Category Archives: Toán phổ thông
Protected: Ôn tập chương hàm số: Trắc nghiệm
Phương pháp chứng minh phản chứng (P2)
Bài 1.
Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:
a/ Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?
b/ Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?
Bài 2.
Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau: $-5, -4, -3, 3, 4, 5$.
Bài 3.
Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.
Bài 4.
Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?
Bài 5.
Mỗi phần tử của bảng vuông $ 25 \times 25 $ hoặc là $ + 1 $ hoặc $ -1 $. Gọi $ a_{i} $ là tích của tất cả các phần tử của hàng thứ $ i $ và $ b_{j} $ là tích của tất cả các phần tử của cột thứ $ j $. Chứng minh rằng $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} \neq 0 $
Bài tập số chính phương – Lớp 9
Bài 1. Chứng minh rằng
a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.
Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.
Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.
Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.
Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.
Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.
Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.
Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.
Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.
Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.
Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.
Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.
Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.
Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.
a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.
Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$
a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?
Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.
Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.
Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.
Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.
Bài 21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.
Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.
Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.
Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.
Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)
a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.
Định lý Ceva và Menelaus – Phần 3
Ví dụ 10. (USAMO 2012) Gọi $P$ là một điểm thuộc miền trong tam giác $ABC$ và $d$ là một đường thẳng qua $P$. Đường thẳng đối xứng của $PA$ qua $d$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.
Ví dụ 11. Cho tam giác $ABC$. Ba đường tròn $w_a, w_b, w_c$ lần lượt đi qua các cặp đỉnh $B,C$; $C, A$; và $A, B$. Gọi $D, E, F$ lần giao điểm thứ hai của ba đường tròn này. Đường thẳng qua $D$ vuông góc với $AD$ cắt $BC$ tại $X$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng $X, Y, Z$ thẳng hàng.
Ví dụ 12. (IMO shortlist 2013) Cho tam giác $ABC$ nhọn. Gọi $O$ là tâm ngoại tiếp và $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tồn tại các điểm $D, E, F$ thuộc các cạnh $BC, AC, AB$ thỏa: $OD + DH = OE+EH = OF + FH$ và $AD, BE, CF$ đồng quy.
Ví dụ 13. Cho tam giác $ABC$ khác tam giác cân nội tiếp đường tròn $w$, các đường trung tuyến từ $A, B,C$ cắt $w$ tại $A’, B’, C’$. Gọi $A_1$ là giao điểm của tiếp tuyến tại $A’$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Chứng minh rằng $A_1, B_1, C_1$ thẳng hàng.
Bài tập rèn luyện
Bài 1. Cho tứ giác $ABCD$, gọi $I$ là giao điểm của $AC$ và $BD$, $K$ là giao điểm của $AB$ và $CD$. Đường thẳng $IK$ cắt các cạnh $BC$ và $AD$ tại $P, Q$.
Chứng minh rằng: $ \dfrac{\overline{IP}}{\overline{IQ}} = -\dfrac{\overline{KP}}{\overline{KQ}}$
Bài 2. Cho tứ giác $ABCD$ ngoại tiếp đường tròn $w$, $w$ tiếp xúc với các cạnh $AB, BC, CD, DA$ lần lượt tại $M, N, P, Q$. Chứng minh $MQ, BD, PN$ song song hoặc đồng quy.
Bài 3. Cho tam giác $ABC$, đường phân giác ngoài góc $A$ cắt đường thẳng vuông góc với $BC$ kẻ từ $B$ và $C$ lần lượt tại $D$ và $E$. Chứng minh rằng $BE, CD$ và $AO$ đồng quy, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Bài 4. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $I$ qua $BC, AC, AB$. Chứng minh rằng $AA’, BB’, CC’$ đồng quy.
Bài 5. Cho tam giác $ABC$. Về phía ngoài tam giác dựng các hình vuông $BCDE, ACFG, ABHK$ với tâm lần lượt là $O_1, O_2, O_3$. Chứng minh $AO_1, BO_2, CO_3$ đồng quy.
Bài 6. Cho tam giác $ABC$ không cân tại $A$. $M$ là một điểm nằm trong tam giác thỏa $\angle AMB – \angle ACB = \angle AMC – \angle ABC$. Chứng minh rằng đường thẳng nối tâm đường tròn nội tiếp tam giác $AMB$ và $AMC$ đi qua một điểm cố định.
Bài 7. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. $AM, BM, CM$ cắt $BC, AC, AB$ lần lượt tại $A’, B’, C’$. Gọi $P$ là giao điểm của $BB’$ và $A’C’$; $Q$ là giao điểm của $CC’$ và $A’B’$. Chứng minh rằng: $$\angle MAP = \angle MAQ \Leftrightarrow \angle MAB = \angle MAC$$
Bài 8. Cho tam giác $ABC$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$; $O_1, O_2, O_3$ lần lượt là tâm ngoại tiếp các tam giác $BCO, ACO$ và $ABO$. Chứng minh rằng $AO_1, BO_2, CO_3$ đồng quy tại một điểm.(Điểm Kosnita)
Bài 9. Cho tam giác $ABC$ có $M$ là trung điểm cạnh $AB$. $CE$ là phân giác góc $\angle ACB$. $D$ thuộc tia đối của tia $CA$ sao cho $CD = CB$. Gọi $K$ là giao điểm của $DM$ và $CE$. Chứng minh rằng $\angle KBC = \angle BAC$.
Bài 10. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $A_o, B_o, C_o$ là trung điểm của $BC, AC, AB$. $A_1$ là giao điểm của $AA_o$ và $(O)$, $A_2$ là giao điểm của $H$ qua $A_o$; đường thẳng $A_1A_2$ cắt $BC$ tại điểm $S_a$; các điểm $S_b, S_c$ được xác định tương tự. Chứng minh $S_a, S_b, S_c$ thẳng hàng.
Bài 11. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC, AB$ sao cho các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.
a) Gọi $A_2$ là điểm đối xứng của $A_1$ qua trung điểm cạnh $BC$; các điểm $B_2, C_2$ được xác định tương tự. Chứng minh rằng $AA_2, BB_2, CC_2$ cũng đồng quy.
b) Đường tròn ngoại tiếp tam giác $A_1B_1C_1$ cắt $BC, AC, AB$ tại $A_3, B_3, C_3$. Chứng minh $AA_3, BB_3, CC_3$ đồng quy.
Bài 12. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC$ và $AB$. Gọi $G_a, G_b, G_c$ lần lượt là trọng tâm các tam giác $AB_1C_1, BC_1A_1, CA_1B_1$. Chứng minh rằng $AG_a, BG_b, CG_c$ đồng quy khi và chỉ khi $AA_1, BB_1, CC_1$ đồng quy.
Bài 13.(IMO SL 1995) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm bên trong tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $XBC$ tiếp xúc với $BC$ tại $D$, tiếp xúc với $CX, BX$ tại $Y, Z$. Chứng minh rằng $E, F, Z, Y$ cùng thuộc một đường tròn.
Bài 14. Cho $P$ là điểm thuộc miền trong của tam giác $ABC$. Gọi $D, E, F$ là hình chiếu của $P$ trên $BC, AC, AB$. Gọi $X$ là điểm trên $EF$ sao cho $PX \bot PA$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng các điểm $X, Y, Z$ thẳng hàng.
Bài 15. (IMO SL 2006) Cho tam giác $ABC$ có $\angle ACB < \angle BAC < 90^o$.Lấy $D$ là điểm thuộc cạnh $AC$ sao cho $BD = BA$. Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với $AB$ tại $K$ và $AC$ tại $L$. Gọi $J$ là tâm đường tròn nội tiếp tam giác $BCD$. Chứng minh rằng đường thẳng $KL$ chia đôi đoạn $AJ$.
Bài 18. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$. Gọi $A_1$ là điểm đối xứng của $A$ qua $O$, gọi $A_2$ là điểm đối xứng của $O$ qua $BC$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng đường tròn ngoại các tam giác $OA_1A_2 OB_1B_2$ và $OC_1C_2$ cùng đi qua 2 điểm.
Bài 19. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm nằm trong tam giác $DEF$, gọi $A_1, A_2$ là giao điểm của $DX$ với $EF$ và $(I)$; các điểm $B_1,B_2$;$C_1,C_2$ được xác định tương tự.
a) Chứng minh $AA_2, BB_2, CC_2$ đồng quy tại $Y$; $AA_1, BB_1, CC_1$ đồng quy tạu $Z$.
b) Chứng minh $X, Y, Z$ thẳng hàng.
Bài 20. Cho một đường tròn với hai dây $AB$ và $CD$ không song song. Đường vuông góc với $AB$ kẻ từ $A$ cắt đường vuông góc với $CD$ kẻ từ $C$ và từ $D$ lần lượt tại $M, P$. Đường vuông góc với $AB$ kẻ từ $B$ cắt đường vuông góc với $CD$ kẻ từ $C$ và $D$ lần lượt tại $Q$ và $N$. Chứng minh rằng các đường thẳng $AD, BC, MN$ đồng quy và các đường thẳng $AC, BD, PQ$ cũng đồng quy.
Bài 21. (IMO shortlis 2011) Cho $ABC$ là một tam giác với đường tròn nội tiếp tâm $I$ và đường tròn ngoại tiếp $(C)$. $D$ và $E$ là giao điểm thứ hai của $(C)$ với các tia $AI$ và $BI$ tương ứng. $DE$ cắt $AC$ tại điểm $F$, và cắt $BC$ tại điểm $G$. $P$ là giao điểm của đường thẳng đi qua $F$ song song với $AD$ và đường thẳng qua $G$ song song với $BE$. Giả sử rằng $K$ là giao điểm của các tiếp tuyến của $(C)$ tại $A$ và $B$. Chứng minh rằng ba đường thẳng $AE, BD$ và $KP$ là song song hoặc đồng quy.
Bài 22. (China TST 2014) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$; $H_a$ là chân đường cao hạ từ $A$ của tam giác $ABC$. $AO$ cắt đường tròn ngoại tiếp tam giác $BOC$ tại $A’$. Gọi $D, E$ là hình chiếu của $A’$ trên $AB$ và$AC$; và $O_a$ là tâm đường tròn ngoại tiếp tam giác $DEH_a$; Ta định nghĩa các điểm $H_b, O_b, H_c, O_c$ tương tự. Chứng minh rằng $H_aO_a, H_bO_b$ và $H_cO_c$ đồng quy.
Các bài toán tổ hợp trong kì thi Junior Bankan – P1
Lê Phúc Lữ – Phạm Khánh Vĩnh
(Bài viết trích từ Tập san Star Education – Số 5)
Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?
Bài 2: (JBMO 2000)
Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?
Bài 3: (JBMO 2006)
Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:
- Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
- Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.
Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?
Bài 4: (JBMO 2008)
Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$
Bài 5: (JBMO 2008)
Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$
Bài 6:
(JBMO 2010)
Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.
Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.
Bài 7: (JBMO 2013)
Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:
- Alice chọn $n$ số thực, không nhất thiết phân biệt.
- Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
- Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.
Hỏi Bob có thể có cách chắc chắn thắng hay không với
- $n=5?$
- $n=6?$
- $n=8?$
Bài 8: (JBMO 2014)
Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?
Bài 9: (JBMO 2015)
Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:
Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip
Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip
Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.
Bài 10: (JBMO 2016)
Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.
Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:
Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$
Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?
Phương trình vô tỉ – Phương pháp nhân chia lượng liên hợp
Phương pháp nhân lượng liên hợp được sự dụng khi phương trình có độ phức tạp cao, lệch bậc nhiều ở các biểu thức chứa căn và nghiệm của phương trình thường dễ đoán và có ít nghiệm.
Nội dung phương pháp là ta phải đoán được nghiệm, thêm bớt (tách) và nhóm các số hạng phù hợp và nhân chia với biểu thức liên hợp để xuất hiện nhân tử. Ta xét các ví dụ sau.
Ví dụ 1
Giải phương trình:
$$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$$
Lời giải
Ta có
$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \sqrt{3x^2-5x+1}-\sqrt{3(x^2-x-1)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}$
$\Leftrightarrow
-(x-2)\left[ \dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}+\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\right] =0$
$\Leftrightarrow x=2.$
(Rõ ràng biểu thức trong ngoặc “[]” là dương)
Thử lại ta thấy $x=2$ thoả mãn.
Vậy $x=2$ là nghiệm của phương trình.
Ta có bước thử lại vì chưa đặt điều kiện của phương trình.
Ví dụ 2 Giải phương trình $$\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}$$
Lời giải
Điều kiện $x \ge \sqrt[3]{2}$.
$\sqrt[3]{x^2-1}-2+x-3=\sqrt{x^2-2}-5$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^1-1)^2}+2\sqrt[]{x^2-1}+4}]=\dfrac{(x-3)(x^2+3x+9)}{\sqrt{x^3-2}+5}$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}- \dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}]=0$
$\Leftrightarrow x=3.$
Vì $$1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}=1+\dfrac{x+2}{(\sqrt[3]{x^2-1}+1)^2+3}<2<\dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}.$$
Vậy phương trình có nghiệm duy nhất $x=3.$
Ví dụ 3 Giải phương trình $\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1.$
Lời giải
Điều kiện $2 \le x \le 4$.
Khi đó
$\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1$
$\Leftrightarrow \sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3$
$\Leftrightarrow \dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{x-3}{\sqrt{4-x}+1}=(x-3)(2x+1)$
$\Leftrightarrow (x-3)[\dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1}-(2x+1)]=0$
$\Leftrightarrow x=3.$
Vì
$\dfrac{1}{\sqrt{x-2}+1} \le 1$
$\dfrac{1}{\sqrt{4-x}+1} \ge \dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1 $
$\Rightarrow \dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1} \le 2-\sqrt{2}.$
Và $2x+1 \ge 5 $ (do \ x \ge 2$
$
Vậy phương trình có nghiệm duy nhất $x=2.$
Ví dụ 4 Giải phương trình $x^2+x-1=(x+2)\sqrt{x^2-2x+2}$.
Lời giải
Ta có
$x^2+x-1=(x+2)\sqrt{x^2-2x+2}$
$\Leftrightarrow x^2-2x-7+3(x+2)-(x+2)\sqrt{x^2-2x+2}=0$
$\Leftrightarrow x^2-2x-7+(x+2)(3-\sqrt{x^2-2x+2})=0$
$\Leftrightarrow x^2-2x-7-\dfrac{(x+2)(x^2-2x-7)}{\sqrt{x^2-2x+2}+3}=0$
$\Leftrightarrow (x^2-2x-7)(1-\dfrac{x+2}{\sqrt{x^2-2x+2}+3})=0$
$\Leftrightarrow (x^2-2x-7)[\dfrac{\sqrt{(x-1)^2+1}-(x-1)}{\sqrt{x^2-2x+2}+3}]=0$
$\Leftrightarrow x^2-2x-7=0$
$\Leftrightarrow x=1 \pm \sqrt{7}.$
Vậy phương trình có nghiệm $x=1 \pm \sqrt{7}$.
Bài tập rèn luyện
Bài tập 1 Giải các phương trình sau:
a) $\sqrt{2x-3}-\sqrt{x}=2x-6$
b) $\sqrt{x+1}+1=4x^2+\sqrt{3x}$
c) $\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}$
d) $\dfrac{2x^2}{(3-\sqrt{9+2x})^2}=x+21$
e) $9(x+1)^2=(3x+7)(1-\sqrt{3x+4})^2$
Bài tập 2 Giải các phương trình sau:
a) $\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$
b) $\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x} =2 \sqrt{3}$
c) $\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}$
d) $x^2-4x-2+\sqrt{x^2-4x+7}+\sqrt{5x-6}=0$
e) $3 \sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}$
Bài tập 3 Giải các phương trình sau:
a) $\sqrt{2x^2-x+3}-\sqrt{21x-17}+x^2-x=0$
b) $x(x+1)(x-3)+3=\sqrt{4-x}+\sqrt{1+x}$
c) $\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5$
d) $\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+|x|+|x-1|$
Bài tập 4 Giải các phương trình sau
a) $\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1$
b) $3x^2-8x+3=3\sqrt{x+1}$
c) $2x^2-x-2=\sqrt{5x+6}$
d) $\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1$
Đề thi chọn đội Dự Tuyển PTNK năm học 2020-2021
Kì thi chọn Dự tuyển trường Phổ thông Năng khiếu tham dự kì thi 30/04 được tổ chức vào tháng 01 năm 2021, đề gồm 4 bài, làm trong 120 phút.
Đề bài
Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $$P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$$
Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.
Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.
Ánh xạ – Bài tập
Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?
a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$
a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.
Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?
Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?
a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.
Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.
a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?
Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.
a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.
Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:
a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $
Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.
a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.
Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.
a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.
Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$
$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$
a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?
Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.
Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.
Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.
Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.
Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.
Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.
Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$
a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?
Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?
Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.
Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.
Trắc nghiệm lớp 11 – Đại số – Học kì 1
Chương 1. Hàm số lượng giác – Phương trình lượng giác
Bài 1. Hàm số lượng giác
[WpProQuiz 73]Bài 2. Phương trình lượng giác cơ bản
Bài 3. Phương trình lượng giác không mẫu mực
Bài 4. Ôn tập chương
Chương 2. Tổ hợp – Xác suất
Bài 1. Quy tắc cộng – Quy tắc nhân
Bài 2. Chỉnh hợp – Hoán vị – Tổ hợp
Bài 3. Nhị thức Newton
Bài 4. Xác suất – Các quy tắc xác suất
Bài 5. Ôn tập chương
[WpProQuiz 20]Chương 3. Dãy số – Cấp số
Bài 1. Dãy số – Tính chất của dãy số
Bài 2. Cấp số cộng
Bài 3. Cấp số nhân
Bài 4. Ôn tập chương