Category Archives: Lớp 8

Các bài toán tổ hợp trong kì thi Junior Bankan – P1

Lê Phúc Lữ – Phạm Khánh Vĩnh

(Bài viết trích từ Tập san Star Education – Số 5)

Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?

Lời giải

Câu trả lời là phủ định.
Giả sử tồn tại các số thỏa mãn đề bài thì vì chúng có số dư đôi một khác nhau nên sẽ có đầy đủ các số dư $0,1,2,3,\ldots ,15$. Điều này có nghĩa là trong đó, có $8$ số chẵn và $8$ số lẻ. Suy ra, ba chữ số $a,b,c$ để tạo thành các số đã cho không thể có cùng tính chẵn lẻ. Ta có hai trường hợp:

  • Trong các số $a,b,c$, có hai số chẵn là $a,b$ và số $c$ lẻ. Ta có tất cả $9$ số lẻ tạo thành từ các chữ số này là:
    $aac,abc,acc,bac,bbc,bcc,cac,cbc,ccc$.
    Gọi ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{9}}$ là số có hai chữ số tạo thành bằng cách xóa đi chữ số cuối từ dãy trên.
    Rõ ràng số $\overline{{{a}_{i}}k}$ và $\overline{{{a}_{j}}k}$ với $i\ne j$ khác số dư với nhau theo modulo $16$ nếu như hiệu của chúng không chia hết cho $16$, suy ra ${{a}_{i}}-{{a}_{j}}$ không chia hết cho $8.$ Tuy nhiên, ta lại có đến $9$ số nên điều này không thể xảy theo nguyên lý chuồng bồ câu.
  • Trong các số $a,b,c$, có hai số lẻ là $a,b$ và số $c$ chẵn: cũng dẫn đến mâu thuẫn tương tự.

Vậy không tồn tại các số thỏa mãn đề bài.

Bài 2: (JBMO 2000)

Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?

 

Lời giải

Gọi số nam là $2n$, số nữ là $n$ và tổng số vận động viên là $3n.$ Tổng số trận đấu là

$\frac{3n(3n-1)}{2}.$ \medskip

 

Theo giả thiết thì số trận thắng bởi nam là $$\frac{5}{12}\cdot \frac{3n(3n-1)}{2}=\frac{5n(3n-1)}{8}.$$

Số trận đấu giữa các nam là $\frac{2n(2n-1)}{2}=n(2n-1)$ và rõ ràng số trận này không vượt quá số trận thắng của các nam.

Suy ra $$\frac{5n(3n-1)}{8}\ge n(2n-1)\Leftrightarrow n\le 3.$$ Mặt khác, $5n(3n-1)$ phải chia hết cho $8$ nên $n=3.$ Do đó, số vận động viên của giải đấu là $9.$

Bài 3: (JBMO 2006)

Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:

 

  •  Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
  •  Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.

Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?

 

Lời giải

Với mọi bảng kích thước $2n\times 2n,$ tổng số ô bị xóa đi là $$2\times 2\times (1+2+3+\cdots +n-1)=2n(n-1).$$

Bảng sẽ còn lại ${{(2n)}^{2}}-2n(n-1)=2n(n+1)$ ô, tức là phủ được tối đa $n(n+1)$ ô vuông.

Không có mô tả.

 

Với $n=1,2,3,4,$ ta có thể kiểm tra trực tiếp được rằng kết quả lần lượt sẽ là $2,6,12,20$ bởi khi đó ta có thể phủ kín toàn bộ bảng. Còn với $n\ge 4$, ta xét hai trường hợp:

 

  • Nếu $n$ lẻ, khi đó ta chia bảng $2n\times 2n$ đã cho thành $4$ hình vuông nhỏ thì rõ ràng, mỗi hình sẽ có $\frac{n(n+1)}{2}$ ô còn trống. Tiếp theo, ta tô màu theo dạng bàn cờ cho bảng này (ô ở góc thì tô đen), ta sẽ có tất cả $\frac{{{(n+1)}^{2}}}{4}$ ô đen và $\frac{{{n}^{2}}-1}{4}$ ô trắng. Rõ ràng mỗi hình chữ nhật khi đặt lên bảng sẽ chứa một ô đen và một ô trắng nên số cặp ô trắng – đen tối đa trong hình vuông con là $\frac{{{n}^{2}}-1}{4}$, và tương ứng sẽ có tối đa $$4\cdot \frac{{{n}^{2}}-1}{4}={{n}^{2}}-1$$ hình chữ nhật $1\times 2,2\times 1$ phủ được trên bảng.

Ngoài ra, giữa các hình vuông con cạnh nhau, ta còn có hai ô màu đen cạnh nhau nên ta có thể lát thêm vào đó tổng cộng $4$ hình chữ nhật nữa, tổng cộng là ${{n}^{2}}-1+4={{n}^{2}}+3$.

  •  Nếu $n$ chẵn, bằng cách tương tự trên, ta phủ được hình bởi tối đa ${{n}^{2}}+4$ ô.

Tóm lại,

  •  Với $n=1,2,3,4$, đáp số lần lượt là $2,6,12,20.$
  •  Với $n>4$ và $n$ lẻ thì đáp số là ${{n}^{2}}+3.$
  •  Với $n>4$ và $n$ chẵn thì đáp số là ${{n}^{2}}+4.$

Bài 4: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Không có mô tả.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Không có mô tả.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 5: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 6:

(JBMO 2010)

Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.

 

Không có mô tả.

 

Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.

 

Lời giải

Câu trả lời là $0$ hoặc $3.$

Gọi $x$ là số viên gạch chữ $L$ và $y$ là số viên gạch hình vuông $2\times 2.$ Đánh dấu chéo $20$ hình vuông của hình chữ nhật như sơ đồ bên dưới.

Không có mô tả.

Rõ ràng mỗi viên gạch sẽ chứa không quá một dấu chéo. Suy ra $x+y\ge 20.$

Ngoài ra ta cũng có $3x+4y=63.$

Từ đó suy ra $y\le 3$ và $y$ chia hết cho $3$, dựa theo điều kiện thứ hai.

Do đó $y=0$ hoặc $y=3.$ Dưới đây là các cách lát thỏa mãn điều kiện đó.

Không có mô tả.

Bài 7: (JBMO 2013)

Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:

 

  •  Alice chọn $n$ số thực, không nhất thiết phân biệt.
  •  Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
  •  Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.

Hỏi Bob có thể có cách chắc chắn thắng hay không với

 

  •  $n=5?$
  •  $n=6?$
  •  $n=8?$

 

 

Lời giải

1) Câu trả lời là khẳng định.

 

Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e$. Rõ ràng mỗi số xuất hiện trong các tổng đúng $4$ lần nên bằng cách cộng tất cả $10$ tổng và chia hết quả cho $4$, Bod sẽ thu được

$a+b+c+d+e.$

Trừ đi tổng lớn nhất và nhỏ nhất, Bob sẽ thu được số lớn thứ ba là $c.$ Tiếp tục trừ $c$ vào tổng lớn thứ nhì, chính là $c+e$ thì Bob thu được $e.$ Trừ $e$ vào tổng lớn nhất, Bob thu được $d$. Bằng cách tương tự, Bob sẽ tìm ra được các giá trị $a,b.$ \medskip

 

2) Câu trả lời là khẳng định. Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e\le f.$ Tương tự trên, ta cũng tính được tổng $S$ các số của bộ. Trừ $S$ cho tổng lớn nhất và nhỏ nhất, ta thu được tổng $c+d.$ \medskip

 

Trừ $S$ cho tổng lớn nhì và tổng nhỏ nhất, ta được $c+e.$ Trừ $S$ cho tổng lớn nhất và tổng nhỏ nhì, ta được $b+d.$

Từ đây suy ra $a+c=S-(b+d)-(e+f)$, trong đó ta biết $e+f$ vì đó là tổng lớn nhất.

Lúc bấy giờ, Bob đã tìm được ba tổng $a+b,a+c,b+c$ nên sẽ tính được $T=a+b+c$ và dễ dàng tìm được $a,b,c.$ Tương tự, Bob có thể tìm được $d,e,f.$ \medskip

 

3) Câu trả lời là phủ định.

Ta thấy rằng có hai bộ tám số là $1,5,7,9,12,14,16,20$ và $2,4,6,10,11,15,17,19$ đều cho cùng $28$ tổng theo đôi một giống nhau nên chắc chắn rằng Bob không thể biết được bộ mà Alice đã chọn.

 

Bài 8: (JBMO 2014)

Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?

 

Lời giải

Ta gọi các giá trị $s$ để cho người $A$ có chiến thuật thắng là vị trí thắng và các vị trí còn lại là vị trí thua. Ta cần tìm số lượng vị trí thua.

Giả sử có $k$ vị trí thua thuộc tập hợp $$X=\{{{s}_{1}},{{s}_{2}},{{s}_{3}},\ldots ,{{s}_{k}}\}.$$

Trước hết, ta thấy rằng mỗi bội của $n$ là vị trí thắng (vì người $A$ có thể lấy tất cả các viên sỏi ở ngay lần đi đầu tiên). Khi đó, nếu có ${{s}_{i}}\equiv {{s}_{j}}(\bmod n)$ và ${{s}_{i}}>{{s}_{j}}$ thì ở lượt đi đầu tiên, $A$ bốc ${{s}_{i}}-{{s}_{j}}$ viên sỏi (vì số này chia hết cho $n$). Nhưng lúc đó, còn lại ${{s}_{j}}$ viên sỏi và đây là vị trí thua của $B$ nên sẽ là vị trí thắng của $A$, mâu thuẫn.

Do đó, tất cả các số trong $X$ đều không đồng dư với nhau theo modulo $n$ hay $k=\left| X \right|\le n-1.$ \medskip

 

Ta sẽ chứng minh rằng $k=n-1.$ Thật vậy,

Để có được điều đó, ta sẽ chỉ ra rằng ở mỗi lớp thặng dư khác $0$ của $n$, luôn có một vị trí thua bằng phản chứng. Giả sử rằng tồn tại $r\in \{1,2,3,\ldots ,n-1\}$ sao cho $mn+r$ là vị trí thắng với mỗi số nguyên dương $m.$ Gọi $u$ là vị trị thua lớn nhất (nếu $k>0$) hoặc $0$ (nếu $k=0$).

Đặt $s$ là bội chung nhỏ nhất của tất cả các số nguyên dương từ $2$ đến $u+n+1.$ Khi đó, tất cả các số $s+2,s+3,\ldots ,s+u+n+1$ đều là hợp số. \medskip

 

Xét số nguyên dương ${m}’$ thỏa mãn

$s+u+2\le {m}’n+r\le s+u+n+1$.

Để ${m}’n+r$ là vị trí thắng thì phải có số tự nhiên $p$ là $1$, là số nguyên tố hoặc là bội của $n$ sao cho hiệu ${m}’n+r-p$ sẽ là vị trí thua, là $0$ hoặc là một số nhỏ hơn hoặc bằng $u.$ Chú ý rằng

$$s+2\le {m}’n+r-u\le p\le {m}’n+r\le s+u+n+1$$

nên $p$ phải là hợp số, chứng tỏ $p$ chỉ có thể là bội của $n$ (theo giả thiết của đề bài). \medskip

 

Đặt $p=qn$ thì ${m}’n+r-q=({m}’-q)n+r$ cũng sẽ là một vị trí thắng khác; tuy nhiên, theo nguyên lý trò chơi thì không thể đi từ vị trí thằng này đến vị trí thắng khác được. Điều mâu thuẫn này cho thấy không thể xảy ra trường hợp toàn bộ các số dạng $mn+r$ là vị trí thắng. \medskip

 

Từ đây ta suy ra rằng có ít nhất $n-1$ vị trí thua nên từ các điều trên, ta thấy có đúng $n-1$ vị trí thua hay có $n-1$ vị trí mà người $B$ có chiến lược để thắng.

Bài 9: (JBMO 2015)

Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:

 

 

Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip

 

Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip

 

Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.

 

Lời giải

Ta sẽ chứng minh rằng $A$ sẽ thắng nếu $k=1,2,3$ và $B$ thắng nếu $k=4.$ Suy ra giá trị nhỏ nhất của $k$ là $4.$ \medskip

 

1) Nếu $k=1$ thì người chơi $A$ sẽ đánh dấu ô ở góc trên bên trái và đặt các khối như bên dưới

 

Không có mô tả.

 

Khi đó, rõ ràng $A$ thắng. \medskip

 

2) Nếu $k=2$ thì vẫn tương tự trên, $A$ đánh dấu vào ô ở góc trên bên trái. Khi đó, cho dù $B$ đánh dấu ô nào đi nữa thì $A$ cũng sẽ có cách đặt tương tự như trên, thiếu đi nhiều nhất là $2$ ô thuộc cùng khối vuông chữ $L$ với ô mà $B$ chọn. Điều này chứng tỏ $A$ vẫn thắng. \medskip

 

3) Nếu $k=3$ thì cũng tương tự, ở lượt sau, $A$ đánh dấu vào ô cùng khối chữ $L$ với ô mà $B$ đã đánh dấu. Khi đó, $A$ vẫn thắng. \medskip

 

4) Với $k=4$, ta sẽ chứng minh rằng $B$ sẽ luôn có chiến lược thắng cho dù $A$ đi thế nào đi nữa. Rõ ràng còn lại $21$ ô nên $A$ phải chọn cách đánh dấu sao cho có thể đặt được toàn bộ $7$ khối vuông chữ $L$ (vì nếu không thì sẽ còn lại ít nhất $3$ ô chưa được đặt). \medskip

 

Giả sử trong lượt đầu tiên, $A$ không chọn ô nào trong hàng cuối (vì nếu có thì ta xoay ngược bảng lại và lập luận tiếp một cách tương tự). Khi đó, $B$ sẽ chọn ô số $1$ như bên dưới.

Không có mô tả.

 

  •  Nếu trong lượt tiếp theo, $A$ không chọn ô nào trong các ô $2,3,4$ thì $B$ chọn ô số $3.$ Khi đó, rõ ràng ô số $2$ sẽ không thể đặt lên bởi bất cứ khối chữ $L$ nào và $B$ chiến thắng.
  •  Nếu trong lượt tiếp theo, $A$ chọn ô số $2$ thì $B$ chọn ô số $5$, dẫn đến ô số $3$ không thể đặt lên bởi khối $L$ nào.
  •  Nếu trong lượt tiếp theo, $A$ chọn một trong hai ô $3$ hoặc $4$ thì $B$ chọn ô còn lại, kết quả tương tự trên, ô số $2$ cũng sẽ không thể tiếp cận.

Vậy nói tóm lại, $k=4$ là giá trị nhỏ nhất cần phải tìm.

Bài 10: (JBMO 2016)

Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.

 

Lời giải

Ta sẽ chứng minh rằng số giá phân biệt lớn nhất là $60.$ Ta có nhận xét sau: \medskip

 

Nhận xét:  Trong mỗi bảng tốt, mỗi hàng chứa đúng hai số trong các số hoặc mỗi cột chứa đúng hai số trong các số. \medskip

 

Thật vậy, ta thấy mỗi hàng của bảng đều chứa ít nhất hai số (vì nếu chứa toàn bộ là một số thì mâu thuẫn với giả thiết). Khi đó, nếu toàn bộ các hàng đều chứa hai số thì nhận xét đúng. \medskip

 

Giả sử ngược lại là có hàng $R$ chứa ít nhất ba số trong bốn số của bảng là $x,y,z,t$. Khi đó, các số đó phải có nằm ở vị trí liên tiếp nào đó trên hàng, giả sử là $x,y,z$ liên tiếp. Theo giả thiết thì trong mỗi bảng $2\times 2$, ta đều có đủ bốn giá trị nên trong hàng phía trên và phía dưới của $R$ phải chứa $z,t,x$ theo đúng thứ tự đó, và tương tự là $x,y,z$. Ta có bảng như bên dưới

 

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

 

Điền thêm các ô còn lại, dễ thấy rằng các cột đều chứa đúng hai số. Nhận xét được chứng minh. \medskip

 

Không mất tính tổng quát, ta có thể giả sử mỗi hàng của bảng đều có đúng hai số (nếu không thì có thể xoay bảng lại). Nếu không xét hàng đầu tiên và cột đầu tiên, ta sẽ có bảng $4\times 4$ mà trong đó, mỗi số trong $x,y,z,t$ đều xuất hiện $4$ lần nên tổng các số trong bảng này là $4(x+y+z+t).$

Do đó, ta chỉ cần tính xem có bao nhiêu cách khác nhau để đặt các số lên hàng đầu tiên ${{R}_{1}}$ và cột đầu tiên ${{C}_{1}}.$ Gọi $a,b,c,d$ là số lần xuất hiện của các số $x,y,z,t$ thì khi đó, tổng tất cả các số của bảng sẽ là

$$4(x+y+z+t)+xa+yb+zc+td.$$

Nếu hàng $1-3-5$ chứa các số $x,y$ với $x$ ở vị trí đầu tiên của hàng $1$ thì các hàng $2-4$ sẽ chứa các số $z,t$ (theo giả sử ở trên). Khi đó, ta có

$a+b=7$ và $a\ge 3,b\ge 2$,

$c+d=2$ và $c\ge d.$ \medskip

 

Khi đó $(a,b)=(5,2),(4,3)$ tương ứng với $(c,d)=(2,0),(1,1).$ Suy ra $(a,b,c,d)$ sẽ nhận các bộ là $$(5,2,2,0),(5,2,1,1),(4,3,2,0),(4,3,1,1).$$

Tổng số hoán vị của các bộ là $$\frac{4!}{2!}+\frac{4!}{2!}+4!+\frac{4!}{2!}=60.$$

Bằng cách chọn $x={{10}^{3}},y={{10}^{2}},z=10,t=1$ thì dễ thấy rằng các tổng tương ứng với mỗi hoán vị của bộ số trên đều phân biệt, nghĩa là giá của các bảng đều phân biệt. Vậy số lượng giá tối đa là $60.$

Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:

Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$

Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Ước chung lớn nhất

Ước chung

  • Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
  • Tập các ước chung của $a$ và $b$ kí hiệu ƯC(a,b). Ta có x thuộc ƯC(a,b) khi và chỉ khi $a \vdots x$ và $b \vdots x$.

Ví dụ 1. Ư(12) = {1, 2, 3, 4, 6, 12}, Ư(8) = {1, 2, 4, 8}

Thì ước chung của 12 và 8 là 1, 2, 4, kí hiệu ƯC(8,12) = {1, 2, 4}.

Cách tìm ước chung của $a$ và $b$.

  • Tìm tập các số là ước của $a$, tập các ước của $b$.
  • Tìm các phần tử của của hai tập trên ta được tập ước chung của $a$ và $b$.

Ví dụ 2. Tìm ước chung của 24 và 30.

Ta có Ư(24) = {1, 2, 3, 4, 6, 8, 12, 24}, Ư(30) = {1, 2, 3, 5, 6, 15, 30}

Khi đó ƯC(24,30) = {1, 2, 3, 6}.

Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của $a$ và $b$ là ƯCLN(a,b)

Ví dụ 3. ƯC(24,30) = {1, 2, 3, 6}, ƯCLN(24,30) = 6.

Ví dụ 4. Các bạn học sinh lớp 6 A đang lên kế hoạch làm sạch môi trường ở địa phương. Cả lớp có 12 bạn nữ và 18 bạn nam. Các bạn muốn chia lớp thành các nhóm nhỏ gồm cả nam và nữ sao cho số bạn nam và số bạn nữ được chia đều vào các nhóm. Có thể chia được nhiều nhất thành bao nhiêu nhóm học sinh? Khi đó, mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Lời giải.

  • Số nhóm được chia phải là ước của cả 12 và 18 .
  • Số nhóm được chia phải là nhiều nhất có thể. Vì vậy, số nhóm được chia là ước chung lớn nhất của 12 và 18 .

Ta có $\mathrm{U}^{\circ} \mathrm{CLN}(12,18)=6$. Do đó cần chia lớp thành 6 nhóm.

Số học sinh trong mỗi nhóm là $(12+18): 6=5$ (học sinh).

Vậy mỗi nhóm có 5 học sinh, gồm 2 nữ và 3 nam.

Cách tìm ước chung lớn nhất của $a, b$ bằng phân tích thành thừa số nguyên tố.

Muốn tìm U’CLN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.
    Tích đó là ƯCLN phải tìm.

Ví dụ 5. Tìm ước chung lớn nhất của 24 và 30.

Lời giải.

Ta có $24 = 2^3 \cdot 3$ và $30 = 2 \cdot 3 \cdot 5$.

Ta có ƯCLN (a, b) = 2 \cdot 3 = 6.

Định nghĩa. Hai số có ước chung lớn nhất bằng 1 được gọi là nguyên tố cùng nhau. 

Kí hiệu hai số $a, b$ nguyên tố cùng nhau là (a,b) = 1

Ứng dụng tối giản phân số. Khi rút gọn $\frac{90}{126}$, ta chia cả tử số và mẫu số cho
một ước chung của 90 và 126 để được phân số mới. Tiếp tục
quy trình đó đến khi không rút gọn cho đến khi
tử số và mẫu số của chúng không có ước chung nào khác 1
(tử số và mẫu số là hai số nguyên tố cùng nhau). Khi đó, ta
được một phân số tối giản.

Bài tập rèn luyện

Bài 1. Tìm:
a) $\mathrm{UCLN}(1,16)$;
b) $\operatorname{UCLN}(8,20)$
c) UCLN $(84,156)$;
d) UCLN $(16,40,176)$.
Bài 2. a) Ta có $\mathrm{U}^{\prime} \mathrm{CLN}(18,30)=6$. Hãy viết tập hợp A các ước của 6 . Nêu nhận xét về tập hợp UC $(18,30)$ và tập hợp $\mathrm{A}$.
b) Cho hai số a và b. Để tìm tập hợp $\mathrm{UC}(\mathrm{a}, \mathrm{b})$, ta có thể tìm tập hợp các ước của $\mathrm{U}^{\circ} \mathrm{CLN}(\mathrm{a}, \mathrm{b})$. Hãy tìm UCLN rồi tìm tập hợp các ước chung của:
i. 24 và 30 ;
ii. 42 và 98 ;
iii. 180 và 234 .
Bài 3. Rút gọn các phân số sau: $\frac{28}{42} ; \frac{60}{135} ; \frac{288}{180}$.
Bài 4. Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là $140 \mathrm{~cm}, 168 \mathrm{~cm}$ và $210 \mathrm{~cm}$. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

BÀI GIẢNG ƯỚC CHUNG LỚN NHẤT VÀ MỘT SỐ TÍNH CHẤT

Một số bài toán số học hay ôn thi vào 10 Chuyên Toán

Trong khi thì HSG TPHCM vừa qua có một điều đáng tiếc nhất là câu số học không có trong đề thi, làm nhiều thí sinh khá hụt hẫng nhưng cũng làm nhiều thí sinh vui mừng, vì số học luôn là câu hỏi hóc búa của mỗi kì thi. Có lẽ BTC cuộc thi muốn dành sự quan tâm cho các câu hỏi thực tế nên phần số học bị bỏ qua.

Khác với kì thi HSG, kì thi tuyển sinh vào 10 thì đề thi luôn có đủ cả các phần: đại số, số học, hình học và tổ hợp. Số học cũng như tổ hợp, luôn là phần khiến nhiều thí sinh gặp khó khăn, trong bài viết nhỏ này, tôi xin giới thiệu lại một số bài toán số học đã được cho trong các kì thi tuyển sinh của trường Phổ thông Năng khiếu, nơi tôi làm việc hơn 10 năm qua. Các bạn thí sinh chuẩn bị thi vào trường nên xem kĩ lời giải và cố gắng học thật tốt phần này, điều đó sẽ giúp rất nhiều cơ hội trúng tuyển vào lớp chuyên toán.

Số học THCS thì nội dung quay xung quanh các phép chia hết, phương trình nghiệm nguyên, số nguyên tố, số chính phương,…Việc đầu tiên là nắm chắc các tính chất của phép chia hết, tính chất cơ bản nhất của số nguyên tố hay số chính phương. Bài toán chia hết cũng xuất hiện nhiều lần trong đề thi, sau đây là một bài khá đơn giản nhưng hay:

Bài 1. (PTNK 2011 – Chuyên Toán) Cho các số nguyên $a, b, c$ sao cho $2a+b,2b+c, 2c+a$ đều là các số chính phương ().
a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho 3. Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện (
) mà $(a-b)(b-c)(c-a)$ không chia hết cho 27?

Nhận xét. Đây là một bài toán chia hết, liên quan đến các số chính phương, để ý thấy chủ yếu là chia hết cho 3. Ta phải nghĩ đến một số chính phương chia 3 xảy ra những trường hợp nào, từ đó thiết lập các tính chất đã biết:

  • Một số chính phương khi chia cho 3 dư 0 hoặc 1.
  • $a^2 + b^2 $ chia hết cho 3 khi và chỉ khi $a, b$ đồng thời chia hết cho 3.
  • Việc chứng minh tích chia hết cho 27, thì nghĩ đến việc ta cần chứng minh $a, b, c$ có cùng số dư khi chia cho 3, đó là trường hợp đơn giản nhất. Sau đây là lời giải

a) Giả sử $2a + b = m^2, 2b+c = n^2, 2c + a = p^2$.
Cộng ba đẳng thức lại, ta được $3(a+b+c) = m^2 + n^2 + p^2$. Suy ra $m^2+n^2+p^2$ chia hết cho 3.
Ta thấy bình phương của một số nguyên khi chia cho 3 dư 1 hoặc 0. Do đó nếu 1 trong 3 số, chẳng hạn $m$ chia hết cho 3 thì $n^2+p^2$ chia hết cho 3 và như thế $n^2$ và $p^2$ cũng chia hết cho 3.
Hơn nữa $2a+b = 3a +(b-a)$ chia hết cho 3, suy ra $a-b$ chia hết cho 3. Tương tự thì $b-c, c-a$ chia hết cho 3. Suy ra $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại. Chẳng hạn có thể lấy $a=2, b=0,c=1$.

Sau đây cũng là bài toán chia hết, nhưng ở mức độ khó hơn hẳn, đòi hỏi học sinh phải có suy luận tốt và nắm chắc được nhiều kiến thức.
Bài 2. (PTNK 2016 – CT) Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Nhận xét. Bài toán này cũng giống bài toán trên, là liên quan đến các số chính phương $x^2, y^2$. Việc chứng minh chẵn lẻ liên quan đến số dư khi chia cho 4 của một số chính phương.

Câu a) chỉ là bài toán xét trường hợp khá dễ nhìn, khi phản chứng là giả sử $x, y$ không cùng là số lẻ, từ đó khi xét tính chẵn lẻ của $x^2 + y^2 + 10$ và $xy$ sẽ giải quyết được vấn đề. \ Việc chứng minh nguyên tố cùng nhau thì cách tiếp cận quen thuộc nhất là gọi ước chung lớn nhất và chứng minh nó bằng 1.
Câu b) khó hơn khi có hai ý, ý đầu có thể áp dụng tiếp câu a, nhưng ý sau việc chứng minh $k \geq 12$ có thể đánh lừa nhiều học sinh trong khi việc đơn giản chỉ là chứng minh $k$ chia hết cho 3 là giải quyết được bài toán, mà chứng minh $k$ chia hết cho $3$ cũng là việc xét số dư của tử và mẫu thức khi chia cho 3. Sau đây là lời giải chi tiết.

Lời giải.
a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.
b)  Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$.
Ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1. Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2. Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Sau chia hết, các kiến thức về phương trình nghiệm nguyên cũng rất quan trọng, trong nhiều bài thi của PTNK kĩ năng giải phương trình nghiệm nguyên giúp mình được nhiều việc.\
Sau đây là bài toán số học, nhưng bản chất số học thì ít mà đại số thì nhiều, chỉ việc biến đổi đại số vài dòng là xong. Tuy vậy nhiều học sinh sau khi đọc đề lại phát hoảng, vì đề bài phát biểu nghe rất “kinh”, đánh lừa được các thí sinh yếu bóng vía. Bài toán sau chế tác từ bài thi của Bungari:
Bài 3. (PTNK 2012 – CT) Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước
của nó ( kể cả 1 và n ) đúng bằng $(n+3)^2$ .

a) Chứng minh rằng số 287 là số điều hòa.
b) Chứng minh rằng số $n = p^3$( $p$ nguyên tố ) không phải là số điều hòa.
c) Chứng minh rằng nếu số $n = pq$ ( $p,q$ là các số nguyên tố khác nhau) là số điều hòa thì $n
+ 2$ là số chính phương.

Nhận xét. Bài toán đưa ra định nghĩa số điều hòa, nghe có vẻ ghê gớm nhưng không có ý nghĩa mấy, hoặc không phù hợp với từ điều hòa hay dùng. Nhiều thí sinh đọc đề mà thuộc dạng yếu bóng vía sẽ bỏ qua, ngay cả bỏ qua câu a rất dễ. Tuy nhiên nếu đã hiểu định nghĩa, việc giải quyết các câu hỏi là điều khá dễ, cũng liên

Lời giải. 

a)  Số $n = 287$ có các ước dương là 1, 7, 41, 287. Ta có $1^2 + 7^2 + 41^2 +287^2 = (287+3)^2$ nên 287 là số điều hòa.
b) Các ước dương của $n = p^3$ là $1, p, p^2, p^3$. Giả sử $n$ là số điều hòa, ta có $(n+3)^2 = 1^2 + p^2 + p^4 + p^6 \Leftrightarrow p^4 + p^2 = 6p^3 + 8$. Suy ra $p|8$ mà $p$ nguyên tố nên $p = 2$. Thử lại thấy không thỏa, vậy $n = p^3$ không phải là số điều hòa với mọi số nguyên tố $p$.
c) Các ước dương của $n = pq$ là $1, p, q, pq$. Vì $n$ là số điều hòa nên ta có:
$1+p^2+q^2+p^2q^2 = (pq+3)^2 \Leftrightarrow p^2 + q^2 = 6pq + 8 \Leftrightarrow (p+q)^2 = 4(pq+2)$. Do 4 là số chính phương nên $pq+2$ cũng là số chính phương hay $n+2$ là số chính phương

Sau đây là một bài khá đẹp, ý tưởng từ phương pháp lùi vô hạn trong giải phương trình nghiệm nguyên, tuy vậy các phải có suy luận một chút khác biệt.
Bài 4.  (PTNK 2014 – CT)

a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c = 0$ và $ab+bc+ac+3=0$.
b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 4m = 0$ thì cũng tồn tại các số nguyên $a’, b’, c’$ sao cho $a’+b’+c’ = 0$ và $a’b’+b’c’+a’c’ + m = 0$.
c)  Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 2^k = 0$.

Lời giải
a)  Từ $a+b+c = 0, ab+bc+ca = – 3$ ta có $a^2 + b^2 + c^2 = 6$. Do $a, b, c$ vai trò như nhau nên ta có thể giả sử $|a| \geq |b| \geq |c|$. Khi đó $ 1 < |a| < 3$. Suy ra $|a| = 2$, suy ra $a = 2$ hoặc $a = – 2$.
Với $a = 2$ thì $b + c = -2, b^2 + c^2 = 2$ giải ra được $b = c =-1$.Ta có có bộ $(2;-1;-1)$ và các hoán vị. \ Với $a = -2 $ thì $b+c = 2, b^2 + c^2 = 2$, giải ra được $b = c = 1$, ta có bộ $(-2;1;1)$ và hoán vị.
b) Ta có $a + b + c = 0$ chẵn (1)và $ab+bc+ac = -4m$ chẵn.(2)
Nếu 3 số $a, b, c$ đều lẻ, không thỏa (1).
Nếu có 1 chẵn, 2 lẻ thì không thỏa (2).
Do đó 3 số $a, b,c$ đều chẵn. Khi đó đặt $a’ = \dfrac{a}{2}, b’ = \dfrac{b}{2}, c’ = \dfrac{c}{2}$ thì $a’,b’,c’$ thỏa đề bài.
c) Với $k = 0$ ta có $a+b+c = 0, ab+bc+ac = -1$ thì $a^2 + b^2 +c^2 = 2$ (3) . Không có bộ 3 số nguyên $a, b, c$ khác 0 thỏa (3).
Với $k = 1$ thì $a+b+c=0,ab+bc+ac = -2$ khi đó $a^2+b^2+c^2 = 4$ (4). Giả sử $|a|$ nhỏ nhất khi đó $ 1\leq a^2 < 2$ (không có $a$ thỏa). Không tồn tại $a, b, c$ nguyên khác 0 thỏa (4).
Với $k > 1$.
Nếu $k$ chẵn, đặt $k = 2n$ ta có $a+b+c = 0, ab+bc+ac + 4^n = 0$, theo câu b), tồn tại $a_1, b_1, c_1$ nguyên thỏa $a_1 + b_1 +c_1 = 0, a_1b_1+a_1c_1+b_1c_1 + 4^{n-1} = 0$.

Tương tự ta sẽ được $a_n, b_n,c_n$ nguyên thỏa $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = -1$ (vô nghiệm).
Nếu $k$ lẻ đặt $k = 2n+1$ ta có $a+b+c = 0, ab+bc+ac + 2.4^n = 0$, làm tương tự trên ta được $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = – 2$ (vô nghiệm).
Vậy không tồn tại các số $a, b, c$ khác 0 thỏa đề bài.

Ngoài ra việc sử dụng đồng dư cũng được khai thác qua các bài toán chia hết hoặc các bài toán phương trình nghiệm nguyên, nhiều khi được sử dụng một cách bất ngờ cũng gây khó khăn cho thí sinh và rất ít thí sinh làm trọn vẹn, sau đây là một ví dụ:
Bài 5. (PTNK 2018 – CT) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Nhận xét. Đây là dạng toán khá quen thuộc với học sinh, chỉ là việc xét các trường hợp một cách khéo léo và cẩn thận để giải quyết bài toán.

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
  • Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
  • Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
    Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
  • $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}$

$\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} $
$\equiv 2^n(1-2^n) \quad \text { (mod 9)}$

Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Tóm lại bài toán số học thi vào lớp 10 Chuyên Toán luôn là bài toán khó, nhưng không phải không kiếm được điểm, chỉ cần thí sinh bình tĩnh vận dụng được kiến thức đã học có thể giải quyết được các ý a, ý b thì phức tạp hơn đòi hỏi phải phân tích và xử lí khéo léo cẩn thận hơn, âu cũng hợp lí cho đề thi chọn học sinh có năng khiếu toán.\
Sau đây có một số bài tập cho các em rèn luyện trước kì thi cam go này.

Bài tập rèn luyện

Bài 1. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Bài 2. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Bài 4. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$.

Bài 5. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Nguyên lý Đirichlet và áp dụng

Nguyên lý Dirichlet hay còn được gọi là nguyên lý chuồng thỏ được phát biểu dưới dạng sau:”Có $n+1$ con thỏ được nhốt vào $n$ cái chuồng thì có một chuồng chứa ít nhất hai con thỏ“. Với nội dung khá đơn giản tuy nhiên nguyên lý này giúp giải được khá nhiều bài toán trong nhiều phân môn: đại số, số học, hình học, tổ hợp. Trong bài viết nhỏ này trình bày một vài ví dụ áp dụng nguyên lý Dirichlet giúp các bạn định hướng tốt hơn trong việc giải các bài toán.

1. Các ví dụ

a) Nguyên lý Dirichlet trong các bài toán đại số và số học

Nguyên lý Dirichlet có thể được phát biểu như sau: Có $n+1$ số tự nhiên lớn hơn $k$ và nhỏ hơn $k+n+1$, thì sẽ có 2 số bằng nhau.

Trong phát biểu trên ta xem $n+1$ số tự nhiên là $n+1$ con thỏ, các số tự nhiên lớn hơn $k$, nhỏ hơn $k+n+1$ gồm $k+1, k+2, \dots, k+n$ là $n$ cái chuồng. Khi đó chắc chắn có 2 con thỏ cùng một chuồng, hay sẽ có hai số bằng nhau.

Việc phát hiện đối tượng nào là thỏ, đối tượng nào là chuồng là một việc có ý nghĩa quan trọng, hoặc đôi khi ta phải xây dựng chuồng, thỏ, từ đó giải quyết vấn đề. Ta xét các ví dụ sau:

Ví dụ 1: Cho 676 số tự nhiên phân biệt không lớn hơn 2016. Chứng minh rằng chọn được hai số $a, b$ thỏa $|a-b| \in \left\{ 3, 6 \right\} $.

Giải

Gọi $676$ số đó là $a_1, a_2, …, a_{676}$.

Xét $676 \times 3 = 2028$ gồm $676$ số $a_1, a_2, …, a_{676}$; (nhóm 1), $676$ số $a_1+3, a_2+3, …,a_{676} +3$ (nhóm 2), $676$ số $a_1+6, a_2+6,…,a_{676}+6$ (nhóm 3).

$2028$ số này là các số tự nhiên không vượt quá $2022$ nên theo nguyên lý Dirichlet tồn tại $2$ số bằng nhau. Mà hai số cùng một nhóm không thể bằng nhau nên xảy ra $3$ trường hợp: $a_i = a_j+3$, $a_i = a_j + 6$ hoặc $a_i+3 = a_j+6$, trong cả ba trường hợp ta đều có $|a_i-a_j| \in \left\{3,6\right\}$.

Ví dụ 2: Cho tập $A = {1, 2, 3, …, 9}$. Lấy $S$ gồm các phần tử thuộc $A$ sao cho tổng hai số bất kì thuộc $S$ là các số phân biệt. Hỏi tập $S$ có số phần tử nhiều nhất là bao nhiêu? Tại sao?

Giải

Nếu tập $S$ có $7$ phần tử trở lên thì sẽ có không ít hơn $21$ tổng. Mà các tổng hai số chỉ nhận các giá trị từ $3$ đến $17$ nên theo nguyên lý dirichlet thì sẽ có hai tổng bằng nhau.

Do đó số phần tử của $S$ không lớn hơn $6$.

Xét $S$ có $6$ phần tử, khi đó có đúng $15$ tổng nhận các giá trị $3, 14, \dots, 17$ nên mỗi tổng hai số nhận đúng một giá trị. Để có tổng bằng $3$, $17$ thì tồn tại $4$ số $1, 2$ và $8, 9$. Khi đó $1 + 9 = 2+8$ (vô lý). Vậy tập không thể có $6$ phần tử.

Nếu tập có $5$ phần tử, ta thấy $S = \left\{ 1, 2, 5, 7, 9\right\} $ thỏa đề bài.

Vậy số phần tử lớn nhất của một tập con thỏa đề bài là $5$.

Ví dụ 3: Cho $1010$ số nguyên dương $a_1 < a_2 < …< a_{1010} \leq 2017$. Chứng minh rằng có $2$ số $a_i, a_k$ sao cho $a_i+a_1 = a_k$.

Giải

Xét $2019$ số gồm $1010$ số đã cho (nhóm 1) và $1009$ số $a_2-a_1, a_3-a_1, …, a_{1010} – a_1$ (nhóm 2) nhận giá trị nguyên từ $1$ đến $2017$, theo nguyên lý dirichlet thì có hai số bằng nhau, hơn nữa các số nhóm 1 khác nhau, các số nhóm 2 khác nhau nên một số thuộc nhóm 1 bằng một số thuộc nhóm 2, do đó tồn tại $i, k$ sao cho $a_k-a_1 = a_i$ hay $a_i+a_1 = a_k$.

Nguyên lý áp dụng trong các bài toán số học được phát biểu dưới dạng sau: “Cho $n+1$ số nguyên, khi đó có 2 số có hiệu chia hết cho $n$“.

Ví dụ 4: Chứng minh rằng trong $11$ số chính phương thì có $2$ số có hiệu chia hết cho $20$.

Giải

Theo nguyên lý đirichlet thì trong $11$ số có hai số có hiệu chia hết cho $10$, gọi $2$ số đó là $a, b$. Ta có $a = x^2, b = y^2$ và $a-b = (x-y)(x+y)$ chia hết cho $10$ nên $x, y$ cùng tính chẵn lẻ, do đó $(x-y)(x+y)$ chia hết cho $4$. Vậy $a-b$ chia hết cho $4$ và chia hết cho $10$ nên chia hết cho $20$.

Ví dụ 5: Cho $5$ số nguyên dương và mỗi số chỉ có ước nguyên tố là $2$ và $3$. Chứng minh rằng có $2$ số mà tích là một số chính phương.

Giải

$5$ số có dạng $2^a\cdot 3^b$ với $a, b$ là các số tự nhiên.

Xét tính chẵn lẻ của các cặp số $(a;b)$ ta chỉ có $4$ trường hợp là (chẵn; chẵn), (chẵn;lẻ), (lẻ; chẵn) và (lẻ; lẻ).

Khi đó với $5$ cặp số thì theo nguyên lý dirichlet có $2$ cặp $(a_1;b_1)$ và $(a_2;b_2)$ sao cho $a_1, a_2$ cùng tính chẵn lẻ và $b_1, b_2$ cùng tính chẵn lẻ.

Khi đó $a_1+a_2, b_1+b_2$ là chẵn, suy ra $2^{a_1}3^{b_1}\cdot 2^{a_2}3^{b_2} = 2^{a_1+a_2}\cdot 3^{b_1+b_2}$ là số chính phương.

Ví dụ 6: Xét $20$ số tự nhiên $1, 2, . . . , 20$. Hãy tìm số nguyên dương $k$ nhỏ nhất sao cho với mỗi cách lấy $k$ số phân biệt từ $20$ số trên đều lấy được hai số $a, b$ sao cho $a + b$ là một số nguyên tố.

Giải

Xét $10$ số chẵn thì tổng hai số bất kì đều là hợp số, do đó đó $ k \geq 11$.

Ta chứng minh $k= 11$.

Xét $10$ cặp số $(1;2), (3;20), (4;19), \dots, (11;12)$, mỗi cặp số có tổng là số nguyên tố, khi đó với $11$ số thì theo nguyên lý dirichlet có $2$ số cùng một cặp, khi đó tổng của chúng là một số nguyên tố.

b) Nguyên lý Dirichlet trong các bài toán hình học

Ví dụ 7: Có $33$ điểm trong hình vuông $4 \times 4$. Chứng minh rằng có $3$ điểm tạo thành tam giác có diện tích không lớn hơn $\dfrac{1}{2}$.

Giải

 

Chia hình vuông thành $16$ hình vuông như hình vẽ, khi đó theo nguyên lý dirichlet thì có $3$ điểm cùng thuộc một hình vuông $1 \times 1$.

Ta cần chứng minh tam giác có $3$ đỉnh nằm trong hoặc trên cạnh hình vuông $1$ thì diện tích không quá $\dfrac{1}{2}$.

 

 

Xét tam giác $EFG$, đường thẳng qua $E$ song song với cạnh hình vuông cắt $FG$ tại $I$.

Khi đó $S_{EFG} = S_{EFI} +S_{EGI} = \dfrac{1}{2}FM\cdot EI + \dfrac{1}{2}GK\cdot EI = \dfrac{EI}{2}(FM+GK) \leq \dfrac{1}{2}$.

Ví dụ 8: Cho một tập $S$ gồm $25$ điểm sao cho với ba điểm bất kì thuộc $S$ thì có $2$ điểm khoảng cách nhỏ hơn $1$. Chứng minh rằng tồn tại một hình tròn bán kính $1$ chứa ít nhất $13$ điểm thuộc $S$.

Giải

Xét $2$ điểm $A$ và $B$ sao cho $AB$ có độ dài lớn nhất. Khi đó xét $2$ hình tròn $(A;1), (B;1)$ nếu chứa hết $25$ điểm thì sẽ có $13$ điểm cùng thuộc một hình tròn, ta có điều cần chứng minh.

Nếu có $1$ điểm $C$ không thuộc $2$ hình tròn trên thì trong $3$ điểm $A, B, C$ không có $2$ điểm nào khoảng cách nhỏ hơn $1$ (vô lý).

Ví dụ 9: Cho đa giác đều có $14$ đỉnh. Chứng minh rằng từ $6$ đỉnh bất kì có thể chọn được $4$ đỉnh tạo thành một hình thang cân.

Giải

 

Do tính chất đối xứng của tứ giác đều nên với hai đỉnh bất kì thì độ dài nối hai đỉnh đó có thể nhận $1$ trong $7$ giá trị.

Với $6$ đỉnh ta có $15$ đoạn thẳng nhận bảy giá trị độ dài khác nhau, theo nguyên lý dirichlet thì có $3$ đoạn có đoạn thẳng bằng nhau.

TH1: Nếu $3$ đoạn bằng nhau đó cùng chung một đỉnh, ví dụ $AB= AC = AD$, suy ra $B, C, D$ thuộc đường tròn tâm A (vô lý).

TH2: Có $2$ đoạn bằng nhau không chung một đỉnh, giả sử $AB = CD$. Ta có $ABCD$ nội tiếp và $AB = CD$ nên $4$ đỉnh $A, B, C, D$ tạo thành hình thang cân. (điều cần chứng minh).

2. Bài tập

Bài 1: Cho $100$ số tự nhiên. Chứng minh rằng tồn tại một số hoặc mộ số các số có tổng chia hết cho $100$.

Bài 2: Chứng minh rằng tồn tại số tự nhiên chỉ toàn các chữ số $1$ và chia hết cho $2017$.

Bài 3: Cho bảng ô vuông $5 \times 5$, người ta điền vào các ô vuông các số $-1,0,1$. Xét tổng các số ở các dòng, cột và đường chéo, chứng minh rằng trong các tổng này có hai tổng bằng nhau.

Bài 4: Cho $5$ số nguyên dương đôi một phân biệt sao cho trong các số ấy thì chỉ có ước nguyên tố là $2$ và $3$. Chứng minh rằng có hai số mà tích của chúng là một số chính phương.

Bài 5: Có $20$ số nguyên dương phân biệt không lớn hơn $70$. Xét tất cả các hiệu của $2$ số, chứng minh rằng trong các hiệu đó có $4$ số bằng nhau.

Bài 6: Xét $20$ số tự nhiên $1, 2, \dots, 20$. Hãy tìm số nguyên dương $k$ nhỏ nhất sao cho với mỗi cách lấy $k$ số phân biệt từ $20$ số trên đều lấy được hai số $a, b$ sao cho $a + b$ là một số nguyên tố.

Bài 7:

a) Tô các cạnh của một lục giác bằng $2$ màu xanh đỏ. Chứng minh rằng tồn tại một tam giác được tô cùng một màu.

b) Tô các cạnh của một đa giác $17$ cạnh bằng $3$ màu. Chứng minh rằng tồn tại một tam giác được tô cùng một màu.

Bài 8: Trên đường tròn cho $16$ điểm tô bởi một trong ba mày: Xanh, Đỏ, Vàng. Các dây cung nối $2$ điểm trong $16$ điểm trên được tô bởi hai màu trắng, đen. Chứng minh ta luôn có $3$ điểm trong $16$ điểm trên tô cùng màu và $3$ cạnh của nó cũng được tô cùng màu.

Bài 9: Chứng minh rằng trong $52$ số tự nhiên bất kì luôn tìm được $2$ số mà tổng hoặc hiệu của chúng chia hết cho $100$.

Bài 10: Từ các số $1, 2, …, 2n$ lấy ra $n+1$ số. Chứng minh rằng:

a) Có $2$ số nguyên tố cùng nhau.

b) Có $2$ số mà số này chia hết cho số kia.

Bài 11: Có $81$ số gồm $9$ chữ số $1, 9$ chữ số $2, \dots, 9$ chữ số $9$. Xếp $81$ số này thành một dãy, có tồn tại hay không một cách xếp sao cho giữa hai chữ số $k$ có đúng $k$ số với $k = 1, 2, \dots, 9$.

Bài 12: Có $51$ điểm trong một hình vuông có cạnh bằng $1$. Chứng minh rằng tồn tại $3$ điểm có thể chứa trong một hình tròn bán kính $\dfrac{1}{7}$.

Bài 13: Cho đa giá có $2018$ cạnh, chứng minh rằng có một đường chéo không song song với bất kì cạnh nào.

Bài 14: Mỗi đỉnh của một đa giác đều $7$ cạnh được tô màu đỏ hoặc xanh. Chứng minh rằng có $3$ đỉnh tạo thành một tam giác cân và được tô cùng một màu.

Bài 15: Có $9$ đường thẳng trong đó mỗi đường thẳng chia hình vuông ra làm $2$ phần tỉ lệ diện tích là $2:3$. Chứng minh rằng có $3$ đường thẳng đồng quy.

Bài 16: (PTNK 2011) Cho hình chữ nhật $3 \times 4$.

a) Có $7$ điểm trong hình chữ nhật. Chứng minh có $2$ điểm khoảng cách không lớn hơn $\sqrt{5}$.

b) Có $6$ điểm trong hình chữ nhật. Chứng minh có $2$ điểm khoảng cách không lớn hơn $\sqrt{5}$.

Bất đẳng thức Cauchy – Phương pháp tách ghép

1. Phương pháp tách ghép

Ví dụ 1: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Giải

Áp dụng bất đẳng thức Cauchy ta có:

$\dfrac{ab}{c}+\dfrac{bc}{a} \ge 2b$

$\dfrac{bc}{a}+\dfrac{ca}{b} \ge 2c$

$\dfrac{ca}{b}+\dfrac{ab}{c} \ge 2a.$

Cộng vế theo vế các bất đẳng thức trên ta được

$2\left( \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)  \ge 2 (a+b+c)$

$\Leftrightarrow \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c$.

Ví dụ 2: Cho các số dương $a,b,c$. Chứng minh rằng

$$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c$$

Giải

Áp dụng bất đẳng thức Cauchy ta có

$\dfrac{a^3}{bc} +b+c \ge 3a $

$\dfrac{b^3}{ca}+c+a \ge 3b$

$\dfrac{c^3}{ab}+a+b \ge 3c.$

Cộng vế theo vế ba bất đẳng thức trên ta được

$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2(a+b+c) \ge 3(a+b+c)$

$\Leftrightarrow \dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c.$

Ví dụ 3: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh rằng $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Giải

Áp dụng bất đẳng thức $xy \le \dfrac{(x+y)^2}{4}$. Ta được:

$(a+b-c)(b+c-a) \le \dfrac{(a+b-c+b+c-a)^2}{4}=b^2$

$(b+c-a)(c+a-b) \le \dfrac{(b+c-a+c+a-b)^2}{4}=c^2$

$(c+a-b)(a+b-c) \le \dfrac{(c+a-b)(a+b-c)^2}{4} = a^2.$

Do $a,b,c$ là các cạnh của một tam giác nên các vế của bất đẳng thức trên đều dương do đó nhân vế theo vế ta được

$[(a+b-c)(b+c-a)(c+a-b)]^2 \le (abc)^2$

$\Leftrightarrow (a+b-c)(b+c-a)(c+a-b) \le abc.$

Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

2. Bài tập

Bài 1: Cho $a,b,c>0$. Chứng minh $\dfrac{a^4+b^4+c^4}{a+b+c} \ge abc$.

Bài 2: Cho $a,b,c>0$. Chứng minh:

a) $\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a} \ge a+b+c$

b) $\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c$

c) $\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \ge ab+bc+ca.$

d) $\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}.$

Bài 3: Chứng minh rằng với mọi $a,b,c$ dương ta có: $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Bài 4: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh:

a) $(p-a)(p-b)(p-c) \le \dfrac{1}{8}abc$.

b) $\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c} \ge 2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$.

c) $\dfrac{\sqrt{a}}{\sqrt{a+b-c}}+\dfrac{\sqrt{b}}{\sqrt{b+c-a}}+\dfrac{\sqrt{c}}{\sqrt{c+a-b}} \ge 3$

Bài 5: Cho 3 số không âm $a,b,c$ chứng minh rằng: $$ a+b+c \ge \sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}. $$

Bài 6: Cho $a,b,c \ge 0$. Chứng minh: $$ a^3+b^3+c^3 \ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}. $$

Bài 7: Cho $a,b,c$ là các số dương. Chứng minh rằng: $$ (a^2+bc)(b^2+ca)(c^2+ab) \ge abc(a+b)(b+c)(c+a). $$

Bài 8: Cho các số dương $x, y, z$. Chứng minh rằng: $$\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z} \le \dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}).$$

Bài 9: Cho các số thực dương $a,b,c$ thoả mãn $a+b+c=3$. Chứng minh: $$\dfrac{ab}{\sqrt{c^2+3}}+\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{c^2+3} \le \dfrac{3}{2}.$$

Bài 10: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c} \ge 2.$$

Bài 11: Cho các số dương $a,b,c$. Chứng minh: $$\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b} \le \dfrac{a+b+c}{6}.$$

Bài 12: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).$$

Bài 13: Cho các số dương $a,b,c$ thoả $a+b+c=3$. Chứng minh: $\sqrt{a}+\sqrt{b}+\sqrt{c} \ge ab+bc+ca.$

Bất đẳng thức Cauchy – Phương pháp chọn điểm rơi

1. Chọn điểm rơi

Ví dụ 1: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a}$.

Giải

Ta có $P =\dfrac{a}{4}+\dfrac{1}{a}+\dfrac{3a}{4} \ge 2 \sqrt{ \dfrac{a}{4}. \dfrac{1}{a}}+\dfrac{3.2}{4} =\dfrac{5}{2}.$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{4}=\dfrac{1}{a}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 2: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a^2}$.

Giải

Ta có: $P=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2} +\dfrac{6a}{8} \ge 3 \sqrt[3]{\dfrac{a}{8}. \dfrac{a}{8}. \dfrac{1}{a^2}}+\dfrac{6a}{8}$

$\hspace{6,5cm} \ge \dfrac{3}{4}+\dfrac{6.2}{8} \ge \dfrac{9}{4}.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{8}=\dfrac{1}{a^2}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 3: Cho các số không âm $a,b,c$ thoả $a^2+b^2+c^2=1$. Tìm GTNN của $P=a^3+b^3+c^3.$

Giải

Ta có: $a^3+a^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} a^2$

$b^3+b^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} b^2$

$c^3+c^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} c^2$

Cộng vế theo theo vế ba băt đẳng thức trên ta được

$2(a^3+b^3+c^3)+\dfrac{1}{\sqrt{3}} \ge \sqrt{3}(a^2+b^2+c^2)$

$\Leftrightarrow a^3+b^3+c^3 \ge \dfrac{1}{\sqrt{3}}.$

Dấu bằng xảy ra khi và chỉ chỉ $\begin{cases} a^2+b^2+c^2=1 &\\ a^3=b^3=c^3=\dfrac{1}{3\sqrt{3}} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}.$

Ví dụ 4: Cho $ a, b, c>0$, $a+b+c=1$. Chứng minh $ \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} \le \sqrt{6}. $

Giải

Đặt $P = \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} $.

Áp dụng bất đẳng thức $\sqrt{xy} \le \dfrac{x+y}{2}$ ta được:

$\sqrt{(a+b) \cdot \dfrac{2}{3}} \le \dfrac{a+b+\dfrac{2}{3}}{2}$

$\sqrt{(b+c) \cdot \dfrac{2}{3}} \le \dfrac{b+c+\dfrac{2}{3}}{2}$

$\sqrt{(c+a) \cdot \dfrac{2}{3}} \le \dfrac{c+a+\dfrac{2}{3}}{2}.$

Cộng vế theo vế các bất đẳng thức trên ta được:

$\sqrt{\dfrac{2}{3}} \cdot P \le \dfrac{2(a+b+c)+2}{2}=2 \Leftrightarrow P \le \sqrt{6}$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} a+b+c=1&\\ a+b=b+c=c+a=\dfrac{2}{3} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{3}.$

Ví dụ 5: Cho $a, b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab.$

Giải

Ta có: $\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab = \dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left( 4ab+\dfrac{1}{4ab}\right) + \dfrac{1}{4ab}$

$\hspace{5,4cm} \ge \dfrac{4}{(a+b)^2}+2\sqrt{4ab. \dfrac{1}{4ab}}+\dfrac{1}{(a+b)^2} \ge 7.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} a+b=1&\\a=b \end{cases} \Leftrightarrow a=b=\dfrac{1}{2}.$

Ví dụ 6: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh rằng $$\dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} \ge \dfrac{3}{2}.$$

Giải

Đặt $P = \dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} $

Ta có: $\dfrac{a^2}{1+b}+\dfrac{1+b}{4} \ge a$

$\dfrac{b^2}{1+c}+\dfrac{1+c}{4} \ge b$

$\dfrac{c^2}{1+a}+\dfrac{1+a}{4} \ge c.$

Cộng vế theo vế các bất đẳng thức trên ta được: $$P \ge (a+b+c)-\dfrac{1}{4}(a+b+c)-\dfrac{3}{4} \ge \dfrac{3}{4}.3.\sqrt[3]{abc}-\dfrac{3}{4}= \dfrac{3}{2}.$$

Dấu “=” xảy ra khi và chỉ khi $a=b=c=1.$

2. Bài tập

Bài 1: Cho $a \ge 6.$ Tìm GTNN của $ a^2+\dfrac{18}{a}$.

Bài 2: Cho $x \ge 1$. Tìm GTNN của $P=3x+\dfrac{1}{2x}.$

Bài 3: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=ab+\dfrac{1}{ab}.$

Bài 4: Cho $a,b>0$. Tìm GTNN của $P=\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}.$

Bài 5: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}$.

Bài 6: Cho $a,b>0$ thỏa $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{2ab}$.

Bài 7: Cho $a,b>0$, $a+b=1$. Chứng minh:

a) $a^3+b^3 \ge \dfrac{1}{4}$.

b) $a^4+b^4 \ge \dfrac{1}{8}.$

Bài 8: Cho $a, b, c >0$, $a+b+c=1$. Tìm GTLN của $$ P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}. $$

Bài 9: Cho $a, b, c >0$, $a+b+c=3$. Tìm GTLN của $$ P=\sqrt[3]{a(b+2c)}+\sqrt[3]{b(c+2a)}+\sqrt[3]{c(a+2b)}. $$

Bài 10: Cho $a, b, c >0$, $abc=1$. Chứng minh $$ \dfrac{a^3}{(a+1)(b+1)}+\dfrac{b^3}{(c+1)(a+1)}+\dfrac{c^3}{(a+1)(b+1)} \ge \dfrac{3}{4}. $$

Bài 11: Cho $a, b, c >0$, $a+b+c=3$. Chứng minh $$ \dfrac{a^3}{b(2c+a)}+\dfrac{b^3}{c(2a+b)}+\dfrac{c^3}{a(2b+c)} \ge 1.$$

Bài 12: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} \ge \dfrac{3}{2}$$

Bài 13: Cho các số thực dương $a,b,c$. Chứng minh rằng $$\dfrac{b^2c}{a^3(b+c)}+\dfrac{c^2a}{b^3(c+a)}+\dfrac{a^2b}{c^3(a+b)} \ge \dfrac{1}{2}(a+b+c).$$

Bài 14: Cho $x, y, z>0$, $xyz=1$. Chứng minh $x^3+y^3+z^3 \ge x+y+z$.

Bài 15: Cho $a,b,c>0$. Tìm GTNN của $P=a^3+b^3+c^3$. Biết $a^2+b^2+c^2=3$.

Bài 16: Cho $a,b,c>0$ và $a+2b+3c \ge 20$. Tìm GTNN của $$S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}.$$

Bài 17: Cho các số dương $a,b,c$ thoà $a+b+c=1$. Chứng minh $$a\sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c\sqrt[3]{1+a-b} \le 1.$$