Bài tập số học ôn thi vào lớp 10 chuyên toán – Phần 1

Bài 1. Cho $m, n$ là các số nguyên. Chứng minh rằng nếu $mn+1$ chia hết cho 24 thì $m+n$ cũng chia hết cho 24.

Giải

Ta có $mn+1$ chia hết cho 24, suy ra $mn+1$ chia hết cho 3 và 8. Ta cũng chứng minh $m+n$ chia hết cho 3 và 8.

Nếu $m \equiv p (\mod 3), n \equiv q (\mod 3)$, suy ra $pq + 1 \equiv 0 (\mod 3)$. Suy ra $pq = 2$. Do đó $p = 1, q = 2$ hoặc $p=2, q=1$. Suy ra $p+q \equiv 0 (\mod 3)$ hay $m+n \equiv (\mod 3)$.
Tương tự $m \equiv q (\mod 8), n \equiv p (\mod 8)$, suy ra $pq \equiv 7 (\mod 8)$ và $p, q \in \{1, 2, 3, 4, 5, 6, 7\}$, suy ra $p=1, q=7$ hoặc $p=7, q=1$. Do đó $m+n$ chia hết cho 8.
Vậy $m + n$ chia hết cho 24.5

Bài 2. Tìm tất cả các số $n$ sao cho:

a) $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
b) $2^{2n} + 2^n + 1$ chia hết cho 21.

Giải

Đặt $A_n = 1^n + 2^n + 3^n + 4^n$.
Nếu $n$ lẻ ta có $1^n + 4^n$ chia hết cho 5, $2^n + 3^n$ chia hết cho 5. Suy ra $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
Nếu $n$ chẵn, đặt $n = 2k$. Ta có $1 + 2^n + 3^n + 4^n = 1 + 4^k + 9^k + 16^k \equiv 1 + (-1)^k + (-1)^k + 1 (\mod 5)$.
Do đó $A_n \vdots 5 \Leftrightarrow k$ lẻ.
Vậy $A_n$ chia hết cho 5 khi và chỉ khi $n$ lẻ hoặc $n$ chia 4 dư 2.

Đặt $B_n = 2^{2n} + 2^n + 1$.
Ta tìm $n$ để $B_n$ chia hết cho 3 và 7.

Nếu $n = 2k$ ta có $B_n = 16^k + 4^k + 1 \equiv 0 (\mod 3)$.\\
Nếu $n = 2k + 1$ ta có $B_n = 4\cdot 16^k + 2\cdot 4^k + 1 \equiv 7 (\mod 3)$ (loại)\\
Vậy $B_n \vdots 3 \Leftrightarrow n = 2k$.

Nếu $n = 3k$ ta có $B_n = 64^k + 8^k + 1 \equiv 3 (\mod 7)$. (loại)\\
Nếu $n = 3k+ 1$ ta có $B_n = 4 \cdot 64^k + 2 \cdot 8^k + 1 \equiv 0 (\mod 7)$ (nhận)
Nếu $n = 3k + 2 $ ta có $B_n = 16\cdot 64^k + 4\cdot 8^k + 1 \equiv 0 (\mod 7)$.

Vậy $B_n$ chia hết cho 7 khi và chỉ khi $n = 6k+4$ hoặc $n = 6k+2$.

Bài 3. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Giải

a) Nếu $n$ ta có $2^n + 3^n$ chia hết cho 5.
Xét $n=2k + 1$ ta có $n.2^n + 3^n = (n-1)2^n+ 2^n + 3^n$ chia hết cho 5 khi và chỉ khi $n-1$ chia hết cho 5, hay $k$ chia hết cho 5,suy ra $k = 5q$. Vậy $n = 10q + 1$.
Xét $n = 2k$ ta có $n.2^n + 3^n = 2k.4^k + 9^k = 2k.4^k + 4^k + 9^k – 4^k = (2k+1).4^k + 9^k – 4^k $ chia hết cho 5 khi $2k+1$ chia hết cho 5. Khi đó $k = 5q + 2$, suy ra $n = 10q + 4$.
Vậy với $n = 10q + 1, 10q + 4$ thì $n.2^n + 3^n$ chia hết cho 5.

b) Theo câu a để $A=n.2^n + 3^n$ chia hết cho 5 thì $n = 10q+1, 10q + 4$. Ta tìm $q$ để $n.2^n + 3^n$ chia hết cho 25.
+Với $n = 10q + 1$ ta có $A = (10q+1)2^{10q+1} + 3^{10q+1} = (20q+2).1024^q + 3.3^{10q}$\\
Ta có $1024 \equiv -1 (\mod 25), 3^10 \equiv -1 (\mod 25)$. Suy ra $A \equiv (20q + 2)(-1)^q + 3.(-1)^q (\mod 25)$ hay $A = (-)^q (20q+5) (\mod 25)$.
Suy ra $A$ chia hết cho 25 khi và chỉ khi $20q +5$ chia hết cho 25 hay $4q+1$ chia hết cho 5. Suy ra $q = 5k + 1$. Vậy $n = 10(5k+1)+1 = 50k + 11$.
+Với $n = 10q + 4$. Ta có $A = (10q+4)2^{10q+4} + 3^{10q+4} = (160q+64)2^{10q} + 81.3^{10q} \equiv (10q+14)(-1)^q + 6(-1)^q (\mod 25) \equiv (-1)^q(10q+20) (\mod 25)$.
Do đó $A$ chia hết cho 25 khi và chỉ khi $10q+20$ chia hết cho 25 hay $q+2$ chia hết cho 5, suy ra $q = 5k + 3$. Suy ra $n = 10(5k+3) + 4 = 50k + 34$.
Vậy $n = 50k+11, 50k+34$.

Bài 4. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Giải

a)
TH1: $n = 3k$ ta có $2^n – 1 = 2^{3k}-1 = 8^k – 1$ chia hết cho 7.
TH2: $n = 3k + 1$ ta có $2^n- 1= 2.8^k – 1$ chia 7 dư 1.
TH3: $n = 3k + 2$ ta có $2^n – 1= 4.8^k – 1$ chia 7 dư 3.
Vậy $2^n- 1$ chia hết cho 7 khi và chỉ khi $n$ chia hết cho 3.

b)
$42p = 2.3.7.p$.
TH1: $p = 7$ ta có $3^7 – 2^7 – 1$ chia hết cho $42.7$.
TH2: $p > 7$ khi đó các số $2, 3, 7, p$ đôi một nguyên tố cùng nhau.
+ Ta có $3^p – 1 – 2^p$ chia hết cho 2.
+ $2^p + 1$ chia hết cho 3 vì $p$ lẻ, suy ra $3^p -2^p-1$ chia hết cho 3.
+ $p$ nguyên tố lớn hơn hoặc bằng 5, suy ra $p = 6k + 1$ hoặc $p = 6k+5$. Nếu $p = 6k + 1$ ta có $3^p – 2^p – 1 = 3^{6k+1} – 2^{6k+1} – 1 = 3.3^{6k} – 2.2^{6k} – 1$.
Ta có $3^6 \equiv 1 (\mod 7)$, suy ra $3^{6k} \equiv 1 (\mod 7)$, tương tự thì $2^{6k} \equiv 1 (\mod 7)$. Do đó $3.3^{6k} – 2.2^{6k} – 1 \equiv 0 (\mod 7)$.
Nếu $p = 6k + 5$ ta có $3^p – 2^p – 1 \equiv 3^5 – 2^5 – 1 \equiv 0 (\mod 7)$.
Do đó $3^p – 2^p – 1$ chia hết cho 7.
+ Theo định lý Fermat nhỏ, ta có $3^p \equiv 3 (\mod p), 2^p \equiv 2 (\mod 7)$. Suy ra $3^p – 2^p – 1$ chia hết cho $p$.
Vậy $3^p – 2^p – 1$ chia hết cho $42p$.

Bài 5. Cho a,b là hai số nguyên dương thỏa mãn $4{a^2} – 1$ chia hết cho $4ab – 1$. Chứng minh rằng $a = b$.

Giải

$4a^2-1$ chia hết cho $4ab-1$ suy ra $4a^2\geq 4ab \Rightarrow a\geq b$.
Ta có $4a^2 – 1 \vdots 4ab-1 \Rightarrow 4b^2(4a^2-1) \vdots 4ab – 1 \Rightarrow 16a^2b^2-1-(4b^2-1) \vdots 4ab-1$, suy ra $4b^2-1 \vdots 4ab-1$. Tương tự trên ta có $b \geq a$.
Do đó $a = b$.

Bài 6. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.

Giải

Nếu $x, y, z$ khi chia cho 3 có số dư khác nhau thì $x+y+z \vdots 3$ nhưng $(x-y)(y-z)(z-x)$ không chia hết cho 3 (mẫu thuẫn).
Nếu 2 trong 3 số $x, y,z$ có số dư giống nhau, giả sử là $x, y$. Khi đó $x-y \vdots 3$, suy ra $(x-y)(y-z)(z-x)$ chia hết cho 3, nhưng $x+y + z$ không chia hết cho 3 (mâu thuẫn).
Vậy $x, y, z$ có cùng số dư khi chia cho 3, suy ra $x-y, y-z, z-x$ đều chia hết cho 3. Do đó $x+y+z = (x-y)(y-z)(z-x)$ chia hết cho 27.

Bài 7. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Giải

$a_nb^n = (2^{2n+1}-2^{n+1}+1)(2^{2n+1}+2^{n+1}+1) = (2^{2n+1}+1)^2 – (2^{n+1})^2 = 4^{2n+1} +2.2^{2n+1} + 1 – 2^{2n+2} = 4^{2n+1} + 1$.
Ta có $4 \equiv -1(\mod 5)$, suy ra $4^{2n+1} \equiv -1 (\mod 5)$. Suy ra $4^{2n+1} + 1 \equiv 0(\mod 5)$.
Vậy $a_nb_n$ chia hết cho 5 với mọi $n$.
Ta có $a_n + b_n = 2.2^{2n+1} + 2 = 4^{n+1} + 2$.
Ta có $4^{n+1} \equiv -1, 1 (\mod 5)$. Suy ra $4^{n+1} +2 \equiv 1, 3 (\mod 5)$. Vậy $a_n + b_n$ không chia hết cho 5 với mọi $n$.
Do đó chỉ có một trong 2 số $a_n, b_n$ chia hết cho 5.

Bài 8. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Giải

Nếu $3^nn^3 + 1$ chia hết cho 7. Suy ra $n$ không chia hết cho 7, suy ra $n^6-1$ chia hết cho 7.\\
Ta có $n^3 (3^n + n^3 ) = n^33^n + n^6 = n^33^n +1 + n^6 – 1$ chia hết cho 7. \\
Mà $(n,7) = 1$. Suy ra $3^n + n^3$ chia hết cho 7.
Nếu $3^n + n^3$ chia hết cho 7. Làm tương tự ta cũng có $n^33^n + 1$ chia hết cho 7.

Bài 9. Chứng minh rằng nếu $2^n-1$ là số nguyên tố thì $n$ cũng là số nguyên tố.

Giải

Giả sử $n$ không là số nguyên tố.
Nếu $n = 1$ thì $2^1 – 1$ không nguyên tố.
Nếu $n$ là hợp số, ta có $n = pq$ với $1 < p < n$.
Khi đó $2^n – 1= (2^p)^q -1$ chia hết cho $2^p-1$. Mà $1< 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (Vô lý).

Bài 10. Ta điền các số từ 1 đến 9 vào bảng vuông $3\times 3$ sao cho mỗi số điền một lần, tổng các số cùng một hàng, một cột và đường chéo chia hết cho 9. Chứng minh rằng ô chính giữa bảng luôn là một số chia hết cho 3.

Giải

Giả sử các số là $a, b, c, d, e, f, g, h,i$ trong đó $e$ là ô chính giữa.

a  b  c
d  e  f
g  h  i

Ta có $a+e+i + d+e+f + c+e+g + b+e+h = (a+b+c+d+e+f+g+h+i) +3e \vdots 9$, mà $a +b+c+d+e+f+g+h+i = 1+2+\cdots + 9 = 45$ chia hết cho 9.
Suy ra $3e\, \, \vdots 9$, do đó $e \,\vdots \, 3$.

Tứ giác nội tiếp – Phần 2

(Bài viết dành cho học sinh lớp 9 chuyên toán – Lời giải bài tập chương 1 sách [1]) Chứng minh 4 điểm cùng nằm trên một đường tròn là dạng toán thường xuất hiện nhất trong các đề thi, đây cũng là kĩ năng quan trọng để chứng minh các ý toán khác trong một bài toán, có nhiều cách chứng minh 4 điểm cùng thuộc đường tròn trong đó chủ ý các các dấu hiệu một tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi có một trong các dấu hiệu sau:
  • 4 đỉnh cách đều một điểm
  • Tổng hai góc đối bằng $180^\circ$ (đặc biệt hai góc đối vuông)
  • Góc ngoài bằng góc đối trong
  • Hai đỉnh kề cùng nhìn cạnh còn lại với hai góc bằng nhau (đặc biệt hai góc nhìn là góc vuông).
Ngoài ra còn có bổ đề thường dùng. Bổ đề 1. Cho tứ giác $ABCD$ có hai đường chéo cắt nhau tại $P$ và hai đường thẳng $AB, CD$ cắt nhau tại $P$. Khi đó $ABCD$ nội tiếp khi và chỉ khi $PA \cdot PC = PB \cdot PD$ hoặc $QA \cdot QB=QC \cdot QD$. Bổ đề 2. Phân giác trong góc $A$ của tam giác $ABC$ cắt trung trực của $BC$ tại $D$, khi đó $D$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Ta bắt đầu với các bài toán sau: Bài 1. Hai dây $AB$ và $CD$ của một đường tròn cắt nhau tại $I$. Gọi $M$ là trung điểm của $IC$ và $N$ đối xứng với $I$ qua $D$. Chứng minh rằng $AMBN$ nội tiếp một đường tròn. Lời giải. Xét tam giác $IAC$ và $IBD$ có $\angle AIC = \angle BID$ và $\angle IAC = \angle IBD$, suy ra $\triangle IBD \backsim \triangle IAC$; $\Rightarrow IA \cdot IB = IC \cdot ID = 2 IM \cdot \dfrac{IN}{2} = IM \cdot IN \Rightarrow \dfrac{IM}{IB} = \dfrac{IA}{IN}$. Suy ra $\triangle IMA \backsim \triangle IBN \Rightarrow \angle IAM = \angle INB$; Do đó tứ giác $AMBN$ nội tiếp. Bài 2. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. $AO$ cắt $EF$ tại $K$ và cắt $(O)$ tại $L$ khác $A$. Gọi $P$ là điểm đối xứng của $A$ qua $K$. Chứng minh rằng các tứ giác $DHKL$ và $DHOP$ nội tiếp.
Lời giải. Dễ thấy tứ giác $BCEF$ nội tiếp, suy ra $\angle AEF = \angle ABC$; Mà $\angle ABC = \angle ALC$, suy ra $\angle AEF = \angle ALC$, từ đó $KECL$ nội tiếp; Theo chú ý trên ta có $AK \cdot AL = AE \cdot AC$ \hfill (1) Mặt khác tứ giác $CDHE$ nội tiếp nên $AH \cdot AD = AE \cdot AC$ \hfill (2) Từ (1) và (2) suy ra $AK \cdot AK = AH \cdot AD \Rightarrow DHKL$ nội tiếp. Ta có $AP = 2AK, AL = 2AO \Rightarrow AP \cdot AO = AK \cdot AL = AH \cdot AD$, suy ra $DHOP$ nội tiếp. Bài 3. Cho hình vuông $ABCD$. Trên các cạnh $BC, CD$ lấy điểm $M,N$ sao cho $\angle MAN = 45^\circ$. $AM, AN$ cắt $BD$ lần lượt tại $P$ và $Q$. a) Chứng minh các tứ giác $ADNP, ABMQ$ nội tiếp. b) Chứng minh $MNQP$ nội tiếp. Lời giải.
Tứ giác $APND$ có $\angle PAN = \angle PDN = 45^\circ$ nên là tứ giác nội tiếp. Tương tự thì $ABMQ$ cũng là tứ giác nội tiếp. Từ $ADNP, ABMQ$ nội tiếp suy ra $\angle APN = 180^\circ – \angle ADN = 90^\circ$ và $\angle AQM = 180^\circ -\angle ABM = 90^\circ$. Tứ giác $MPQN$ có $\angle MPN = \angle MQN = 90^\circ$ nên là tứ giác nội tiếp. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Gọi $M, N$ lần lượt là trung điểm $AB, AC$. $DM, DN$ cắt $(O)$ tại $E, F$ khác $M$, $AD$ cắt $MN$ tại $S$. a) Chứng minh rằng 4 điểm $M, N, E, F$ cùng thuộc một đường tròn. b) $OD$ cắt $BC$ tại $P$, đường tròn ngoại tiếp tam giác $DPS$ cắt $BC$ tại $Q$ khác $P$. Chứng minh $QA$ là tiếp tuyến của $(O)$. Lời giải. 
Gọi $K$ là giao điểm của $AD$ và $BC$. a) Ta có $\angle AED = \angle ABD = \angle AKC$. Mà $MN \parallel BC \Rightarrow \angle AKC = \angle ASN$. Suy ra $\angle AED = \angle ASN \Rightarrow AEMS$ nội tiếp. Do đó $DM \cdot DE = DS \cdot DA$. Chứng minh tương tự ta có $MN \cdot DF = DS \cdot DA$. Suy ra $DM \cdot DE = DN \cdot DF$, từ đó dẫn đến tứ giác $MNFE$ nội tiếp. b) Ta có $OD \bot BC$ tại $P$. Suy ra $\angle QPD = \angle QPD = 90^\circ$. Tam giác $AQK$ có $QS \bot AK$ và $S$ là trung điểm $AK$ nên $QAK$ cân tại $Q$. Suy ra $\angle QAK = \angle AKQ = \angle ACD$, suy ra $QA$ là tiếp tuyến của $(O)$. Bài 5. Cho tam giác $ABC$ cân tại $A$. Từ một điểm $M$ tùy ý trên cạnh $BC$ kẻ các đường song song với các cạnh bên cắt $AB$ tại $P$ và cắt $AC$ tại $Q$. $D$ là điểm đối xứng của $M$ qua $PQ$. Chứng minh rằng $ADBC$ nội tiếp đường tròn. Lời giải. Tứ giác $APMQ$ là hình bình hành, $D$ đối xứng với $M$ qua $PQ$ ta suy ra được $ADPQ$ là hình thang cân. Suy ra $\angle DAP = 180^\circ – \angle DPQ$.\hfill (1) Ta có $PB = PM = PD$ nên $B, M, D$ thuộc đường tròn tâm $P$, suy ra $\angle MBD = \dfrac{1}{2}(360^\circ – \angle DPM) = \angle DPQ$. \hfill (2) Từ (1) và (2) ta có $\angle DAQ + \angle MBD = 180^\circ$, suy ra $ADBC$ nội tiếp. Bài 6. Cho hai đường tròn $(O)$ và $(O’)$ cắt nhau tại $A, B$. Qua điểm $I$ nằm trên $AB$ vẽ cát tuyến $IMN$ đến $(O)$ và cát tuyến $IPQ$ đến $(O’)$. Chứng minh rằng $M, N, P, Q$ cùng thuộc một đường tròn. Lời giải. Ta có $\angle INA = \angle IBN$, suy ra $\triangle INA \backsim \triangle IBN$ (g.g), khi đó $\dfrac{IA}{IB} = \dfrac{IA}{IN} \Rightarrow IN^2 = IA \cdot IB \Rightarrow IN = \sqrt{IA \cdot IB}$. Chứng minh tương tự thì $IP = \sqrt{IA \cdot IB}$. Mặt khác $IM = IN, IP = IQ$ nên $IM = IN = IP = IQ$, do đó $M, N, P, Q$ cùng thuộc đường tròn tâm $I$. Bài 7. Cho tam giác $ABC$ nhọn, $D$ thuộc cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt cạnh $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $F$. $BE, CF$ cắt nhau tại $K$. Chứng minh đường tròn ngoại tiếp tam giác $BKC$ qua trực tâm $H$ của tam giác $ABC$. Lời giải. Các tứ giác $AEDB, ADDC$ nội tiếp nên ta có $\angle AFB = \angle ADB$ và $\angle AEC = \angle ADC$; Suy ra $\angle AFB + \angle AEC = \angle ADB + \angle ADC = 180^\circ$, suy ra $AEKF$ nội tiếp. Suy ra $\angle EKF = 180^\circ – \angle BAC$, mà $\angle BKC = \angle EKF$ nên $\angle BKC= 180^\circ – \angle BAC$.\hfill (1) Mặt khác, từ $H$ là trực tâm của tam giác $ABC$ nên $\angle BHC = 180^\circ – \angle BAC$. \hfill (2) Từ (1) và (2), ta có $\angle BHC = \angle BKC$, suy ra $BHKC$ nội tiếp. Bài 8. Cho tam giác $ABC$ có đường tròn nội tiếp tiếp xúc với $AB, BC$,$AC$ lần lượt tại $M, D, N$. Lấy điểm $E$ thuộc miền trong của tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $EBC$ cũng tiếp xúc với $BC$ tại $D$ và tiếp xúc với $EB, EC$ tại $P, Q$. Chứng minh rằng $MNPQ$ nội tiếp đường tròn. Lời giải.
Gọi $T$ là giao điểm của $MN$ và $BC$. Chứng minh được $\dfrac{TB}{TC} = \dfrac{TB}{TC}$ và $PM \cdot PN = PD^2$. Gọi $T’$ là giao điểm của $PQ$ và $BC$ ta cũng có $\dfrac{T’B}{T’C} = \dfrac{DB}{DC}$. Suy ra $\dfrac{TB}{TC} = \dfrac{T’B}{T’C} = \dfrac{DB}{DC}$, do đó $T’ \equiv T$. Và $TP \cdot TQ = TD^2$. Từ đó ta có $TM \cdot TN = TP \cdot TQ$. Suy ra 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. Bài tập tự luyện.  Bài 9. Cho đường tròn tâm $O$ và dây cung $AB$ khác đường kính. $C$ là một điểm thuộc cung nhỏ $AB$. Tiếp tuyến tại $A$ và $B$ của $(O)$ cắt nhau tại $P$. $AC$ cắt $BP$ tại $D$ và $BC$ cắt $AP$ tại $E$. Gọi $Q$ là giao điểm của đường tròn ngoại tiếp tam giác $AEC$ và $BCD$. a) Chứng minh $Q$ là giao điểm của đường tròn ngoại tiếp các tam giác $APD$ và $BPE$. b) Chứng minh $Q$ thuộc đường tròn ngoại tiếp tam giác $OPC$. Bài 10. Cho hình bình hành $ABCD$ có góc $A$ tù. Gọi $F$ là trung điểm cạnh $AD, CF$ cắt đường tròn ngoại tiếp tam giác $ACD$ tại $K$ khác $C$. Đường tròn ngoại tiếp tam giác $BCK$ cắt $CD$ tại $E$. a) Chứng minh $AE \bot CD$. b) $BD$ cắt $AC$ tại $I$ và đường tròn ngoại tiếp tam giác $BCK$ tại $G$. Chứng minh 4 điểm $E, F, G, I$ cùng thuộc một đường tròn. Tài liệu tham khảo. 
  1. Chuyên đề hình học 9 – Bồi dưỡng học sinh năng khiếu, Nguyễn Tăng Vũ, NXB GD 2018.

Bất biến và đơn biến – Phần 1

Lê Anh Vinh

ĐH Giáo dục, ĐHQGHN

1/ Khởi động:

Chúng ta sẽ bắt đầu bằng một ví dụ đơn giản. Giáo viên yêu cầu học sinh làm một thí nghiệm nhỏ – viết lên bảng $a+b$ số gồm $a$ số 0 và $b$ số 1 . Sau đó thực hiện $a+b-1$ lần phép biến đổi sau: xoá hai số bất kỳ trên bảng. Nếu chúng bằng nhau thì viết số 0 lên bảng và nếu khác nhau thì viết số 1 lên bảng. Sau khi học sinh làm thử trên vở, giáo viên có thể nói ngay số còn lại trên bảng là số 1 hay số 0 .

Học sinh sẽ thắc mắc một cách tự nhiên: làm thế nào giáo viên biết được số còn lại trên bảng? Rõ ràng các phép biến đổi có thể thực hiện theo nhiều cách khác nhau, nhưng sau các phép biến đổi, tổng các số trên bảng là không đổi theo modulo $2 .$ Do đó, số còn lại trên bảng sẽ là 1 nếu $b$ lẻ và 0 trong trường hợp ngược lại.

Chúng ta tiếp tục với các ví dụ sau.

Bài toán 1.1. Khối $A0$  có một ngôn ngữ riêng chỉ gồm hai chữ cái $A$ và $0$ , đồng thời thỏa mãn hai điều kiện sau:

  • Nếu xóa hai chữ cái kề nhau $\mathrm{A} 0$ trong bất kì một từ nào, ta không làm thay đổi nghĩa của từ đó.
  • Nếu thêm tổ hợp 0A hoặc AA00 vào vị trí bất kì nào trong một từ, ta cũng không làm thay đổi nghĩa của từ đó.

Liệu hai từ A00 và 0AA có cùng nghĩa không ?
Giải

Dễ thấy sau mỗii phép biến đổi, số lượng $\mathrm{A}$ và 0 thêm vào hay bớt đi là như nhau.  Vì vậy, xuất phát từ $\mathrm{A} 00$ với nhiều chữ cái 0 hơn, ta không thể thu được $0 \mathrm{AA}$ với nhiều chữ cái $\mathrm{A}$ hơn. Đại lượng bất biến ở đây có thể chọn là sai khác giữa số chữ cái ${A}$ và chữ cái 0 trong một từ.

Lời giải trên đã chỉ ra ý tưởng cơ bản nhất của bất biến. Cho trước một số cấu hình, chúng ta có thể thực hiện một số phép biến đổi trên chúng. Câu hỏi đật ra là có thể thu được một cấu hình này từ một câu hình khác không? Tính bất biến thường được dùng để chỉ ra rằng từ một cấu hình không thể đạt tới một cấu hình khác. Để làm được điều đó, chúng ta xây dựng một đại lượng không đổi (hoặc thay đổi đơn điệu – khi đó ta có khái niệm nửa bất biến) dưới các phép biến đổi sao cho giá trị của đại lượng này là khác nhau ở hai cấu hình trong cần hỏi. Tuy nhiên, đối với các bài toán bất biến, phần khó nhất thường là chỉ ra đại lương bất biến. Trong bài giảng này, chúng ta sẽ hệ thống một số dạng bất biến thường gặp qua một loạt các ví dụ từ đơn giản đến nâng cao.

Bài toán 1.2. Một hình tròn được chia làm 6 ô dẻ quạt bằng nhau và đặt một quân tốt vào mỗi ô. Trong mỗi bước, cho phép chuyển hai quân tốt bất kỳ vào ô kề với nó. Hỏi có thể chuyển tất cả quân cờ vào một ô hay không?

Giải

Đánh số các ô từ 1 đến 6 theo chiều kim đồng hồ. Với mỗi cách sắp xếp, xét $S$ là tổng các ô có chứa quân cờ (tính cả bội). Khi đó, tính chẵn lẽ của $S$ không thay đổi.

Trong một số trường hợp, bất biến không chỉ được dùng để chứng minh ta không thể thu được cấu hình này từ một cấu hình khác mà còn có thể sử dụng để tìm hiểu cấu hình nào có thể thu được từ một cấu hình cho trước. Ta có ví dụ sau.

Bài toán 1.3. Các số $1,2,3, \ldots, 20$ được viết lên bảng. Mỗi phép biến đổi, ta xóa hai số $a, b$ và thêm vào số $a+b-1$. Số nào sẽ còn lại trên bảng sau 19 bước?

Giải

Với bộ $n$ số trên bảng ta xét đại lượng $X$ bằng tổng các số trên bảng trừ đi $n$. Khi đó $X$ không thay đổi trong các phép biến đổi. Lúc đầu $X=(1+2+\ldots+20)-20=190$. Sau 19 bước, $X=190$ hay số còn lại sẽ là $191 .$

Sẽ không ngạc nhiên nếu như một số học sinh đưa ra lập luận như sau: tại mỗi bước, tổng các số giảm đi 1 . Lúc đầu tổng là 210 và sau 19 bước, số còn lại sẽ là $210-19=191$. Cách giải này hiển nhiên đúng nhưng không làm rõ được ý tưởng của “bất biến”. Chúng ta sẽ đưa cho học sinh một bài toán tương tự, mà ở đây, những lập luận “rút gọn” như vậy là khó có thể thực hiện được.

Bài toán 1.4. Các số $1,2,3, \ldots, 20$ được viết lên bảng. Mỗi phép biến đổi, ta xóa hai số $a, b$ và thêm vào số $ab+a+b$. Số nào sẽ còn lại trên bảng sau 19 bước?

Sau đây là một số bài toán khá thú vị sử dụng y tưởng của bất biến.

Bài toán 1.5. Trong bàn cờ $8 \times 8$, một ô bị tô màu đen và các ô còn lại được tô màu trắng. Liệu có thể làm cho cả bảng màu trắng bằng cách tô lại các hàng và cột không? Ở dây, tô lại một hàng hay cột được hiểu như là một phép đổi màu tất cả các ô trên hàng hoặc cột đó.

Bài toán 1.6. Giải Bài 5 cho bảng $3 \times 3$.

Bài toán 1.7. Giải Bài 5 cho bảng $8 \times 8$ với bốn ô ở góc được tô màu đen và các ô khác được tô màu trắng.

Lưu ý rằng Bài 5 , khác với Bài 6 và Bài 7 , có thể giải chỉ sử dụng tính chã̃n lẻ của số ô đen trên bảng. Để giải Bài 6 , ta có thể xét tính chã̃n lẻ của số ô đen trong bốn ô ở góc. Để giải Bài 7 , ta phải xét tính chẵn lẻ của số ô đen trong bốn ô cụ thể, ví dụ bốn ô ở góc phải trên.

Bài toán 1.8. Các số $1,2, \ldots, 2013$ được viết lên bảng. Cho phép xóa đi hai số và thay bởi hiệu của chúng. Liệu có thể thu được một bảng gồm toàn số 0 không?

Có nhiều cách để giải bài toán trên, một trong những bất biến có thể sử dụng là tính chẵn lẻ của tổng các số viết trên bảng. Lưu ý rằng tổng và hiệu của hai số bất kỳ là cùng tính chẵn lẻ.

Bài toán 1.9. Có 13 con tắc kè xanh, 15 con tắc kề đỏ và 17 con tắc kè vàng trên một hòn đảo. Khi hai con tắc kè khác màu gặp nhau, chúng đổi sang màu còn lại. Liệu có thể đến một lúc nào đó tất cả các con tắc kè có cùng màu hay không?

Giải

Mỗi “trạng thái” trên đảo gồm $a$ con tắc kè xanh, $b$ con tắc kè đỏ và $c$ con tắc kè vàng với $a+b+c=45$. Phép biến đổi màu sẽ chuyển từ trạng thái $(a, b, c)$ sang một trong ba trạng thái $(a-1, b-1, c+2),(a-1, b+2, c-1)$ hoặc $(a+2, b-1, c-1)$. Dễ thấy $(a-1)-(b-1) \equiv(a-1)-(b+2) \equiv(a+2)-(b-1) \equiv a-b$ mod $3 .$ Bất biến $X=$ sai khác giữa số tắc kè xanh và số tắc kề đỏ theo modulo 3. Lúc đầu $X \equiv 2 \bmod 3$ và khi tất cả các tắc kè cùng màu thì $X \equiv 0 \bmod 3$. Vì vậy, trường hợp tất cả các con tắc kè có cùng màu không thể xảy ra.

Bài toán 1.10. Viết 11 số $+1$ và 01 số $-1$ lên đỉnh của 12 giác đều. Cho phép đổi dấu của các số trên $k$ đỉnh bất kỳ của đa giác. Có thể hay không luôn chuyển số $-1$ sang đỉnh kề của nó nếu

a) $k=3$

b) $k=4$;

c) $k=6 ?$

Giải

Câu trả lời là phủ định trong cả ba trường hợp. Chứng minh cho cả ba trường hợp có thể thực hiện như sau: chúng ta chọn các đỉnh cách đều nhau đúng $k-1$ dỉnh (ví dụ khi $k=3$ ta chọn được 4 dỉnh, khi $k=4$ ta chọn được 3 điểm và $k=6$ ta chọn được 2 điểm). Bất biến của chúng ta là tích các số trên các đỉnh được chọn. Chúng ta xếp số – 1 vào một trong các điểm được chọn. Dễ kiểm tra rằng nếu số $-1$ được chuyển sang đỉnh kề thì tích các số trên các điểm được chọn lúc đó sẽ là $1 .$

Lưu ý rằng khái niệm bất biến là khá trừu tượng và phức tạp đối với phần lớn học sinh trong lần tiếp cận đầu tiên. Chúng ta nên lưu ý phân tích các lập luận logic của việc sử dụng các đại lượng bất biến trong giải các bài toán cụ thể. Ở đây, chúng tôi chỉ đưa ra những gợi ý tóm tắt cho các bài toán nhưng khi hướng dẫn cho học sinh, có thể sử dụng các ví dụ minh họa khiến lời giải trở nên trực quan và dễ hiểu hơn. Ngoài ra, chúng ta chỉ nên giới thiệu khái niệm và phương pháp sử dụng bất biến sau khi mỗi học sinh đã tự tìm tòi và giải quyết độc lập một vài ví dụ minh họa đơn giản nhất, thậm chí đã sử dụng bất biến mà không hề ý thức được điều đó. Rõ ràng, bước khó nhất khi giải các bài toán sử dụng bất biến là phát hiện ra được đại lượng bất biến phù hợp. Đây là một nghê thuật mà chúng ta chỉ có thể thành thạo được thông qua việc giải một loạt các bài toán trong cùng một chủ đề.

2/ Cơ bản:

Chúng ta đã gặp một số bất biến trong phần Khởi động. Tiếp theo chúng ta sẽ xem xét một số dạng bất biến cơ bản khác, ví dụ như tính chẵn lẻ, tô màu, công thức đại số, cặp nghịch đối của hoán vị,… Đối với mỗi bài toán, giáo viên có thể bắt đầu bằng việc thảo luận với học sinh dạng bất biến có thể sử dụng là gì.

Bài toán 2.1. Trên bảng viết các số $1,2, \ldots, 1000$. Ở mỗi bước cho phép thay một số bằng tổng các chữ số của nó. Quá trình dừng lại khi có toàn các số có một chữ số. Hỏi số số 1 còn lại trên bảng nhiều hơn hay số số 2 còn lại trên bảng nhiều hơn?

Giải

Nếu chúng ta viết tất cả các số trên bảng theo modulo 9 thì các số này sẽ là bất biến trong các phép biến đổi. Do số các số đồng dư 1 mod 9 nhiều hơn số các số đồng dư $2 \bmod 9$ trong tập $\{1, \ldots, 1000\}$, số các số 1 còn lại trên bảng sẽ nhiều hơn số số 2 còn lại trên bảng.

Bài toán 2.2. Vào năm 3000, ở Việt Nam, một nhân dân tệ (RMB) đổi được 10 đồng Việt Nam (VNĐ). Trong khi đó, ở Trung Quốc, một VNĐ đổi được $10 \mathrm{RMB}$. Một du khách người Nhật lúc đầu có $01 \mathrm{VND}$. Ông này có thể đi lại tùy ý giữa hai nước VN và TQ. Hỏi ông ta có thể làm cho số VNĐ và RMB ông ta có là bằng nhau hay không?

Giải

Xét $X=$ số VNĐ $-$ số RMB của du khách. Khi đó $X \bmod 11$ sẽ là bất biến trong các bước đổi tiền. Nếu số VNĐ và RMB bằng nhau thì $X \equiv 0 \bmod 11$. Lúc đầu $X \equiv 1 \bmod 11$, do đó không thể thu được $X \equiv 0$ mod 11. Ta có câu trả lời phủ định.

Bài toán 2.3. Hình vuông $8 \times 8$ bỏ đi hai ô ở góc đối nhau. Có thể phủ phần còn lại bởi 31 quân đômino $1 \times 2$ không? Nếu bỏ hai ô bất kì thì sao?

Giải

Chúng ta tô màu hình vuông đen trắng như bàn cờ vua. Hai ổ ở góc đối nhau luôn cùng mau nên sau khi bỏ chúng đi, số ô đen khác số ô trắng. Mỗi quân đômino phủ đúng một ô đen, một ô trắng nên phần còn lại của hình vuông không thể phủ kín được bởi các quân đômino. Bất biến ở đây chính là hiệu số giữa số ô trắng và số ô đen trên bảng.

Bài toán 2.4. Cho đa thức $P(x)=a x^{2}+b x+c$, có thể thực hiện một trong hai phép biến đổi:

a) Đổi chỗ $a$ và $c$.

b) Đổi biến $x$ bởi $x+t$ với $t \in \mathbb{R}$.

Hỏi từ $x^{2}-31 x-3$ có thu được $x^{2}-20 x-12$ không? Tìm mối liên hệ của hai đa thức bậc hai $P(x)$ và $Q(x)$ sao cho từ đa thức này có thể thu được đa thức kia bởi hai phép biến đổi nói trên.

Giải

Bất biến của chúng ta là định thức $\Delta=b^{2}-4 a c$ của đa thức $P(x)=a x^{2}+b x+c$. Dễ kiểm tra rằng hai phép biến đổi a) và b) không làm thay đổi định thức của đa thức. Định thức $\Delta_{1}$ của $x^{2}-31 x-3$ và định thức $\Delta_{2}$ của $x^{2}-20 x-12$ là khác nhau. Ta có câu trả lời phủ định! Chúng tôi để lại câu hỏi tìm mối liên hệ giữa hai đa thức bậc hai nhận được từ nhau qua hai phép biến đổi trong đề bài cho bạn đọc.

Bài toán 2.5. Tô đen 09 ô của hình vuông $10 \times 10$. Mỗi lần tô màu đen một ô chưa tô nếu nó kề với ít nhất hai ô đen (kề được hiểu là chung cạnh). Có thể tô màu hết bàn cờ hay không? Nếu là 10 ô thì sao? Nếu là hình vuông $n \times n$ thì lúc đầu cần tô đen ít nhất bao nhiêu ô để có thể tô đen cả bàn cờ?

Giải

Nếu tô 10 ô thì câu trả lời là khẳng định. Ví dụ ta có thể bắt đầu với 10 ô đen trên đường chéo chính của hình vuông.

Nếu tô 9 ô thì câu trả lời là phủ đinh. Xét $X$ là tổng chu vi của phần tô đen trên hình thì lúc đầu $X \leq 36$. Dễ kiểm tra $X$ là nửa bất biến, cụ thể, $X$ là không tăng. Nếu cả bàn cờ được tô màu thì lúc này $X=40$ – mâu thuẫn. Vậy, không thể tô đen được cả bàn cờ nếu xuất phát với 9 ô màu đen.

Bài toán 2.6. Cho một hoán vị của các số $1,2, \ldots, 2012$. Mỗi lần cho đổi chỗ hai số bất kì. Sau 2011 bước có thể quay về hoán vị ban đầu không?

Giải

Bài toán này liên quan đến số cặp nghịch đối của một hoán vị. Cặp nghịch đối của hoán vị $\pi$ của $\{1, \ldots, n\}$ là số cặp $1 \leq i<j \leq n$ sao cho $\pi(i)>\pi(j)$. Bạn đọc hãy tự kiểm tra rằng tính chẵn lẻ của số cặp nghịch đối thay đổi khi chúng ta hoán vị một cặp trong dãy. Sau 2011 bước, số cặp nghịch đối sẽ bị thay đổi tính chẵn lẻ và chúng ta không thể quay trở về hoán vị ban đầu.

Bài toán 2.7. Trên bảng viết các số $1,2,3,4,5$. Mỗi bước cho phép chọn hai số $a, b$ và thay bởi $a+b, a b$. Hỏi có thu được $21,27,64,180,540$ hay không?

Giải

Bài toán này thoạt nhìn khá đơn giản nhưng để tìm được bất biến không phải là điều dễ dàng. Trước hết ta kiểm tra rằng số các số chia hết cho 3 không giảm và số lượng này tăng khi và chỉ khi từ hai số chia 3 dư 1 và chia 3 dư 2 chúng ta thu được một số chia hết cho 3 và một số chia hết cho 2 . Vì vậy, khi chúng ta lần đầu tiên chuyển sang trạng thái có 4 số chia hết cho 3 thì số còn lại chia 3 dư 2 , nhưng 64 chia 3 dư 1 nên câu trả lời sẽ là phủ định.

Bài toán 2.8. Trên bảng viết số $99 \ldots 99$ (2012 lần). Mỗi bước cho phép chọn một số $a$, phân tích $a$ thành tích hai số $m, n$ và viết lên bảng $m \pm 2, n \pm 2$ tùy ý. Ví dụ: $a=15, a=3.5$ có thể viết lên bảng $1=3-2$ và $7=5+2$. Hỏi sau một số bước như vậy, có thể thu được trên bảng toàn các số 9 không?

Giải

Đây cũng không phải là một bài toán “dễ” như cách phát biểu cũng như lời giải của nó. Bất biến là trên bảng luôn có ít nhất một số chia 4 dư 3 .

Bài toán 2.9. Một túi gồm 1001 viên đá. Mỗi bước chọn một túi có nhiều hơn 01 viên. Bỏ đi một viên và chia các viên còn lại thành 02 túi. Hỏi có thể làm như vậy để thu được tất cả các túi đều có 03 viên?

Giải

Xét $X$ là tổng số đá và số túi tại mỗi bước. Dễ thấy $X \bmod 4$ không đổi. Lúc đầu $X=1002$ không chia hết cho 4 . Nếu tất cả các túi có 3 viên thì $X$ lúc đó chia hết cho 4, mẫu thuẫn. Vậy câu trả lời là phủ định.

Bài toán 2.10. Chúng ta xét một quân cờ đặc biệt, được gọi là quân “lạc đà”, di chuyển trên bàn cờ $10 \times 10$ như là một quân mã $(1,3)$. Có nghĩa là di chuyển sang ô kề và sau đó di chuyển ba ô theo hướng vuông góc với hướng vừa di chuyển. Quân mã thông thường di chuyển theo hướng $(1,2)$. Liệu quân lạc đà có thể di chuyển từ một ô sang ô kề nó không?

Giải

Câu trả lời là không. Xét các tô màu đen trắng của bàn cờ thông thường. Dễ dàng kiểm tra được rằng quân lạc đà luôn di chuyển trong các ô cùng màu và hai ô kề nhau lại là khác màu.

Bài toán 2.11. Một bảng hình chữ nhật có thể phủ kín không đè lên nhau bởi các hình $1 \times 4$ và $2 \times 2$. Khi bỏ các hình này ra ngoài, chúng ta làm mất một hình $2 \times 2$ và thay vào đó một hình $1 \times 4$. Liệu có có thể dùng các hình lúc này phủ kín hình chữ nhật được không?

Giải

Câu trả lời là phủ định. Hãy tìm một cách tô màu các ô của hình chữ nhật bởi các màu $1,2,3,4$ sao cho mỗi hình $2 \times 2$ có một ô mỗi màu và hình $1 \times 4$ hoặc không có ô màu $i$ hoặc có 2 ô màu $i$ với mỗi $i=1,2,3,4$.

Bài toán 2.12. Có thể hay không một quân mã đi qua tất cả các ô của bàn cờ $4 \times N$, mỗi ô đúng một lần và quay lại ô xuất phát ban đầu?

Giải

Tô màu hàng thứ nhất $1,2,1,2, \ldots$. Tô màu hàng thứ hai $3,4,3,4, \ldots . .$ Tô màu hàng thứ ba $4,3,4,3, \ldots$, và tô màu hàng thứ tư $2,1,2,1, \ldots$.. Giả sử tồn tại một chu trình bởi quân mã trên bàn cờ. Dẽ̃ kiểm tra rằng với cách tô của chúng ta, nếu quân mã đứng ở ô màu 1 hoặc 2 thì bước tiếp theo sẽ là ô màu 3 hoặc 4 , tương ứng. Do số ô mỗi màu là như nhau, các cập màu sẽ thay đổi luân phiên trong chu trình. Bạn đọc hãy tự chỉ ra rằng lúc này ta phải luân phiên giữa các ô màu 1 và màu 3 hoặc luân phiên giữa các ô màu 2 và màu 4 . Hay nói một cách khác, chúng ta không thể đi hết được cả bàn cờ.

Bài toán 2.13. Có ba máy in thẻ trong đó các thẻ là một cặp các số tự nhiên (không sắp thứ tự). Máy thứ nhất nhận một thẻ với hai số $a, b$ và cho ra thẻ với hai số $a+1, b+1$. Máy thứ hai chỉ nhận các thẻ với hai số chẵn $a, b$ và cho ra thẻ với hai số $a / 2, b / 2$. Máy thứ ba nhận thẻ gồm hai $a, b$ và thẻ gồm hai $b, c$ và cho ra thẻ gồm hai số $a, c$. Các máy cũng sẽ trả lại các thẻ được đưa vào. Có thể nhận được thẻ gồm hai số 1 và 2012 chỉ từ một tấm thẻ gồm hai số 5 và 19 được không? Tổng quát, từ thẻ gồm hai số 5 và 19 có thể nhận được những thẻ như thế nào?

Giải

Ba phép toán có thể viết lại dưới dạng $(a, b) \rightarrow(a+1, b+1)$, $(a, b) \rightarrow(a / 2, b / 2)$ và $(a, b),(b, c) \rightarrow(a, c)$. Trong phép biến đổi thứ nhất, hiệu giữa hai số trên thẻ không đổi. Trong phép biến đổi thứ hai, hiệu giữa hai số trên thẻ giảm một nửa. Và trong phép biến đổi thứ ba, hiệu hai số trên thẻ mới bằng tổng hiệu các số trên hai thẻ cũ. Như vậy, hiệu các số trên thẻ không phải là bất biến! Tuy nhiên, nếu nhìn kĩ, có thể tính chia hết cho một số bất kì sẽ được bảo toàn. Kiểm tra được rằng $19-5=14$ chia hết cho 7 nhưng $2012-1$ thì không. Câu trả lời là phủ định. Phần còn lại của bài toán được dành cho độc giả với gợi ý là tất cả các thẻ gồm hai số $\mathrm{a}, \mathrm{b}$ thỏa mān $a-b$ chia hết cho 7 đều nhận được.

Bài toán 2.14. Một quân cờ di chuyển trên bàn cờ $n \times n$ theo một trong ba cách: đi lên một ô, sang bên phải một ô, đi xuống về bên trái một ô. Hỏi quân cờ có thể đi qua tất cả các ô, mỗi ô đúng một lần và quay lại ô kề bên phải ô xuất phát được không?

Giải

Sau mỗi bước, tổng thứ tự của hàng và cột chứa quân cờ hoặc giảm đi 2 hoặc tăng lên 1 . Như vậy, khi xét theo modulo 3 thì tổng này tăng 1 mỗi bước. Do có $n^{2}-1$ bước, nếu kết thúc ở ô kề bên phải ô xuất phát thì tổng này tăng 1 đơn vị. Do đó $n^{2}-2$ chia hết cho 3 , mẵu thuẫn. Vậy câu trả lời lại là phủ định.

Bài toán 2.15. Có bảy số 0 và một số 1 được điền vào các đỉnh của khố lập phương. Mỡi bước cho phép cộng thêm 1 vào các số ở một cạnh nào đó. Có thể thu được khối lập phương với tất cả các số bằng nhau không? Có thể thu được khối lập phương với tất cả các số chia hết cho 3 không?

Giải

Chúng ta đánh dấu 4 đỉnh của khối lập phương sao cho các đỉnh này không kề nhau. Xét hiệu giữa tổng các số được đánh dấu và các số không được đánh dấu thì tổng này không đổi. Sử dụng bất biến này, chúng ta dễ dàng chứng minh được rằng câu trả lời trong cả hai trường hợp là phủ định.

Bài toán 2.16. Hình tròn được chia thành 06 hình dẻ quạt, trong đó điền các số $1,0,1,0,0,0$ theo thứ tự chiều kim đồng hồ. Cho phép thêm 1 vào các số trong hai ô kề nhau. Có thể làm cho tất cả các số bằng nhau được không?

Giải

Tương tự như Bài 25 , đánh số các dẻ quạt $1,2, \ldots, 6$ và tô màu đỏ các dẻ quạt $1,3,5$. Xét hiệu giữa tổng các số trên các dẻ quạt được tô màu và tổng các số trên các dẻ quạt còn lại thì tổng này không đổi.

Bài toán 2.17. Chúng ta thực hiện phép biến đổi trên các bộ ba số như sau: thay hai số trong chúng, ví dụ $a$ và $b$, bời $(a+b) / \sqrt{2}$ và $(a-b) / \sqrt{2}$. Hỏi có thể nhận được $1, \sqrt{2}, 1+\sqrt{2}$ từ $2, \sqrt{2}, 1 / \sqrt{2}$ không?

Giải

Tổng bình phương của các số trong mọi cấu hình là không đổi. Sử dụng bất biến này, dễ dàng đưa ra câu trả lời phủ định cho bài toán.

Bài toán 2.18. Các số thực được viết lên vòng tròn. Nếu bốn số liên tiếp $a, b, c, d$ thỏa mān $(a-d)(b-c)>0$ thì có thể đổi chỗ $b$ và $c$. Chứng minh rằng quá trình sẽ phải kết thúc.

Giải

Giả sử các số trên vòng tròn theo thứ tự là $a_{1}, a_{2}, \ldots, a_{n}$. Xét $X=\sum_{i=1}^{n} a_{i} a_{i+1}$ với $a_{n+1}=a_{1} .$ Khi đó trong mối phép biến đổi $X$ tăng thực sự. Nếu quá trình kéo dài vô hạn thì tổng này có vô hạn giá trị, nhưng tổng chỉ có tối đa $n !$ giá trị. Suy ra quá trình buộc phải kết thúc.

Bài toán 2.19. Cho một đồ thị $n$ đỉnh, bậc của mỗi đỉnh không quá 5. Chứng minh rằng các đỉnh có thể tô bởi ba màu sao cho không quá $n / 2$ cạnh có các đỉnh mút cùng màu.

Lời giải của Bài 29 được dành cho bạn đọc!

Bất biến và nửa bất biến – Phần 2

(Bài viết của GS Lê Anh Vinh)

3/ Nâng cao:

Trong phần này chúng ta sẽ thảo luận một số bài toán nâng cao có sử dụng phương pháp bất biến. Trong 29 bài toán chúng ta đã đề cập từ đầu đến giờ, các bài toán gần như được giải quyết ngay lập tực khi đã chỉ ra được bất biến phù hợp. Các bài toán trong phần này, ngoài ý tưởng chính là bất biến, sẽ yêu cầu thêm một số bước biến đổi khác làm tăng độ khó và thú vị của chúng.

Bài toán 3.1. Các ô vuông được xếp kề nhau tạo thành một dải hình chữ nhật vô hạn về cả hai phía. Ta xếp vào các ô vuông một số hữu hạn các viên đá. Mỗi bước, chọn hai viên đá ở cùng ô và chuyển chúng sang hai ô bên cạnh khác hướng nhau.

a) Có thể sau một số hũ̃u hạn bước quay lại ví trí ban đầu không?

b) Có thể thực hiện vô hạn bước như vậy không?

c) Nếu quá trình dừng lại thì trạng thái sắp xếp cuối cùng có phụ thuộc vào quá trình thực hiện các bước không?

Giải

Gán cho viên đá ở ô thứ $n$ số $n^{2}$. Xét tổng tất cả các số thu được. Rõ ràng mỗi phép biến đổi ta thay hai số $n^{2}$ bởi số $(n-1)^{2}$ và $(n+1)^{2}$. Do đó tổng này tăng 2 đơn vị trong mỗi phép biến đổi. Suy ra sau một số hữu hạn bước không thể quay lại vị trí ban đầu.

Tiếp theo, chúng ta đi chứng minh rằng tổng không thể tăng vô hạn bằng phương pháp quy nạp. Lưu ý rằng nếu tổng tăng vô hạn, có nghĩa là một số viên đá sẽ phải tiến ra xa vô hạn. Viên đá cuối cùng bên phải nhất luôn tăng chỉ số và viên đá cuối cùng bên trái luôn giảm chỉ số. Do đó khoảng cách giữa hai viên đá này tăng vô hạn. Và đến một lúc nào đó, sẽ có một viên không chịu tác động của các viên còn lại! Lập luận hoàn chỉnh của phần b và lời giải của phần $c$ được dành cho bạn đọc.

Bài toán 3.2. Hình tròn được chia thành 2011 hình dẻ quạt. Xếp 2012 viên kẹo vào các phằn dẻ quạt. Mỗi bước, cho phép chuyển hai viên ở cùng một phần sang hai phần kề khác hướng. Chứng minh rằng đến một lúc nào đó có ít nhất 1006 phần có chứa kẹo.

Giải

Trước hết, chúng ta có 03 nhận xét quan trọng:

a) Do số kẹo lớn hơn một nửa số ô, quá trình ở đây thực hiện được vô hạn lần;

b) Bài toán sẽ được giải quyết xong nếu ta chứng minh được một lúc nào đó hai ô kề nhau bất kì có kẹo. Thật vậy, lúc đó số ô có chứa kẹo sẽ $\geq 2011 / 2$ và do là số nguyên nên số ô có chứa kẹo ít nhất là 1006 .

c) Đến một lúc nào đó, nếu hai ô kề nhau có ít nhất một viên kẹo thì kể từ đó, hai ô này luôn luôn có kẹo. Điều này là hiển nhiên từ phép chuyển.

Theo Nhận xét c) nếu tại mọi thời điểm đều tồn tại hai ô liền nhau không có kẹo thì sẽ tồn tại hai ô liền nhau không bao giờ có kẹo trong tất cả các phép biến đổi. Ta đánh số các dẻ quạt bởi $1,2, \ldots, 2011$ sao cho hai ô đó là 1 và 2011 . Gán cho mỗi chiếc kẹo một số tương ứng với số của ô chứa nó và xét $X$ là tổng bình phương các số đó.

Tương tự như bài trên, $X$ tăng trong mỗi phép biến đổi. Theo Nhận xét a), $X$ tăng vô hạn. Nhưng lại có $X \leq 1006 \times 2010^{2}$, dẫn đến mâu thuẫn. Vậy, đến một lúc nào đó hai ô kề nhau bất kì luôn có kẹo. Bài toán được suy ra từ Nhận xét b).

Bài toán 3.3. Giả thiết và câu hỏi như ở Bài 30 , chỉ khác cách chuyển viên đá được thực hiện như sau:

a) Bỏ một viên ở ô thứ $n-1$ và một viên ở ô thứ $n$, thêm vào một viên ở ô thứ $n+1$.

b) Bỏ hai viên ở ô thứ $n$ và thêm một viên vào ô thứ $n-2$, một viên vào ô thứ $n+1$.

Giải

Nhận xét rằng viên đá ở ô phải nhất sẽ luôn di chuyển về bên phải và viên đá ở bên trái nhất sẽ luôn đi về bên trái. Nếu như quay lại trạng thái ban đầu sau hữu hạn bước thì chúng ta sẽ không được tác động đến hai viên này. Khi đó, có thể bỏ đi hai viên này và lặp lại lập luận trên để suy ra mâu thuẫn. Do đó, không thể quay lại trạng thái ban đầu sau hữu hạn bước.

Chọn $\alpha>1$ là nghiệm của $\alpha^{2}-\alpha-1=0$. Gán cho viên đá ở ô thứ $n$ số $\alpha^{n}$ và xét $X$ là tổng các số này. Khi đó tổng $X$ không đổi. Giả sử có thể chuyển viên đá vô hạn lần thì theo nhận xét trên, các viên đá sẽ tiến ra vô cùng và khi đó tổng $X$ cũng vậy $(\operatorname{do} \alpha>1)$. Điều này mâu thuẫn với tính bất biến của $X$.

Để chứng minh trạng thái sắp xếp cuối cùng không phụ thuộc vào quá trình các bước chuyển, ta chỉ cần chứng minh nếu từ một trạng thái thu được hai trạng thái khác nhau thì tổng $X$ sẽ khác nhau. Chi tiết của lập luận này (thật ra là một bài toán bất đẳng thức đơn giản) được dành cho bạn đọc.

Bài toán 3.4. Có 119 người ở trong 120 căn hộ. Một căn hộ được gọi là quá tải nếu có nhiều hơn 14 thành viên. Mỗi ngày, các thành viên của một căn hộ quá tải xảy ra mẫu thuẫn và chuyển sang các căn hộ khác nhau. Hỏi quá trình có buộc phải kết thúc không?

Giải

Trước khi chuyển nhà cho các thành viên ở căn hộ quá tải bắt tay nhau. Có thể chứng minh được rằng tổng số cái bắt tay sẽ giảm thực sự. Và do đó quá trình sẽ buộc phải kết thúc sau hữu hạn bước.

Bài toán 3.5. Trên vòng tròn có 20 số. Cho phép chọn 3 số liên tiếp $X, Y, Z$ và thay bởi $X+Y,-Y, Z+Y$. Có thể từ

$$ [1,2, \ldots, 10,-1,-2, \ldots,-10] $$

thu được $[10,9, \ldots, 1,-10, \ldots,-1]$ hay không?

Giải

Chọn $x_{1}, \ldots, x_{20}$ sao cho $x_{1}-x_{2}, \ldots, x_{20}-x_{1}$ là bộ 20 số ban đầu. Khi đó dễ dàng kiểm tra được rằng, phép biến đổi đã cho trên bộ 20 số $x_{1} – x_{2}, \ldots, x_{20}-x_{1}$ sẽ tương ứng với việc đổi chỗ hai số cạnh nhau trên bộ $x_{1}, \ldots, x_{20}$. Từ $x_{1}, \ldots, x_{20}$ tương ứng với $[1,2, \ldots, 10,-1,-2, \ldots,-10]$, đổi chỗ liên tiếp các số cạnh nhau ta thu được $x_{20}, \ldots, x_{1}$ ương ứng với bộ $[10,9, \ldots, 1,-10, \ldots,-1]$. Do đó, câu trả lời là khẳng định.

Bài toán 3.6. Giả sử tổng của 20 số là dương. Cho phép biến đổi như ở bài trên, liệu có thể thu được một bộ gồm 20 số không âm hay không?

Giải

Y tưởng chứng minh tương tự như trên. Chỉ có điều chúng ta không điền các số trên vòng tròn mà điền trên đường thẳng vô hạn $\ldots, x_{-n}, \ldots, x_{n}, \ldots$ sao cho chọn 21 số liên tiếp trên đường thẳng thì hiệu các cặp giữa chúng sẽ là 20 số tương ứng. Ta chỉ cần chỉ ra rằng với các đồi chỗ như trong giả thuyết của đề bài, ta có thể sắp xếp lại dãy theo thứ tự tăng. Khi đó, ta sẽ có câu trả lời khẳng định cho bài toán.

Bài toán 3.7. Trên vòng tròn có một số điểm Xanh, Đỏ. Cho phép thêm vào một điểm $Đ$ và đổi màu hai điểm kề nó, hoặc bớt đi một điểm $D$ và đổi màu hai điểm kề nó. Lúc đầu có hai điểm $\mathrm{D}$ và quá trình ko được phép làm cho có ít hơn hai điểm. Hỏi có thể thu được:

a) 2 điểm $\mathrm{X}$, Đ.

b) 8 điểm $\mathrm{D}$.

c) 1 điểm $Đ, 6$ điểm $X$.

d) 2 điểm X.

Giải

a) Không thể thu được 2 điểm $\mathrm{X}, \mathrm{D}$ do tính chẵn lẻ của số điểm X không thay đổi.

b) c) Xây dựng được cụ thể.

d) Không được thể thu được 2 điểm $\mathrm{X}$. Do lúc đầu không có điểm $\mathrm{X}$ nào nên số điểm X luôn là chã̄n. Đánh số các điểm xanh bởi $x_{1}, \ldots, x_{2 n}$ và gọi $d_{1}, \ldots, d_{2 n}$ là số điểm đỏ giữa các điểm $\mathrm{X}$. Bất biến là tính chia hết cho 3 của

$$ S=\left|d_{1}-d_{2}+\ldots+d_{2 n-1}-d_{2 n}\right| $$

Nếu không có điểm $X$ nào thì đặt $S$ là số điểm đỏ. Đây là một bài toán rất khó và chúng tôi khuyến khích bạn đọc tìm hiểu xem với các cấu hình nào thì có thể nhận được từ một cặp điểm $Đ$ ? Gợi ý rằng đại lượng $S$ sẽ giúp xác định chính xác các cấu hình như vậy.

Hết

Giải bài toán bằng đại lượng cực biên – Phần 2

(Bài viết dành cho các em học sinh lớp 8, 9, 10)

Ví dụ 1. Tìm $n$ lớn nhất sao cho tồn tại $n$ điểm mà 3 điểm bất kì đều tạo thành tam giác vuông.

Lời giải. 

Ta thấy $n=3, n=4$ đều tồn tại. Ta chứng minh $n\geq 5$ thì không tồn tại. \
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.

Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp $ n = 5$, để chứng minh không tồn tại, ta sử dụng cực biên, kết hợp với phản chứng để cho lời giải trọn vẹn, chọn độ dài lớn nhất giúp mình gôm hết các điểm vào thành một đường tròn, từ đó giúp giải được bài toán.

Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.

Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.

Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó $A$ là tâm đường tròn, tâm các đường tròn còn lại là $A_1, \cdots, A_6$. Khi đó tồn tại $A_iA_{i+1} \leq 60^\circ$, suy ra $A_iA_{i+1} < AA_i$ vô lý, vì bán kính của $(A)$ là nhỏ nhất.

Ví dụ 3. Cho $n$ điểm trong mặt phẳng biết rằng cứ 3 điểm bất kì tạo thành một tam giác có diện tích không lớn hơn 1. Chứng minh rằng $n$ điểm thuộc một hình tam giác có diện tích không lớn hơn 4.

Lời giải. Gọi $A, B, C$ là 3 điểm tạo thành tam giác sao cho $ABC$ có diện tích lớn nhất. Từ $A, B, C$ vẽ các đường song song với các cạnh đối diện, các đường thẳng cắt nhau tại $A’, B’, C’$ ta chứng minh các điểm thuộc cạnh hoặc miền trong tam giác $A’B’C’$. \
Thật vậy, nếu có điểm nào nằm ngoài tam giác $A’B’C’$ thì điểm đó kết hợp với hai trong 3 điểm $A, B, C$ sẽ có diện tích lớn hơn diện tích tam giác $ABC$, vô lý. \
Do $S_{A’B’C’} = 4S_{ABC} \leq 4$.

Ví dụ 4. (Sylvester) Trong mặt phẳng cho $n$ điểm phân biệt, sao cho mỗi đường thẳng đi qua hai điểm thì đi qua ít nhất một điểm khác. Chứng minh rằng $n$ điểm này cùng thuộc một đường thẳng.

Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử $P$ là điểm có khoảng cách từ $P$ đến $d$ là nhỏ nhất, với $d$ là đường thẳng qua các điểm $A, B, C$ theo thứ tự. \
Gọi $H$ là hình chiếu của $P$ trên $d$, $D, E$ là hình chiếu của $A, B$ trên $B$ trên $PA, PC$. Nếu $H$ thuộc tia $BA$ thì $BE < PH$, nếu $H$ thuộc đoạn $BC$ thì $BD < PH$. Mâu thuẫn với $PH$ là nhỏ nhất. \
Vậy tất cả các điểm cùng thuộc một đường thẳng.

Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.

Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.

Ví dụ 5. Cho 3 trường, mỗi trường có $n$ học sinh, biết rằng cứ mỗi học sinh thì quen ít nhất $n + 1$ học sinh của hai trường khác. Chứng minh rằng có thể chọn được từ mỗi trường một bạn sao cho 3 bạn này đôi một quen nhau.

Lời giải. Giả sử 3 trường là $X, Y, Z$. Tồn tại một người có số người quen ở cùng một trường khác là nhiều nhất, giả sử $A$ thuộc $X$ có số người quen ở trường $Y$ nhiều nhất là $k$. Khi đó số người quen của $A$ ở $Z$ ít nhất là $n+1-k$. Nếu nhóm người quen $A$ ở $Z$ quen với số người quen $A$ ở $X$ có hai người quen nhau thì ta có điều chứng minh.\
Ngược lại xét người quen $A$ ở $Z$, đặt là $B$ quen số người ở $Y$ tối đa là $n-k$, khi đó $B$ quen ở $X$ ít nhất là $n+1 – (n-k) = k+1$, mâu thuẫn với cách chọn $A$. (Mâu thuẫn).

Ví dụ 6. Một bảng $2n \times 2n$ ô, người ta đánh dấu bất kì $3n$ ô trong bảng. Chứng minh rằng tồn tại $n$ dòng và $n$ cột sao cho $3n$ ô được đánh dấu thuộc $n$ dòng và $n$ cột này.

Lời giải. Chọn $n$ dòng sao cho số ô được tô là lớn nhất, ta chứng minh rằng số ô được tô trong $n$ dòng này là không ít hơn $2n$ ô.
Thực vậy giả sử số ô được tô là ít hơn $2n$, khi đó $n$ dòng còn lại có nhiều hơn $n$ ô được tô, nên có ít nhất một một dòng có 2 ô được tô.

Do đó $n$ dòng đã chọn, mỗi dòng ít nhất 2 ô được tô nên tổng số ô hơn hoặc bằng $2n$ (mâu thuẫn).
Vậy ta chỉ cần chọn $n$ cột chứa các ô được tô màu nhưng chưa được chọn trong $n$ dòng trên thì sẽ có điều cần chứng minh.

Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.

Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là $k$, $A_1A_2…A_k$, ta thấy các người còn lại không ai quen $A_1, A_k$ nên suy ra $k \geq 6$. \
Nếu $k = 6$, suy ra $A_1$ và $A_6$ quen nhau, khi đó trong các người còn lại $A_7$ quen một trong cái người giả sử là $A_i$, khi đó ta có chuỗi $A_7A_iA_{i-1}A_1A_6A_{i+1}$ có độ dài hơn 6, vô lý.\
Nếu $k =7$, khi đó $A_1$ quen từ $A_2$ đến $A_6$ và $A_7$ quen $A_2$ tới $A_6$, khi đó có một vòng $A_2A_7A_6A_5A_4A_3A_1A_2$. Khi đó sẽ có một người trong nhóm còn lại thì ta sẽ có chuỗi dài hơn, mâu thuẫn.\
Nếu $k=8,9$ xét tương tự, ta sẽ có $k=10$. Giả sử có chuỗi $A_1\cdots A_{10}$. Khi đó tồn tại $k>i$ sao cho $A_1$ quen $A_k$ và $A_{10}$ quen $A_i$, khi đó có cách xếp thỏa đề bài là $A_1A_k\cdot A_iA_{10}A_9…A_k$.

Bài tập Bài tập nguyên lý cực biên

Tài liệu tham khảo. 

  1. Problems – Solving Stretagies – Arthur Hegel
  2. Giải bài toàn bằng đại lượng cực biên – Nguyễn Hữu Điển

Đề thi học kì 1 lớp 10 chuyên toán PTNK năm 2016

Thời gian làm bài: 120 phút

Câu 1.
a) Giải phương trình $x^{2}-x+2-(x+2) \sqrt{x-1}=0$.
b) Tìm $m$ để hệ phương trình $\left\{\begin{array}{l}x+y+x y=m \\ x^{2}+y^{2}=m\end{array}\right.$ có nghiệm.

Câu 2. Cho hàm số $y=f(x)=-x^{2}+2 x+3(1)$.
a) Khảo sát và vẽ đồ thị hàm số (1).
b) Từ đồ thị hàm số $(1)$, suy ra đồ thị hàm số $y=g(x)=-x^{2}+2|x|+3$. Tìm $k$ để phương trình $g(x)=m^{3}-3 m^{2}+m$ có đúng 3 nghiệm.

Câu 3.
a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
$$
y=\sqrt{x+1}+\sqrt{1-x}-\frac{4}{3} \sqrt{1-x^{2}}
$$
b) Cho các số $a, b, c>0$. Chứng minh rằng
$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \geq \frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)
$$
Bài 4. Cho tam giác $A B C$ cân tại $A, \angle B A C=120^{\circ}$ nội tiếp đường tròn tâm $O$ bán kính $R . A O$ cắt $(O)$ tại $D .$
a) Chứng minh rằng với mọi $M$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M A} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$.
b) Tìm quỹ tích điểm $M$ sao cho $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M A} \cdot \overrightarrow{M D}=\frac{R^{2}}{4}$.
c) Xác định điểm $N$ trên cạnh $B D$ thỏa $P_{D /(A B N)}=R^{2}$.
d) $P$ là điểm thay đổi trên cạnh $B C .$ Gọi $\left(O_{1}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $B ;\left(O_{2}\right)$ là đường tròn qua $P$ tiếp xúc với $(O)$ tại $C .\left(O_{1}\right)$ và $\left(O_{2}\right)$ cắt nhau tại $Q$ khác $P$. Chứng minh đường thẳng $P Q$ đi qua một điểm cố định $T$. Tính $P_{T /(O)}$.
Kí hiệu $P_{M /(O)}$ là phương tích của $M$ đối với đường tròn $(O)$.

Đề thi học kì 1 lớp 10 chuyên toán trường PTNK năm 2014

Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.

Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$
Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$

Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?

Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013

Bài 1. Cho $a,b$ là hai số thực thoả mãn $a+b\ge 0$. Chứng minh rằng:

$$\left(\dfrac{a^2+b^2}{2}\right)^3\ge 4(a^3+b^3)(ab-a-b).$$

Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.

Bài 3.  Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.

a/Chứng minh rằng $S\le n^2$.

b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.

Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.

Giải

Bài 1. Ta xét các trường hợp sau:

  •  Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
  •  Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$

Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:

$$\begin{align*} 4(a^3+b^3)(ab-a-b) & = 4(a+b)(ab-a-b)(a^2-ab+b^2) \\ & \leq a^2b^2(a^2-ab+b^2) \\ & \leq \dfrac{ab(a^2+b^2)^2}{4} \end{align*}$$

Mà ta có:

$$\dfrac{(a^2+b^2)^3}{8}=\dfrac{(a^2+b^2)^2}{4}.\dfrac{a^2+b^2}{2}\geq \dfrac{ab(a^2+b^2)^2}{4}.$$

Từ hai đánh giá trên, ta có đpcm.

Bài 2.

Đặt $k=\dfrac{5mn+5m}{3m^2 + 2n^2} \in \mathbb{N}^*$. Suy ra

$$3km^2 – 5(n+1)m + 2kn^2 = 0$$ là một phương trình theo ẩn $m$ với

$$\Delta = 25(n+1)^2 – 24k^2n^2 = (25-24k^2)n^2 + 50n + 25 \ge 0. (*)$$

Xét các trường hợp sau:

  • Nếu $k>1$, ta có:

$\Delta _1′ = 625 – 25\left( {25 – 24{k^2}} \right) = 600{k^2} > 0$, mà $25 – 24k^2 < 0$.

Suy ra bất phương trình $(*)$ có nghiệm khi $n \le \dfrac{25+10k\sqrt{6}}{24k^2-25}< 2$ (dễ dàng chứng minh).

Vì thế nên $n=1$ (do $n \in \mathbb{N^{*}}$). Ta có:

$$ \begin{aligned} k= \dfrac{10m}{3m^2 + 2} \in \mathbb{N^{*}} & \Rightarrow \dfrac{30m^2}{3m^2 + 2} \in \mathbb{N^{*}} \Rightarrow \dfrac{-20}{3m^2 + 2} \in \mathbb{N^{*}} \\ & \Rightarrow 3m^2 +2 \in \left\{ {2;5;10;20} \right\} \text{ vì } 3m^2+2 \ge 2, \forall m \\ & \Rightarrow m=1 \text{ do } m \in \mathbb{N^{*}}. \end{aligned} $$

Thử lại ta nhận $(m;n)=(1;1)$

  •  Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$

Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được  $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$

Bài 3.

(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$

trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì

$$a_k + a_{m-k+1} \ge 2n.$$

Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp

$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$

Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$

Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên

$$\sum\limits_{i = 1}^m {{a_i} = \frac{1}{2}} \sum\limits_{i = 1}^m {({a_i} + {a_{m – i + 1}}) \geqslant n(n – 1)}, \text{ suy ra }$$

$$S = \sum\limits_{i = 1}^{2n – 1} i – \sum\limits_{i = 1}^m {{a_i} \leqslant n(2n – 1) – n(n – 1) = {n^2}}.$$

(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$

Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$

Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.

Bài 4.

Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng

$(IX,DE)=(IS,AB)=-1.$

Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.

Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$

Không có mô tả.

 

Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.

Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.

Đề thi Học kì 1 Toán 10 PTNK năm 2018 (CS2)

Bài 1. Giải các phương trình sau:
a) $\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
Bài 3. Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 4. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 5. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 6. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.
Bài 7. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.
a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Lời giải

Bài 1.
a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x \\
\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) \\
\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\
x^2-x-1=3-2x
\end{array} \right. $

Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.
$P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.

Bài 3. Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2 \Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 4. $D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 5. $\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$
Bài 6.
a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 7.
a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đề thi Học kì 1 Toán 10 PTNK năm 2017 (CS2)

Đề và lời giải: Thầy Nguyễn Tấn Phát

Bài 1. Giải các phương trình sau:
a) $(x+2)\sqrt{x^2-5}=x^2-4$
b) $x^2+8x+|x+4|+14=0$
Bài 2. Tìm $a$, $b$, $c$ biết hàm số $y=ax^2+bx+c$ có đồ thị được cho như hình sau.

Bài 3. Tìm $m$ để phương trình $(m-1)^2x^2 – 4(m+1)x+3=0$ có hai nghiệm, trong đó có một nghiệm gấp 3 lần nghiệm còn lại.
Bài 4. Tìm số nguyên $m$ sao cho hệ $\left{ \begin{array}{l}
mx-y=1 \
x+4(m+1)y=4m
\end{array} \right. $ có nghiệm duy nhất và là nghiệm nguyên.
Bài 5. Tính giá trị của biểu thức $P=\dfrac{16\cos ^3 a – \sin ^3 a + 5\cos a}{9\cos a + \sin ^3 a}$ khi $\tan a =3$.

Bài 6. Cho ba vectơ $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ bất kì. Xét tính đúng, sai của các mệnh đề sau:
a) $\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] $ vuông góc với $\overrightarrow{a}$
b) $\left( \overrightarrow{a}\cdot \overrightarrow{b} \right) \overrightarrow{c} = \left( \overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{a}$
Bài 7. Cho $\overrightarrow{u}= (1;-2)$, $\overrightarrow{v} = (x;y)$. Tìm $x$, $y$ sao cho $\overrightarrow{u}$, $\overrightarrow{v}$ cùng phương và $\overrightarrow{u} \cdot \overrightarrow{v}=-\dfrac{13}{2}$. Tính $|\overrightarrow{v}|$.
Bài 8. Cho tam giác $ABC$ với $A(-3;6)$, $B(1;-2)$, $C(6;3)$. Tìm tọa độ tâm $I$ và bán kính đường tròn ngoại tiếp của tam giác $ABC$.
Bài 9. Cho các điểm $M(-1;2m+3)$, $N(-4; 5m)$ và $P(-3; 3m+2)$. Tìm điều kiện cần và đủ của $m$ để $M$, $N$, $P$ là ba đỉnh của một tam giác. Khi đó chứng minh $\angle NMP$ là góc nhọn.

Lời giải

Bài 1.
a) Nghiệm của phương trình $x=\dfrac{9}{4}$
b) Phương trình tương đương: $(x+4)^2 + |x+4| -2=0$. Đặt $t= |x+4|$, phương trình trở thành $t^2 +t-2=0$.

Từ đó giải được tập nghiệm của phương trình là $S=\left\{ -3;-5 \right\} $
Bài 2. $(P):y=x^2 -4x+2$

Bài 3. Để phương trình có hai nghiệm phân biệt $x_1$, $x_2$ thì $\left\{ \begin{array}{l}
m \ne 1 \\
\Delta = m^2 +14m+1 >0
\end{array} \right. $

Theo Viete, ta có: $\left\{ \begin{array}{l}
x_1+x_2 = \dfrac{4(m+1)}{(m-1)^2} \quad (2) \\
x_1x_2= \dfrac{3}{(m-1)^2} \quad (3)
\end{array} \right. $

Vì nghiệm này gấp ba nghiệm kia nên từ $(2)$, ta tìm được $x_1$, $x_2$ theo $m$, sau đó thay vào $(3)$ giải được $m=0$ (nhận)

Vậy $m=0$

Bài 4. Để hệ có nghiệm duy nhất thì $D \ne 0 \Leftrightarrow m \ne -\dfrac{1}{2}$.

Tính $D_x$, $D_y$, suy ra $x=\dfrac{4}{2m+1}$, $y=\dfrac{2m-1}{2m+1}$.

Để nghiệm nguyên thì $2m+1 \in U(4)$ và $2m-1 \, \vdots \, 2m+1$. Từ đó suy ra $m \in \left\{ -1; 3 \right\} $
Bài 5. Vì $\cos a \ne 0$ nên chia cả tử và mẫu của $P$ cho $\cos ^3 a$, ta được:
$$P= \dfrac{16-\tan ^3 a + 5 \left( \tan ^2 a +1 \right) }{9 \left( \tan ^2 a +1 \right) + \tan ^3 a} = \dfrac{1}{3}$$
Bài 6.
a) Xét tích vô hướng:
$\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] \overrightarrow{a} \\= |\overrightarrow{a}|\cdot |\overrightarrow{b} | \cdot \cos (\overrightarrow{a} , \overrightarrow{b} ) \cdot |\overrightarrow{c}|\cdot |\overrightarrow{a} | \cdot \cos (\overrightarrow{c} , \overrightarrow{a} ) – |\overrightarrow{c}|\cdot |\overrightarrow{a} | \cdot \cos (\overrightarrow{c} , \overrightarrow{a} ) \cdot |\overrightarrow{a}|\cdot |\overrightarrow{b} | \cdot \cos (\overrightarrow{a} , \overrightarrow{b} ) = 0$
Suy ra $\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] $ vuông góc với $\overrightarrow{a}$
b) $\left( \overrightarrow{a}\cdot \overrightarrow{b} \right) \overrightarrow{c}$ cùng phương với $\overrightarrow{c}$; $\left( \overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{a}$ cùng phương với $\overrightarrow{a}$

Xét trường hợp $\overrightarrow{a}$ không cùng phương với $\overrightarrow{c}$ thì mệnh đề trên sai. Vậy mệnh đề trên sai.

Bài 7. $\overrightarrow{v}=\left( -\dfrac{13}{10} ; \dfrac{13}{5} \right) \Rightarrow |\overrightarrow{v} | = \dfrac{13\sqrt{5}}{10}$
Bài 8. $I(1;3)$, $R=5$
Bài 9. Để $MNP$ là tam giác thì $m \ne 1$

$\cos NMP = \dfrac{2+(m-1)^2}{\sqrt{1+(m-1)^2} \sqrt{4+(m-1)^2}} >0, \; \forall m$ nên $\angle NMP$ là góc nhọn.