng là trung điểm $HD$.

Tam giác $AHD$ có $AM$ là trung tuyến và $AG = 2GM$ nên $G$ là trọng tâm.

Cách 2 (Vectơ) 

Cho tam giác $ABC$ có trực tâm $H$, tâm ngoại tiếp là $O$, $G$ là trọng tâm tam giác. Gọi $M$ là trung điểm $BC$ và $D$ là chân đường cao từ $A$.
Ta cần chứng minh $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Thật vậy đặt $\overrightarrow{v} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} -\overrightarrow{OH}$.
Thực hiện phép chiếu vectơ $\overrightarrow{v}$ trên $BC$ ta có $\overrightarrow{v_{BC}} = \overrightarrow{MD} + \overrightarrow{MB} + \overrightarrow{MC} – \overrightarrow{MD} = \overrightarrow{0}$.
Tương tự hình chiếu của $\overrightarrow{v}$ trên $AC$ là $\overrightarrow{v_{AC}} = \overrightarrow{0}$.
Do đó $\overrightarrow{v} = \overrightarrow{0}$.
Khi đó $\overrightarrow{OH} = \overrightarrow{OA}+ \overrightarrow{OB}+ \overrightarrow{OC} = 3\overrightarrow{OG}$, do đó $O, H, G$ thẳng hàng và $OH = 3OG$.

Cách 3 (phép vị tự) Xét phép vị tự tâm $G$ thì số $k = \dfrac{-1}{2}$ thì tam giác $ABC$ biến thành tam giác $MNP$ với $M, N, P$ là trung điểm các cạnh $BC, AC, AB$.

Khi đó trực tâm tam giác $ABC$ biến thành trực tâm tam giác $MNP$, hay $H \mapsto O$.

Do đó $\overrightarrow{GO} = \dfrac{-1}{2} \overrightarrow{GH}$.

Hay $H, G, O$ thẳng hàng và $GH = 2GO$.

 

Bài tập liên quan

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ lần lượt là trung điểm của các cạnh $BC, AC, AB$. Chứng minh rằng đường thẳng euler của các tam giác $ABC$ và $MNQ$ trùng nhau.

Bài 2. Cho tam giác $ABC$, các đường cao $AA’, BB’, CC’$ cắt nhau tại $H$. Chứng minh rằng đường thẳng euler của các tam giác $AB’C’, BA’C’, CA’B’$ đồng quy tại một điểm thuộc đường tròn ngoại tiếp của tam giác $A’B’C’$.

Bài 3. Cho tam giác $ABC$ có $AB^2 + AC^2 = 2BC^2$. Gọi $H$ là trực tâm và $M$ là trung điểm cạnh $BC$. Tia $MH$ cắt đường tròn ngoại tiếp tam giác tại $D$. Chứng minh $AD, BC$ và đường thẳng euler của tam giác $ABC$ đồng quy.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $A’, B’, C’$ lần lượt là giao điểm của $AI, BI, CI$ với $(O)$. Chứng minh rằng đường thẳng euler của tam giác $A’B’C’$ đi qua điểm $I$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $M, N$ lần lượt là giao điểm của $BI, CI$ với $DE$; $P$ là giao điểm của $BN$ và $CM$, $AI$ cắt $(O)$ tại $Q$. Chứng minh rằng $PQ$ là đường thẳng euler của tam giác $IBC$.

Bài 6. Cho hai đường tròn (O) và $(O’)$ cắt nhau tại A và B. Một đường thẳng qua A cắt (O) tại C và cắt (O’) tại D (A nằm giữa C và D). Chứng minh rằng đường thẳng euler của tam giác BCD luôn đi qua một điểm cố định.

Bài 7. Cho tam giác ABC có 3 đường cao AD,BE,CF đồng quy tại H. DE cắt đường tròn đường kính BH lần 2 tại K, DF cắt đường tròn đường kính CH lần 2 tại L. Chứng minh KL vuông góc với đường thẳng Euler của tam giác ABC

Bài 8. Cho tam giác $ABC$ có tâm đường tròn ngoại tiếp $O$. Gọi $T, U, V$ là tâm đường tròn ngoại tiếp các tam giác $BOC, COA, AOB$. Gọi $K$ là tâm đường tròn ngoại tiếp của tam giác $TUV$. Chứng minh $K$ thuộc đường thẳng euler của tam giác $ABC$.

Bài 9. Cho tam giác $ABC$, $D$ là điểm thuộc phân giác trong của góc $\angle BAC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Chứng minh rằng $EF$ vuông góc với $OD$.

Ý tưởng chuyển đổi mô hình trong các bài toán hình học phẳng

(Bài viết của Đào Sơn Trà – SV ĐHSP TPHCM)

 

Giới thiệu ý tưởng

Trong tam giác $ABC$ nhọn có $D,E,F$ là các chân đường cao và $H$ là trực tâm. Khi đó:

a) $H$ là tâm đường tròn nội tiếp tam giác $DEF$.
b) $A,B,C$ là tâm bàng tiếp của tam giác $DEF$.

Từ đây ta có thể đổi giữa hai mô hình “bàng tiếp – trực tâm” để xem cách tiếp cận nào thuận lợi hơn để xử lý bài toán. Tất nhiên trong tình huống tam giác tù hoặc vuông cũng có các kết quả tương tự nhưng để đơn giản, ta không đề cập ở đây. Trong các ví dụ, bài tập bên dưới, ta quy ước xét các tam giác nhọn, không cân:

Ví dụ 1.
Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng các đường thẳng $DH,EK,FL$ đồng quy; các đường thẳng $AH,BK,CL$ đồng quy.

Ta phát biểu lại bài toán như sau: Cho tam giác $DEF$ có $A,B,C$ lần lượt là tâm đường tròn bàng tiếp góc $D,E,F$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng $DH,EK,FL$ đồng quy và $AH,BK,CL$ cũng đồng quy.
Lời giải.

Sau khi chuyển đổi mô hình ta có thể dễ dàng chứng minh được ý a) $DH,EK,FL$ đồng quy (tại điểm Nagel của tam giác $DEF$) bằng cách kết hợp tính chất đường tròn bàng tiếp và định lý Ceva.

Với ý b) ta có: $EF$ là phân giác $\angle DEF$ nên $\angle FEA=\angle DEC$ suy ra $$90^\circ – \angle FEA = 90^\circ – \angle DEC \Rightarrow \angle HAC= \angle LCA$$

Gọi $O$ là giao điểm của $HA$ và $CL$. Khi đó: $$\angle AOC=180^\circ-2\angle HAC=2(90^\circ -\angle HAC)=2\angle BAC$$
nên $AH,CL,BK$ đồng quy tại tâm $(ABC)$.

Ví dụ 2.
Cho tam giác $ABC$ nội tiếp đường tròn $(O;R)$ có $BE,CF$ là hai phân giác cắt nhau tại $I$. $EF$ cắt đường tròn $(O)$ tại hai điểm $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $IMN$ bằng $2R$.

Ở ví dụ này không xuất hiện trực tiếp yếu tố “trực tâm” hay “tâm bàng tiếp” nhưng ta vẫn có thể vận dụng ý tưởng trên bằng cách xem tâm nội $I$ của tam giác $ABC$ là trực tâm của tam giác tạo bởi $3$ tâm đường tròn bàng tiếp. Cụ thể, ví dụ trên tương đương với bài toán sau:

Cho tam giác $ABC$ nội tiếp $(O;R)$ có đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $K,L$ lần lượt là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. $KL$ cắt đường tròn $Euler$ của tam giác $ABC$ tại $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $HMN$ bằng $R$.

Lời giải.
Do tứ giác $BDHF$ và $DCEH$ nội tiếp nên ta có:
$$\overline {LD} \cdot \overline {LF} = \overline {LH} \cdot \overline {LB} \Rightarrow P_{L/(DEF)} = P_{L/(BHC)}$$

$$\overline {KC} \cdot \overline {KH} = \overline {KD} \cdot \overline {KE} \Rightarrow P_{K/(DEF)} = P_{K/(BHC)}$$
suy ra $LK$ là trục đẳng phương của $(DEF)$ và $(BHC)$ nên $M,N$ nằm trên $(BHC)$.

Theo tính chất quen thuộc thì $(BHC)$ đối xứng với $(ABC)$ qua $BC$ nên bán kính $(HMN)$ cũng bằng $R$.

Bài tập vận dụng
Bài 1. Cho tam giác $(ABC)$ nội tiếp đường tròn $(O)$. Gọi $M,N,P$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$. Giả sử $BC$ cắt $NP$ tại $R$ và $T$ là trung điểm cung lớn $BC$ của $(O)$. Chứng minh rằng $MT \bot IR$ với $I$ là tâm đường tròn nội tiếp tam giác $ABC$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $A,B,C$ lần lượt là chân đường cao kẻ từ $M,N,P$. $BC$ cắt $NP$ tại $R$. Gọi $T$ là trung điểm cung lớn $BC$ của $(ABC)$. Chứng minh $MI \bot IR$.

Dễ thấy $(ABC)$ là đường tròn $Euler$ của tam giác $MNP$ và $T$ là trung điểm $NP$. Ta sẽ chứng minh $IR$ là trục đẳng phương của $(TM)$ và $(BC)$. \medskip

Ta có:

$$\overline {RA} \cdot \overline {RT} = \overline {RC} \cdot \overline {RB} \Rightarrow P_{R/(NP)} = P_{R/(MT)}$$
$$\overline {IA} \cdot \overline {IM} = \overline {IB} \cdot \overline {IN} \Rightarrow P_{I/(NP)} = P_{I/(MT)}$$

Vậy $IR$ là trục đẳng phương của $(MT)$ và $(NP)$ nên $IR \bot MT$

Bài 2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có phân giác $BE,CF(E \in AC, F \in AB)$. Giả sử $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $M$ là tâm đường tròn bàng tiếp góc $A$. Chứng minh $MO \bot EF$.

Lời giải
Ta phát biểu lại bài toán trên dưới mô hình trực tâm như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $MA,NB,PC$ là các đường cao. Gọi $NB$ cắt $AC$ tại $E$, $AB$ cắt $PC$ tại $F$. Gọi $O$ là tâm đường tròn $Euler$ của tam giác $MNP$. Chứng minh $MO \bot EF$.

Gọi $O_2$ là tâm ngoại tiếp tam giác $NIP$ thì dễ thấy rằng $O_2$ đối xứng với $O_1$ qua $NP$. Gọi $T$ là trung điểm $NP$ thì $MI = 2O_1T = O_1O_2$. Mà $O_1O_2 \parallel MI$ nên kéo theo tứ giác $MIO_2O_1$ là hình bình hành. Vì thế nên $MO_2$ đi qua trung điểm của $IO_1,$ cũng chính là tâm đường tròn Euler $O$ của tam giác $MNP$.

Tiếp theo, ta thấy rằng

$\overline {EA} \cdot \overline {EC} = \overline {EN} .\overline {EI}$ $\Rightarrow P_{E/(O)} = P_{E/(O_2)}$
$\overline {FA} \cdot \overline {FB} = \overline {FN} \cdot \overline {FI} \Rightarrow P_{F/(O)} =P_{F/(O_2)}$

Suy ra $EF$ là trục đẳng phương của $(O)$ và $(O_2)$ nên $EF \bot OO_2$.

Từ hai điều trên, ta có $EF$ vuông góc với $MO$.

 

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và tâm nội tiếp $I$. Đường tròn bàng tiếp $(L)$ của đỉnh $C$ của tam giác $ABC$ tiếp xúc với $AB$ tại $M$. $MI$ cắt $BC$ tại $N$. $P$ là hình chiếu của $C$ lên $LB$. Chứng minh rằng $AI$ và $NP$ cắt nhau trên $(O)$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $JKL$ có các đường cao $JA,KB,LC$. Gọi $I$ là trực tâm tam giác $JKL$. Gọi $M$ là hình chiếu của $L$ lên $AB$, $P$ là hình chiếu của $C$ lên $JL$. $MI$ cắt $BC$ tại $N$. Chứng minh rằng $NP$ cắt $JA$ trên đường tròn $Euler$ của tam giác $JKL$.

Gọi $R$ là giao điểm của $JA$ và $NP$. Dễ thấy việc chứng minh $R$ nằm trên đường tròn $Euler$ của tam giác $JKL$ tương đương với việc chứng minh $R$ là trung điểm $IJ$.

Ta có $\Delta LAB \sim \Delta CJB$ mà $LM,CP$ lần lượt là các đường cao nên $\frac{BM}{MA}=\frac{BP}{PJ}$ suy ra $MP \parallel AJ$.

Do $M,I,N$ thẳng hàng nên $P(BI,MN)=B(PI,MN)=B(JK,AC)=-1$ kết hợp với $MP \parallel AJ$ suy ra $R$ là trung điểm $IJ$. Bài toán đã được chứng minh.

Bài 4. Cho tam giác $ABC$ có đường cao $BD,CE$ cắt nhau tại $I$. Chứng minh rằng $AI$ đi qua tâm $Euler$ của tam giác $IDE$.

Lời giải
Dựa vào bổ đề ở \textbf{bài tập 2} ta có thể chuyển bài toán về mô hình sau: \medskip

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $P,Q$ là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. Lấy $K$ là trực tâm tam giác $HPQ$. Gọi $L$ là tâm $(PKQ)$. Chứng minh $L$ nằm trên $AD$.

Ta có: $$\angle LQP=\frac{180^\circ-\angle QLP}{2}=\frac{180^\circ-2\angle QKP}{2}=90^\circ-\angle QKP=\angle HPK=\angle HCA =\angle LDP$$

Suy ra $QLPD$ nội tiếp. Lại có $LP=LQ$ nên $DL$ là phân giác góc $EDF$ nên $L$ thuộc $AD$. Vậy bài toán đã được chứng minh.

Bài 5.  Chọn đội tuyển 30/4 PTNK 2016 Cho $(O)$ và dây cung $BC$ cố định, điểm $C$ di động. Gọi $I,I_a,I_b$ lần lượt là tâm nội tiếp, tâm bàng tiếp góc $A,B$ của tam giác $ABC$. Gọi $M$ là điểm đối xứng với $I$ qua $O$.

a) Chứng minh rằng $MI_a=MI_b$.
b) Gọi $H,K$ là hình chiếu của $I_b,I_a$ lên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ cắt đường thẳng qua $K$ vuông góc với $AI_b$ ở $T$, chứng minh rằng $T$ thuộc đường tròn cố định.

Lời giải
Nhận xét: Khi chuyển đổi sang mô hình trực tâm, giả sử $I_c$ là tâm bàng tiếp góc $C$ của tam giác $ABC$. Ta có $I,O$ lần lượt là trực tâm và tâm đường tròn $Euler$ tam giác $I_aI_bI_c$ nên $M$ là tâm $(I_aI_bI_c)$ từ đó $MI_a=MI_b$. Vậy ta đã giải quyết được ý a) của bài toán.

Ý b) của bài toán sau khi chuyển đổi mô hình, ta có thể dự đoán được $T$ di chuyển trên đường tròn $Euler$ của tam giác $I_aI_bI_c$. Đó là kết quả về cực trực giao của một đường thẳng đi qua tâm ngoại tiếp được phát biểu bởi bài toán sau:

Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$.

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$.\ Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$.

Bài 6. Cho tam giác $ABC$ có phân giác $BE,CF$ cắt nhau tại $I$. Gọi $XP,YQ$ là tiếp tuyến chung ngoài của $(O)$ và $(I_a)$-đường tròn bàng tiếp góc $A$ ($P,Q \in (O)$,$X,Y \in (I_a))$. Chứng minh $P,Q,E,F$ thẳng hàng.

Lời giải
Gọi $I_b,I_c$ là tâm đường tròn bàng tiếp góc $B,C$ để chuyển về mô hình trực tâm thì theo ví dụ I.2 ta cần chứng minh $I,I_c,I_b,P,Q$ cùng nằm trên một đường tròn.

Gọi $M$ là giao điểm của $I_aP$ với $(ABC)$, $K$ là hình chiếu của $O$ lên $XI_a$. \medskip

Theo hệ thức $Euler$ ta có: $$OI_a^2=R^2+2Rr_a$$
suy ra $$PX^2=OK^2=OI_a^2-KI_a^2=R^2+2Rr_a-(r_a-R)^2=4Rr_a-r_a^2$$
ta thu được $PI_a^2=4Rr_a$. Mà $I_aP\cdot I_aM=BI_a^2=OI_a^2-R^2=2Rr_a$. Suy ra $M$ là trung điểm $PI_a$.

Do $(O),I$ là đường tròn $Euler$ và trực tâm của tam giác $I_aI_bI_c$ nên theo Bài tập 2 ta có: ${V_{{I_a}}}^2:(O) \to (I{I_b}{I_c});M \to P$ mà $M \in (O)$ nên $P \in (II_bI_c)$.

Tương tự thì $Q \in (II_bI_c)$ nên ta có được điều phải chứng minh.

Bài 7. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $M,N$ là điểm chính giữa cung $BC$ và cung $BAC$ của $(O)$. $NI$ cắt $(O)$ lần thứ hai tại $P$. $MP$ cắt trung trực $AI$ tại $T$. Gọi $S$ là giao điểm tiếp tuyến tại $A$ của $(O)$ với $BC$. Chứng minh rằng $TS \parallel AI$.

Lời giải

Gọi $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm. Gọi $X$ là giao điểm của $BC$ và $I_bI_c$. $J$ là giao điểm của $(I_aBIC)$ với $(I_aI_bI_c)$ thì ta có $N,I,J$ thẳng hàng.

Tứ giác toàn phần $BCI_bI_cI_aX$ nội tiếp nên $J$ là điểm Miquel và $I_a,J,X$ thẳng hàng mà $\angle IJI_a =90^\circ$ suy ra tứ giác $AIJX$ nội tiếp.

Ta có: $$\angle MPJ =\angle I_aJI = 90^\circ$$ suy ra $MP \parallel I_aJ$. Lại có $M$ là trung điểm $JI_a$ nên $P$ là trung điểm $IJ$. Suy ra $T$ là tâm $(AIJX)$. Ta thu được $TX=TA$.

Mà $S$ là tâm $A-Apollonius$ của tam giác $ABC$ nên $SX=SA$. Vậy $ST$ là trung trực của $XA$ nên $ST \bot XA$ suy ra $ST \parallel AI$.

Bài 8. (Trích VN TST 2019) Cho tam giác $ABC$ ngoại tiếp $(O)$ và nội tiếp $(I)$. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(BI,AC),(CI,AB)$. Gọi $P,Q$ lần lượt là trung điểm cung $ABC$ và $ACB$. $PQ$ cắt $BC,EF$ tại $G$ và $H$. $EF$ cắt $BC$ ở $K$. Chứng minh rằng tiếp tuyến ứng với $G$ của tam giác $GHK$ vuông góc với $OI$.

Lời giải
Đây là một bài toán hay và khó. Nếu không có cách tiếp cận chuyển đổi mô hình thích hợp thì việc xử lý các tính chất sẽ gặp nhiều khó khăn. Vận dụng ý tưởng ở Ví dụ I.2 ta chuyển bài toán về mô hình trực tâm như sau:

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CA,AB$. Gọi $BH,CH$ cắt $FD,ED$ lần lượt tại $S,T$. $ST$ cắt $PN$ tại $Y$ và cắt $EF$ tại $Z$. Gọi $X$ là giao điểm của $PN$ và $EF$, $K$ là trung điểm $YZ$. Chứng minh rằng: $XK$ vuông góc với đường thẳng $Euler$ của tam giác $ABC$.

Ta có: $$\overline {XN} .\overline {XP} = \overline {XE} .\overline {XF} \Rightarrow P_{X/(APN)} = {{\mathscr{P}}_{X/\left(AEF \right)}} $$
suy ra $AX$ là trục đẳng phương của $(APN)$ và $(AEF)$ nên $AX \bot OH$.

Gọi $U$ là tâm $Euler$ của tam giác $ABC$ thì theo \textbf{Bài tập 2} ta có $AU \bot ST$.

 

Qua $A$ kẻ đường thẳng song song với $YZ$ cắt $EF$ tại $I$ và cắt $PN$ tại $J$ thì $AU \bot IJ$, áp dụng định lý con bướm cho tứ giác $FPEN$ nội tiếp ta thu được $AJ=AI$. Từ đó suy ra $AX$ đi qua trung điểm $YZ$ dẫn đến $A,X,K$ thẳng hàng nên $XK$ vuông góc với $OH$. Vậy ta thu được điều phải chứng minh.

Bài 9. (Trích VN TST 2016) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $B,C$ cố định, $A$ di động trên cung $BC$ của $(O)$. Các phân giác $BE,CF$ cắt nhau tại $I$. $BE,CF$ cắt đường tròn $(O)$ tại $K,L$. $AI$ cắt $KL$ tại $P$. Gọi $Q$ là một điểm trên $EF$ sao cho $QP=QI$. $J$ nằm trên $(BIC)$ sao cho $IJ \bot IQ$. Chứng minh rằng trung điểm $IJ$ di chuyển trên một đường tròn cố định.

Lời giải
Tiếp tục với ý tưởng Ví dụ I.2 Ta dựng $I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm thì ta thu được $L,K$ lần lượt là trung điểm của $II_c$ và $II_b$.

Gọi $R,S$ là giao điểm của $EF$ với $(O)$(như hình vẽ). $RI,SI$ cắt đường tròn $(O)$ lần thứ hai tại $T,W$. $TW$ cắt $BI$ tại $G$. Đường thẳng qua $I$ vuông góc với $OI$ cắt $LK,BC,SR,TW$ tại $V,U,Q’,X$.

Theo ví dụ 2,ta có $S,R \in (II_bI_c)$. Do đó: $$\angle GTR= \angle ISR=\angle II_bR$$
suy ra tứ giác $GTI_bR$ nội tiếp. Ta thu được $$IG\cdot II_b=IT \cdot IR=IB \cdot IK=\frac{1}{2}IB \cdot II_b$$
suy ra $TW$ đi qua trung điểm $IB$. Tương tự: $TW$ cũng đi qua trung điểm $IC$ nên $TW$ là đường trung bình của tam giác $IBC$.

 

Áp dụng định lý con bướm cho hai dây cung $LC,BK$ cắt nhau tại $I$, ta được $IV=IU$. Tiếp tục áp dụng định lý con bướm cho hai dây cung $SW,TR$, ta được $IX=IQ’$.

Mà $X$ là trung điểm $IU$ nên $Q’$ là trung điểm $IV$ do đó $IQ’=Q’V=Q’P$ suy ra $Q \equiv Q’$. Vậy $OI \bot IQ$. Gọi $O_1$ là trung điểm cung $BC$ không chứa $A$ thì $O_1$ là tâm $(BIC)$. Gọi $M$ là trung điểm $IJ$ khi đó ta có $\angle OMO_1 =90^\circ$ nên $M$ nằm trên $(OO_1)$, là đường tròn cố định. Ta có điều phải chứng minh.

Bài tập tự luyện

  1. Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ là trung điểm của $EF,FD,DE$ và $K$ là tâm nội tiếp tam giác $MNP.$ Gọi $x,y,z$ lần lượt là khoảng cách từ $A\to EF,B\to DF,C\to DE.$ Chứng minh rằng
    $${{x}^{2}}-K{{A}^{2}}={{y}^{2}}-K{{B}^{2}}={{z}^{2}}-K{{C}^{2}}.$$

  2. Cho tam giác $ABC$ có $T$ là trung điểm $BC$ và $X,Y$ là tâm bàng tiếp góc $B,C$ của tam giác $ABC.$ Giả sử $TX$ cắt $AB,AC$ lần lượt tại $M,N,$ còn $TY$ cắt $AB,AC$ lần lượt tại $P,Q.$ Chứng minh rằng $M,N,P,Q$ là các đỉnh của một hình thang ngoại tiếp được đường tròn.

  3. Cho tam giác $ABC$ nội tiếp $(O)$ có tâm nội tiếp $I,$ tâm bàng tiếp góc $A$ là $J.$ Trên các đường thẳng $JB,JC$ lần lượt lấy $M,N$ sao cho $MA=MJ$ và $NA=NJ.$ Đường thẳng $MN$ cắt $IB,IC$ ở $E,F.$ Chứng minh rằng trung tuyến đỉnh $I$ của tam giác $IEF$ chia đôi cung $BAC$ của $(O)$.

  4. Cho tam giác $ABC$ có trực tâm $H$. Đường tròn $(BHC)$ cắt đường tròn Euler của tam giác $ABC$ ở $M,N$. Chứng minh rằng $AM=AN.$

  5. (Bài toán về điểm Bevan) Cho tam giác $ABC$ có $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C.$ Khi đó, ký hiệu $X$ là tâm đường tròn ngoại tiếp tam giác $I_aI_bI_c,$ cũng chính là điểm Bevan của tam giác $ABC$. Gọi $O,I,G,H$ lần lượt là tâm ngoại tiếp, tâm nội tiếp, trọng tâm, trực tâm của tam giác $ABC.$ Chứng minh rằng $O$ là trung điểm của $XI$ và $G$ là trọng tâm của $HIX.$

Tỉ số lượng giác – P3

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, BC= 5$.
Tính $\sin ABC, \cos ABC, \tan ABC, \cot ABC$.
Lời giải.
Ta có $AC = \sqrt{BC^2-AB^2} = \sqrt{5^2-3^2} = 4$.
Khi đó $\sin ABC = \dfrac{AC}{BC} = \dfrac{4}{5}$
Và $\cos ABC = \dfrac{AB}{BC} = \dfrac{3}{5}$;
$\tan ABC = \dfrac{AC}{AB} = \dfrac{4}{3}$;
$\cot ABC = \dfrac{AB}{AC} = \dfrac{3}{4}$.

Bài 2. 
Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 12$.
a) Tính $\sin ABC$.
b) Vẽ đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải.
a) Gọi $M$ là trung điểm cạnh $BC$, ta có $AM \bot BC$.
$MB = \dfrac{1}{2}BC = 6$, suy ra $AM = \sqrt{AB^2-BM^2} = 8$.
$\sin ABC = \dfrac{AM}{AB} = \dfrac{8}{10} = \dfrac{4}{5}$.
b)
Vẽ đường cao $BK$.
Ta có $\triangle CKB \backsim \triangle CMA$, suy ra $\dfrac{BK}{AM} = \dfrac{CB}{AC} \Rightarrow BK = \dfrac{AM\cdot BC}{AC} = \dfrac{48}{5}$.
Khi đó $\sin BAC = \dfrac{BK}{AB} =\dfrac{48}{50} = \dfrac{24}{25}$.

Bài 3. 
Cho tam giác $ABC$ vuông tại $A$ có $AC = 2, \sin ABC = \dfrac{1}{3}$. Tính $AB$.
Lời giải.
Ta có $\sin ABC = \dfrac{AC}{BC} = \dfrac{1}{3}$, suy ra $BC = 3AC = 6$.\
Từ đó $AB = \sqrt{BC^2-AC^2} =\sqrt{6^2-2^2} =4\sqrt{2}$.
\end{multicols}

Bài 4. 
Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.

Lời giải.

Ta có $AB^2 +AC^2 = 1 +3 = 4 = BC^2$, suy tam giác $ABC$ vuông tại $A$, vậy $\angle BAC = 90^\circ$.\
Ta có $\sin ABC = \dfrac{AC}{BC}= \dfrac{\sqrt{3}}{2}$, suy ra $\angle ABC = 60^\circ$.\
Và $\angle ACB = 180^\circ – \angle BAC – \angle ABC = 30^\circ$.

Bài 5. 
Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.

a)Tính độ dài các cạnh của tam giác $ABC$.
b) Dựng đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải. 
a)  $AB .\sin ABC = AH \Leftrightarrow AB \sin 60^\circ = \sqrt{3} \Leftrightarrow AB \dfrac{\sqrt{3}}{2} = \sqrt{3}$, suy ra $AB = 2$.
Tam giác $AHC$ vuông cân, suy ra $AC = \sqrt{2}AH = \sqrt{6}$.
$BH = \sqrt{AB^2-AH^2} = 1, CH = AH = \sqrt{3}$.
Suy ra $BC = 1 + \sqrt{3}$.
b) a có $BK = BC\cdot \sin BCK = (1+\sqrt{3})\sin 45^\circ = \dfrac{1+\sqrt{3}}{\sqrt{2}} = \dfrac{\sqrt{6}+\sqrt{2}}{2}$.
Suy ra $\sin BAC = \dfrac{BK}{AB} = \dfrac{1+\sqrt{3}}{2\sqrt{2}} = \dfrac{\sqrt{2}+\sqrt{6}}{4}$.

Bài 6. Cho hình thoi $ABCD$ có cạnh $AB = 5$, biết $\cot ABD = \dfrac{3}{4}$.

a) Tính $\dfrac{{AC}}{{BD}}$;
b) Tính $AC, BD$.

Lời giải.

a) $\tan ABD=\dfrac{AO}{BO}=\dfrac{4}{3} \Rightarrow AO=\dfrac{4}{3}BO$.
Áp dụng định lí Pitago trong tam giác vuông $AOB$:$AO^2+BO^2=AB^2=5^2=25$.
Khi đó ta có hệ: $AO=\dfrac{4}{3}BO; AO^2+BO^2=25$

$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
\left( \dfrac{4}{3}BO\right)^2+BO^2=25\
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
BO^2=9
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=4\\
BO=3
\end{array} \right.$
Vậy $\dfrac{AC}{BD}=\dfrac{2AO}{2BO}=\dfrac{4}{3}$
b) $AC=2AO=2\cdot 4=8 \quad \text{và} \quad BD=2BO=2\cdot 3=6$.

Bài 7. Cho hình thang $ABCD$ cân có $AB$ là đáy nhỏ và $\angle ADC = 60^\circ$. Đặt $AD = a, AB = b$. Vẽ đường cao $AH$.

a) Tính $AH, DH$ theo $a$.
b) Tìm $a, b$ biết chu vi hình thang bằng 10 và diện tích bằng $3\sqrt 3 $.

Lời giải.

a) $\cos\angle ADH=\dfrac{DH}{AD} \Rightarrow DH=AD.\cos\angle ADH =a.\cos60^\circ=\dfrac{a}{2}$
$\sin \angle ADH=\dfrac{AH}{AD} \Rightarrow AH=AD.\sin \angle ADH=a.\sin 60^\circ=\dfrac{a\sqrt{3}}{2}$
b) Kẻ dường cao $BE$
Do $ABCD$ là hình thang cân nên $AD=BC=a$. $ABEH$ là hình chữ nhật nên $AB=EH=b$
Tính tương tự câu a) ta có $BE=\dfrac{a\sqrt{3}}{2}$ và $EC=\dfrac{a}{2}$
Khi đó $DC=DH+HE+EC=a+b$
Dựa vào chu vi và diện tích hình thang ta có hệ phương trình sau:
$\left\{ \begin{array}{l}
b+a+\left(a+b\right)+a=10\\
\dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.\left(b+a+b\right)=3\sqrt{3}
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
3a+2b=10\\
a\left( a+2b \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a\left( a+10-3a \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
-2a^2+10a-12=0
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a=2 \quad \text{hay} \quad a=3
\end{array} \right.$
Vậy $(a;b)$ là $(2;2)$ và $(3; \dfrac{1}{2})$.