Tag Archives: HinhHoc

Định lý Ceva và Menelaus – Phần 2

Trong hình học ta gặp nhiều bài toán về chứng minh ba đường đồng quy và ba điểm thẳng hàng, một trong những công cụ quen thuộc và kinh điển nhất là định lý Ceva và định lý Menelaus. Ngoài việc áp dụng chứng minh thẳng hàng đồng quy, các định lý Ceva và Nemelaus còn áp dụng chứng minh các đẳng thức về độ dài, góc, là cơ sở của những phương pháp mạnh khác như: hàng điểm điều hòa, cực đối cực,…

Hai định lý được phát biểu với dạng hình học, dạng đại số và dạng lượng giác, trong phần này ta ưu tiên các phát biểu dưới dạng độ dài hình học, góc hình học vì sự đơn giản của nó.

Định lý Ceva

(Dạng độ dài hình học) Cho tam giác $ABC$, nếu $A_1, B_1, C_1$ là là các điểm thuộc các cạnh $BC, AC, AB$. Khi đó $AA_1, BB_1, CC_1$ đồng quy khi và chỉ khi:

\begin{equation} \dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1
\end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}.\dfrac{\overline{B_1C}}{\overline{B_1A}}.\dfrac{\overline{C_1A}}{\overline{C_1B}}=-1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=-1
\end{equation}

Định lý Menelaus

(Dạng độ dài hình học) Cho tam giác $ABC$, các điểm $C_1$ thuộc cạnh $AB$; $B_1$ thuộc cạnh $AC$ và $A_1$ thuộc phần kéo dài của cạnh $BC$. Khi đó $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi
\begin{equation}\label{mene1}
\dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1 \end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}\cdot \dfrac{\overline{B_1C}}{\overline{B_1A}}\cdot \dfrac{\overline{C_1A}}{\overline{C_1B}}= 1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=1
\end{equation}

Các ví dụ về định lý Ceva và Menelaus

Ví dụ 1. Cho tứ giác $ABC$, các đường chéo $AC, BD$ cắt nhau tại $I$; $AD, BC$ cắt nhau tại $E$; $AB, CD$ cắt nhau tại $F$. $EI$ cắt $AB, CD$ tại $K, L$. Khi đó $\dfrac{LC}{LD} = \dfrac{FC}{FD}$.

Lời giải

Áp dụng định lý Ceva cho tam giác $ECD$ ta có $$\dfrac{LD}{LC} \cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Áp dụng Menelaus cho cho tam giác $ECD$ với 3 điểm $F, A, B$ ta có: $$\dfrac{FD}{FC}\cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Từ trên ta có $\dfrac{LD}{LC} = \dfrac{FD}{FC}$.

Ví dụ 2. (Đường thẳng Gauss) Cho tứ giác $ABCD$ khác hình thang. Gọi $I$ là giao điểm của $AD, BC$; gọi $J$ là giao điểm của $AB, CD$. Chứng minh rằng trung điểm của các đoạn $AC, BD$ và $IJ$ cùng thuộc một đường thẳng.

Lời giải

Gọi $E, F, H$ lần lượt là trung điểm của $AD, IC, CD$. \\Rõ ràng $P \in EF, M \in FH, N \in EH$. \\
Ta có $\dfrac{PE}{PF} = \dfrac{JD}{JC}$; $\dfrac{NH}{NE} = \dfrac{BC}{BI}$ và $\dfrac{MF}{MH} = \dfrac{AI}{AD}$.\hfill (1)\\
Áp dụng Menelaus cho tam giác $IDC$ với 3 điểm thẳng hàng $J, A, B$ ta có: \\
$\dfrac{JD}{JC}\cdot \dfrac{BC}{BI}\cdot \dfrac{AI}{AD} = 1$. \hfill (2)\\
Từ (1) và (2) suy ra $\dfrac{PE}{PF}\cdot \dfrac{JD}{JC}\cdot \dfrac{MF}{MH}= 1$.\\ Do đó 3 điểm $P, N, M$ thẳng hàng.

Ví dụ 3. Cho tứ giác $ABCD$, trên các cạnh $AD, BC$ lấy các điểm $P, Q$ sao cho $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$. Gọi $I$ là giao điểm $AC, BD$ và $K$ là giao điểm của $DQ, CP$. Chứng minh $PQ$ đi song song với đường thẳng qua trung điểm của $AB, CD$.

Lời giải

Gọi $E$ là giao điểm của $AD, BC$; $X, Y$ lần lượt là trung điểm của $IE$ và $PQ$; $M, N$ là trung điểm $AB, CD$. \\
Theo định lý đường thẳng Gauss ta có $M, N, X$ thẳng hàng. \\
Mặt khác do $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$ nên $Y, M, N$ thẳng hàng. Do đó 4 điểm $X, M, N, Y$ thẳng hàng.\\
Theo định lý Thales ta có $XM \parallel IK$.\\
Từ đó ta có $IK \parallel MN$.

Ví dụ 4. Cho tam giác $ABC$ ngoại tiếp đường tròn $w$ tâm $I$, $w$ tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$.

a) Chứng minh các đường thẳng $AD, BE$ và $CF$ đồng quy tại một điểm. (Điểm Gergonne)
b) Gọi $D’, E’, F’$ lần lượt là điểm đối xứng của $D, E, F$ qua $I$. Chứng minh rằng $AD’, BE’, CF’$ đồng quy tại một điểm.(Điểm Nagel)

Lời giải

a)Ta có $BD = BF, CD = CE, AE = AF$. Suy ra $\dfrac{BD}{CD}\cdot \dfrac{CE}{AE}\cdot \dfrac{AE}{AF} = 1$. Do đó $AD, BE, CF$ đồng quy.
b) Cho $AD’$ cắt $BC$ tại $D_1$; các điểm $E_1, F_1$ được xác định tương tự. \\
Vẽ đường thẳng qua $D’$ song song với $BC$ cắt $AB, AC$ tại $L,K$. Ta có $D’K\cdot CD = KE\cdot CE = IE^2$; $D’L\cdot BD = LF\cdot BF = ID^2$.\\
Suy ra $D’K\cdot CD = D’L\cdot BD$, suy ra $\dfrac{D’K}{D’L} =\dfrac{DB}{CD}$.\\
Mặt khác $\dfrac{D’K}{CD_1} = \dfrac{AD’}{AD_1} = \dfrac{D’L}{BD_1}$, suy ra $\dfrac{D’K}{D’L} = \dfrac{CD_1}{BD_1}$.\\
Do đó $\dfrac{BD}{CD} = \dfrac{CD_1}{CD_1}$, suy ra $BD = CD_1$.\\
Chứng minh tương tự ta có $CE = AE_1, BF = AF_1$.
Từ đó ta có các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $w$. Tiếp tuyến tại $A$ của $w$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Mà $\triangle A’AB \backsim \triangle A’CA$ nên $\dfrac{A’A^2}{A’C^2} = \dfrac{AB^2}{AC^2}$. \\
Chứng minh tương tự ta có: $\dfrac{B’C}{B’A}= \dfrac{BC^2}{AB^2}, \dfrac{C’A}{C’B} = \dfrac{AC^2}{BC^2}$.\\
Khi đó $\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$.
Vậy $A’, B’, C’$ thẳng hàng.

Ví dụ 6. Cho tam giác $ABC$ khác tam giác cân. Đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ADI, BEI, CFI$ thẳng hàng.

Lời giải

Gọi $D’$ là chân đường phân giác ngoài của góc $A$, khi đó $I, A, D, D’$ thuộc đường tròn đường kính $ID’$, suy ra tâm $O_1$ của $(IDA)$ là trung điểm của $ID’$. \\
Xác định tương tự cho $E’, F’$. Ta có tâm của $(IBE), (ICF)$ lần lượt là trung điểm của $IE’, IF$. \\
Sử dụng Menelaus ta chứng minh được $D’, E’, F’$ thẳng hàng.
Do đó $O_1, O_2,O_3$ thẳng hàng.

Ví dụ 7. (Định lý Jacobi) Cho tam giác $ABC$. Về phía ngoài tam giác lấy các điểm $D, E, F$ sao cho $\angle DBC = \angle FBA, \angle DCB = \angle ECA, \angle EAC = \angle FAB$. Chứng minh rằng các đường thẳng $AD, BE$ và $CF$ đồng quy.

Lời giải

Để chứng minh định lý này, ta sử dụng định lý Ceva dạng sin, ta cần chứng minh $$\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA} \cdot \dfrac{\sin FCA}{\sin FCB} = 1$$
Áp dụng định lý Cevasin cho 3 đường đồng quy $AD, BD, CD$ ta có:
\begin{equation}
\dfrac{\sin DAB }{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA}\cdot \dfrac{\sin DCA}{\sin DCB}
\end{equation}
Tương tự ta cũng có \begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{EAB}{\sin EAC} = 1 \end{equation} và
\begin{equation}
\dfrac{\sin FCA}{\sin FCB}\cdot \dfrac{FAB}{\sin FAC}\cdot \dfrac{FBC}{\sin FBA} = 1
\end{equation}
Nhân 3 đẳng thức lại và kết hợp $\angle DBC = \angle DBA, \angle DBA = \angle FBC, \angle DCB = \angle EDA \\ \angle DCA = \angle ECB, \angle FAB = \angle EAC, \angle FAC = \angle EAB$.
Ta có \begin{equation}
\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA }\cdot \dfrac{\sin FCA}{\sin FCB} =1
\end{equation}
Do đó $AD, BE, CF$ đồng quy.

Ví dụ 8. (Cevian Nest) Cho các đường thẳng $AX, BY, CZ$ đồng quy của tam giác $ABC$. Giả sử $XD, YE, CF$ là các đường đồng quy của tam giác $XYZ$. Chứng minh rằng $AD, BE, CF$ đồng quy.

Lời giải

Ví dụ 9. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD, ACE$ vuông tại $B, C$ và đồng dạng. Chứng minh rằng giao điểm của $BE$ và $CD$ thuộc đường cao hạ từ $A$ của tam giác $ABC$.

Lời giải

Áp dụng định lý Ceva sin cho các đường thẳng $BE, AE, CE$ ta có:
\begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{\sin EAB}{\sin EAC} = 1
\end{equation}

Tương tự ta có
\begin{equation}
\dfrac{\sin DCA}{\sin DCB}\cdot \dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA} = 1
\end{equation}

Vẽ $AH \bot BC$, ta có $\sin BAH = \sin DBC, \sin CAH = \angle ECB$.\\
Hơn nữa $\angle EAB = \angle DAC, \angle ECA = \angle DBA = 90^\circ$. (3)\\
Nhân (1) và (2) kết hợp với 3 ta có:
\begin{equation}
\dfrac{\sin BAH}{\sin CAH}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin DCA}{\sin DCB} = 1
\end{equation}
Vậy $AH, BE, CD$ đồng quy.

Các bài toán biến đổi góc cạnh – Bài tập

BÀI TẬP CÁC BÀI TOÁN BIẾN ĐỔI GÓC

 

Bài 1 Cho tam giác $ABC$ các đường cao cắt nhau tại $H$. Chứng minh rằng đường tròn Euler của các tam $ABH, ACH, BCH$ và $ABC$ là trùng nhau

Bài 2 Cho tứ giác $ABCD$. Chứng minh rằng đường tròn Euler của các tam giác $ABC, ACD, ABD, BCD$ cùng đi qua một điểm.

Bài 3 Cho tứ giác $ABCD$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $BCD$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ được định nghĩa tương tự. Chứng minh rằng các đường thẳng $d_a, d_b, d_c, d_d$ đồng quy.

Bài 4 Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 5(IMO 2007) Xét 5 điểm $A, B, C, D, E$ sao cho $ABCD$ là hình bình hành và $B, C, D, E$ cùng thuộc một đường tròn. Gọi $d$ là đường thẳng qua $A$, giả sử $d$ cắt đoạn $BC$ tại $F$ và $BC$ tại $G$. Giả sử $EF = EG = EC$, chứng minh rằng $d$ là phân giác góc $\angle DAB$.

Bài 6(VMO 2009) Trong mặt phẳng cho hai điểm $A$ và $B$ cố định ($A$ khác $B$). Một điểm $C$ di động trên mặt phẳng sao cho $\angle ACB = \alpha (0^o < \alpha < 180^o)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với $AB, BC, CA$ lần lượt tại $D, E, F$. $AI, BI$ cắt $EF$ tại $M, N$.

a) Chứng minh $MN$ có độ dài không đổi.
b) Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định khi $C$ lưu động.

Bài 7 Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 8 Cho tam giác $ABC$, $M$ là trung điểm $BC$. Trên đoạn $AM$ lấy điểm $P$. Gọi $D$ là hình chiếu của $P$ trên $BC$. $E$ là một điểm thuộc đoạn $PD$. Gọi $H, K$ là hình chiếu của $E$ trên $AB, AC$. Chứng minh rằng $H, P, K$ thẳng hàng khi và chỉ khi $\angle EAB = \angle EAC$.

Bài 9 Cho tam giác $ABC$ với $I$ là tâm đường tròn nội tiếp. Gọi $K, L$ lần lượt là trực tâm các tam giác $IBC$ và $IAC$. Gọi $T$ là tiếp điểm của đường tròn bàng tiếp góc $C$ với cạnh $AB$. Chứng minh rằng $CT$ và $KL$ cắt nhau tại một điểm thuộc đường tròn $(I)$.

Bài 10 Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB (AC < BC)$. Đường tròn $w$ tâm $O$ thay đổi tiếp xúc với $AB$ tại $C$. Từ $A$ và $B$ vẽ các tiếp tuyến $AD$ và $BE$ ($D, E$là hai tiếp điểm khác $C$). $AD$ và $BE$ cắt nhau tại $P$.

a) Chứng minh rằng $DE$ luôn đi qua một điểm cố định
b) Gọi $F$ là giao điểm của $OC$ và $DE$. Chứng minh $PF$ luôn đi qua một điểm cố định.

Bài 11 Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 12(Chọn đội tuyển Toán Việt Nam năm 2000) Cho hai đường tròn $(C_1)$ và $(C_2)$ cắt nhau tại $P$ và $Q$. Tiếp tuyến chung (tiếp tuyến gần $P$) tiếp xúc với $(C_1)$ tại $A$ và tiếp xúc với $(C_2)$ tại $B$. Tiếp tuyến của $(C_1)$ và $(C_2)$ tại $P$ cắt hai đường tròn tại $E$ và $F$ (khác $P$). Gọi $H$ và $K$ là các điểm trên tia $AF$ và $BE$ sao cho $AH = AP$ và $BK = BP$. Chứng minh rằng $A, H, Q, K, B$ cùng thuộc một đường tròn.

Bài 13(IMO 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 14 Cho tam giác $ABC$ ngoại tiếp đường tròn tâm $I$. Trên các đoạn $AI, BI$ và $CI$ lấy các điểm $A’,B’,C’$. Đường trung trực của các đoạn $AA’, BB’, CC’$ đôi một cắt nhau tại $A_1, B_1, C_1$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $ABC$ và tam giác $A_1B_1C_1$ trùng nhau khi và chỉ khi $I$ là trực tâm của tam giác $A’B’C’$.

Bài 15 (IMO 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 16(Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Bài 17(Đề thi HSG Iran 2018 – Vòng 3) Cho tam giác $ABC$, đường tròn $w$ thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $E$ và $F$. $BF, CE$ cắt $(ABC)$ tại $B’, C’$. $A’$ là điểm thuộc $BC$ sao cho $\angle C’A’B = \angle B’A’C$. Chứng minh rằng đường tròn ngoại tiếp tam giác $A’B’C’$ luôn đi qua một điểm cố định.

Bài 18(IMO shortlist 2017) Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường thẳng $OA$ cắt đường cao từ $B$ và $C$ của tam giác $ABC$ lần lượt tại $P$ và $Q$. $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc đường trung trung tuyến của tam giác $ABC$.

Bài 19 Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $N$, tiếp tuyến tại $B$ và $C$ của $(O)$ cắt nhau tại $P$; tiếp tuyến tại $A$ và $C$ cắt nhau tại $M$.
a) Chứng minh $PA, CN$ và $BM$ đồng quy tại một điểm $L$.
b) Gọi $X, Y, Z$ là hình chiếu của $L$ trên $BC, AC$ và $AB$. Chứng minh $L$ thuộc đường thẳng Euler của tam giác $XYZ$.
c) Gọi $A’, B’, C’$ là trung điểm của $OP, OM$ và $ON$. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy.

Bài 20 Cho tam giác $ABC$ có các đường cao $AD, BE, CF$ cắt nhau tại $H$. Đường tròn đường kính $BH$ cắt $DE$ tại $K$, đường tròn đường kính $CH$ cắt $DF$ tại $L$. Chứng minh $KL$ vuông góc với đường thẳng euler của tam giác $ABC$.

Bài 21 Cho tam giác $ABC$ có $\angle A = 45^o$. Các đường cao $AD, BE, CF$. Gọi $A’, B’, C’$ lần lượt là hình chiếu của $A, B, C$ trên $EF, DF, DE$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $A’B’C’$ thuộc đường tròn euler của tam giác $ABC$.

Bài 22 Cho tam giác $ABC$, đường thẳng $d$ cắt các cạnh $AB, AC$ tại $D, E$ và đường thẳng $BC$ tại $F$. Gọi $O,O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, ADE, BDF, CEF$.

a) Chứng minh rằng 4 điểm $O, O_a, O_b, O_c$ cùng thuộc một đường tròn.
b) Chứng minh trực tâm tam giác $O_aO_bO_c$ thuộc $d$.

Bài 23(IMO 2019) Cho tam giác $ABC$, các điểm $A_1$ thuộc cạnh $BC$ và $B_1$ thuộc cạnh $AC$. Trên đoạn $AA_1, BB_1$ lấy $P, Q$ sao cho $PQ$ song song $AB$. Trên tia $PB_1$ lấy $P_1$ sao cho $\angle PP_1C = \angle BAC$, trên tia $QA_1$ lấy điểm $Q_1$ sao cho $QQ_1C = \angle ABC$. Chứng minh 4 điểm $P, Q, P_1, Q_1$ đồng viên.

Bài 24 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$. Các đường phân giác trong của các góc $A, B, C, D$ cắt nhau tạo thành tứ giác nội tiếp tâm $I$. Các đường phân giác ngoài cắt nhau tạo thành tứ giác nội tiếp tâm $J$. Chứng minh rằng $O$ là trung điểm của $IJ$.

Bài 25 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$, $AD$ và $BC$ cắt nhau tại $K$. Đường tròn ngoại tiếp tam giác $KAC$ và $KBD$ có tâm là $I$ và $J$ cắt nhau tại $M$. Chứng minh
a) $O, J, I, M$ đồng viên.
b) $OM \bot KM$.

Bài 26 Cho tam giác $ABC$ nội tiếp đường tròn $w$. Trung tuyến $BM$ và $CN$ cắt $w$ tại $D$ và $E$. Đường tròn tâm $O_1$ qua $D$ và tiếp xúc với $AC$ tại $C$; đường tròn $O_2$ qua $E$ và tiếp xúc với $AB$ tại $B$.

a) Chứng minh rằng $O_1 O_2$ qua tâm đường tròn euler của tam giác $ABC$.
b) Gọi $K$ là giao điểm của $O_1M$ và $O_2N$. Chứng minh rằng $AK\bot BC$.

 

Bài 27 (IMO Shorlist 2019) Cho tam giác $ABC$, đường tròn $w$ qua $A$ cắt các cạnh $AB, AC$ tại $D$ và $E$ tương ứng; $w$ cắt $BC$ tại $F$ và $G$ sao cho $F$ nằm giữa $B$ và $G$. Tiếp tuyến tại $F$ của $(BDF)$ và tiếp tuyến tại $G$ của $(CEG)$ cắt nhau tại $T$. Giả sử $A, T$ phân biệt. Chứng minh rằng $AT$ song song $BC$.

Bài 28 (ISL 2107) Cho tam giác $ABC$ khác tam giác cân. Các đường cao từ $B$ và $C$ cắt nhau tại $H$. Đường thẳng $OA$ cắt $BH, CH$ tại $P$ và $Q$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc trung tuyến của tam giác $ABC$.

 

Bài 29 (ISL 2015 – G2) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn $w$ tâm $A$ cắt cạnh $BC$ tại $D, E$ sao cho $D$ nằm giữa $B$ và $E$; $w$ cắt $(O)$ tại $F$ và $G$, trong đó $F$ thuộc cung nhỏ $AB$. Đường tròn ngoại tiếp tam giác $BDF$ cắt $AB$ tại $K$; đường tròn ngoại tiếp tam giác $CEG$ cắt $AC$ tại $L$. Gọi $X$ là giao điểm của $FK$ và $GL$. Chứng minh $A, X, O$ thẳng hàng.

Bài 30 (IMO 2013 – G6) Cho tam giác $ABC$, gọi $A_1$ là tiếp điểm của đường tròn bàng tiếp góc $A$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Giả sử tâm đường tròn ngoại tiếp tam giác $A_1B_1C_1$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Chứng minh tam giác $ABC$ vuông.

 

Sách tham khảo hình học

Hình hình học phẳng là một trong các nội dung quan trọng trong các kì thi học sinh giỏi các cấp, đặc biệt trong các năm gần đây bài hình học chiếm khá nhiều, và nhiều bài toán hay được đề xuất, các em học sinh có thể tìm được nhiều sách, nhiều tài liệu hay một cách dễ dàng, nhân đây mình cũng muốn giới thiệu một số sách hình học cho các bạn đam mê và muốn tham khảo.

Sách tham khảo trung học phổ thông

Sách tham khảo trung học cơ sở

Góc định hướng và ứng dụng

Góc định hướng. 

Góc giữa hai tia. Cho hai tia $Ox, Oy$, ta cho tia $Ot$ lúc đầu trùng với $Ox$ và cho $Ot$ quay quanh $O$, đến khi $Ot$ trùng với $Oy$, ta nó $Ot$ tạo ra một góc lượng giác (góc định hướng) có tia đầu là $Ox$ tia cuối là $Oy$, kí hiệu $(Ox, Oy)$.

Chú ý: Với hai tia $Ox, Oy$ thì có vô số góc lượng giác có tia đầu $Ox$ tia cuối $Oy$ và hơn kém nhau $k2 \pi$.

Góc giữa hai đường thẳng. Cho hai đường thẳng $a, b$ cắt nhau tại $O$, ta cho đường thằng $t$ qua $O$ lúc đầu trùng với $O$, quay $t$ quanh $O$ đến khi $t$ trùng $a$, ta nói $t$ tạo ra góc giữa đường thẳng $a, b$, kí hiệu là $(a;b)$.

Các góc lượng giác tạo giữa $a, b$ hơn kém nhau $k\pi$.

Một số tính chất thường sử dụng. 

Tính chất 1. Hệ thức Charles
a) Cho $a, b, c$ là ba đường thẳng bất kì thì $(a, b)=(a, c)+(c, b)(\bmod \pi)$
b) $\mathrm{Cho} O x, O y, O z$ là ba tia thì $(O x, O y)=(O x, O z)+(O z, O y)(\bmod 2 \pi)$

Tính chất 2. (Điều kiện 3 điểm thẳng hàng) Cho 3 điểm $A, B, C$ và đường thẳng $d$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi $(A B, d)=(A C, d)(\bmod \pi)$

Tính chất 3. (Điều kiện 4 điểm đồng viên) Cho 4 điểm $A, B, C, D .$ Khi đó $A, B, C, D$ cùng thuộc một đường tròn khi và chỉ khi $(A C, A D)=(B C, B D)(\bmod \pi)$.

Tính chất 4. Nếu $a$ là phân giác của góc tạo bởi hai đường thẳng $b, c$ thì $(b, a)=-(c, a)=\frac{1}{2}(b, c)\left(\bmod \frac{\pi}{2}\right)$

Tính chất 5. Nếu $a$ và $a^{\prime}$ đỗi xứng nhau qua đường thẳng $d$ thì $(a, d)=-\left(a^{\prime}, d\right)(\bmod \pi)$.

Tính chất 6 . Nếu $a^{\prime}$ là ảnh của $a$ qua phép quay với góc quay $\alpha$ thì $\left(a, a^{\prime}\right)=\alpha(\bmod \pi)$

Các ví dụ

Bài 1. (Định lý Migel) Cho tam giác $A B C$; Gọi $D, E, F$ lần lượt là các điểm thuộc các đường thẳng $B C, A C$ và $A B$
a) Chứng minh rằng các đường tròn ngoại tiếp các tam giác $A E F, B F E, C D E$ cùng đi qua một điểm $M$.
b) Nếu $D, E, F$ thẳng hàng thì điểm $M$ thuộc đường tròn ngoại tiếp của tam giác $A B C$; hơn nữa tâm các đường tròn $(A B C),(A E F),(B F E),(C D E)$ cùng thuộc một đường tròn và đường tròn đó qua $\mathrm{M}$.

Lời giải

a) Gọi $M$ là giao điểm của $(A E F)$ và $(B D F)$, ta chứng minh $C, D, E, M$ đồng viên.
Ta có $(E M ; E C)=(E M ; E A)=(F M ; F A)(\bmod \pi)($ Do $A, E, M, F$ đồng viên $)$
Mà $(F M, F A)=(F M ; F B)=(D M: D B)(\bmod \pi)($ Do $D, M, F, B$ đồng viên $)$
Suyra $(E M ; E C)=(D M ; D B)=(D M ; D C)(\bmod \pi)$
Do đó $M, E, C, D$ đồng viên.

b) $\operatorname{Tacó}(A M: A F)=(E M ; E F)(\bmod \pi),(A M: A F)=(C M ; C B)(\bmod \pi)$ và $(C M ; C B)=(E M ; E D)(\bmod \pi)$
Do đó $E, D, F$ thẳng hàng khi và chỉ khi $(E M ; E F)=(E M: E D)$ khi và chỉ khi $(A M ; A F)=(C M ; C B)$ khi và chỉ khi $A \cdot B, C, M$ đồng viên.
Gọi $O, O_{a}, O_{b}, O_{c}$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $A B C, A E F, B D F, C D E$. Ta chứng minh $O, M, O_{a}, O_{b}, O_{c}$ đồng viên.
Thật vậy ta có $\left(O_{a} M ; O_{a} O_{b}\right)=(E M ; E F)=(C M ; C D)=\left(O M ; O O_{b}\right)(\bmod \pi)$. Do đó $O_{a}, M, O, O_{b}$ đồng viên. Tương tự $O_{a}, M, O, O_{c}$ đồng viên. Suy ra điều cần chứng minh.

Bài 2. (Đường thẳng Steiner – Điểm Antisteiner)

a) Cho tam giác $A B C$ nội tiếp đường tròn $(O), M$ là một điểm thuộc $(O)$. Gọi \$latex $A^{\prime}, B^{\prime}, C^{\prime} \$$ lần lượt là điểm đối xúng của $M$ qua $B C, A C, A B$. Chứng minh rằng $A^{\prime}, B^{\prime}, C^{\prime}$ cùng thuộc một đường thẳng và đường thẳng đó qua trực tâm $\mathrm{H}$ của tam giác $A B C$.
b) Ngược lại lấy $d$ là một đường thẳng qua $H$. Gọi $d_{a}, d_{b}, d_{c}$ lần lưọt là các đường thẳng đối xứng của d qua BC, $A C, A B$. Chúng minh rằng $d_{a}, d_{b}, d_{c}$ đồng qui tai một điểm thuộc đường tròn $(O)$.

Lời giải

a) Gọi $H_{c}, H_{b}$ là điểm đõi xứng của $H$ qua $A B: A C$. Ta có $H_{c}, H_{b} \in(A B C)$
a) $\left(H C^{\prime} ; H B^{\prime}\right)=\left(H C^{\prime} ; H A\right)+\left(H A ; H B^{\prime}\right)=-\left(H_{c} M ; H A\right)-\left(H_{b} A ; H_{b} M\right)=0($ $\bmod \pi)$
Vầy $H, B^{\prime}, C^{\prime}$ thẳng hàng.

b) Ta thấy $H_{a} \in d_{a}, H_{b} \in d_{b} \cdot$ Gọi $M$ là giao điểm của $d_{a}, d_{b}$. Ta chứng minh $M \in(A B C)$. Ta có:
$$
\begin{aligned}
&\left(M H_{a} ; M H_{b}\right)=\left(A^{\prime} H_{a} ; A^{\prime} C\right)+\left(A^{\prime} C ; C A\right)+\left(C A ; M H_{b}\right) \\
&=-\left(A^{\prime} H ; B C\right)+(C B ; C A)-\left(C A ; B^{\prime} H\right) \\
&=\left(B C ; A^{\prime} H\right)+\left(B^{\prime} H ; C A\right)+(C B ; C A) \\
&=2(B C ; C A)(\bmod \pi) \\
&=\left(C H_{a} ; C H_{b}\right)(\bmod \pi)
\end{aligned}
$$
Do đó $M \in(A B C)$.

Bài 3. 
a) Cho tam giác $A B C$ nội tiếp đương tròn $(O), P Q$ là đương kính. Chứng minh rằng đường thẳng Simson của tam giác ABC úng vói các điểm $P, Q$ vuông góc nhau.
b) Tổng quát hơn, nếu $P Q$ là dây cung bất kì thì góc tạo bởi hai đương thẳng Simson ứng với $P$ và $Q$ bằng nủa số đo chung nhỏ $P Q$.

Lời giải

b)
$$
\begin{aligned}
(\mathrm{DI} ; \mathrm{JK}) &=(\mathrm{DI} ; \mathrm{DP})+(\mathrm{DP} ; \mathrm{AC})+(\mathrm{AC} ; \mathrm{CJ})+(\mathrm{CJ} ; \mathrm{JK})(\bmod \pi) \\
&=(\mathrm{CI} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{QC} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{CQ} ; \mathrm{CK})+(\mathrm{CK} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+(\mathrm{AC} ; \mathrm{CB})+(\mathrm{CQ} ; \mathrm{CA})(\bmod \pi) \\
&=(\mathrm{CQ} ; \mathrm{CP})(\bmod \pi) \square
\end{aligned}
$$

Bài 4. (Chọn đội dự tuyển PTNK 2008) Cho tam giác ABC. Các điểm $M, N, P$ lần luợt thuộc các đt $B C, C A$, AB sao cho tam giác MNP và tam giác $A B C$ đồng dạng. Chúng minh ràng tâm đưòng tròn ngoại tiếp của tam giác $B C$ là thục tâm của tam giác $M N P$.

Lời giải

Theo định lý Migel thì các đường tròn (ANP), (BMP) và (CMN) cắt nhau tại $O$. Ta có
$$
\begin{aligned}
(\overline{O B} ; \overrightarrow{O C}) &=(\overline{O B} ; \overline{O P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=(\overline{M B} ; \overline{M P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \quad(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M N})-(\overline{M N} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{M N})+(\overline{M N} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{B P} ; \overline{C N})=2(A B ; A C) \quad(\bmod \pi)
\end{aligned}
$$
Từ đó ta có $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $\mathrm{ABC}$.

Mặt khác
$$
\begin{aligned}
(O N ; P M) &=(O N ; O P)+(O P ; P M) & &(\bmod \pi) \\
&=(A N ; A P)+(B O ; B M) & &(\bmod \pi) \\
&=(A C ; A B)+(B O ; B C) & &(\bmod \pi) \\
&=\frac{\pi}{2} \quad &(\bmod \pi)
\end{aligned}
$$
Suy ra $\mathrm{ON} \perp \mathrm{PM}$. Chứng minh tương tự ta có $\mathrm{MO} \perp \mathrm{NP}$. Hay $\mathrm{O}$ là trực tâm của tam giác $\mathrm{ABC}$.

Bài 5. Cho hai hình vuông $A B C D$ và $A E F G$ cùng hướng, $A, B, E$ không thẳng hàng. Chứng minh rẳng $B E, C F, D G$ đồng quy.

Lời giải

 

Xét phép quay tâm A góc quay $(A B: A D)=90^{\circ}$. Khi đó $B$ biên thành $D, E$ biên thành $G$. Gọi $H$ là giao điểm của $\mathrm{BE}$ và $\mathrm{GD}$. Khi đó $(B E ; G D)=(A B ; A D)=(C B ; C D)=90^{\circ}(\bmod \pi)$. Suy ra $A, H, B, C, D$ đồng viên.
Từ đó ta có $(H B: H C)=(A B: A C)(\bmod \pi)$,
Hơn nữa, $(H G ; H E)=(A G ; A E)=90^{\circ}(\bmod \pi)$ nên $A, E, H, G, F$ cũng đồng viên. Suy ra $(H E ; H F)=(A B: A C)(\bmod \pi)$
Ta có $(H B ; H C)=(H E ; H F)(\bmod \pi)$ mà $H, E, B$ thẳng hàng nên $H, C, F$ thẳng hàng, hay $B E . C F, D G$ đồng quy.

Bài tập rèn luyện

Bài 1 (VMO 2006) Cho tứ giác lồi $A B C D$. Xét một điểm $M$ di động trên đường thẳng $A B$ sao cho $M$ không trùng với $A$ và B. Gọi $N$ là giao điểm thứ hai khác $M$ của đường tròn đi qua 3 điểm $M, N, C$ và đường tròn đi qua 3 điếm $M, B$, D. Chứng minh:
a) Điểm $\mathrm{N}$ di động trên một đường tròn cố định.
b) Đường thẳng MN luôn đi qua một điểm cố định.

Bài 2. Cho tứ giác lồi $A B C D$ nội tiếp một đường tròn. Gọi $P, Q, R, S$ là giao điểm của các đường phân giác ngoài của Các góc ADB và ADB, DAB Và DBA, ACD và ADC, DAC và DCA tương ứng. Chứng minh rẳng $P, Q, R, S$ đồng viên.

Bài 3. Cho tứ giác $A B C$. Chứng minh rằng đường tròn Euler của các tam gíác $A B C, A C D, A B D$ và $B C D$ cùng đi qua một điểm.

Bài 4. Cho hai đường tròn (O) và (O’) cắt nhau tại $A$ và B. Một đường thẳng qua A cắt $(O)$ và $\left(O^{\prime}\right)$ tai $M$ và N. Một đường thẳng qua $B$ cắt $(O)$ và $(O)$ tai $P$ và Q. Chứng minh $M P / / N Q .$

Bài 5. Cho tam giác $A B C$, đưòng cao $A H$ (H thuộc BC). Gọi $D, E$ là hình chiếu của H trên $A B$ và $A D$, đương thẳng $D E$ cắt $B C$ tại $F$. Goi $O_1, O_2$ là tâm đương tròn ngoại tiếp các tam giác BDF và CEF; gọi I là trung điểm $\mathrm{AH}$ và $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $A B C$. Chúng minh rằng 4 điểm $I, O, O_1$ và $O_2$ cùng thuộc một đương tròn.

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Tứ giác

Định nghĩa. Tứ giác $ABCD$ là hình gồm các đoạn thẳng $AB, BC, CD, DA$.

Định lí. Tổng 4 góc trong một tứ giác bằng $360^\circ$.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$ có $\angle A = 70^\circ$. Các tia phân giác $BD, CE$ của các góc $B$ và $C$ cắt nhau tại điểm $I$; các tia phân giác ngoài của các góc $B$ và $C$ cắt nhau tại điểm $J$.

a)Tính số đo các góc của tứ giác $BICJ$.
b) hứng minh $A$, $I$, $J$ là ba điểm thẳng hàng.
c) Tứ giác $ABIC$ có phải là tứ giác lồi không? Vì sao?

Bài 2. Cho tứ giác $ABCD$. Gọi $I, J$ theo thứ tự là giao điểm của các phân giác trong và phân giác ngoài của các góc $A, B$.

a) Chứng minh rằng $\angle AIB = \dfrac{1}{2}(\angle C+ \angle D)$; $\angle AJB = \dfrac{1}{2}(\angle A + \angle B)$.
b) Chứng minh rằng $\angle AIB $ và $\angle AJB$ là hai góc bù nhau.

Bài 3. Cho tứ giác $ABCD$ có $\angle ACB = \angle ADB = 25^\circ, \angle BDC = 60^\circ, \angle ACD = 30^\circ$, góc ngoài của góc $A$ bằng $55^\circ$. Tính số đo các góc $\angle CAB, \angle DBA, \angle ABC$.

Bài 4.  Cho tứ giác $ABCD$. Chứng minh rằng:

a) $AC + BD < AB + BC + CD + DA$.
b) $AB + BC+ CD + DA < 2(AC + BD)$.

Bài 5.  Cho tứ giác $ABCD$ có $\widehat A + \widehat C = 180^\circ$, các tia $DA, CB$ cắt nhau tại $E$, tia $BA, CD$ cắt nhau tại $F$. Phân giác của góc $\widehat {DEC}$ và phân giác của góc $\widehat {CFB}$ cắt nhau tại $H$. Tính $\widehat {EHF}$.

Bài 6. Cho tứ giác $ABCD$ có $\widehat{ADB} = 10^\circ, \widehat {BDC} = 50^\circ, \widehat {ACD} = 60^o\circ , \widehat {ACB }= 20^o\circ$. Tính số đo các góc còn lại của tứ giác $ABCD$.

Bài 7. Cho tứ giác $ABCD$ có tam giác $ACD$ đều, tam giác $ACB$ cân tại $C$ và $\angle ACB = 20^0$.

a) Tính số đo góc $A,B$ của tứ giác.
b) Gọi $O$ là giao điểm của $AC, BD$. Tính số đo các góc $\widehat {ABD}, \widehat {COD}$.

Bài 8.  Cho tứ giác $ABCD$ có $AB+BD$ không lớn hơn $AC+CD$. Chứng minh $AB < AC$.

Bài 9. Cho tứ giác $ABCD$ và một điểm $O$ nằm trong tứ giác. Chứng minh rằng tổng khoảng cách từ $O$ đến các đỉnh của tứ giác thì lớn hơn nửa chu vi của tứ giác.

Đường thẳng Euler

Định lý. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng.

(Đường thẳng qua 3 điểm này được gọi là đường thẳng Euler của tam giác)

Chứng minh định lý.

Cách 1. (THCS) Cho tam giác $ABC$, gọi $H, G, O$ lần lượt là trực tâm, trọng tâm và tâm đường tròn ngoại tiếp tam giác $ABC$. Ta chứng minh $H, G, O$ thẳng hàng.

Gọi $M$ là trung điểm $BC$ và $D$ là đối xứng của $A$ qua $O$. Ta có $HBDC$ là hình bình hành.

Do đó $M$ là trung điểm $BC$ cũng là trung điểm $HD$.

Tam giác $AHD$ có $AM$ là trung tuyến và $AG = 2GM$ nên $G$ là trọng tâm.

Cách 2 (Vectơ) 

Cho tam giác $ABC$ có trực tâm $H$, tâm ngoại tiếp là $O$, $G$ là trọng tâm tam giác. Gọi $M$ là trung điểm $BC$ và $D$ là chân đường cao từ $A$.
Ta cần chứng minh $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Thật vậy đặt $\overrightarrow{v} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} -\overrightarrow{OH}$.
Thực hiện phép chiếu vectơ $\overrightarrow{v}$ trên $BC$ ta có $\overrightarrow{v_{BC}} = \overrightarrow{MD} + \overrightarrow{MB} + \overrightarrow{MC} – \overrightarrow{MD} = \overrightarrow{0}$.
Tương tự hình chiếu của $\overrightarrow{v}$ trên $AC$ là $\overrightarrow{v_{AC}} = \overrightarrow{0}$.
Do đó $\overrightarrow{v} = \overrightarrow{0}$.
Khi đó $\overrightarrow{OH} = \overrightarrow{OA}+ \overrightarrow{OB}+ \overrightarrow{OC} = 3\overrightarrow{OG}$, do đó $O, H, G$ thẳng hàng và $OH = 3OG$.

Cách 3 (phép vị tự) Xét phép vị tự tâm $G$ thì số $k = \dfrac{-1}{2}$ thì tam giác $ABC$ biến thành tam giác $MNP$ với $M, N, P$ là trung điểm các cạnh $BC, AC, AB$.

Khi đó trực tâm tam giác $ABC$ biến thành trực tâm tam giác $MNP$, hay $H \mapsto O$.

Do đó $\overrightarrow{GO} = \dfrac{-1}{2} \overrightarrow{GH}$.

Hay $H, G, O$ thẳng hàng và $GH = 2GO$.

 

Bài tập liên quan

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ lần lượt là trung điểm của các cạnh $BC, AC, AB$. Chứng minh rằng đường thẳng euler của các tam giác $ABC$ và $MNQ$ trùng nhau.

Bài 2. Cho tam giác $ABC$, các đường cao $AA’, BB’, CC’$ cắt nhau tại $H$. Chứng minh rằng đường thẳng euler của các tam giác $AB’C’, BA’C’, CA’B’$ đồng quy tại một điểm thuộc đường tròn ngoại tiếp của tam giác $A’B’C’$.

Bài 3. Cho tam giác $ABC$ có $AB^2 + AC^2 = 2BC^2$. Gọi $H$ là trực tâm và $M$ là trung điểm cạnh $BC$. Tia $MH$ cắt đường tròn ngoại tiếp tam giác tại $D$. Chứng minh $AD, BC$ và đường thẳng euler của tam giác $ABC$ đồng quy.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $A’, B’, C’$ lần lượt là giao điểm của $AI, BI, CI$ với $(O)$. Chứng minh rằng đường thẳng euler của tam giác $A’B’C’$ đi qua điểm $I$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $M, N$ lần lượt là giao điểm của $BI, CI$ với $DE$; $P$ là giao điểm của $BN$ và $CM$, $AI$ cắt $(O)$ tại $Q$. Chứng minh rằng $PQ$ là đường thẳng euler của tam giác $IBC$.

Bài 6. Cho hai đường tròn (O) và $(O’)$ cắt nhau tại A và B. Một đường thẳng qua A cắt (O) tại C và cắt (O’) tại D (A nằm giữa C và D). Chứng minh rằng đường thẳng euler của tam giác BCD luôn đi qua một điểm cố định.

Bài 7. Cho tam giác ABC có 3 đường cao AD,BE,CF đồng quy tại H. DE cắt đường tròn đường kính BH lần 2 tại K, DF cắt đường tròn đường kính CH lần 2 tại L. Chứng minh KL vuông góc với đường thẳng Euler của tam giác ABC

Bài 8. Cho tam giác $ABC$ có tâm đường tròn ngoại tiếp $O$. Gọi $T, U, V$ là tâm đường tròn ngoại tiếp các tam giác $BOC, COA, AOB$. Gọi $K$ là tâm đường tròn ngoại tiếp của tam giác $TUV$. Chứng minh $K$ thuộc đường thẳng euler của tam giác $ABC$.

Bài 9. Cho tam giác $ABC$, $D$ là điểm thuộc phân giác trong của góc $\angle BAC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Chứng minh rằng $EF$ vuông góc với $OD$.