Category Archives: Toán phổ thông

Phương pháp chứng minh phản chứng (P2)

Bài 1. 

Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:

a/ Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?

b/ Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a/ Giả sử tồn tại cách ghi thỏa mãn. Khi đó, gọi 2 số kề với 1 là a và b.

Theo giả thiết, ta có:

$\left\{\begin{array}{l} 1 + a \geqslant 17  \\1 + b \geqslant 17  \end{array} \right. \Rightarrow \left\{\begin{array}{l}  a \geqslant 16 \\ b \geqslant 16 \end{array} \right. \Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách ghi thỏa mãn.

b/ Giả sử tồn tại cách ghi thỏa mãn.

Khi đó, ta tách số 16 ra và chia 15 số còn lại thành 5 bộ 3 số kề nhau. Và tổng của 16 số này phải lớn hơn hoặc bằng: $16+5\cdot 25=141$

Mà $1+2+3+\cdots 16=136 \Rightarrow $ Mâu thuẫn

Vậy không tồn tại cách ghi thỏa mãn.

Bài 2. 

Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau: $-5, -4, -3, 3, 4, 5$.

Lời giải

Giả sử có cách xếp thỏa mãn.

Xét các số $0,1,2,8,9$ không thể đứng kề nhau và có đúng 10 số nên 5 số còn lại phải đứng xen kẽ với 5 số $0,1,2,8,9$.

Xét số 7:

Khi đó hai số kề số 7 phải thuộc tập hợp $\left\{0,1,2,8,9\right\}$

Mà theo giả thiết 2 đỉnh kề nhau bất kì nhận một trong các giá trị – 3, – 4, – 5, 3, 4 hoặc 5 nên 2 số kề nhau với 7 đều bằng 2 $\Rightarrow$ Mâu thuẫn.

Vậy không có cách xếp nào thỏa mãn.

Bài 3. 

Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Lời giải

Giả sử tồn tại tam giác đều có các đỉnh là các điểm nguyên.

Xét hình chữ nhật có các đỉnh là các điểm nguyên, sao cho đỉnh của tam giác đều thuộc cạnh của hình chữ nhật. Khi đó dễ dàng suy ra diện tích tam giác đều là số hữu tỷ.

Ta có diện tích tam giác đều $S=\dfrac{a^{2} \sqrt{3}}{4}$ với $a^2=x^2+y^2$ là số nguyên, $\sqrt{3}$ là số vô tỷ

Do đó, S là số vô tỉ $\Rightarrow$ Mâu thuẫn $\Rightarrow$ đpcm.

Bài 4. 

Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải

Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra.

Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$

Nhận thấy rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.

Ta có số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$.

Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.

Cả 50 và 60 đều không chia hết cho 11 $\Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Bài 5. 

Mỗi phần tử của bảng vuông $ 25 \times 25 $ hoặc là $ + 1 $ hoặc $ -1 $. Gọi $ a_{i} $ là tích của tất cả các phần tử của hàng thứ $ i $ và $ b_{j} $ là tích của tất cả các phần tử của cột thứ $ j $. Chứng minh rằng $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} \neq 0 $

Lời giải

Giả sử $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} = 0 $.

Vì mỗi ô vuông chứa -1 hoặc 1 nên $a_i,b_i\in \left\{1,-1\right\}$

Do đó trong 50 tích $a_i,b_i\quad (i=\overline{1,25})$ sẽ có 25 tích có giá trị -1 và 25 tích có giá 1.

Khi thay thế một phần tử -1 trong bảng bằng 1 thì số các tích ngang dọc có giá trị -1 sẽ tăng 2 hoặc giảm 2 hoặc không thay đổi. Như vậy số các tích $a_i,b_i$ có giá trị -1 luôn là số lẻ (1)

Ta sẽ tiếp tục thay thế các phần tử -1 trong bảng bằng 1 cho đến khi tất cả các phần tử trong bảng đều bằng 1 thì khi đó số các tích ngang dọc $a_i,b_i$ có giá trị -1 là 0 $\Rightarrow$ Mâu thuẫn với (1) $\Rightarrow$ đpcm.

Bài tập số chính phương – Lớp 9

Bài 1. Chứng minh rằng

a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.

Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.

Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.

Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.

Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.

Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.

Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.

Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.

Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.

Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.

Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.

Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.

Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.

a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$

a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?

Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.

 

Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.

 

Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.

Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.

Bài  21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.

Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.

Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.

Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.

Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)

a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.

 

 

Định lý Ceva và Menelaus – Phần 3

Phần 2

Ví dụ 10. (USAMO 2012) Gọi $P$ là một điểm thuộc miền trong tam giác $ABC$ và $d$ là một đường thẳng qua $P$. Đường thẳng đối xứng của $PA$ qua $d$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Ta có $\dfrac{A’B}{A’C} = \dfrac{S_{A’PC}}{S_{A’PC}} = \dfrac{PB\cdot \sin A’PB}{PC\cdot\sin A’PC}$. (1)
Tương tự ta cũng có $\dfrac{B’C}{B’A} = \dfrac{PC \cdot \sin B’PC}{PA \cdot \sin B’PA}$ và $\dfrac{C’A}{C’B} = \dfrac{PA \cdot \sin C’PA}{PB \cdot \sin C’PB}$. (2)
Theo tính chất đối xứng ta có $\sin A’PB = \sin B’PA,\\ \sin A’PC = \sin C’PA, \sin B’PC = \sin C’PB$. (3)
Từ (1), (2), (3) ta có $$\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$$
Do đó $A’,B’,C’$ thẳng hàng.

Ví dụ 11. Cho tam giác $ABC$. Ba đường tròn $w_a, w_b, w_c$ lần lượt đi qua các cặp đỉnh $B,C$; $C, A$; và $A, B$. Gọi $D, E, F$ lần giao điểm thứ hai của ba đường tròn này. Đường thẳng qua $D$ vuông góc với $AD$ cắt $BC$ tại $X$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng $X, Y, Z$ thẳng hàng.

Lời giải

Ta có $\dfrac{XB}{XC} = \dfrac{DB\sin XDB}{DC \sin XDC}$;
$\dfrac{DB}{DC} = \dfrac{R_c \sin DAB}{R_b \sin DAC}$ và $\dfrac{\sin ADB}{\sin XDC} = \dfrac{\cos ADB}{\cos ADC}$;
Tương tự cho các phân thức $\dfrac{YC}{YA}, \dfrac{ZA}{ZB}$.
Mặt khác ta có $AD, BE, CZ$ đồng quy tại tâm đẳng phương nên $\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin FCA}{\sin FCB} = 1$.
Từ đó ta có $\dfrac{XB}{XC} \cdot \dfrac{YC}{YA} \cdot \dfrac{ZA}{ZB}=1$.
Vậy $X, Y, Z$ thẳng hàng.

Ví dụ 12. (IMO shortlist 2013) Cho tam giác $ABC$ nhọn. Gọi $O$ là tâm ngoại tiếp và $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tồn tại các điểm $D, E, F$ thuộc các cạnh $BC, AC, AB$ thỏa: $OD + DH = OE+EH = OF + FH$ và $AD, BE, CF$ đồng quy.

Lời giải

Gọi $H_1$ là điểm đối xứng của $H$ qua $BC$, thì $H_1 \in (O)$.
Gọi $D$ là giao điểm của $OH_1$ và $BC$, khi đó $OD + DH = OD + DH_1 = OH_1 = R$.
Các điểm $E, F$ được xác định tương tự ta có $OD + DH = EO +EH = OF + FH$.
Ta cần chứng minh $AD, BE, CF$ đồng quy bằng định lý Ceva dạng sin.
Ta có $\dfrac{DB}{DC} = \dfrac{S_{BH_1D}}{S_{CH_1D}} = \dfrac{BH_1.\sin BH_1D}{CH_1 \sin CH_1D} = \dfrac{BH}{CH}\dfrac{\sin B}{\sin C}$
Các đẳng thức kia tương tự, nhân lại ta có điều cần chứng minh.

Ví dụ 13. Cho tam giác $ABC$ khác tam giác cân nội tiếp đường tròn $w$, các đường trung tuyến từ $A, B,C$ cắt $w$ tại $A’, B’, C’$. Gọi $A_1$ là giao điểm của tiếp tuyến tại $A’$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Chứng minh rằng $A_1, B_1, C_1$ thẳng hàng.

Lời giải

Ta có $A_1B\cdot A_1C = A_1A’^2 \Rightarrow \dfrac{A_1B}{A_1C} = \dfrac{A_1B^2}{A_1A’^2} = \dfrac{\sin^2 A_1A’B}{\sin^2 A_1BA’} = \dfrac{\sin^2 A’AB}{\sin^2 A’AC}$.
Chứng minh tương tự cho các đẳng thức kia và nhân lại, áp dụng ceva sin cho 3 đường $AA’, BB’, CC’$ đồng quy.

Bài tập rèn luyện

 

Bài 1. Cho tứ giác $ABCD$, gọi $I$ là giao điểm của $AC$ và $BD$, $K$ là giao điểm của $AB$ và $CD$. Đường thẳng $IK$ cắt các cạnh $BC$ và $AD$ tại $P, Q$.
Chứng minh rằng: $ \dfrac{\overline{IP}}{\overline{IQ}} = -\dfrac{\overline{KP}}{\overline{KQ}}$

Bài 2. Cho tứ giác $ABCD$ ngoại tiếp đường tròn $w$, $w$ tiếp xúc với các cạnh $AB, BC, CD, DA$ lần lượt tại $M, N, P, Q$. Chứng minh $MQ, BD, PN$ song song hoặc đồng quy.

Bài 3. Cho tam giác $ABC$, đường phân giác ngoài góc $A$ cắt đường thẳng vuông góc với $BC$ kẻ từ $B$ và $C$ lần lượt tại $D$ và $E$. Chứng minh rằng $BE, CD$ và $AO$ đồng quy, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Bài 4. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $I$ qua $BC, AC, AB$. Chứng minh rằng $AA’, BB’, CC’$ đồng quy.

Bài 5. Cho tam giác $ABC$. Về phía ngoài tam giác dựng các hình vuông $BCDE, ACFG, ABHK$ với tâm lần lượt là $O_1, O_2, O_3$. Chứng minh $AO_1, BO_2, CO_3$ đồng quy.

Bài 6. Cho tam giác $ABC$ không cân tại $A$. $M$ là một điểm nằm trong tam giác thỏa $\angle AMB – \angle ACB = \angle AMC – \angle ABC$. Chứng minh rằng đường thẳng nối tâm đường tròn nội tiếp tam giác $AMB$ và $AMC$ đi qua một điểm cố định.

Bài 7. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. $AM, BM, CM$ cắt $BC, AC, AB$ lần lượt tại $A’, B’, C’$. Gọi $P$ là giao điểm của $BB’$ và $A’C’$; $Q$ là giao điểm của $CC’$ và $A’B’$. Chứng minh rằng: $$\angle MAP = \angle MAQ \Leftrightarrow \angle MAB = \angle MAC$$

Bài 8. Cho tam giác $ABC$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$; $O_1, O_2, O_3$ lần lượt là tâm ngoại tiếp các tam giác $BCO, ACO$ và $ABO$. Chứng minh rằng $AO_1, BO_2, CO_3$ đồng quy tại một điểm.(Điểm Kosnita)

Bài 9. Cho tam giác $ABC$ có $M$ là trung điểm cạnh $AB$. $CE$ là phân giác góc $\angle ACB$. $D$ thuộc tia đối của tia $CA$ sao cho $CD = CB$. Gọi $K$ là giao điểm của $DM$ và $CE$. Chứng minh rằng $\angle KBC = \angle BAC$.

Bài 10. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $A_o, B_o, C_o$ là trung điểm của $BC, AC, AB$. $A_1$ là giao điểm của $AA_o$ và $(O)$, $A_2$ là giao điểm của $H$ qua $A_o$; đường thẳng $A_1A_2$ cắt $BC$ tại điểm $S_a$; các điểm $S_b, S_c$ được xác định tương tự. Chứng minh $S_a, S_b, S_c$ thẳng hàng.

Bài 11. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC, AB$ sao cho các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

a) Gọi $A_2$ là điểm đối xứng của $A_1$ qua trung điểm cạnh $BC$; các điểm $B_2, C_2$ được xác định tương tự. Chứng minh rằng $AA_2, BB_2, CC_2$ cũng đồng quy.
b) Đường tròn ngoại tiếp tam giác $A_1B_1C_1$ cắt $BC, AC, AB$ tại $A_3, B_3, C_3$. Chứng minh $AA_3, BB_3, CC_3$ đồng quy.

 

Bài 12. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC$ và $AB$. Gọi $G_a, G_b, G_c$ lần lượt là trọng tâm các tam giác $AB_1C_1, BC_1A_1, CA_1B_1$. Chứng minh rằng $AG_a, BG_b, CG_c$ đồng quy khi và chỉ khi $AA_1, BB_1, CC_1$ đồng quy.

Bài 13.(IMO SL 1995) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm bên trong tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $XBC$ tiếp xúc với $BC$ tại $D$, tiếp xúc với $CX, BX$ tại $Y, Z$. Chứng minh rằng $E, F, Z, Y$ cùng thuộc một đường tròn.

Bài 14. Cho $P$ là điểm thuộc miền trong của tam giác $ABC$. Gọi $D, E, F$ là hình chiếu của $P$ trên $BC, AC, AB$. Gọi $X$ là điểm trên $EF$ sao cho $PX \bot PA$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng các điểm $X, Y, Z$ thẳng hàng.

Bài 15. (IMO SL 2006) Cho tam giác $ABC$ có $\angle ACB < \angle BAC < 90^o$.Lấy $D$ là điểm thuộc cạnh $AC$ sao cho $BD = BA$. Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với $AB$ tại $K$ và $AC$ tại $L$. Gọi $J$ là tâm đường tròn nội tiếp tam giác $BCD$. Chứng minh rằng đường thẳng $KL$ chia đôi đoạn $AJ$.

Bài 18. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$. Gọi $A_1$ là điểm đối xứng của $A$ qua $O$, gọi $A_2$ là điểm đối xứng của $O$ qua $BC$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng đường tròn ngoại các tam giác $OA_1A_2 OB_1B_2$ và $OC_1C_2$ cùng đi qua 2 điểm.

Bài 19. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm nằm trong tam giác $DEF$, gọi $A_1, A_2$ là giao điểm của $DX$ với $EF$ và $(I)$; các điểm $B_1,B_2$;$C_1,C_2$ được xác định tương tự.

a) Chứng minh $AA_2, BB_2, CC_2$ đồng quy tại $Y$; $AA_1, BB_1, CC_1$ đồng quy tạu $Z$.
b) Chứng minh $X, Y, Z$ thẳng hàng.

 

Bài 20. Cho một đường tròn với hai dây $AB$ và $CD$ không song song. Đường vuông góc với $AB$ kẻ từ $A$ cắt đường vuông góc với $CD$ kẻ từ $C$ và từ $D$ lần lượt tại $M, P$. Đường vuông góc với $AB$ kẻ từ $B$ cắt đường vuông góc với $CD$ kẻ từ $C$ và $D$ lần lượt tại $Q$ và $N$. Chứng minh rằng các đường thẳng $AD, BC, MN$ đồng quy và các đường thẳng $AC, BD, PQ$ cũng đồng quy.

Bài 21. (IMO shortlis 2011) Cho $ABC$ là một tam giác với đường tròn nội tiếp tâm $I$ và đường tròn ngoại tiếp $(C)$. $D$ và $E$ là giao điểm thứ hai của $(C)$ với các tia $AI$ và $BI$ tương ứng. $DE$ cắt $AC$ tại điểm $F$, và cắt $BC$ tại điểm $G$. $P$ là giao điểm của đường thẳng đi qua $F$ song song với $AD$ và đường thẳng qua $G$ song song với $BE$. Giả sử rằng $K$ là giao điểm của các tiếp tuyến của $(C)$ tại $A$ và $B$. Chứng minh rằng ba đường thẳng $AE, BD$ và $KP$ là song song hoặc đồng quy.

Bài 22. (China TST 2014) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$; $H_a$ là chân đường cao hạ từ $A$ của tam giác $ABC$. $AO$ cắt đường tròn ngoại tiếp tam giác $BOC$ tại $A’$. Gọi $D, E$ là hình chiếu của $A’$ trên $AB$ và$AC$; và $O_a$ là tâm đường tròn ngoại tiếp tam giác $DEH_a$; Ta định nghĩa các điểm $H_b, O_b, H_c, O_c$ tương tự. Chứng minh rằng $H_aO_a, H_bO_b$ và $H_cO_c$ đồng quy.

 

Các bài toán tổ hợp trong kì thi Junior Bankan – P1

Lê Phúc Lữ – Phạm Khánh Vĩnh

(Bài viết trích từ Tập san Star Education – Số 5)

Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?

Lời giải

Câu trả lời là phủ định.
Giả sử tồn tại các số thỏa mãn đề bài thì vì chúng có số dư đôi một khác nhau nên sẽ có đầy đủ các số dư $0,1,2,3,\ldots ,15$. Điều này có nghĩa là trong đó, có $8$ số chẵn và $8$ số lẻ. Suy ra, ba chữ số $a,b,c$ để tạo thành các số đã cho không thể có cùng tính chẵn lẻ. Ta có hai trường hợp:

  • Trong các số $a,b,c$, có hai số chẵn là $a,b$ và số $c$ lẻ. Ta có tất cả $9$ số lẻ tạo thành từ các chữ số này là:
    $aac,abc,acc,bac,bbc,bcc,cac,cbc,ccc$.
    Gọi ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{9}}$ là số có hai chữ số tạo thành bằng cách xóa đi chữ số cuối từ dãy trên.
    Rõ ràng số $\overline{{{a}_{i}}k}$ và $\overline{{{a}_{j}}k}$ với $i\ne j$ khác số dư với nhau theo modulo $16$ nếu như hiệu của chúng không chia hết cho $16$, suy ra ${{a}_{i}}-{{a}_{j}}$ không chia hết cho $8.$ Tuy nhiên, ta lại có đến $9$ số nên điều này không thể xảy theo nguyên lý chuồng bồ câu.
  • Trong các số $a,b,c$, có hai số lẻ là $a,b$ và số $c$ chẵn: cũng dẫn đến mâu thuẫn tương tự.

Vậy không tồn tại các số thỏa mãn đề bài.

Bài 2: (JBMO 2000)

Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?

 

Lời giải

Gọi số nam là $2n$, số nữ là $n$ và tổng số vận động viên là $3n.$ Tổng số trận đấu là

$\frac{3n(3n-1)}{2}.$ \medskip

 

Theo giả thiết thì số trận thắng bởi nam là $$\frac{5}{12}\cdot \frac{3n(3n-1)}{2}=\frac{5n(3n-1)}{8}.$$

Số trận đấu giữa các nam là $\frac{2n(2n-1)}{2}=n(2n-1)$ và rõ ràng số trận này không vượt quá số trận thắng của các nam.

Suy ra $$\frac{5n(3n-1)}{8}\ge n(2n-1)\Leftrightarrow n\le 3.$$ Mặt khác, $5n(3n-1)$ phải chia hết cho $8$ nên $n=3.$ Do đó, số vận động viên của giải đấu là $9.$

Bài 3: (JBMO 2006)

Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:

 

  •  Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
  •  Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.

Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?

 

Lời giải

Với mọi bảng kích thước $2n\times 2n,$ tổng số ô bị xóa đi là $$2\times 2\times (1+2+3+\cdots +n-1)=2n(n-1).$$

Bảng sẽ còn lại ${{(2n)}^{2}}-2n(n-1)=2n(n+1)$ ô, tức là phủ được tối đa $n(n+1)$ ô vuông.

Không có mô tả.

 

Với $n=1,2,3,4,$ ta có thể kiểm tra trực tiếp được rằng kết quả lần lượt sẽ là $2,6,12,20$ bởi khi đó ta có thể phủ kín toàn bộ bảng. Còn với $n\ge 4$, ta xét hai trường hợp:

 

  • Nếu $n$ lẻ, khi đó ta chia bảng $2n\times 2n$ đã cho thành $4$ hình vuông nhỏ thì rõ ràng, mỗi hình sẽ có $\frac{n(n+1)}{2}$ ô còn trống. Tiếp theo, ta tô màu theo dạng bàn cờ cho bảng này (ô ở góc thì tô đen), ta sẽ có tất cả $\frac{{{(n+1)}^{2}}}{4}$ ô đen và $\frac{{{n}^{2}}-1}{4}$ ô trắng. Rõ ràng mỗi hình chữ nhật khi đặt lên bảng sẽ chứa một ô đen và một ô trắng nên số cặp ô trắng – đen tối đa trong hình vuông con là $\frac{{{n}^{2}}-1}{4}$, và tương ứng sẽ có tối đa $$4\cdot \frac{{{n}^{2}}-1}{4}={{n}^{2}}-1$$ hình chữ nhật $1\times 2,2\times 1$ phủ được trên bảng.

Ngoài ra, giữa các hình vuông con cạnh nhau, ta còn có hai ô màu đen cạnh nhau nên ta có thể lát thêm vào đó tổng cộng $4$ hình chữ nhật nữa, tổng cộng là ${{n}^{2}}-1+4={{n}^{2}}+3$.

  •  Nếu $n$ chẵn, bằng cách tương tự trên, ta phủ được hình bởi tối đa ${{n}^{2}}+4$ ô.

Tóm lại,

  •  Với $n=1,2,3,4$, đáp số lần lượt là $2,6,12,20.$
  •  Với $n>4$ và $n$ lẻ thì đáp số là ${{n}^{2}}+3.$
  •  Với $n>4$ và $n$ chẵn thì đáp số là ${{n}^{2}}+4.$

Bài 4: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Không có mô tả.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Không có mô tả.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 5: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 6:

(JBMO 2010)

Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.

 

Không có mô tả.

 

Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.

 

Lời giải

Câu trả lời là $0$ hoặc $3.$

Gọi $x$ là số viên gạch chữ $L$ và $y$ là số viên gạch hình vuông $2\times 2.$ Đánh dấu chéo $20$ hình vuông của hình chữ nhật như sơ đồ bên dưới.

Không có mô tả.

Rõ ràng mỗi viên gạch sẽ chứa không quá một dấu chéo. Suy ra $x+y\ge 20.$

Ngoài ra ta cũng có $3x+4y=63.$

Từ đó suy ra $y\le 3$ và $y$ chia hết cho $3$, dựa theo điều kiện thứ hai.

Do đó $y=0$ hoặc $y=3.$ Dưới đây là các cách lát thỏa mãn điều kiện đó.

Không có mô tả.

Bài 7: (JBMO 2013)

Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:

 

  •  Alice chọn $n$ số thực, không nhất thiết phân biệt.
  •  Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
  •  Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.

Hỏi Bob có thể có cách chắc chắn thắng hay không với

 

  •  $n=5?$
  •  $n=6?$
  •  $n=8?$

 

 

Lời giải

1) Câu trả lời là khẳng định.

 

Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e$. Rõ ràng mỗi số xuất hiện trong các tổng đúng $4$ lần nên bằng cách cộng tất cả $10$ tổng và chia hết quả cho $4$, Bod sẽ thu được

$a+b+c+d+e.$

Trừ đi tổng lớn nhất và nhỏ nhất, Bob sẽ thu được số lớn thứ ba là $c.$ Tiếp tục trừ $c$ vào tổng lớn thứ nhì, chính là $c+e$ thì Bob thu được $e.$ Trừ $e$ vào tổng lớn nhất, Bob thu được $d$. Bằng cách tương tự, Bob sẽ tìm ra được các giá trị $a,b.$ \medskip

 

2) Câu trả lời là khẳng định. Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e\le f.$ Tương tự trên, ta cũng tính được tổng $S$ các số của bộ. Trừ $S$ cho tổng lớn nhất và nhỏ nhất, ta thu được tổng $c+d.$ \medskip

 

Trừ $S$ cho tổng lớn nhì và tổng nhỏ nhất, ta được $c+e.$ Trừ $S$ cho tổng lớn nhất và tổng nhỏ nhì, ta được $b+d.$

Từ đây suy ra $a+c=S-(b+d)-(e+f)$, trong đó ta biết $e+f$ vì đó là tổng lớn nhất.

Lúc bấy giờ, Bob đã tìm được ba tổng $a+b,a+c,b+c$ nên sẽ tính được $T=a+b+c$ và dễ dàng tìm được $a,b,c.$ Tương tự, Bob có thể tìm được $d,e,f.$ \medskip

 

3) Câu trả lời là phủ định.

Ta thấy rằng có hai bộ tám số là $1,5,7,9,12,14,16,20$ và $2,4,6,10,11,15,17,19$ đều cho cùng $28$ tổng theo đôi một giống nhau nên chắc chắn rằng Bob không thể biết được bộ mà Alice đã chọn.

 

Bài 8: (JBMO 2014)

Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?

 

Lời giải

Ta gọi các giá trị $s$ để cho người $A$ có chiến thuật thắng là vị trí thắng và các vị trí còn lại là vị trí thua. Ta cần tìm số lượng vị trí thua.

Giả sử có $k$ vị trí thua thuộc tập hợp $$X=\{{{s}_{1}},{{s}_{2}},{{s}_{3}},\ldots ,{{s}_{k}}\}.$$

Trước hết, ta thấy rằng mỗi bội của $n$ là vị trí thắng (vì người $A$ có thể lấy tất cả các viên sỏi ở ngay lần đi đầu tiên). Khi đó, nếu có ${{s}_{i}}\equiv {{s}_{j}}(\bmod n)$ và ${{s}_{i}}>{{s}_{j}}$ thì ở lượt đi đầu tiên, $A$ bốc ${{s}_{i}}-{{s}_{j}}$ viên sỏi (vì số này chia hết cho $n$). Nhưng lúc đó, còn lại ${{s}_{j}}$ viên sỏi và đây là vị trí thua của $B$ nên sẽ là vị trí thắng của $A$, mâu thuẫn.

Do đó, tất cả các số trong $X$ đều không đồng dư với nhau theo modulo $n$ hay $k=\left| X \right|\le n-1.$ \medskip

 

Ta sẽ chứng minh rằng $k=n-1.$ Thật vậy,

Để có được điều đó, ta sẽ chỉ ra rằng ở mỗi lớp thặng dư khác $0$ của $n$, luôn có một vị trí thua bằng phản chứng. Giả sử rằng tồn tại $r\in \{1,2,3,\ldots ,n-1\}$ sao cho $mn+r$ là vị trí thắng với mỗi số nguyên dương $m.$ Gọi $u$ là vị trị thua lớn nhất (nếu $k>0$) hoặc $0$ (nếu $k=0$).

Đặt $s$ là bội chung nhỏ nhất của tất cả các số nguyên dương từ $2$ đến $u+n+1.$ Khi đó, tất cả các số $s+2,s+3,\ldots ,s+u+n+1$ đều là hợp số. \medskip

 

Xét số nguyên dương ${m}’$ thỏa mãn

$s+u+2\le {m}’n+r\le s+u+n+1$.

Để ${m}’n+r$ là vị trí thắng thì phải có số tự nhiên $p$ là $1$, là số nguyên tố hoặc là bội của $n$ sao cho hiệu ${m}’n+r-p$ sẽ là vị trí thua, là $0$ hoặc là một số nhỏ hơn hoặc bằng $u.$ Chú ý rằng

$$s+2\le {m}’n+r-u\le p\le {m}’n+r\le s+u+n+1$$

nên $p$ phải là hợp số, chứng tỏ $p$ chỉ có thể là bội của $n$ (theo giả thiết của đề bài). \medskip

 

Đặt $p=qn$ thì ${m}’n+r-q=({m}’-q)n+r$ cũng sẽ là một vị trí thắng khác; tuy nhiên, theo nguyên lý trò chơi thì không thể đi từ vị trí thằng này đến vị trí thắng khác được. Điều mâu thuẫn này cho thấy không thể xảy ra trường hợp toàn bộ các số dạng $mn+r$ là vị trí thắng. \medskip

 

Từ đây ta suy ra rằng có ít nhất $n-1$ vị trí thua nên từ các điều trên, ta thấy có đúng $n-1$ vị trí thua hay có $n-1$ vị trí mà người $B$ có chiến lược để thắng.

Bài 9: (JBMO 2015)

Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:

 

 

Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip

 

Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip

 

Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.

 

Lời giải

Ta sẽ chứng minh rằng $A$ sẽ thắng nếu $k=1,2,3$ và $B$ thắng nếu $k=4.$ Suy ra giá trị nhỏ nhất của $k$ là $4.$ \medskip

 

1) Nếu $k=1$ thì người chơi $A$ sẽ đánh dấu ô ở góc trên bên trái và đặt các khối như bên dưới

 

Không có mô tả.

 

Khi đó, rõ ràng $A$ thắng. \medskip

 

2) Nếu $k=2$ thì vẫn tương tự trên, $A$ đánh dấu vào ô ở góc trên bên trái. Khi đó, cho dù $B$ đánh dấu ô nào đi nữa thì $A$ cũng sẽ có cách đặt tương tự như trên, thiếu đi nhiều nhất là $2$ ô thuộc cùng khối vuông chữ $L$ với ô mà $B$ chọn. Điều này chứng tỏ $A$ vẫn thắng. \medskip

 

3) Nếu $k=3$ thì cũng tương tự, ở lượt sau, $A$ đánh dấu vào ô cùng khối chữ $L$ với ô mà $B$ đã đánh dấu. Khi đó, $A$ vẫn thắng. \medskip

 

4) Với $k=4$, ta sẽ chứng minh rằng $B$ sẽ luôn có chiến lược thắng cho dù $A$ đi thế nào đi nữa. Rõ ràng còn lại $21$ ô nên $A$ phải chọn cách đánh dấu sao cho có thể đặt được toàn bộ $7$ khối vuông chữ $L$ (vì nếu không thì sẽ còn lại ít nhất $3$ ô chưa được đặt). \medskip

 

Giả sử trong lượt đầu tiên, $A$ không chọn ô nào trong hàng cuối (vì nếu có thì ta xoay ngược bảng lại và lập luận tiếp một cách tương tự). Khi đó, $B$ sẽ chọn ô số $1$ như bên dưới.

Không có mô tả.

 

  •  Nếu trong lượt tiếp theo, $A$ không chọn ô nào trong các ô $2,3,4$ thì $B$ chọn ô số $3.$ Khi đó, rõ ràng ô số $2$ sẽ không thể đặt lên bởi bất cứ khối chữ $L$ nào và $B$ chiến thắng.
  •  Nếu trong lượt tiếp theo, $A$ chọn ô số $2$ thì $B$ chọn ô số $5$, dẫn đến ô số $3$ không thể đặt lên bởi khối $L$ nào.
  •  Nếu trong lượt tiếp theo, $A$ chọn một trong hai ô $3$ hoặc $4$ thì $B$ chọn ô còn lại, kết quả tương tự trên, ô số $2$ cũng sẽ không thể tiếp cận.

Vậy nói tóm lại, $k=4$ là giá trị nhỏ nhất cần phải tìm.

Bài 10: (JBMO 2016)

Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.

 

Lời giải

Ta sẽ chứng minh rằng số giá phân biệt lớn nhất là $60.$ Ta có nhận xét sau: \medskip

 

Nhận xét:  Trong mỗi bảng tốt, mỗi hàng chứa đúng hai số trong các số hoặc mỗi cột chứa đúng hai số trong các số. \medskip

 

Thật vậy, ta thấy mỗi hàng của bảng đều chứa ít nhất hai số (vì nếu chứa toàn bộ là một số thì mâu thuẫn với giả thiết). Khi đó, nếu toàn bộ các hàng đều chứa hai số thì nhận xét đúng. \medskip

 

Giả sử ngược lại là có hàng $R$ chứa ít nhất ba số trong bốn số của bảng là $x,y,z,t$. Khi đó, các số đó phải có nằm ở vị trí liên tiếp nào đó trên hàng, giả sử là $x,y,z$ liên tiếp. Theo giả thiết thì trong mỗi bảng $2\times 2$, ta đều có đủ bốn giá trị nên trong hàng phía trên và phía dưới của $R$ phải chứa $z,t,x$ theo đúng thứ tự đó, và tương tự là $x,y,z$. Ta có bảng như bên dưới

 

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

 

Điền thêm các ô còn lại, dễ thấy rằng các cột đều chứa đúng hai số. Nhận xét được chứng minh. \medskip

 

Không mất tính tổng quát, ta có thể giả sử mỗi hàng của bảng đều có đúng hai số (nếu không thì có thể xoay bảng lại). Nếu không xét hàng đầu tiên và cột đầu tiên, ta sẽ có bảng $4\times 4$ mà trong đó, mỗi số trong $x,y,z,t$ đều xuất hiện $4$ lần nên tổng các số trong bảng này là $4(x+y+z+t).$

Do đó, ta chỉ cần tính xem có bao nhiêu cách khác nhau để đặt các số lên hàng đầu tiên ${{R}_{1}}$ và cột đầu tiên ${{C}_{1}}.$ Gọi $a,b,c,d$ là số lần xuất hiện của các số $x,y,z,t$ thì khi đó, tổng tất cả các số của bảng sẽ là

$$4(x+y+z+t)+xa+yb+zc+td.$$

Nếu hàng $1-3-5$ chứa các số $x,y$ với $x$ ở vị trí đầu tiên của hàng $1$ thì các hàng $2-4$ sẽ chứa các số $z,t$ (theo giả sử ở trên). Khi đó, ta có

$a+b=7$ và $a\ge 3,b\ge 2$,

$c+d=2$ và $c\ge d.$ \medskip

 

Khi đó $(a,b)=(5,2),(4,3)$ tương ứng với $(c,d)=(2,0),(1,1).$ Suy ra $(a,b,c,d)$ sẽ nhận các bộ là $$(5,2,2,0),(5,2,1,1),(4,3,2,0),(4,3,1,1).$$

Tổng số hoán vị của các bộ là $$\frac{4!}{2!}+\frac{4!}{2!}+4!+\frac{4!}{2!}=60.$$

Bằng cách chọn $x={{10}^{3}},y={{10}^{2}},z=10,t=1$ thì dễ thấy rằng các tổng tương ứng với mỗi hoán vị của bộ số trên đều phân biệt, nghĩa là giá của các bảng đều phân biệt. Vậy số lượng giá tối đa là $60.$

Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:

Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$

Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?

Phương trình vô tỉ – Phương pháp nhân chia lượng liên hợp

Phương pháp nhân lượng liên hợp được sự dụng khi phương trình có độ phức tạp cao, lệch bậc nhiều ở các biểu thức chứa căn và nghiệm của phương trình thường dễ đoán và có ít nghiệm.
Nội dung phương pháp là ta phải đoán được nghiệm, thêm bớt (tách) và nhóm các số hạng phù hợp và nhân chia với biểu thức liên hợp để xuất hiện nhân tử. Ta xét các ví dụ sau.
Ví dụ 1
Giải phương trình:
$$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$$

Lời giải

Ta có

$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \sqrt{3x^2-5x+1}-\sqrt{3(x^2-x-1)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}$
$\Leftrightarrow
-(x-2)\left[ \dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}+\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\right] =0$
$\Leftrightarrow x=2.$

(Rõ ràng biểu thức trong ngoặc “[]” là dương)
Thử lại ta thấy $x=2$ thoả mãn.
Vậy $x=2$ là nghiệm của phương trình.

Ta có bước thử lại vì chưa đặt điều kiện của phương trình.

Ví dụ 2 Giải phương trình $$\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}$$

Lời giải
Điều kiện $x \ge \sqrt[3]{2}$.

$\sqrt[3]{x^2-1}-2+x-3=\sqrt{x^2-2}-5$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^1-1)^2}+2\sqrt[]{x^2-1}+4}]=\dfrac{(x-3)(x^2+3x+9)}{\sqrt{x^3-2}+5}$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}- \dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}]=0$
$\Leftrightarrow x=3.$

Vì $$1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}=1+\dfrac{x+2}{(\sqrt[3]{x^2-1}+1)^2+3}<2<\dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}.$$
Vậy phương trình có nghiệm duy nhất $x=3.$

Ví dụ 3 Giải phương trình $\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1.$

Lời giải
Điều kiện $2 \le x \le 4$.
Khi đó

$\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1$
$\Leftrightarrow \sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3$
$\Leftrightarrow \dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{x-3}{\sqrt{4-x}+1}=(x-3)(2x+1)$
$\Leftrightarrow (x-3)[\dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1}-(2x+1)]=0$
$\Leftrightarrow x=3.$

$\dfrac{1}{\sqrt{x-2}+1} \le 1$
$\dfrac{1}{\sqrt{4-x}+1} \ge \dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1 $
$\Rightarrow \dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1} \le 2-\sqrt{2}.$
Và $2x+1 \ge 5 $ (do \ x \ge 2$
$
Vậy phương trình có nghiệm duy nhất $x=2.$

Ví dụ 4 Giải phương trình $x^2+x-1=(x+2)\sqrt{x^2-2x+2}$.

Lời giải
Ta có

$x^2+x-1=(x+2)\sqrt{x^2-2x+2}$
$\Leftrightarrow x^2-2x-7+3(x+2)-(x+2)\sqrt{x^2-2x+2}=0$
$\Leftrightarrow x^2-2x-7+(x+2)(3-\sqrt{x^2-2x+2})=0$
$\Leftrightarrow x^2-2x-7-\dfrac{(x+2)(x^2-2x-7)}{\sqrt{x^2-2x+2}+3}=0$
$\Leftrightarrow (x^2-2x-7)(1-\dfrac{x+2}{\sqrt{x^2-2x+2}+3})=0$
$\Leftrightarrow (x^2-2x-7)[\dfrac{\sqrt{(x-1)^2+1}-(x-1)}{\sqrt{x^2-2x+2}+3}]=0$
$\Leftrightarrow x^2-2x-7=0$
$\Leftrightarrow x=1 \pm \sqrt{7}.$
Vậy phương trình có nghiệm $x=1 \pm \sqrt{7}$.

Bài tập rèn luyện

Bài tập 1 Giải các phương trình sau:

a) $\sqrt{2x-3}-\sqrt{x}=2x-6$
b) $\sqrt{x+1}+1=4x^2+\sqrt{3x}$
c) $\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}$

d) $\dfrac{2x^2}{(3-\sqrt{9+2x})^2}=x+21$
e) $9(x+1)^2=(3x+7)(1-\sqrt{3x+4})^2$

Bài tập 2 Giải các phương trình sau:

a) $\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$
b) $\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x} =2 \sqrt{3}$
c) $\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}$
d) $x^2-4x-2+\sqrt{x^2-4x+7}+\sqrt{5x-6}=0$
e) $3 \sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}$

Bài tập 3 Giải các phương trình sau:

a) $\sqrt{2x^2-x+3}-\sqrt{21x-17}+x^2-x=0$
b) $x(x+1)(x-3)+3=\sqrt{4-x}+\sqrt{1+x}$
c) $\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5$
d) $\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+|x|+|x-1|$

Bài tập 4 Giải các phương trình sau

a) $\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1$
b) $3x^2-8x+3=3\sqrt{x+1}$
c) $2x^2-x-2=\sqrt{5x+6}$
d) $\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1$

Đề thi chọn đội Dự Tuyển PTNK năm học 2020-2021

Kì thi chọn Dự tuyển trường Phổ thông Năng khiếu tham dự kì thi 30/04 được tổ chức vào tháng 01 năm 2021, đề gồm 4 bài, làm trong 120 phút.

Đề bài

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $$P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$$

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Ánh xạ – Bài tập

Bài giảng ánh xạ

Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?

a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$

a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.

Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?

Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?

a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.

Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.

a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?

Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.

a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.

Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:

a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $

Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.

a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.

Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.

a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.

Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$

$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$

a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?

Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.

Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.

Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.

Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.

Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$

a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?

Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?

Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.

Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.

Trắc nghiệm lớp 11 – Đại số – Học kì 1

Chương 1. Hàm số lượng giác – Phương trình lượng giác

Bài 1. Hàm số lượng giác

[WpProQuiz 73]

Bài 2. Phương trình lượng giác cơ bản

Bài 3. Phương trình lượng giác không mẫu mực

Bài 4. Ôn tập chương

Chương 2. Tổ hợp – Xác suất

 

Bài 1. Quy tắc cộng – Quy tắc nhân

Bài 2. Chỉnh hợp  – Hoán vị – Tổ hợp

Bài 3. Nhị thức Newton

Bài 4. Xác suất – Các quy tắc xác suất

Bài 5. Ôn tập chương

[WpProQuiz 20]

Chương 3. Dãy số – Cấp số

Bài 1. Dãy số – Tính chất của dãy số

Bài 2. Cấp số cộng

Bài 3. Cấp số nhân

Bài 4. Ôn tập chương