Category Archives: Toán phổ thông

Đề thi Học kì 1 Toán 10 PTNK năm 2016 (CS1)

Đề và lời giải: Thầy Nguyễn Tấn Phát

Bài 1. (1 điểm) Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm
Bài 2. (1 điểm) Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$
Bài 3. (1 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$. Định m để hệ phương trình có nghiệm duy nhất.
Bài 4. (2 điểm) Giải các phương trình sau:
a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
Bài 5. (1 điểm) Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. (1 điểm) Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.
Bài 7. (3 điểm) Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Lời giải
Bài 1. (1 điểm)
Điều kiện: $x \ge 2$
$\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ (1)
$\Leftrightarrow (x-1)(x-3m)=0$
$\Leftrightarrow x-3m=0$ (2) vì $x \ge 2$
Để phương trình (1) vô nghiệm thì (2) phải vô nghiệm $\Leftrightarrow 3m<2 \Leftrightarrow m < \dfrac{2}{3}$

Bài 2. (1 điểm)
$A(1;-4)$, $B(2;-3)$ thuộc $(P)$, ta có:
$\left\{ \begin{array}{l}
1+b+c=-4\\
4+2b+c=-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
b=-2\\
c=-3
\end{array} \right.$
Do đó $(P): y=x^2 – 2x -3$
Phương trình hoành độ giao điểm của $(P)$ và $(P’)$: $ x^2-2x-3=(2x-1)^2 -4$
$\Rightarrow\left[ \begin{array}{l}
x=0 \Rightarrow y=-3 \\
x=\dfrac{2}{3} \Rightarrow y=-\dfrac{35}{9}
\end{array} \right.$
Vậy giao điểm của $(P)$ và $(P’)$ là $(0;-3)$ và $\left( \dfrac{2}{3};-\dfrac{35}{9} \right)$

Bài 3. (1 điểm)
Ta có:
$D=1-\dfrac{1}{m^2}$
$Dx= \dfrac{4m^2-2m-2}{m^2}$
$Dy= \dfrac{2m-2}{m}$
Để hệ phương trình có nghiệm duy nhất thì:
$\left\{ \begin{array}{l}
D \ne 0 \\
y=\dfrac{Dy}{D} \ge 0
\end{array} \right.$
$\Rightarrow \left\{ \begin{array}{l}
m \ne \pm 1\\
\left[ \begin{array}{l}
m \ge 0 \\
m \le -1
\end{array} \right.
\end{array} \right. $
$\Rightarrow \left[ \begin{array}{l}
m < -1 \\ \left\{ \begin{array}{l} m > 0 \\
m \ne 1
\end{array} \right.
\end{array} \right.$

Bài 4. (2 điểm)
a) Điều kiện: $x \ge 3$.
Ta có $\sqrt{2x+1}+\sqrt{x-3} = 4 \Leftrightarrow 2\sqrt{2x^2-5x-3}=18 – 3x$
$\Leftrightarrow 4(2x^2-5x-3) = 9x^2-108x + 324$ ($x\leq 6$)
$\Leftrightarrow x^2-88x+332 = 0 \Leftrightarrow x = 4 (n), x = 84(l)$.
Vậy $S=\{4\}$.
b) Điều kiện: $x^2 \ge 9 \Rightarrow \left[ \begin{array}{l}
x \ge 3 \\
x \le -3
\end{array} \right.$
$x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
$\Rightarrow x^2 + \dfrac{9x^2}{x^2-9} + \dfrac{6x^2}{\sqrt{x^2-9}}=\left( \dfrac{35}{4} \right)^2$
$\Rightarrow \dfrac{x^4}{x^2-9}+\dfrac{2.x^2.3}{\sqrt{x^2-9}} +9 = \left( \dfrac{35}{4} \right)^2 + 9$
$\Rightarrow \left( \dfrac{x^2}{\sqrt{x^2-9}} +3 \right)^2 = \dfrac{1369}{16}$
$\Rightarrow \left[ \begin{array}{l}
\dfrac{x^2}{\sqrt{x^2-9}} +3 = \dfrac{37}{4} \\
\dfrac{x^2}{\sqrt{x^2-9}} +3 = -\dfrac{37}{4} \quad \text{(loại)}
\end{array} \right.$
$\Rightarrow \dfrac{x^2}{\sqrt{x^2-9}} = \dfrac{25}{4}$
$\Rightarrow 16x^4=625.x^2-9.625$
$\Rightarrow \left[ \begin{array}{l}
x= \pm 5\\
x= \pm \dfrac{15}{4}
\end{array} \right.$
Thử lại nghiệm ta chọn $x=5$ hoặc $x=\dfrac{15}{4}$
Vậy $x=5$ hoặc $x=\dfrac{15}{4}$

Bài 5. (1 điểm)
$\tan^2 a – \tan^2 b \\
= \dfrac{\sin^2a}{\cos^2a}-\dfrac{\sin^2b}{\cos^2b} \\
= \dfrac{\sin^2a.\cos^2b – \sin^2b.\cos^2a}{\cos^2a.\cos^2b} \\
= \dfrac{(\sin a.\cos b+\sin b.\cos a)(\sin a.\cos b-\sin b.\cos a )}{\cos^2a.\cos^2b} \\
= \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. (1 điểm)
$AB^2 =(-3+1)^2+(-3-3)^2=40$
$BC^2 =(2+3)^2+(2+3)^2=50$
$AC^2 =(2+1)^2+(2-3)^2=10$
$\Rightarrow BC^2=AB^2+AC^2$
Vậy tam giác $ABC$ vuông tại $A$ và có $A$ là trực tâm.

Bài 7. (3 điểm)
a) $MA = \dfrac{2}{3}AB = 4a$
$\angle BAD = 180^0-\angle ABC = 180^0-60^0 = 120^0 $
$\overrightarrow{AM}.\overrightarrow{AD}=|\overrightarrow{AM}|.|\overrightarrow{AD}|.\cos(\overrightarrow{AM},\overrightarrow{AD}) = 4a.3a.\cos 120^0 = -6a^2$
b) $DN = \dfrac{2}{3} CN=\dfrac{2}{5} CD
= \dfrac{2}{5}.6a=\dfrac{12}{5}a$
Áp dụng định lý cosin cho tam giác $ADN$, ta có:
\begin{align*}
AN^2&= AD^2+DN^2-2.AD.DN.\cos \angle ADN \\
&= (3a)^2 + \left( \dfrac{12}{5}a \right)^2 – 2.3a.\dfrac{12}{5}a.\cos 60^0 \\
&= \dfrac{189}{25} a^2
\end{align*}
Do đó $AN= \dfrac{3\sqrt{21}}{5}a$
c) \begin{align*}
\overrightarrow{BG} &= \overrightarrow{BE} + \overrightarrow{EG} \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3} \overrightarrow{EN} \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3} \left( \overrightarrow{EA}+\overrightarrow{AN} \right) \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{3}.\dfrac{1}{3}\overrightarrow{BA}+ \dfrac{1}{3} \left( \overrightarrow{AD} + \overrightarrow{DN} \right) \\
&= \dfrac{2}{3}\overrightarrow{BA} + \dfrac{1}{9} \overrightarrow{BA} + \dfrac{1}{3} \left( \overrightarrow{BD} – \overrightarrow{BA} \right) + \dfrac{1}{3}.\left( -\dfrac{2}{5} \right) \overrightarrow{BA} \\
&= \dfrac{14}{45}\overrightarrow{BA} + \dfrac{1}{3} \overrightarrow{BD}
\end{align*}
Vậy $x=\dfrac{14}{45}$ và $y=\dfrac{1}{3}$

Đề thi Học kì 1 Toán 10 PTNK năm 2019 (CS1)

Đề và lời giải: Thầy Nguyễn Tấn Phát

Bài 1. (1 điểm) Tìm $m$ để phương trình $\dfrac{m^2x+m}{x-1}=1$ có đúng một nghiệm.
Bài 2. (2 điểm) Giải các phương trình sau:
a) $4x-\left| 3x-2 \right| =x^2$
b) $\left( x^2 +x-2 \right) \left( \sqrt{5x-1}-7+2x \right) =0$
Bài 3. (1 điểm) Cho parabol $(P): y=ax^2+bx+c$. Tìm $a$, $b$, $c$ biết điểm $B(-1;4)$ thuộc $(P)$ và $S(0;3)$ là đỉnh của parabol.
Bài 4. (1,5 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
2mx-(m+1)y=m+1 \
(m-2)x-\dfrac{m}{2}y=-\dfrac{m}{2}-2
\end{array} \right. $
a) Tìm $m$ để hệ phương trình có nghiệm.
b) Tìm nghiệm $\left( x_0; y_0 \right) $ của hệ thỏa $x_0-y_0=-2$
Bài 5. (0,5 điểm) Rút gọn: $P=\dfrac{\sin \left( x+ \dfrac{\pi}{2} \right) + 2\cos (x+ \pi)}{\cos (\pi -x )}$.
Bài 6. (2 điểm) Hình bình hành $ABCD$ có $AB=a$, $AD=a\sqrt{3}$ và $\angle BAD = 30^\circ $
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AD}$ và độ dài đoạn $AC$.
b) Gọi $DE$ là đường cao của tam giác $ABD$ ($E$ thuộc đường thẳng $AB$). Tính $\overrightarrow{AB}\cdot \overrightarrow{AE}$ và độ dài đoạn $DE$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho $A(6;-2)$, $B(3;-1)$, $C(9;7)$.
a) Chứng minh $ABC$ là tam giác vuông và tìm $I$ thuộc trục tung sao cho $\overrightarrow{IB} \cdot \overrightarrow{AB} =10$.
b) Tính độ dài đoạn $AG$ với $G$ là trọng tâm tam giác $ABC$. Tìm điểm $K$ thuộc đường thẳng $d: y=x$ sao cho $\left| \overrightarrow{KB} + \overrightarrow{KC} \right| = 2\sqrt{5}$

Lời giải
Bài 1. (1 điểm)
a) Điều kiện: $x\ne 1$

Phương trình $(1) \Rightarrow \left( m^2-1 \right) x=-m-1 \quad (2)$

Phương trình $(1)$ có đúng một nghiệm khi và chỉ khi phương trình $(2)$ có đúng một nghiệm khác 1

$\Leftrightarrow \left\{ \begin{array}{l}
m^2-1 \ne 0 \\
x= \dfrac{-m-1}{m^2-1} \ne 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m\ne 1 \\
m\ne -1 \\
m \ne 0
\end{array} \right. $

Bài 2. (2 điểm)
a)

  • Nếu $x\ge \dfrac{2}{3}$ ta có phương trình:
    $$4x-3x+2=x^2 \Leftrightarrow x^2-x-2=0 \Leftrightarrow \left[ \begin{array}{l}
    x=-1 \quad \text{(loại)} \\
    x=2 \quad \text{(nhận)}
    \end{array} \right. $$
  • Nếu $x < \dfrac{2}{3}$ ta có phương trình:
    $$4x+3x-2=x^2 \Leftrightarrow x^2-7x+2=0 \Leftrightarrow \left[ \begin{array}{l}
    x=\dfrac{7+\sqrt{41}}{2} \quad \text{(loại)} \\
    x=\dfrac{7-\sqrt{41}}{2} \quad \text{(nhận)}
    \end{array} \right. $$

Vậy phương trình có hai nghiệm $x=2$, $x=\dfrac{7-\sqrt{41}}{2}$
b) Điều kiện: $x\ge \dfrac{1}{5}$

$\left( x^2 +x-2 \right) \left( \sqrt{5x-1}-7+2x \right) =0 \Leftrightarrow \left[ \begin{array}{l}
x^2+x-2=0 \quad (2) \\
\sqrt{5x-1}=7-2x \quad (3)
\end{array} \right. $

$(1)\Leftrightarrow \left[ \begin{array}{l}
x=1 \quad \text{(nhận)} \\
x=-2 \quad \text{(loại)}
\end{array} \right. $

$(2)\Leftrightarrow \left\{ \begin{array}{l}
7-2x \ge 0 \\
5x-1 = 49 -28x+4x^2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le \dfrac{7}{2} \\
4x^2 – 33x + 50=0
\end{array} \right. \\
\Leftrightarrow \left\{ \begin{array}{l}
x\le \dfrac{7}{2} \\
\left[ \begin{array}{l}
x=2 \\
x=\dfrac{25}{4}
\end{array} \right.
\end{array} \right. \Leftrightarrow x=2 \quad \text{(nhận)}$
Vậy phương trình có 2 nghiệm $x=1$, $x=2$.

Bài 3. (1 điểm) $B(-1;4) \in (P) \Rightarrow 4=a-b+c$

$S(0;3)$ là đỉnh nên $3=c$ và $-\dfrac{b}{2a}=0 \Rightarrow b=0 \Rightarrow a=1$

Vậy $a=1$, $b=0$, $c=3$.

Bài 4. (1,5 điểm)
a) $D=\left| \begin{array}{*{20}{c}}
{2m}&{-(m+1)}\\
{m-2}&{-\dfrac{m}{2}}
\end{array} \right| = -m-2$

$D_x=\left| \begin{array}{*{20}{c}}
{m+1}&{-(m+1)}\\
{-\dfrac{m}{2}-2}&{-\dfrac{m}{2}}
\end{array} \right| = (m+1)(-m-2)$

$D_y=\left| \begin{array}{*{20}{c}}
{2m}&{m+1}\\
{m-2}&{-\dfrac{m}{2}-2}
\end{array} \right| = (-m-2)(2m-1)$
Hệ có nghiệm duy nhất khi và chỉ khi $D \ne 0 \Leftrightarrow -m-2 \ne 0 \Leftrightarrow m \ne -2$

Hệ có vô số nghiệm khi và chỉ khi $D=D_x=D_y=0\Leftrightarrow m=-2$

Khi đó hệ có vô số nghiệm là $(x,y)$ thỏa $-4x+y=-1$

Vậy hệ có nghiệm với mọi giá trị của $m$.
b)

  • TH1. Hệ có một nghiệm duy nhất khi và chỉ khi $D \ne 0\ne m \ne -2$Khi đó $x_0=m+1$, $y_0=2m-1$

    $x_0-y_0=-2 \Leftrightarrow m+1-2m+1=-2 \Leftrightarrow m=4$ (nhận)

    Khi đó nghiệm của hệ là $(5;7)$.

  • TH2. Hệ có vô số nghiệm khi và chỉ khi $D=D_x=D_y=0 \Leftrightarrow m=-2$Khi đó hệ có vô số nghiệm $\left( x_0;y_0 \right) $ thỏa $-4x_0+y_0=-1$

    Khi đó ta có hệ phương trình $\left\{ \begin{array}{l}
    x_0-y_0=-2 \\
    -4x_0+y_0=-1
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x_0=1 \\
    y_0=3
    \end{array} \right. $

    Hệ có nghiệm là $(1;3)$.

Bài 5. (0,5 điểm) $\sin \left( x+ \dfrac{\pi}{2} \right) =\cos x$, $\cos (x+ \pi) = -\cos x$, $\cos (\pi -x) = – \cos x$

$P=\dfrac{\cos x – 2\cos x}{-\cos x} = 1$
Bài 6. (2 điểm)
a) $\overrightarrow{AB} \cdot \overrightarrow{AD} = AB\cdot AD \cdot \cos BAD = \dfrac{3}{2} a^2$

$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$

$AC^2 = \left( \overrightarrow{AB} + \overrightarrow{AD} \right) ^2 = AB^2 + AD^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AD} = a^2 + 3a^2 + 3a^2 = 7a^2$

$\Rightarrow AC=\sqrt{7}a$
b) Đặt $\overrightarrow{AE} = x\cdot \overrightarrow{AB}$

$\overrightarrow{DE} = \overrightarrow{AE} – \overrightarrow{AD} = x\overrightarrow{AB}- \overrightarrow{AD}$

$DE \bot AB \Leftrightarrow \overrightarrow{DE} \bot \overrightarrow{AB} \Leftrightarrow \overrightarrow{DE} \cdot \overrightarrow{AB} =0 \\
\Leftrightarrow \left( x\overrightarrow{AB} – \overrightarrow{AD} \right) \cdot \overrightarrow{AB} = 0 \\
\Leftrightarrow xAB^2 – \overrightarrow{AB} \cdot \overrightarrow{AD} =0 \Leftrightarrow xa^2 – \dfrac{3}{2}a^2 =0 \Leftrightarrow x=\dfrac{3}{2}$

Vậy $\overrightarrow{AE} = \dfrac{3}{2} \overrightarrow{AB}$

$\overrightarrow{AB} \cdot \overrightarrow{AE} = \overrightarrow{AB} \cdot \left( \dfrac{3}{2} \overrightarrow{AB} \right) = \dfrac{3}{2} AB^2 = \dfrac{3}{2} a^2$

$DE^2 = \left( \dfrac{3}{2} \overrightarrow{AB} – \overrightarrow{AD} \right) ^2 = \dfrac{9}{4}AB^2 + AD^2 – 3\overrightarrow{AB} \cdot \overrightarrow{AD} = \dfrac{9}{4}a^2 + 3a^2 – \dfrac{9}{2}a^2 = \dfrac{3}{4}a^2 \\
\Rightarrow DE = \dfrac{\sqrt{3}}{2}a$

Hoặc cách khác.

Tam giác $ABE$ vuông tại $E$ có $\angle DAE = 30^\circ $ nên $\sin 30^\circ = \dfrac{DE}{AD} \Rightarrow DE=AD \cdot \sin 30^\circ = a\sqrt{3}\cdot \dfrac{1}{2} = \dfrac{a\sqrt{3}}{2}$

Bài 7. (2 điểm)
a) $\overrightarrow{AB}(-3;1)$, $\overrightarrow{AC}(3;9)$

$\overrightarrow{AB} \cdot \overrightarrow{AC} = -3\cdot 3 + 1\cdot 9 =0 \Rightarrow \overrightarrow{AB} \bot \overrightarrow{AC} \Rightarrow \triangle ABC$ vuông tại $A$.

Đặt $I(0;i)$

$\overrightarrow{IB}(3;-1-i)$, $\overrightarrow{AB}(-3;1)$

$\overrightarrow{IB} \cdot \overrightarrow{AB} =10 \Leftrightarrow 3\cdot (-3) + (-1-i)\cdot 1= 10 \Leftrightarrow i=-20$

Vậy $I(0;-20)$.
b) $G\left( 6; \dfrac{4}{3} \right) $

$\overrightarrow{AG}\left( 0; \dfrac{10}{3} \right) \Rightarrow AG= \dfrac{10}{3}$

Đặt $K(k;k)$

$\overrightarrow{KB}(3-k;-1-k)$, $\overrightarrow{KC}(9-k;7-k)$

$\overrightarrow{KB}+ \overrightarrow{KC} = (12-2k;6-2k)$

$\left| \overrightarrow{KB} + \overrightarrow{KC} \right| = 2\sqrt{5} \Leftrightarrow (12-2k)^2 + (6-2k)^2 =20 \\
\Leftrightarrow k^2-9k+20=0 \Leftrightarrow \left[ \begin{array}{l}
k=4 \\
k=5
\end{array} \right. $

Vậy $K(4;4)$ hoặc $K(5;5)$.

Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS2)

Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{x^2 – 3x -4}{\sqrt{3-x}}=0$
b) $\sqrt{x+2}= \sqrt{2x+5} – \sqrt{3-x}$
Bài 2. (1 điểm) Tìm tọa độ đỉnh $I$ của parabol $(P): y= ax^2 + bx+ c \ (a \ne 0)$, biết parabol $(P)$ cắt trục hoành tại hai điểm có hoành độ lần lượt bằng 2 và 8, cắt trục tung tại điểm có tung độ bằng 8.
Bài 3. (1 điểm) Tìm $m$ để phương trình $\dfrac{x(2-x)}{\sqrt{2-x}} = \left( m^2 +1 \right) \sqrt{2-x}$ có nghiệm.
Bài 4. (1 điểm) Tìm $m$ để hệ phương trình $\left\{ \begin{array}{l}
(m+1)x-2y =m-1 \
m^2x-y = m^2 + 2m
\end{array} \right. $ có nghiệm duy nhất $\left( x_0; y_0 \right) $. Xác định một hệ thức liên hệ giữa $x_0$ và $y_0$ mà không phụ thuộc vào $m$.
Bài 5. (1 điểm) Cho góc $a$ thỏa $\tan \left( a + \dfrac{\pi}{2} \right) = -\sqrt{3}$. Tính giá trị của biểu thức:
$$P=\dfrac{\sin ^6 a + \cos ^6 a + 2\sin ^3 a \cdot \cos ^3 a}{\sin ^5 a \cdot \cos ^3 a + \sin ^3 a \cdot \cos ^5 a}$$
Bài 6. (2 điểm) Cho tam giác $ABC$ nhọn có độ dài cạnh $AB=5$. Gọi $H$ là chân đường cao hạ từ $A$ và $BH=3$, $CH=6$.
a) Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ và độ dài $AC$.
b) Gọi $M$ là trung điểm của $AH$. Tính $\overrightarrow{MB} \cdot \overrightarrow{MC}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;2)$, $B(-1;5)$, $C(3;2)$.
a) Tìm tọa độ trọng tâm $G$ và điểm $I$ thỏa $2\overrightarrow{IA} + 3\overrightarrow{IB} = 4\overrightarrow{IC}$.
b) Tìm tọa độ điểm $D$ biết $ABCD$ là hình thang có đáy $AB = \dfrac{3}{8}CD$.

Lời giải
Bài 1.
a) Điều kiện: $x<3$
$\dfrac{x^2 – 3x -4}{\sqrt{3-x}}=0 \Leftrightarrow (x+1)(x-4)=0 \Leftrightarrow \left[ \begin{array}{l}
x=-1 \quad (n) \\
x=4 \quad \ (l)
\end{array} \right. $
Vậy $S=\left\{ -1 \right\} $

b) $\sqrt{x+2}= \sqrt{2x+5} – \sqrt{3-x} \quad (1)$
Điều kiện: $-2 \le x \le 3$
$(1) \Leftrightarrow \sqrt{x+2} + \sqrt{3-x} = \sqrt{2x+5} \\
\Leftrightarrow 5 + 2\sqrt{-x^2+x+6} = 2x+5 \\
\Leftrightarrow \sqrt{-x^2+x+6} = x \quad (x\ge 0) \\
\Leftrightarrow -x^2 + x+6 = x^2 \\
\Leftrightarrow \left[ \begin{array}{l}
x=-\dfrac{3}{2} \quad (l) \\
x=2 \hspace{0.8cm} (n)
\end{array}\right.$

Vậy $S=\left\{ 2 \right\} $

Bài 2. (1 điểm) Theo đề ta có $(2;0)$, $(8;0)$, $(0;8)$ thuộc $(P)$ nên ta có hệ:

$\left\{ \begin{array}{l}
4a + 2b + c=0 \\
64a + 8b + c =0 \\
c=8
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a=\dfrac{1}{2} \\
b=-5 \\
c=8
\end{array} \right. $

Suy ra $(P): y=\dfrac{1}{2}x^2 -5x+8$

Vậy tọa độ đỉnh $I$ của $(P)$ là $I\left( 5 ; -\dfrac{9}{2} \right) $
Bài 3. (1 điểm) ĐKXĐ: $x<2$
$\dfrac{x(2-x)}{\sqrt{2-x}} = \left( m^2 +1 \right) \sqrt{2-x} \Leftrightarrow x(2-x) = (m^2+1) (2-x)$
$\Leftrightarrow \left[ \begin{array}{l}
x=2 \ (l)\\
x=m^2 +1
\end{array}\right.$
Phương trình có nghiệm khi và chỉ khi $m^2+1 <2 \Leftrightarrow m^2 <1 \Leftrightarrow -1 < m <1$
Vậy khi $-1<m<1$ thì phương trình có nghiệm $x=m^2+1$.
Bài 4. (1 điểm)
Ta có:
$D=\left| \begin{array}{*{20}{c}}
{m+1}&{-2}\\
{m^2}&{-1}
\end{array}\right| = 2m^2 -m-1=(m-1)(2m+1)$

$D_x = \left| \begin{array}{*{20}{c}}
{m-1} & {-2}\\
{m^2 +2m} & {-1}
\end{array}\right| = 2m^2 +3m+1 = (2m+1)(m+1)$

$D_y=\left| \begin{array}{*{20}{c}}
{m+1} & {m-1}\\
{m^2} & {m^2 +2m}
\end{array}\right| = 4m^2 +2m = 2m(2m+1)$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow \left\{ \begin{array}{l}
m\ne 1\\
m\ne -\dfrac{1}{2}
\end{array}\right.$

Ta có: $\left\{ \begin{array}{l}
x_0 = \dfrac{D_x}{D} = \dfrac{m+1}{m-1}\\\\
y_0= \dfrac{D_y}{D} = \dfrac{2m}{m-1}
\end{array}\right. $

Ta có: $y_0 -x_0 = \dfrac{2m-m-1}{m-1} = 1$
Bài 5. (1 điểm) Ta có: $\tan \left(\alpha + \dfrac{\pi}{2}\right) = -\sqrt{3} \Leftrightarrow \tan \alpha = \dfrac{1}{\sqrt{3}}$

ĐKXĐ: $\cos \alpha \ne 0$

Chia cả tử và mẫu của $P$ cho $\cos \alpha ^8$ ta được:

$P=\dfrac{\sin ^6 a + \cos ^6 a + 2\sin ^3 a \cdot \cos ^3 a}{\sin ^5 a \cdot \cos ^3 a + \sin ^3 a \cdot \cos ^5 a}$

$=\dfrac{ \tan \alpha ^6 \cdot (\tan \alpha ^2 +1) + \tan \alpha ^2 +1 + 2\tan \alpha ^3 \cdot (\tan \alpha ^2 +1)}{\tan \alpha ^5 + \tan \alpha ^3}$

$=\dfrac{28+8\sqrt{3}}{3\sqrt{3}}$
Bài 6. (2 điểm)
a) Tam giác $ABH$ vuông tại $H$ nên $AH^2 = AB ^2 – BH^2 =16 \Rightarrow AH=4$

Tam giác $ACH$ vuông tại $H$ nên $AC^2 = AH^2 + CH^2 = 52 \Rightarrow AC=2\sqrt{13}$

Ta có: $CA^2 = \overrightarrow{CA}^2 = (\overrightarrow{BA} – \overrightarrow{BC} )^2 = BA^2 + BC^2 -2\overrightarrow{BA}\cdot \overrightarrow{BC}$

$\Rightarrow 52 = 25+ 81 – 2 \overrightarrow{BA} \cdot \overrightarrow{BC}$
$\Rightarrow \overrightarrow{BA} \cdot \overrightarrow{BC} = 27$
b) Tam giác $MBH$ vuông tại $H$ có: $MB^2 = MH^2 + BH^2 = 13 \Rightarrow MB =\sqrt{13}$

Tam giác $MCH$ vuông tại $H$ có: $MC^2 = MH^2 + CH^2 = 40 \Rightarrow MC = 2\sqrt{10}$

Ta có: $ CB^2 = (\overrightarrow{MB} – \overrightarrow{MC})^2 = MB^2 + MC^2 – 2\overrightarrow{MB} \cdot \overrightarrow{MC}$

$\Rightarrow 81 = 13 + 40 – 2\overrightarrow{MB} \cdot \overrightarrow{MC} \Rightarrow \overrightarrow{MB} \cdot \overrightarrow{MC} = -14$
Bài 7. (2 điểm)
a) Gọi $G(x_G; y_G)$

Ta có: $\left\{ \begin{array}{l}
x_G = \dfrac{x_A+x_B+x_C}{3} = 1\\
y_G = \dfrac{y_A + y_B + y_C}{3} =3
\end{array}\right. \Rightarrow G(1;3)$

Gọi $I(x_I; y_I)$

Khi đó $\overrightarrow{IA} = (1-x_I; 2-y_I)$, $\overrightarrow{IB} = (-1-x_I; 5-y_I)$, $\overrightarrow{IC} = (3-x_I; 2-y_I)$

Ta có: $2\overrightarrow{IA} + 3 \overrightarrow{IB} = 4\overrightarrow{IC} \Rightarrow \left\{ \begin{array}{l}
2(1-x_I) + 3(-1-x_I) = 4(3-x_I)\\
2(2-y_I) + 3(5-y_I) = 4(2-y_I)
\end{array}\right.$
$\Rightarrow \left\{ \begin{array}{l}
x_I = -13\\
y_I = 11
\end{array}\right.$

Vậy $I(-13; 11)$.
b) Gọi $D(x_D; y_D)$ khi đó $\overrightarrow{DC} = (3-x_D ; 2-y_D)$, $\overrightarrow{AB} = (-2; 3)$

Ta có: $AB // CD$ và $AB = \dfrac{3}{8}CD$

$ \Rightarrow \overrightarrow{AB} = \dfrac{3}{8} \overrightarrow{DC} \Rightarrow \left\{ \begin{array}{l}
-2 = \dfrac{3}{8} (3-x_D)\\
3 = \dfrac{3}{8} (2-y_D)
\end{array}\right. \Rightarrow \left\{ \begin{array}{l}
x_D = \dfrac{25}{3}\\
y_D = -6
\end{array}\right.$

Vậy $D\left(\dfrac{25}{3}; -6\right)$

Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS1)

Đề thi và đáp án HK1 môn toán 10 trường PTNK (CS1)

Năm học 2020 – 2021

Thực hiện: Thầy Nguyễn Tấn Phát – GV PTNK

Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$
b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$
Bài 2. (1 điểm) Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.
Bài 3. (1 điểm) Chứng minh
$$\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\frac{\pi }{2} – x} \right)} \right] = \frac{1}{{1 + \cos x}}$$
Bài 4. (1 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
mx – \left( {m + 1} \right)y = 1\
\left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m
\end{array} \right.$ ($m$ là tham số).
a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.
b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$
Bài 5. (1 điểm) Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là 4. Tìm m và tọa độ đỉnh của $(P)$.
Bài 6. (2 điểm) Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.
a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $
b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.
a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $
b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Lời giải

Bài 1.
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $
Điều kiện: $x>2$
$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l}
x=1 \quad (l) \\
x=-1 \quad (l) \\
x=3 \quad (n) \\
x=-3 \quad (l)
\end{array} \right. $
Vậy $S=\left\{ 3 \right\} $
b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)
$\Leftrightarrow \left[ \begin{array}{l}
x=0\\
\sqrt{x^2 -x +3 } = x-6 \ (*)
\end{array}\right. $
$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\
x^2 -x +3 = (x-6)^2
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
x\ge 6\\
x=3
\end{array}\right. $
$\Leftrightarrow x\in \emptyset$
Vậy $S=\left\{ 0\right\} $

Bài 2. (1 điểm) ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l}
m+2\ne 0\\\\
\dfrac{1}{m+2}\ne 0\\\\
\dfrac{1}{m+2}\ne 1
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
m\ne -2\\
m\ne -1
\end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$
Bài 3. (1 điểm)
$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$
Bài 4. (1 điểm)
a) Ta có:
$D=\left| \begin{array}{*{20}{c}}
{m}&{-(m+1)}\\
{2-m}&{m-3}
\end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}}
{1} & {-(m+1)}\\
{3-2m} & {m-3}
\end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}}
{m} & {1}\\
{2-m} & {3-2m}
\end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$
b) Ta có: $\left\{ \begin{array}{l}
x_0 = \dfrac{D_x}{D} = m\\\\
y_0= \dfrac{D_y}{D} = m-1
\end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$
Bài 5. (1 điểm) Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$
Tọa độ đỉnh $I( -1;3)$
Bài 6. (2 điểm)
a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$
b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$
Bài 7. (2 điểm)
a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$
$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$
$\Leftrightarrow \left\{ \begin{array}{l}
x-6 = -5\\
y-1=1
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
x=1\\
y=2
\end{array}\right. $

Vậy $M(1;2)$
b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l}
IA = IB\\
IA = IC
\end{array}\right. $
$\Rightarrow \left\{ \begin{array}{l}
5x_I -y_I =12\\
(5-y_I)^2 = (1-y_I)^2
\end{array}\right. $
$\Rightarrow \left\{ \begin{array}{l}
x_I=3\\
y_I=3
\end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l}
y_E =1\\
y_E =5
\end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017

Bài 1: Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:

$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2: Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn đồng thời các điều kiện:

i/ $f(mn)=f(m)f(n)\ \forall m,n \in \mathbb N^*$.

ii/ $f(m)+f(n)$ chia hết cho $m+n$ $\forall m,n \in \mathbb N^*$.

iii/ $f(2017)=2017^3$.

Bài 3. Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.

a/ Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.

b/ Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4. Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$.

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

Giải

Bài 1.

Theo bất đẳng thức Cauchy-Schwarz, ta có

$$ \sum \dfrac{x^4}{x^3+y^2+z^2} \ge \dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} $$

Cần chứng minh $\dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} \ge \dfrac{1}{7} $ hay

$$7 \left( x^2+y^2+z^2 \right)^2 \ge x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right).$$ Ta có ${{(xy+yz+zx)}^{2}}\ge 3xyz(x+y+z)=3xyz$ và

$${{x}^{3}}+{{y}^{3}}+{{z}^{2}}-3xyz=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)$$ nên ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz+1-3(xy+yz+zx)\le {{(xy+yz+zx)}^{2}}+1-3(xy+yz+zx).$

Đặt $q=xy+yz+zx$ thì vì ${{(x+y+z)}^{2}}\ge 3(xy+yz+zx)$ nên $q\le \frac{1}{3}.$ Ta đưa về

$$7{{(1-2q)}^{2}}\ge {{q}^{2}}+1-3q+2(1-2q)$$ hay

$$(1-3q)(4-9q)\ge 0.$$

Do $q\le \frac{1}{3}$ nên $q\le \frac{4}{9}$ và bất đẳng thức trên là đúng. Vậy ta có đpcm.

Bài 2.

Nhận xét rằng vai trò của số $2017$ trong bài toán là không cần thiết cho nên ta sẽ giải bài toán khi thay $2017$ bởi số nguyên dương $p$ bất kỳ. Từ điều kiện đầu tiên, ta có được $f(p^k)=p^{3k}$ với $k$ là số nguyên dương bất kỳ.

Trong điều kiện thứ hai, thay $n$ bởi $m$, ta có $f(m)$ là bội của $m$ với mỗi $m$ nguyên dương nên ta đặt $f(m)=m.g(m)$ ($g:\mathbb{N^{*}}\rightarrow \mathbb{N^{*}}$). Khi đó ta có các điều kiện sau:

i/ $g(mn)=g(m).g(n) \forall m,n \in\mathbb{N^{*}}$

ii/ $mg(m)+ng(n)$ là bội của $m+n$.

iii/ $g(p^{n})=p^{2n} \forall n\in \mathbb{N^{*}}$.

Đặt $h(m)=g(m)-m^2$ ($h:\mathbb{N^{*}}\rightarrow \mathbb{Z}$) và thay $n$ bởi $p^n$ tại ii), ta có $m.h(m)$ là bội của $m+p^n$. Chọn $n$ đủ lớn thì $h(m)=0$ với mỗi $m$ hay $f(m)=m^3$ với mỗi $m$ nguyên dương. Thử lại thoả mãn.

Vậy $f(m)=m^3$ là nghiệm hàm duy nhất.

Bài 3.

(a) Trước hết, ta có một kết quả quen thuộc sau.

Bổ đề: Gọi $A_1$, $B_1$ lần lượt là điểm chính giữa các cung $BC$, $AC$ không chứa $A$, $B$ của $(O)$. Khi đó $A$, $I$, $A_1$, $I_a$ thẳng hàng và $A_1$ là trung điểm của $II_a$. Tương tự đối với $B$, $I$, $B_1$, $I_b$.

Trở lại bài toán, theo bổ đề, phép vị tự tâm $I$, tỉ số $2$ biến $\Delta OA_1B_1$ thành $\Delta MI_aI_b$, do đó tam giác này cân tại $M$.

Mở ảnh

(b) Ta thực hiện chuyển đổi mô hình. Gọi $I_a$ là tâm bàng tiếp góc $A$ của tam giác $ABC$ thì $(O)$ chính là đường tròn Euler của tam giác $I_aI_bI_c$. Xét bổ đề sau:

Bổ đề: Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$. \medskip

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$. Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$. \medskip

Trở lại bài toán, ta áp dụng bổ đề trên cho đường thẳng $OI$ đi qua tâm đường tròn $(I_aI_bI_c)$ thì dễ dàng có $P \in (O).$

Bài 4.

Ta sẽ chứng minh quy nạp theo $m$ cho điều này. Trước hết ta phát biểu bổ đề: $A\Delta B=A\Delta C$ thì $B=C$.

Giả sử $B\neq C$, khi đó không giảm tổng quát giả sử giả sử $a$ là phần tử thỏa $a\in B$ và $a\notin C$. Ta có hai trường hợp như sau:

  •  Nếu $a\in A$ khi đó $a\notin (A\setminus B),a\notin (B\setminus A)\Rightarrow a\notin A\Delta B$. Nhưng lại có $a\in (A\setminus C)$ nên suy ra $a\in A\Delta C$ nên $A\Delta B\neq A\Delta C$, vô lý.
  •  Nếu $a\notin A$ thì chứng minh tương tự suy ra $a\notin A\Delta C$ và $a\in A\Delta B$ nên suy ra $A\Delta B\neq A\Delta C$. Như vậy ta suy ra $B=C$.

Bây giờ ta sẽ quy nạp theo $m$. Với $m=1$ thì ta có một tập thuộc $T$ là tập rỗng. Với $m=2$ và hai tập $A,B$ thì ta có hai tập thuộc $T$ là tập rỗng và $A\Delta B$ thỏa. Như vậy giả thiết đúng với $m=1,2$.

Giả sử giả thiết đúng với $m=k$ thì ta chứng minh nó đúng với $m=k+1$. Xét $m+1$ tập $A_1,A_2,\ldots,A_{m+1}$. Nếu với $m$ tập $A_1,A_2,\ldots,A_m$ mà số lượng tập tạo thành không nhỏ hơn $m+1$ thì khi đó ta thêm vào một tập $A_{m+1}$ thì giả thiết vẫn đúng. Do đó ta chỉ xét cho trường hợp $|T|=m$.

Khi đó, nếu ta thêm vào một tập $A_{m+1}$ thì ta sẽ thêm vào tập $T$ các tập hợp $A_{m+1}\Delta A_1,\ldots,A_{m+1}\Delta A_{m+1}$. Nếu các tập này trùng với $m$ tập đã có trong $T$ thì do $|T|=m$ nên theo nguyên lý Dirichlet tồn tại $i,j,1\leq i<j\leq m+1$ để $A_{m+1}\Delta A_i=A_{m+1}\Delta A_j$ và theo bổ đề ta có $A_i=A_j$, vô lý. Vậy trong $m+1$ tập đó chắc chắn có một tập khác với các tập trong $T$ và số phần tử của $T$ tăng lên ít nhất một đơn vị, tức là $|T|\geq m+1$.

Vậy giả thiết quy nạp là đúng và ta có đpcm.

Giải bài toán bằng đại lượng cực biên – Phần 1

(Bài viết dành cho học sinh lớp 8,9 và đầu lớp 10)

Có một câu chuyện thú vị thường thấy là trong lớp học những người nào ngồi bàn đầu hay bàn cuối thì thường hay bị gọi lên bảng trả bài hơn là những người khác, vì sao như vậy? Thực sự vì hai vị trí đó là vị trí đầu và cuối, tức là vị trí biên, vị trí “đặc biệt” hơn các vị trí khác, nên dễ được chú ý hơn.

Hoặc có một bài toán đơn giản sau: Tam giác $ABC$, $M$ thuộc cạnh $BC$, với vị trí nào của $M$ thì $AM$ đạt giá trị lớn nhất? (nhỏ nhất?). Dễ nhận ra rằng $AM \leq AB$ hoặc $AM \leq AC$, do đó $AM$ lớn nhất chỉ khi $M$ là một trong hai vị trí $B$ hoặc $C$, đó chính là vị trí biên của đoạn thẳng.

Do đó các vị trí biên của một tập hợp $X$ nào đó luôn có những đặc điểm mà vị trí khác không có được, kiểu nếu lệch ra một tí thì “bay màu” khỏi $X$.

Nguyên lý cực biên cũng như nguyên lý quy nạp, đó là một trong các nguyên lý quan trọng để chứng minh các định lý hay các bài toán. Xuất phát tự quan hệ thứ tự trong tập các số thực, và tiên đề xây dựng số tự nhiên, ta có các tính chất sau

  • Mọi tập con khác rỗng hữu hạn của tập số thực luôn có phần tử lớn nhất và nhỏ nhất.
  • Mọi tập con khác rỗng của tập các số tự nhiên đều có phần tử nhỏ nhất
  • Mọi tập con khác rỗng bị chặn trên của tập số nguyên có phần tử lớn nhất, bị chặn dưới thì có phần tử nhỏ nhất.

Nguyên lý cực biên xuất hiện nhiều trong các chứng minh, trong bài viết nhỏ này tôi chỉ giới thiệu một số bài toán cơ bản thường gặp để giúp các em học sinh nắm được kĩ thuật chứng minh này, từ đó vận dụng để làm các bài toán khó hơn.

Việc sử dụng nguyên lí cực hạn có cái quan trọng nhất là mình sử dụng đặc điểm đặc biệt của đại lượng cực biên, xem như một giả thiết mới để khai thác, kết hợp với các kĩ thuật sắp xếp, phản chứng để giải quyết bài toán.

Ta xét vài ví dụ sau

Bài 1. Cho số thực $x$ chứng minh rằng tồn tại duy nhất số nguyên $n$ sao cho $n\leq x < n+1$. ($n$ được gọi là phần nguyên của $x$, kí hiệu là $[x]$.

Lời giải. 

Nhận xét: rõ ràng $n$ là số nguyên mà nhỏ hơn và “gần” $x$ nhất, tức là nếu $n$ tăng thêm một đơn vị thì nó sẽ vượt qua $x$. Từ ý đó ta có thể giải như sau:

Đặt $A = \{n \in \mathbb{Z}, n \leq x \}$, ta thấy $A$ là tập con khác rỗng của $\mathbb{Z}$, bị chặn trên bởi $x$ nên tồn tại phần tử lớn nhất, đặt là $n_\circ$. Ta chứng minh $n_\circ \leq x < n_\circ+1$.

Rõ ràng $n_\circ \in A$ nên $n_\circ \leq x$.

Giả sử $n_\circ + 1 \leq x$ thì $n_\circ \in A$ và $n_\circ + 1  > n_\circ $ vô lí vì $n_\circ$ là phần tử lớn nhất của $A$. Do đó $n_\circ +1 > x$

Từ đó ta có $n_\circ \leq x < n_\circ + 1$.

Bước kế tiếp là chứng minh duy nhất,giả sử tồn tại $n’$ nguyên thỏa $n’\leq x < n’+1$. \

Nếu $n’ > n_\circ$ thì $n’ \geq n_\circ+1 > x$, vô lí, tương tự với $n_\circ > n’$.

Do đó $n’ = n_\circ$.

Bài 2. Cho hai số nguyên dương $a, b$. Chứng minh rằng tồn tại duy nhất cặp số $q, r$ sao cho $0 \leq r \leq b-1$ và $$a = bq + r$$

Lời giải. Do $0 \leq r \leq b-1$ nên mình thấy rằng, $q$ trong đẳng thức trên là số lớn nhất để hiệu $a-bq$ không không âm.

Đặt $A = \{a-bq \leq 0, q\in \mathbb{N} \}$.

Rõ ràng $A$ khác rỗng vì $a-b \cdot 0 > 0$, và là tập con của tập các số tự nhiên. Khi đó $A$ có phần tử nhỏ nhất, đặt là $r$, ta có $q$ để $r = a-bq$. Ta chứng minh $0 \leq r \leq b-1$.

Rõ ràng $r \in A$ nên $r \geq 0$.

Ở ý còn lại, ta giả sử $r \geq b$, khi đó $r-b = a-bq-b = a-b(q+1) \geq 0$ và $r-b < r$, do đó $r-b$ thuộc $A$ và nhỏ hơn $r$,  mâu thuẫn với $r$ là số nhỏ nhất thuộc $A$.

Giả sử tồn tại cặp $q’, r’$ thỏa đề bài. Khi đó $a = bq+r = bq’+r’$

suy ra $r-r’ = b(q’-q)$ chia hết cho $b$ mà $|r-r’| \leq b-1$, do đó $r-r’=0$, và $q-q’=0$. Ta có điều cần chứng minh.

Ví dụ 3. Cho $a, b$ là hai số nguyên dương, gọi $d$ là ước chung lớn nhất của $a$ và $b$. Chứng minh rằng tồn tại các số nguyên $x, y$ thỏa $$d = x\cdot a + y \cdot b$$

Lời giải. Ý tưởng tương tự như bài trên, xét tập các tổ hợp tuyến tính dương của $a, b$ có dạng $xa + yb$,

Đặt T = ${xa + yb| x,y \in Z, xa +yb >0}$. Rõ ràng $T$ khác rỗng và là tập con của tập các số tự nhiên nên có phần tử nhỏ nhất, đặt là $e$.
Khi đó T có phần tử nhỏ nhất, ta đặt $e = xa + yb$.
Giả sử $a = ek +r$, với $ 0 \leq r < e$ , suy ra $r = a – ek = a – (xa +yb).k = a(1 – xk) + b. yk$.

  • Nếu $r >0$ thì $r \leq e$ mâu thuẫn vì $e$ là phần tử nhỏ nhất của $T$.
  • Vậy $r =0$ suy ra $e|a$. Chứng minh tương tự ta có $e|b$ do đó $e|d$.
  • Mặt khác $d|a, d|b$ suy ra $d|(xa + yb)$ hay $d|e$. Từ đó ta có $d = e$.

Ví dụ 4. Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

Lời giải. Việc chứng minh $\sqrt{2}$ là số vô tỉ có nhiều cách, nhìn chung đều sử dụng phản chứng, và tính chất số học, lần này ta trình bày với phản chứng kết hợp với đại lượng cực biên.

Giả sử $\sqrt{2}$ không là số vô tỉ, tức là $\sqrt{2} = \dfrac{a}{b}$ trong đó $a, b$ là các số nguyên dương, suy ra $b\sqrt{2} = a$ là số nguyên dương.

Đặt $A = \{n| n, n\sqrt{2} \in \mathbb{N}\}$. Rõ ràng, $A$ khác rỗng là con của tập các số nguyên dương, nên có phần tử nhỏ nhất, đặt là $k$.

Ta có $k, k\sqrt{2}$ nguyên dương, suy ra $k(\sqrt{2}-1)$ nguyên dương.

Và $k(\sqrt{2}-1)\sqrt{2} = 2k – k\sqrt{2}$ cũng nguyên dương.

Do đó $k(\sqrt{2}-1)$ thuộc $A$ và $0 < k(\sqrt{2}-1) < k$ vô lí vì $k$ là nhỏ nhất.

Ví dụ 5. Chứng minh rằng không tồn tại các số nguyên dương $x, y, z, t$ sao cho $$x^2+y^2=3(z^2+t^2)$$

Lời giải. Giả sử tồn tại bộ 3 số nguyên dương thỏa đề bài, ta chọn bộ thỏa $x^2+y^2$ nhỏ nhất. Khi đó $x^2+y^2$ chia hết cho 3, suy ra $x, y$ đều chia hết cho $3$, khi đó $x= 3x’, y=3y’$, suy ra $z^2+t^2 = 3(x’^2+y’^2)$, thì bộ $(z,t,x’,y’)$ cũng thỏa đề bài, nhưng $z^2 +t^2 < x^2+y^2$. Mâu thuẫn.

Do đó phương trình không có nghiệm trong tập các số nguyên dương.

(Hết phần 1)

Tài liệu tham khảo. 

[1] Giải toán bằng phương pháp Đại lượng cực biên – Nguyễn Hữu Điển

[2] Problems Solving Strategies –

Phương pháp chứng minh phản chứng (P2)

Bài 1. 

Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:

a/ Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?

b/ Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a/ Giả sử tồn tại cách ghi thỏa mãn. Khi đó, gọi 2 số kề với 1 là a và b.

Theo giả thiết, ta có:

$\left\{\begin{array}{l} 1 + a \geqslant 17  \\1 + b \geqslant 17  \end{array} \right. \Rightarrow \left\{\begin{array}{l}  a \geqslant 16 \\ b \geqslant 16 \end{array} \right. \Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách ghi thỏa mãn.

b/ Giả sử tồn tại cách ghi thỏa mãn.

Khi đó, ta tách số 16 ra và chia 15 số còn lại thành 5 bộ 3 số kề nhau. Và tổng của 16 số này phải lớn hơn hoặc bằng: $16+5\cdot 25=141$

Mà $1+2+3+\cdots 16=136 \Rightarrow $ Mâu thuẫn

Vậy không tồn tại cách ghi thỏa mãn.

Bài 2. 

Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau: $-5, -4, -3, 3, 4, 5$.

Lời giải

Giả sử có cách xếp thỏa mãn.

Xét các số $0,1,2,8,9$ không thể đứng kề nhau và có đúng 10 số nên 5 số còn lại phải đứng xen kẽ với 5 số $0,1,2,8,9$.

Xét số 7:

Khi đó hai số kề số 7 phải thuộc tập hợp $\left\{0,1,2,8,9\right\}$

Mà theo giả thiết 2 đỉnh kề nhau bất kì nhận một trong các giá trị – 3, – 4, – 5, 3, 4 hoặc 5 nên 2 số kề nhau với 7 đều bằng 2 $\Rightarrow$ Mâu thuẫn.

Vậy không có cách xếp nào thỏa mãn.

Bài 3. 

Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Lời giải

Giả sử tồn tại tam giác đều có các đỉnh là các điểm nguyên.

Xét hình chữ nhật có các đỉnh là các điểm nguyên, sao cho đỉnh của tam giác đều thuộc cạnh của hình chữ nhật. Khi đó dễ dàng suy ra diện tích tam giác đều là số hữu tỷ.

Ta có diện tích tam giác đều $S=\dfrac{a^{2} \sqrt{3}}{4}$ với $a^2=x^2+y^2$ là số nguyên, $\sqrt{3}$ là số vô tỷ

Do đó, S là số vô tỉ $\Rightarrow$ Mâu thuẫn $\Rightarrow$ đpcm.

Bài 4. 

Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải

Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra.

Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$

Nhận thấy rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.

Ta có số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$.

Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.

Cả 50 và 60 đều không chia hết cho 11 $\Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Bài 5. 

Mỗi phần tử của bảng vuông $ 25 \times 25 $ hoặc là $ + 1 $ hoặc $ -1 $. Gọi $ a_{i} $ là tích của tất cả các phần tử của hàng thứ $ i $ và $ b_{j} $ là tích của tất cả các phần tử của cột thứ $ j $. Chứng minh rằng $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} \neq 0 $

Lời giải

Giả sử $ a_ {1} + b_ {1} + \cdots + a_ {25} + b_ {25} = 0 $.

Vì mỗi ô vuông chứa -1 hoặc 1 nên $a_i,b_i\in \left\{1,-1\right\}$

Do đó trong 50 tích $a_i,b_i\quad (i=\overline{1,25})$ sẽ có 25 tích có giá trị -1 và 25 tích có giá 1.

Khi thay thế một phần tử -1 trong bảng bằng 1 thì số các tích ngang dọc có giá trị -1 sẽ tăng 2 hoặc giảm 2 hoặc không thay đổi. Như vậy số các tích $a_i,b_i$ có giá trị -1 luôn là số lẻ (1)

Ta sẽ tiếp tục thay thế các phần tử -1 trong bảng bằng 1 cho đến khi tất cả các phần tử trong bảng đều bằng 1 thì khi đó số các tích ngang dọc $a_i,b_i$ có giá trị -1 là 0 $\Rightarrow$ Mâu thuẫn với (1) $\Rightarrow$ đpcm.

Bài tập số chính phương – Lớp 9

Bài 1. Chứng minh rằng

a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.

Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.

Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.

Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.

Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.

Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.

Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.

Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.

Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.

Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.

Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.

Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.

Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.

a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$

a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?

Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.

 

Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.

 

Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.

Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.

Bài  21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.

Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.

Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.

Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.

Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)

a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.