Author Archives: Hung Nguyen

Phép nhân đa thức với đa thức – Phần 1

Muốn nhân đa thức với đa thức ta nhân từng đơn thức của đa thức này với đa thức kia.

Cho $A, B, C, D$ là các đơn thức. Khi đó:

$(A+B)\cdot (C+D) = A(C+D) + B(C+D)$

Ví dụ 1. Thực hiện các phép tính sau:

a) $(x-1)(x+2)$;
b) $(2-x)(3x+2)$;
c) $-4x(x-2)(x+2)$;

Giải
a)$(x-1)(x-2) = x(x-2) + (-1)(x-2)$

$= x^2 – 2x +(-x+2) = x^2-3x+2$

b)$(2-x)(3x+2) = 2(3x+2)+(-x)(3x+2)$

$= 6x+4+(-3x^2-2x) = -3x^2+4x+4$

c)$-4x(x-2)(x+2) = -4x[x(x+2)+(-2)(x+2)]$

$= -4x(x^2+2x-2x-4) = -4x(x^2-4)$

$= -4x^3+16x$

Ví dụ 2. Thực hiện các phép nhân.

a) $(2x^2-y)(y+3x)$

b)$(3xy^2+4x-3y)(x+6y)$

c)$(3x^2-2z-6y)(x+z)$

Giải
a) $(2x^2-y)(y+3x) = 2x^2(y) +(-y)(y) + (2x^2)(3x)+(-y)(3x)$

$ = 2x^2y -y^2 + 6x^3 -3xy$

b) $(3xy^2+4x-3y)(x+6y) = $

$=3xy^2(x) + 4x(x) +(-3x)(x ) +3xy^2(6y)+4x(6y) -(3y)(6y) $

$ = 3x^2y^2-3x^2+18xy^3+24xy-18y^2$

c)$(3x^2-2z-6y)(x+z) =$

$=2x^2 \cdot x +(-2z)\cdot x +(-6y)\cdot x + (3x^2)\cdot z +(-2z)\cdot z +(-6y)\cdot z$

$ = 2x^3 – 2xz -6xy + 3x^2z – 2z^2 – 6yz$

[WpProQuiz 2]

 

 

 

 

 

Nhân đơn thức với đa thức- Phần 1

Quy tắc.

Muốn nhân đơn thức với đa thức, ta lấy đơn thức nhân với từng đơn thức của đa thức và cộng các kết quả lại.

Nếu $A$ là đơn thức $B, C$ là các đơn thức thì ta có:

 

Ví dụ 1. Thực hiện các phép nhân sau:

a) $2x(3x +\dfrac{3}{2})$.

b) $3y(3- 4y)$

Gợi ý
  • $2x (3x+ \dfrac{3}{2}) $
  • $ = 2x\cdot (3x) + 2x \cdot \dfrac{3}{2}$
  • $=6x^2 + 3x$.
  • $3y(3-4y)$
  • $=3y \cdot 3 + 3y\cdot (-4y)$
  • $=9y – 12y^2$.

Ví dụ 2.Thực hiện các phép toán sau:

a) $-2x^3y(2x^2-3y+5xy)$
b) $\dfrac{2}{3}x^2y(3xy-x^2+y).$

Gợi ý

a)

  • $-2x^3y(2x^2-3y+5xy)$
  • $=-2x^3y\cdot(2x^2)+(-2x^3y)\cdot (-3y) + (-2x^3y)(5xy)$
  • $=-4x^5y +6x^3y^2-10x^4y^2$

b)

  • $\dfrac{2}{3}x^2y(3xy-x^2+y)$
  • $=\dfrac{2}{3}x^2y\cdot(3xy) +\dfrac{2}{3}x^2y\cdot(-x^2)+\dfrac{2}{3}x^2y\cdot(y)$
  • $=2x^3y^2 -\dfrac{2}{3}x^4y +\dfrac{2}{3}x^2y^2$.

Bài tập tương tự.

Bài 1. Thực hiện phép tính: a

a) $-3x(4x + 2)$.

b) $-\dfrac{1}{3}y^2(6y  – 9y^2)$.

c) $-2x^2y(4x^2 – 5xy^2 + z)$.

d) $3x^2y^2(5x – 4y^2 + 2xy)$.

Đáp số

a) $-12x^2-6x$

b) $-2y^3+3y^4$

c) $-8x^4y+10x^3y^3 -2x^2yz$.

d) $15x^3y^2-12x^2y^4+6x^3y^3$

Bài 2. Thực hiện phép tính

a) $-2x^2y(4x-5y^2+z)$

b) $-\dfrac{3}{4}xy (-8x^2y^2 + 3x^4y-12)$

c) $2z^2y(zx+3xyz – 5y^2)$

d) $\dfrac{1}{2}xy(\dfrac{4}{3}x^2 – \dfrac{9}{2}xy^2)$

Đáp số

a) $-8x^3y + 10x^2y^3 -2x^2yz$

b) $6x^3y^3 -\dfrac{9}{4}x^5y^2 +9xy$

c) $2xyz^3+6xy^2z^3 – 10y^3z^2$

d) $\dfrac{2}{3}x^3y – 9x^2y^3$

 

 

 

 

 

Bài tập hình học 9: Ôn thi học kì 1

Dưới đây là một số bài tập ôn thi học kì 1 lớp 9, môn hình học với lời giải chi tiết được thực hiện bởi thầy Nguyễn Phi Hùng – Giáo viên Trường Phổ thông Năng khiếu. Nếu có gì sai sót comment dưới nhé.

Các bạn hãy share cho mọi người cùng tiếp cận được tài liệu này. Cảm ơn.

Đề tham khảo HK1 quận 1, Sài Gòn, năm học 2018-2019 [pdf]

Link xem bài – > LOI-GIAI-CAC-BAI-HINH-DE-NGHI-HK1

Một vài tính chất của một bài toán hình học lớp 9: Tứ giác điều hòa (tứ giác đẹp)

Trong một bài kiểm tra lớp 9 mới đây, mình cho các em làm bài toán này. Với các em học sinh lớp 9, mình không thích cho quá nhiều bài toán của THPT áp xuống, việc dạy học của mình trong bao năm qua vẫn kiên trì với triết lý đó. Nhưng ngày càng thấy nhiều bài toán hồn cấp 3 mà cách giải cấp 2 được đưa xuống, tinh thần cũng lung lay, vì dạy chuyên cả hai cấp nên mình biết khá rõ bài toán nào của cấp nào, không phải mình không dạy được hoặc không ra được bài toán như thế, nhưng mình không thích những cách giải khi nhìn với con mắt hàng điểm điều hòa, cực đối cực…ra liền mà các em cấp hai lại mất thời gian để suy nghĩ chân phương.

Nhưng đó cũng là cách chế biến đề phổ biến cho những bài toán hình cấp 2 hiện nay, âu cũng là một xu hướng mới, tuy vậy trong lúc dạy thực sự mình ít ra bài tập dạng đó, đây là trường hợp hiếm mà mình ra bài tập kiểu này.

Bài toán. Cho đường tròn tâm $O$, dây cung $AB$ khác đường kính. Tiếp tuyến tại $A, B$ cắt nhau tại điểm $P$. Một đường thẳng qua $P$ cắt $(O)$ tại $C, D$ sao cho $PC > PD$, $OP$ cắt $AB$ tại $H$.

  1. Gọi $M$ là trung điểm $CD$. Chứng minh 5 điểm $O, A, B, P, M$ cùng thuộc một đường tròn.
  2. Chứng minh $PC \cdot PD = PA^2 = PH \cdot PO$. Suy ra tứ giác $OHDC$ nội tiếp.
  3. $CH$ cắt $(O)$ tại $R$ khác $C$. Chứng minh $ORPC$ nội tiếp.
  4. Chứng minh $HA, HP$ lần phân giác trong và phân giác ngoài của $\angle CHD$.
  5. Chứng minh $AD \cdot BC = BD \cdot AC$.
  6. Chứng minh $\angle HCB = \angle DCA$ và $AD \cdot BC = \dfrac{1}{2}AB \cdot CD$.
  7. Tiếp tuyến tại $C, D$ cắt nhau tại $Q$. Chứng minh $Q, A, B$ thẳng hàng.
  8. Đường thẳng qua $A$ song song với $PB$ cắt $BD, BC$ tại $K$ và $L$. Chứng minh $A$ là trung điểm của $K, L$.
  9. Gọi $I$ là điểm đối xứng của $O$ qua $H$. Chứng minh $I$ là trực tâm tam giác $APB$.
  10. Dựng các tiếp tuyến $AT, AV$ đến đường tròn đường kinh $PI$. Chứng minh $T, V, B$ thẳng hàng.
Giải

  1. $ \angle PAP = \angle PMO = \angle PBP = 90^\circ $, suy ra $ A,M,B,P,O $ cùng thuộc đường tròn đường kính $PO$.
  2. Ta có $ \triangle PBD \backsim \triangle PCB$ (g.g) suy ra $PD.PC = PB^2$. Mà $PB^2 = PH.PO$ (hệ thức lượng tam giác vuông $PBO$), nên $ PD.PC = PH.PO $, suy ra $ \triangle PDH \backsim \triangle POC $ (c.g.c), do đó $ \angle PHD = \angle PCO $, suy ra tứ giác $DHOC$ nội tiếp.
  3. Ta có $ \angle DCR = \frac{1}{2}\angle DOR $ (cùng chắn cung $DR$), và $ \angle DCR = \angle DHO $ (tứ giác $DHOC$ nội tiếp), suy ra $ \angle DOH = \angle ROH $, suy ra $ \angle PCR = \angle ROP $, nên tứ giác $PROC$ nội tiếp.
  4. $ \angle OHC = \angle ODC = \angle OCD = \angle PHD $, suy ra $HA$, $HD$ lần lượt là phân giác trong và phân giác ngoài $ \angle CHD $.
  5. Từ các cặp tam giác đồng dạng $PAD$ và $PCA$, $PBD$ và $PCB$ ta có
    \[ \frac{AD}{AC} = \frac{PD}{PA} \text{ và } \frac{BC}{BD} = \frac{PB}{PD}\] Nhân vế theo vế ta được $ AD.BC = AC.BD $.
  6. Từ $ \angle DOH = \angle ROH $ (cmt), suy ra $ \angle DOA = \angle ROB $, nên cung $AD$ bằng cung $BR$, suy ra $ \angle ACD = \angle HCB $, nhờ vậy $ \triangle ACD \backsim \triangle HCB $ (g.g), suy ra $ AD.BC = CD.BH = \frac{1}{2}AB.CD $.
  7. Trong đường tròn ngoại tiếp tứ giác $QDHC$, $Q$ là điểm chính giữa cung $DC$, nên $HQ$ là phân giác $\angle DHC$, suy ra ba điểm $H$, $A$, $Q$ thẳng hàng (cùng nằm trên phân giác trong $ \angle DHC $), do đó ba điểm $Q$, $A$, $B$ cũng thẳng hàng.
  8. Từ các cặp tam giác đồng dạng $ \triangle BAD \backsim \triangle BKA $ (g.g), $ \triangle BAL \backsim \triangle BCA $ (g.g), ta có
    \[ AK = \frac{AD.AB}{BD} \text{ và } KL = \frac{AC.AB}{BC} \] Như vậy, để chứng minh $AK = KL$, cần chứng minh $ AD/BD = AC/BC $, điều này được suy trực tiếp từ câu (5).
  9. Tứ giác $AOBI$ là hình thoi, suy ra $BI$ song song với $AO$ do đó vuông góc với $AP$, suy ra $I$ là trực tâm tam giác $ABP$.
  10. Gọi $S$ là tâm đường tròn đường kính $PI$, gọi $B’$ là giao điểm của $BI$ với $AP$. Do $BI \bot AP$ nên $B’ \in (S)$.
    Ta có $AH.AB = AB’.AP = AT^2$, suy ra $ \angle ABT = \angle ATH $.
    Tương tự, từ $AH.AB = AV^2$ ta có $ \angle ABV = \angle AVH $.
    Như vậy, để chứng minh $B,V,T$ thẳng hàng, chỉ cần chứng minh $ \angle ATH = \angle AVH $, điều này hiển nhiên do tứ giác $ATVH$ nội tiếp đường tròn đường kính $SA$.

Biến đổi góc – Phần 2

Ví dụ 5. (Đề thi HSG Quốc Gia Việt Nam năm 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$ với $AB < AC$. Gọi $I$ là trung điểm cung $BC$ không chứa $A$. Trên $AC$ lấy điểm $K$ khác $C$ sao cho $IK = IC$. Đường thẳng $BK$ cắt $(O)$ tại $D$ $(D \neq B)$ và cắt đường thẳng $AI$ tại $E$. Đường thẳng $DI$ cắt đường thẳng $AC$ tại $F$.

a. Chứng minh rằng $EF = \dfrac{BC}{2}$.
b. Trên $DI$ lấy điểm $M$ sao cho $CM$ song song với $AD$. Đường thẳng $KM$ cắt đường thẳng $BC$ tại $N$. Đường tròn ngoại tiếp tam giác $BKN$ cắt $(O)$ tại $P$ $(P\neq B)$. Chứng minh rằng đường thẳng $PK$ đi qua trung điểm đoạn thẳng $AD$.

Giải

a.

  • Chứng minh $\angle AKI = \angle ABI$ (cùng bù $\angle ACI$).
  • Tam giác $ABI, AKI$ bằng nhau, suy ra $E$ là trung điểm của $BK$.
  • Chứng minh $F$ là trung điểm $CK$.

b.

  • Tam giác $AID$ có $DE, AF$ là đường cao cắt nhau tại $K$ nên $K$ là trực tâm, suy ra $IK \bot AD$, do đó $CM \bot IK$. Suy ra $M$ là trực tâm tam giác $IKC$.
  • Khi đó $AC$ là tiếp tuyến của $(BKN)$.
  • $\angle CKP = \angle KBP = \angle DIP$, suy ra $KFPI$ nội tiếp, do đó $\angle IPK = 90^\circ $, suy ra $IJ$ là đường kính.
  • Từ đó chứng minh $JAKD$ là hình bình hành.

 

Ví dụ 6.  (Trần Quang Hùng) Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$, $AD$ cắt $(O)$ tại $K$. $KF$ cắt $(O)$ tại $L$.
a. Chứng minh $CL$ đi qua trung điểm của $EF$.
b. Đường thẳng qua $A$ song song với $DE$ cắt $CL$ tại $N$. Chứng minh $\angle OFN = 90^\circ$.

Giải

a.

  •  Gọi $P$ là giao điểm của $CL$ và $DE$, $HP$ cắt $AC$ tại $D$.
  • Ta có $\angle CH \cdot CF = \angle CA \cdot CE = CP \cdot CL$ nên $LFHP$ nội tiếp.
  • Suy ra $\angle CHP = \angle CLF = \angle CAD = \angle CFE$, do đó $HP \parallel FE$.
  • Ta có $EH$ là phân giác $\angle DEF$, suy ra $\angle PHE = \angle HEF = \angle HEP$, suy ra $PE = PH$.
  • Tam giác $HES$ vuông, suy ra $P$ là trung điểm $HS$. Từ đó ta có $M$ là trung điểm của $EF$.

b.

  • Ta chứng minh $\triangle FAN \backsim \triangle FOC$ đồng dạng. Vì có $\angle FCO = \angle FAN$ nên ta chỉ cần chứng minh $\dfrac{NA}{OC} = \dfrac{AF}{CF}$. \hfill (1)
  • Trong đẳng thức trên chỉ có $AN$ có vẻ là chưa liên quan gì, nên ta tính $AN$ trước. Ta có $\dfrac{AN}{PE} = \dfrac{AC}{CE}$, suy ra $AN=\dfrac{AC \cdot PE}{CE}$.
  • Ta có $PE = \dfrac{1}{2} HS = \dfrac{CH \cdot EF}{2CF}$.
  • Suy ra $\dfrac{AN}{OC} = \dfrac{CA \cdot EF \cdot CH}{CE \cdot CF \cdot 2OC}$, ta cần chứng minh $\dfrac{CA \cdot EF \cdot CH}{CE \cdot CF \cdot 2OC} = \dfrac{AF}{CF} $
  • $\Leftrightarrow \dfrac{AF}{EF} = \dfrac{CA}{CE}\cdot \dfrac{CH}{2R}$
  • $\Leftrightarrow \dfrac{AC}{AB} = \dfrac{CA}{CE}\cdot \dfrac{CH}{2R}$
  • $\Leftrightarrow \dfrac{CE}{CH} = \dfrac{AB}{2R}$ (Đúng).

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, dường cao $AD$, trên đoạn $AD$ lấy điểm $E$, trên tia $BE, CE$ lấy các điểm $F, L$ sao cho $CL = CA, BF = BA$. $BF, CL$ cắt nhau tại $K$. Chứng minh rằng tam giác $KFL$ cân.

Giải

  • Gọi $M, N$ là giao điểm của $BE, CE$ với $(ABC)$.
  • Khi đó $CM, BN, AD$ đồng quy tại $H$.
  • Ta có $BN\cdot BH = BD\cdot BC = BA^2 = BF^2$. Suy ra $BF \bot AF$. Tương tự thì $CL \bot AL$.
  • $AF^2 = AN\cdot AB = AM\cdot AC = AL^2$. Suy ra $AF = AL$. Từ đó ta có $KF = KL$.

Ví dụ 8. Cho tam giác $ABC$ nội tiếp đường tròn $w$. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Các đường thẳng $AI, BI, CI$ cắt $w$ lần lượt tại $A’,B’, C’$. $M$ là một điểm trên cạnh $AB$. Đường thẳng qua $M$ và song song với $AI$ cắt đường thẳng qua $B$ vuông góc với $BI$ tại điểm $A_1$; đường thẳng qua $M$ song song với $BI$ và cắt đường thẳng qua $A$ vuông góc với $AI$ tại điểm $B_1$. Chứng minh rằng $A’A_1, B’B_1$ và $C’M$ đồng quy.

Giải

  • Gọi $T$ là giao điểm của $B’B_1$ và $(O)$. Ta có $\angle MB_1T = \angle BB’T = \angle MAT$, suy ra tứ giác $AMTB_1$ nội tiếp, kéo theo $\angle AB_1M = \angle ATM $ . \hfill (1)
  • Ta chứng minh được $B’C’ \bot AA’$, suy ra $AB_1 \parallel B’C’$, từ đó ta có $\angle AB_1M = \angle C’B’lB$. \hfill (2)
  •  Từ (1) và (2), suy ra $T, M$ và $C’$ thẳng hàng. Chứng minh tương tự thì giao điểm của $A’A_1$ và $(O)$ cũng thuộc $C’M$. Từ đó ta có điều cần chứng minh.

Bài tập rèn luyện.

Bài 1. Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 2. Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 3. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 4. (Đề thi chon đội dự tuyển PTNK năm 2009) Cho tam giác $ABC$ nhọn. Trên các tia đối của các tia $BC, CA, AB$ lấy các điểm $A_1, B_1, C_1$ sao cho tam giác $A_1B_1C_1$ đồng dạng với tam giác $ABC$. Chứng minh rằng trực tâm tam giác $A_1B_1C_1$ cũng là tâm đường tròn ngoại tiếp tam giác $ABC$.

Bài 5. (Đề thi HSG Toán Quốc Tế năm 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 6. (Đề thi toán Quốc tế năm 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 7. (Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Biến đổi góc – Phần 1

Một trong những kĩ năng làm toán hình học đó là chứng minh các góc bằng nhau hay so sánh các góc, để dẫn tới các tam giác bằng nhau hay tam giác đồng dạng. Do đó kĩ năng biến đổi góc chiếm vị trí quan trọng trong việc chứng minh các tính chất hình học, vì thế chương đầu tiên của sách này tôi đưa ra một số bài toán liên quan đến việc tính toán, so sánh các góc, từ đó giải quyết được yêu cầu bài toán.

Việc tính toán các góc, tôi ưu tiên cho góc hình học mà không sử dụng góc định hướng. Việc sử dụng góc hình học phụ thuộc và hình vẽ nên lời giải nhiều khi không mang tính tổng quát, tuy vậy đối với các em mới từ lớp 9 lên thì cách trình bày này dễ tiếp thu hơn, và thực sự đối với số đông cũng vậy. Việc vẽ hình đó cũng là kĩ năng của người làm hình học, chú ý các trường hợp đề bài nêu ra để vẽ hình chính xác yêu cầu, từ đó có lời giải phù hợp. Chương trình vẽ hình trong sách là geogebra đã rất phổ biến với cộng đồng làm toán sơ cấp, tôi sẽ dùng chương trình này hỗ trợ làm tài liệu này. Có một điều khuyên cho các em học sinh là hãy vẽ bằng tay và dùng compa thước, không nên dùng phần mềm hỗ trợ để vẽ, vì khi thi cử thì không dùng máy để vẽ hay phát hiện tính chất.

Kiến thức chính của chương này là các kiến thức liên quan đến góc và đường tròn, tam giác đồng dạng, tứ giác nội tiếp đã học trong chương trình THCS. Các bài toán cũng chỉ sử dụng kiến thức của trung học cơ sở để giải.

Ví dụ 1. (Định lý Migel) Cho tam giác $ABC$. Các điểm $D, E, F$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$.
a. Chứng minh rằng đường tròn ngoại tiếp các tam giác $AEF, BDF, CDE$ cùng đi qua một điểm. Điểm này được gọi là điểm Migel.
b. Chứng minh điểm Migel thuộc đường tròn ngoại tiếp của tam giác $ABC$ khi và chỉ khi $D, E, F$ thẳng hàng.
c. Khi $D, E, F$ thẳng hàng. Chứng minh rằng tâm đường tròn ngoại tiếp của các tam giác $AEF, BDF, CDE$ và điểm $P$ cùng thuộc một đường tròn.

Giải

a. Gọi $P$ là giao điểm của $(AEF)$ và $(BDF)$. Ta có $\angle PDC = \angle BFP = \angle AEP$. Suy ra $CDPE$ nội tiếp, hay $P \in (CDE)$. \\Vậy $(AEF), (BDF)$ và $(CDE)$ cùng đi qua một điểm.

b. Khi $D, E, F$ thẳng hàng.
Ta có $\angle DPB = \angle PFD = \angle PAE = \angle PAC$. Suy ra $P \in (ABC)$.
Ngược lại nếu $P \in (ABC)$ ta có $\angle PFD = \angle PBD = \angle PAE = 180^\circ – \angle PFE$. Suy ra $D, E, F$ thẳng hàng.

c.  

  • Gọi $O, O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, AEF, BDF, CDE$.
  • Gọi $H = O_bO_c \cap PD, K = OO_a \cap PB, L = OO_c \cap PC$.
    Ta có $O_bOc$ là trung trực của $PD$ nên $H$ là trung điểm của $PD$ và $\angle PH \bot O_bO_c$; tương tự với $K, L$.
  • $H, K, L$ là hình chiếu của $P$ trên các đường thẳng chứa các cạnh của tam giác $OO_bO_c$, dễ thấy $H, K, L$ thẳng hàng nên 4 điểm $P, O, O_b, O_c$ cùng thuộc đường tròn. (Định lý đảo của đường thẳng Simson).
  • Tương tự cho $P, O, O_a, O_c$ cũng cùng thuộc một đường tròn. Vậy 5 điểm $P, O, O_a, O_b, O_c$ cùng thuộc một đường tròn.

 

Ví dụ 2. (Đề đề nghị IMO 2002) Cho đường tròn $w$, $B$ là một điểm $w$. Trên tiếp tuyến tại $B$ của $w$ lấy điểm $A$; lấy điểm $C$ sao cho đoạn thẳng $AC$ cắt $w$ tại hai điểm phân biệt. Đường tròn $w’$ tiếp xúc với $AC$ tại $C$, tiếp xúc với $w$ tại $D$ sao cho $D$ khác phía $B$ đối với $AC$. Chứng minh tâm đường tròn ngoại tiếp tam giác $BCD$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

Giải

  •  Vẽ tiếp tuyến chung tại $D$ của $w$ và $w’$.
  • Ta có $\angle BDC = \angle BDy + \angle yDC = \angle 180^o – \angle xDB$ $+ DCH + \angle 180^\circ – \angle ACD + \angle DCH$  $= \angle BAC + \angle AHB +\angle DCH = \angle BAC + 180^\circ – \angle BDC$.
  • Suy ra $2 \angle BDC = 180^\circ + \angle BAC$. (1)
  • Mặt khác $\angle BTC = 2 (180^\circ – \angle BDC)$, suy ra $2 \angle BDC = 360^\circ – \angle BTC$.(2)
  • Từ (1) và (2) ta có $\angle BAC + \angle BTC = 180^\circ$, vậy tứ giác $ABTC$ nội tiếp.

Ví dụ 3. Tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $P$. Trên cung nhỏ $AB$ lấy điểm $C$ sao cho $CAB$ khác tam giác cân. Các đường thẳng $CA$ và $BP$ cắt nhau tại $D$, $BC$ và $AP$ cắt nhau tại $E$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ACE, BCD$ và $OPC$ thẳng hàng.

Giải

  • Gọi $Q$ là giao của $(ACE)$ và $BCD$ ($Q$ khác $C$).Ta có $\angle BDQ = \angle BCQ = \angle QAE$. Suy ra $AQDP$ nội tiếp. Tương tự thì $BQEP$ nội tiếp.
  •  Khi đó $\angle PQC = \angle EQC – \angle EQP = \angle PAC – \angle PBE = \dfrac{1}{2}(\angle AOC – \angle BOC) = \angle POQ$.
  • Vậy tứ giác $OPCQ$ nội tiếp.
  • Từ đó ta có tâm các đường tròn $(ACE), (BCD), (OPC)$ thẳng hàng.

Ví dụ 4. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài $(O)$. Từ $P$ vẽ các tiếp tuyến $PA$ và $PB$ đến $(O)$ với các tiếp điểm $A, B$. Trên tia đối của tia $BP$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $APM$ cắt $(O)$ tại điểm thứ hai là $D$. Gọi $H$ là hình chiếu của $B$ trên $AM$. Chứng minh rằng $\angle HDM = 2\angle AMP$.

Giải

  • Gọi $E$ là giao điểm của $MD$ và $(O)$, $K$ là giao điểm của $AM$ và $OB$.
  • $\angle xAE = \angle ADE = \angle APM$. Suy ra $AE\parallel PM$, suy ra $\angle EAM = \angle AMP$. (1)
  • Ta có $MD\cdot ME = MB^2 = MH\cdot MK$. Suy ra $DHKE$ nội tiếp. Do đó $\angle HDM = \angle HKE = 2\angle EAM$. (2)
  • Từ (1) và (2) ta có $\angle HDM = 2\angle AMP$.

Bài tập tứ giác

Bài 1. Tính tổng các góc ngoài của tứ giác (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).

Giải
  Cho tứ giác $ABCD$.

  • Ta có $\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1} = 360^\circ$,
    cần tính $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$.
  • $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$
  • $= (180^\circ – \angle{A_1}) + (180^\circ – \angle{B_1}) + (180^\circ – \angle{C_1}) + (180^\circ – \angle{D_1})$
  • $= 720^\circ – (\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1}) = 720^\circ – 360^\circ = 360^\circ$.
  • Vậy tổng các góc ngoài của tứ giác bằng $360^\circ$.

 

Bài 2. Tứ giác $ABCD$ có $AB = BC$, $CD = DA$.
a) Chứng minh rằng $BD$ là đường trung trực của $AC$.
b) Cho biết $\angle{B} = 100^\circ$, $\angle{D} = 70^\circ$, tính $\angle{A}$ và $\angle{C}$.

Giải

a) $BA = BC$ và $DA = DC$ nên $BD$ là đường trung trực của $AC$.
b)

  • $\triangle{ABD} = \triangle{CBD}$ (c.c.c)
  • $\Rightarrow \angle{BAD} = \angle{BCD}$.
  • Ta lại có
    $\angle{BAD} + \angle{BCD} = 360^\circ – \angle{B} – \angle{D}$
  • $= 360^\circ – 100^\circ – 70^\circ = 190^\circ$.
  • Do đó $\angle{A} = \angle{C} = 190^\circ : 2 = 95^\circ$.

Bài 3. Tính các góc của tứ giác $ABCD$, biết rằng :
$\angle{A} : \angle{B} : \angle{C} : \angle{D} = 1 : 2 : 3 : 4$.

Giải
  • Theo tính chất dãy tỉ số bằng nhau và tổng các góc của tứ giác :
    $\dfrac{\angle{A}}{1} = \dfrac{\angle{B}}{2} = \dfrac{\angle{C}}{3} = \dfrac{\angle{D}}{4} = \dfrac{\angle{A} + \angle{B} + angle{C} + \angle{D}}{1 + 2 + 3 +4} = \dfrac{360^\circ}{10} = 36^\circ$
  • Do đó, $\angle{A} = 36^\circ, \angle{B} = 72^\circ, \angle{C} = 108^\circ, \angle{D} = 144^\circ$.

Bài 4. Tứ giác $ABCD$ có $\angle{A} = 65^\circ$, $\angle{B} = 117^\circ$, $\angle{C} = 71^\circ$. Tính số đo góc ngoài tại đỉnh $D$.

Giải

Tính góc $D$ của tứ giác $ABCD$, được $107^\circ$.

Góc ngoài tại đỉnh $D$ bằng $73^\circ$.

Bài 5. Chứng minh rằng tất cả các góc của một tứ giác không thể đều là góc nhọn, hoặc không thể đều là góc tù.

Giải

Giả sử bốn góc của một tứ giác là bốn góc nhọn thì tổng bốn góc của tứ giác nhỏ hơn $360^\circ$, trái với tính chất về tổng các góc của tứ giác bằng $360^\circ$. Vậy bốn góc của tứ giác không thể đều là góc nhọn. Học sinh tự chứng minh bốn góc của tứ giác không thể đều là góc tù.

Bài 6. Cho tứ giác $ABCD$. Chứng minh rằng tổng hai góc ngoài tại các đỉnh $A$ và $C$ bằng tổng hai góc trong tại các đỉnh $B và D$.

Giải
  • Gọi $\angle{A_1}$ và $\angle{C_1}$ là các góc trong tại các đỉnh $A$ và $C$. Gọi $\angle{A_2}$ và $\angle{C_2}$ là các góc ngoài tại các đỉnh $A$ và $C$.
  • Ta có: $\angle{A_2} + \angle{C_2} = (180^\circ – \angle{A_1}) + (180^\circ – \angle{C_1})$
  • $= 360^\circ – \angle{A_1} – \angle{C_1}$ (1)
  • Ta lại có : $\angle{B} + \angle{D} = 360^\circ – \angle{A_1} – \angle{C_1}$ (2)
  • Từ (1) và (2) suy ra : $\angle{A_2} + \angle{C_2} = \angle{B} + \angle{D}$.

Bài 7. Tứ giác $ABCD$ có $\angle{A} = 110^\circ$, $\angle{B} = 100^\circ$. Các tia phân giác của các góc $C$ và $D$ cắt nhau ở $E$. Các đường phân giác của các góc ngoài tại các đỉnh $C$ và $D$ cắt nhau ở $F$. Tính $\angle{CED}$, $\angle{CFD}$.

Giải

Tứ giác $ABCD$ ta có
$\angle{C} + \angle{D} = 360^\circ – \angle{A} – \angle{B}
= 360^\circ – 110^\circ – 100^\circ = 150^\circ$
nên $\angle{C_1} + \angle{D_1} = \frac{angle{C_1} + \angle{D_1}} = \frac{150^\circ}{2} = 75^\circ.
\triangle{CED} có \angle{CED} = 180^\circ – (angle{C_1} + \angle{D_1})
= 180^\circ – 75^\circ = 105^\circ$
Vì $DE$ và $DF$ là các tia phân giác của hai góc kề bù nên $DE \perp DF$. Trong tự, $CE \perp CF$.
Xét tứ giác $CEDF$:
$\angle{F} = 360^\circ – \angle{E} – \angle{ECF} – \angle{EDF} = 360^\circ – 105^\circ – 90^\circ – 90^\circ = 75^\circ$.

Bài tập tự giải.

  1. Tứ giác $ABCD$ có $\angle{B} = \angle{A} + 10^\circ$, $\angle{C} = \angle{B} + 10^\circ$, $\angle{D} = \angle{C} + 10^\circ$. Khẳng định nào dưới đây là đúng ?
    (A) $\angle{A} = 65^\circ$ , (B) $\angle{B} = 85^\circ$ ; (C) $\angle{C} = 100^\circ$ ; (D) $\angle{D} = 90^\circ$.
  2. Tứ giác $ABCD$ có $\angle{C} = 60^\circ$, $\angle{D} = 80^\circ, \angle{A} – \angle{B} = 10^\circ$. Tính số đo các góc $A$ và $B$.
  3. Tứ giác $ABCD$ có chu vì 66cm. Tính độ dài $AC$, biết chu vi tam giác $ABC$ bằng 56cm, chu vi tam giác $ACD$ bằng 60cm.

Tứ giác – Phần 1

Định nghĩa. Tứ giác $ABCD$ là hình gồm bốn đoạn thẳng $AB, BC, CD, DA$, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Định nghĩa. Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

Định lý. (Tổng 4 góc trong của một tứ giác lồi)

Tổng các góc của một tứ giác bằng $ 360^\circ $

Ví dụ 1. Cho tứ giác $ABCD$ có $\angle A =\angle C = 90^\circ$ và $\angle B= 2 \angle D$.

a. Tính số đo các góc $B$ và $D$.

b. Chứng minh $AB^2+AD^2 = BC^2+CD^2$.

Giải

 

a. Ta có $\angle A + \angle B + \angle C + \angle D = 360^\circ$.

$90^\circ + 2 \angle D + 90^\circ + \angle D = 360^\circ$

$3 \angle D = 180^\circ$.

$\angle D = 60^\circ$.

$\angle B = 120^\circ$.

b. Áp dụng Pitagore cho tam giác $ABD$ ta có: $AB^2 +AD^2 = AC^2$.

Tương tự cho tam giác $BCD$ ta có $CB^2+CD^2 = AC^2$.

Vậy $AB^2+AD^2=CB^2+CD^2$.

Ví dụ 2. Cho tứ giác $ABCD$ có $\dfrac{\angle A}{1} = \dfrac{\angle B}{2} = \dfrac{\angle C}{3} = \dfrac{\angle D}{4}$. Tìm số đo góc $C$.

Giải

Áp dụng dãy tỉ số bằng nhau ta có:

$\dfrac{\angle A}{1} = \dfrac{\angle B}{2} = \dfrac{\angle C}{3} = \dfrac{\angle D}{4}= \dfrac{\angle A+ \angle B  + \angle C + \angle D}{1+2+3+4} = \dfrac{360^\circ}{10} = 36^\circ$.

$\angle  C = 36 \times 3 = 108^\circ$.

Bài tập. 

  1. Cho tứ giác $ABCD$ có $AB = AD, CB = CD$. Chứng minh $ AC \bot CD $.
  2. Cho tứ giác $ABCD$ có $ \angle {A} : \angle {B} : \angle {C} = \angle {D} = 3: 4 : 2 : 3 $.
  3. Cho tứ giác $ABCD$, $ \triangle ABD $ là tam giác cân đỉnh $A$ và số đo góc $A$ gấp đôi số đo góc $ \angle ABD $; $ \triangle BCD $ có các góc $ \angle  B, \angle  C, \angle D $ có số đo tỉ lệ với 4; 3; 2.
    a.Tính số đo các góc của tứ giác $ABCD$.
    b.Tứ giác $ABCD$ có đặc biệt gì?
  4. Cho tam giác $ABC$ có $\angle {A} = 70^\circ $. Các tia phân giác $BD, CE$ của góc $B$ và $C$ cắt nhau tại điểm $I$; các tia phân giác ngoài của góc $B$ và $C$ cắt nhau tại điểm $J$.
    a.Tính số đo các góc ngoài của tứ giác $BICJ$.
    b. Chứng minh $A, I, J$ là ba điểm thẳng hàng.
    c.Tứ giác $ABIC$ có phải là tứ giác lồi không? Vì sao?
  5. Tính tổng các góc ngoài của tứ giác (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).
  6. Tứ giác $ABCD$ có $AB = BC, CD = DA$.
    a.Chứng minh rằng $BD$ là đường trung trực của $AC$.
    b.Cho biết $\hat{B} = 100^\circ, \angle {D} = 70^\circ$, tính $\angle A$ và $\angle C$.
  7. Tính các góc của tứ giác $ABCD$, biết rằng :
    $A : B : C : D = 1: 2 : 3 : 4$.
  8. Tứ giác ABCD có $\angle {A} = 65^\circ, \angle {B} = 117^\circ, \angle {C} = 71^\circ$. Tính số đo góc ngoài tại đinh $D$.
  9. Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù.
  10. Cho tứ giác $ABCD$. Chứng minh rằng tổng hai góc ngoài tại các đỉnh $A$ và $C$  bằng tổng hai góc trong tại các đỉnh $B$ và $D$.
  11. Tứ giác $ABCD$ có $\angle {A} = 110^\circ, \angle {B} = 100^\circ$. Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các định C và D cắt nhau ở F. Tính $\angle CED, \angle CFD$.