Thứ tự của số nguyên

So sánh hai số nguyên

Khi biểu diễn hai số nguyên a, b trên trục số nằm ngang, nếu điểm a nằm bên trái điểm b thì ta nói a nhỏ hơn b hoặc b lớn hơn a và ghi là: $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{b}>\mathrm{a}$.

Nhận xét:
– Mọi số nguyên dương đều lớn hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.
– Với hai số nguyên âm, số nào có số đối lớn hơn thì số đó nhỏ hơn.

Ví dụ 1. So sánh các cặp số nguyên sau:

a) – 10 và -8

b) 3 và -14

c) 0 và – 2

Lời giải

Ví dụ 2. Cho ba số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ và biết:
$$
\mathrm{a}>2 ; \quad \mathrm{b}<-7 ;-1<\mathrm{c}<1
$$
Hỏi trong các số nói trên, số nào là số nguyên dương, số nào là số nguyên âm và số nào bẳng 0 ?

Lời giải

Thứ tự trong tập hợp số nguyên

Ví dụ 3. Sắp xếp các số nguyên theo thứ tự tăng dần: 4, – 3, -5, 2, – 17.

Lời giải

Bài tập rèn luyện.

Bài 1. So sánh các cặp số sau:
a) 6 và 5 ;
b) $-5$ và 0
c) $-6$ và 5 ;
d) $-8$ và $-6$;
e) 3 và $-10$;
$\mathrm{g}$ ) $-2$ và $-5$.

Lời giải

Bài 2. Tìm số đối của các số nguyên: $5 ;-4 ;-1 ; 0 ; 10 ;-2021$.
Sắp xếp các số nguyên sau theo thứ tự tăng dần và biểu diễn chúng trên trục số:
$2 ;-4 ; 6 ; 4 ; 8 ; 0 ;-2 ;-8 ;-6$

Lời giải

Bài 3. Hãy liệt kê các phần tử của mỗi tập hợp sau:
a) $\mathrm{A}={\mathrm{a} \in \mathbb{Z} \mid-4<\mathrm{a}<-1}$
b) $\mathrm{B}={\mathrm{b} \in \mathrm{Z} \mid-2<\mathrm{b}<3}$
c) $\mathrm{C}={\mathrm{c} \in \mathbb{Z} \mid-3<\mathrm{c}<0}$
d) $\mathrm{D}={\mathrm{d} \in \mathbb{Z} \mid-1<\mathrm{d}<6}$.

Lời giải

Bài 4. Sắp xếp theo thứ tự từ thấp đến cao nhiệt độ $\left({ }^{\circ} \mathrm{C}\right)$ mùa đông tại các địa điểm sau đây của nước Mĩ: Hawaii (Ha-oai) $12{ }^{\circ} \mathrm{C}$; Montana (Môn-ta-na) $-2^{\circ} \mathrm{C}$; Alaska (A-la-xca) $-51{ }^{\circ} \mathrm{C}$; New York (Niu Oóc) $-15^{\circ} \mathrm{C}$; Florida (Phlo-ri-đa) $8{ }^{\circ} \mathrm{C}$.

Lời giải

Tài liệu tham khảo. 

Chân trời sáng tạo, Toán 6, NXB GD, Trần Nam Dũng (Chủ biên)

Tập hợp số nguyên

Tập hợp số nguyên
Ta đã biết $\mathrm{N}={0 ; 1 ; 2 ; 3 ; \ldots}$ là tập hợp số tự nhiên.
0 $\quad$

Các số tự nhiên khác 0 còn được gọi là các số nguyên dương. Số nguyên dương có thể được viết là: $+1 ;+2 ;+3 ; \ldots$ hoặc thông thường bỏ đi dấu “+” và chỉ ghi là: $1 ; 2 ; 3 ; \ldots$
Các số $-1 ;-2 ;-3 ; \ldots$ là các số nguyên âm.Số 0 không phải là số nguyên âm và cũng không phải là số nguyên dương.
Tập hợp gồm các số nguyên âm, số 0 và các số nguyên dương được gọi là tập hợp
số nguyên.

Kí hiệu là $\mathbb{Z}$.

Ta có $\mathbb{Z} = \{\cdots;-3;-2;-1;0;1;2;3;\cdots \}$.

Biểu diễn số nguyên trên trục số.

Số đối của một số nguyên

Hai số nguyên trên trục số nằm ở hai phía của điểm 0 và cách đều điểm 0 thì được gọi là hai số đối nhau.

Ví dụ 1. Số đối của 6 là – 6; số đối của – 2021 là 2021.

Chú ý. 

  • Số đối của một số nguyên âm là số nguyên dương;
  • Số đối của một số nguyên dương là số nguyên âm.
  • Số đối của 0 là 0.

Bài tập rèn luyện.

Bài 1. Dùng số nguyên thích hợp để diễn tả các tình huống sau:
a) Thưởng 5 điểm trong một cuộc thi đấu.
b) Bớt 2 điểm vì phạm luật.
c) Tăng 1 bậc lương do làm việc hiệu quả.
d) Hạ 2 bậc xếp loại do thi đấu kém.
Bài 2. Các phát biểu sau đúng hay sai?
a) $9 \in \mathbb{N}$
b) $-6 \in \mathbb{N}$
c) $-3 \in \mathbb{Z}$
d) $0 \in \mathbb{Z}$
e) $5 \in \mathbb{Z}$
g) $20 \in \mathbb{N}$.

Bài 3. Vẽ một đoạn của trục số từ $-10$ đến $10 .$ Biểu diễn trên đó các số nguyên sau đây:
$\begin{array}{llllll}+5 ; & -4 ; & 0 ; & -7 ; & -8 ; & 2 ;\end{array}$
3; $\quad 9$;
$-9 .$

Bài 4. Hãy vẽ một trục số rồi vẽ trên đó những điểm nằm cách điểm 0 hai đơn vị. Những điểm này biểu diễn các số nguyên nào?

Bài 5. Tìm số đối của các số nguyên sau: $-5 ;-10 ; 4 ;-4 ; 0 ;-100 ; 2021 .$

Tài liệu tham khảo

Chân trời Sáng tạo, Sách giáo khoa toán 6, NBX GD, Trần Nam Dũng (Chủ biên)

Chuyên đề hình học: Bổ đề Eriq và ứng dụng

BỔ ĐỀ ERIQ VÀ ỨNG DỤNG (Trích tập san Star số 3)

Trương Tuấn Nghĩa – Lớp 12 Trường ĐHKHTN ĐHQG HN

Giới thiệu.

Bổ đề $ERIQ$ được đặt tên bởi tác giả Kostas Vittas trên diễn đàn AoPS với nick name vittasko. (là các chữ viết tắt của cụm từ $Equal$ $Ratios$ $In$ $Quadrilateral$). Nội dung bổ đề:

Cho tứ giác $ABCD$, lấy các điểm $M,N$ nằm trên cạnh $AD,BC$ sao cho
$\dfrac{MA}{MD}=\dfrac{NB}{NC}.$
Khi đó, trung điểm của $AB,MN,CD$ thẳng hàng.

Chứng minh.
Gọi $X,Y,Z$ là trung điểm của $AB,MN,CD$. Lấy $P,Q$ nằm trên $XM,XN$ sao cho $DP,CQ\parallel AB.$

Khi đó, theo định lý Thales, ta có $\frac{MA}{MD}=\frac{AX}{DP}=\frac{MX}{MP};\text{ }\frac{NB}{NC}=\frac{AY}{CQ}=\frac{NX}{NQ}.$ Suy ra
$DP=CQ;$ $\frac{MX}{MP}=\frac{NX}{NQ}$ hay $MN\parallel PQ$.
Do $DP=CQ;DP\parallel CQ$ nên $PCQD$ là hình bình hành hay $Z$ là trung điểm $PQ$. \

Kết hợp với $Y$ là trung điểm của $MN$, ta có $X,Y,Z$ thẳng hàng.

Nhận xét. Ta có thể chứng minh $X,Y,Z$ là các điểm chia cùng tỉ lệ trên $AB,MN,CD$ thẳng hàng bằng cách tương tự. Tiếp theo, ta sẽ đến với một số các mở rộng và ứng dụng của bổ đề trên.

Ứng dụng

Bài 1.  Cho tứ giác $ABCD$, lấy $M,N$ nằm trên cạnh $AD,BC$ sao cho $\frac{MA}{MD}=\frac{NB}{NC}.$ Lấy các điểm $X,Y,Z$ sao cho các tam giác $XAB,YMN,ZCD$ đồng dạng và $X,Y,Z$ lần lượt nằm trên các nửa mặt phẳng bờ $AB$ không chứa $C$, $MN$ không chứa $D$ và $CD$ chứa $A$. Chứng minh rằng $X,Y,Z$ thẳng hàng.
Lời giải.
Lấy $P,Q\in XM,XN$ sao cho $DP\parallel XA,CQ\parallel XB$.

Theo định lý Thales, $DP=XA.\frac{MD}{MA},CQ=XB.\frac{NB}{NC}$ mà $\frac{MA}{MD}=\frac{NB}{NC}$ nên $DP=CQ$
Mặt khác vì $\angle AXB=\angle CZD$ nên $\angle ZDP=\angle ZCQ.$
Do đó, $\vartriangle ZDP=\vartriangle ZCQ(c.g.c)$ dẫn tới $\angle PZD=\angle QZC$ hay $\angle CZD=\angle PZQ.$
Vì $DP\parallel XA,CQ\parallel XB$ nên $\frac{XM}{MP}=\frac{XN}{NQ}(=\frac{MA}{MD})$ nên $MN\parallel PQ$.
Lấy $Y’\in XZ$ sao cho $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}.$
Theo định lý Thales, $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}$ nên $$\begin{aligned}
& Y’M\parallel ZP,Y’N\parallel ZQ \
& Y’M=Y’N(=ZP.\frac{XY’}{XZ}=ZQ.\frac{XY’}{XZ}) \
\end{aligned}$$
Hay $\angle MY’N=\angle MYN,Y’M=Y’N.$
Do đó, $Y’\equiv Y$ hay $X,Y,Z$ thẳng hàng.

Bài 2. Cho tứ giác $ABCD$ có phân giác trong của các góc $\angle A,\angle B,\angle C,\angle D$ đồng quy tại $I$. $AD$ cắt $BC$ tại $E$, $AB$ cắt $CD$ tại $F$. Gọi $M,N$ là trung điểm $AC,EF.$ Chứng minh rằng $M,N,I$ thẳng hàng.
Lời giải.

Gọi $P,Q$ là giao điểm của đường thẳng qua $I,$ vuông góc với $IB$ với $BA,AC.$
Đầu tiên, dễ thấy $I$ là giao 3 phân giác $\vartriangle ABE$.
Do $BI$ là phân giác $\angle ABC$ nên $\vartriangle BPQ$ cân tại $B$ hay $I$ là trung điểm $PQ.$


Ta có $\angle BPQ=90{}^\circ -\frac{\angle ABE}{2}=\frac{\angle AEB}{2}+\frac{\angle BAE}{2},\angle IAB=\frac{\angle BAE}{2}$ nên $\angle PIA=\frac{\angle AEB}{2}.$
Tương tự thì $\angle EIQ=\frac{\angle BAE}{2}.$
Do đó, $\vartriangle PIA\sim \vartriangle QEA(g.g)$ nên $PA.QE=PI.QI.$
Hoàn toàn tương tự, $PF.QC=PI.QI.$
Vậy ta có $\frac{PA}{FA}=\frac{QC}{QE}$ nên theo bổ đề $ERIQ$, $M,I,N$ lần lượt là trung điểm của $PQ,AC,EF$ thẳng hàng.

Bài 3. Cho tứ giác $ABCD$ nội tiếp, không là hình thang. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(AB,CD);(AD,BC).$ Giả sử phân giác của góc $\angle AEC,\angle AFB$ cắt nhau tại $I$. Gọi $M,N$ lần lượt là trung điểm của $AC,BD$. Chứng minh rằng $I\in MN.$

Lời giải.
Giả sử các điểm có vị trí như hình vẽ, các trường hợp khác tương tự.


Gọi $P,Q$ lần lượt là giao điểm của $FI$ với $AB,CD$.
Do $\angle ABC+\angle CDA=180^\circ $ nên $\angle FAB=\angle FCD$ nên $\triangle FAB \backsim \triangle FCD(g.g)$ () và $\angle EPQ=\angle FAB+\angle AFI=\angle FCD+\angle BFI=\angle EQP$
hay tam giác $EPQ$ cân tại $E$.
Mà $EI$ là phân giác $\angle AED$ nên $I$ là trung điểm $PQ$.
Mặt khác theo (
), $\frac{FA}{FB}=\frac{FC}{FD}$ nên theo tính chất đường phân giác, $\frac{AP}{PB}=\frac{CQ}{QD}.$
Do đó theo bổ đề $ERIQ$, trung điểm $AC,BD,PQ$ thằng hàng hay $I\in MN$. (đpcm)

Bài 4. (AOPS). Cho $\vartriangle ABC$, trực tâm $H$,$P$ bất kỳ trên $BC$, $X$ bất kỳ trên $HP$. Gọi $E,F\ne A$ là giao điểm của đường tròn đường kính $AX$ với $CA,AB$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Đường thẳng qua $P$ vuông góc $BC$ cắt $CA,AB$ tại $Z,Y$. Gọi $L$ là trung điểm $ZY$. Chứng minh rằng $LT$ chia đôi $BC.$

Lời giải.
Trước hết, ta phát biểu và chứng minh hai bổ đề sau:
Bổ đề 1. Cho $\vartriangle ABC$, đường cao $BE,CF$. Gọi $M$ là trung điểm của $BC.$ Khi đó, $ME,MF$ là tiếp tuyến của $(AEF)$.
Bổ đề trên có thể chứng minh dễ dàng qua các phép cộng góc.
Bổ đề 2.Cho tứ giác $ABCD$, $AB$ cắt $CD$ tại $E$. Gọi $H,K$ là trực tâm của $\vartriangle EAD,\vartriangle EBC$. Khi đó, $HK$ là trục đẳng phương của 2 đường tròn đường kính $BD,AC$.
Chứng minh bổ đề
Gọi $M,N$ là hình chiếu của $B,C$ lên $EC,EB$. Khi đó, $MNBC$ là tứ giác nội tiếp nên $KN.KC=KM.KB.$

Mặt khác, $M,N$ lần lượt nằm trên đường tròn đường kính $BD,AC$ mà $KN.KC=KM.KB$ nên $K$ nằm trên trục đẳng phương của 2 đường tròn trên. Chứng minh tương tự, $HK$ là trục đẳng phương của đường tròn đường kính $BD$ và đường tròn đường kính $AC$.

Trở lại bài toán,


Gọi $M,N$ là giao điểm của $XF,XE$ với $CA,AB.$ Khi đó, theo bổ đề 1 dễ có $T$ là trung điểm của $MN$ nên theo bổ đề $ERIQ$, ta chỉ cần chứng minh $\frac{BN}{BZ}=\frac{CM}{CY}.$
Gọi $U,V$ là hình chiếu của $N,M$ lên $BC.$ Theo bổ đề 2 thì $HX$ là trục đẳng phương của đường tròn đường kính $MB,NC.$ Dễ thấy $U,V$ lần lượt nằm trên đường tròn đường kính $CN,BM$ nên và $P$ nằm trên $HX,BC$ nên ta có $PU.PC=PV.PB$ hay $\frac{PB}{PU}=\frac{PC}{PV}$, và theo định lý Thales thì
$\frac{BN}{BZ}=\frac{CM}{CY}$ .
Vậy ta thu được $LT$ chia đôi $BC.$

Bài 5. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC$, $J$ là trung điểm của $AP$. Gọi $E,F$ là giao điểm của $(J,JA)$ với $CA,AB.$ Gọi $L$ là tâm đường tròn ngoại tiếp $\vartriangle JEF$. Chứng minh rằng khi $P$ di chuyển trên $BC$ thì $L$ chuyển động trên đường thẳng cố định.

Lời giải
Trước hết ta chứng minh bổ đề sau:
Cho $\vartriangle ABC$, lấy điểm $M$ cố định trên $BC,P$ bất kỳ trên $BC.$ Gọi $E,F$ là hình chiếu của $P$ lên $CA,AB$, $K,L$ là hình chiếu của $M$ lên $CA,AB$. Khi đó, tỉ số $\frac{EK}{FL}$ không phụ thuộc vào vị trí của $P$ trên $BC.$

Chứng minh.
Gọi $X,Y$ là hình chiếu của $M,P$ lên $PF,MK$. Khi đó,
$$\begin{aligned}
& MX=LF=MP.\cos \angle XMP=MP.cos\angle ABC; \
& YP=KE=MP.\cos \angle YPM=MP.\cos \angle ACB. \
\end{aligned}$$
Do đó, $\frac{EK}{FL}=\frac{\cos \angle ACB}{\cos \angle ABC}.$

Trở lại bài toán,


Lấy $M,N$ cố định trên $BC.$ $X,Z$ là hình chiếu của $M$ lên $AB,AC;$ $Y,T$ là hình chiếu của $N$ lên $AB,AC.$ Khi đó, theo bổ đề 1 thì dễ có được $\frac{YF}{YX}=\frac{TE}{TZ}.$ (1)
Do $J$ là tâm đường tròn ngoại tiếp $\vartriangle AEF$ nên $\angle FJE=2.\angle BAC.$ Mà $L$ là tâm đường tròn ngoại tiếp của $\vartriangle JEF$ nên $\angle FLE=360{}^\circ -4.\angle BAC.$
Theo (1) và bổ đề $ERIQ$ thì các đỉnh của tam giác cân có đáy $FE,YT,XZ$ và có góc ở đỉnh là $360{}^\circ -4.\angle BAC$ thì thẳng hàng mà $M,N$ cố định nên $L$ nằm trên đường thẳng cố định. (đpcm)

Bài 6.  (Nguyễn Văn Linh) Cho $\vartriangle ABC$, đường cao $AD$, $K\in AD.$ Gọi $E,F$ lần lượt là giao điểm của $BK,CK$ với $CA,AB.$ Giả sử $DE,DF$ cắt lại đường tròn ngoại tiếp $\vartriangle ABD;\vartriangle ACD$ tại $M,N$. Gọi $T$ là trung điểm của $MN.$ Chứng minh rằng $AT$ chia đôi đoạn thẳng $EF.$

Lời giải
Gọi $BP,CQ$ là đường cao của $\vartriangle ABC$, đường thẳng qua $A$ song song $BC$ cắt $DE,DF$ tại $K,L.$ Theo kết quả quen thuộc $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD.$ Nên $A$ là trung điểm của $KL.$


Khi đó, theo bổ đề $ERIQ,$ ta chỉ cần chứng minh $\frac{NL}{NF}=\frac{MK}{ME}.$
Ta có, $A,M,P,D,Q$ nằm trên đường tròn và $A,N,Q,D,C$ nằm trên đường tròn. (1) \
Do đó, $\angle NAQ=\angle NDQ,\angle MAP=\angle MDP.$ Do $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD,$nên $\angle QDF=\angle PDE.$
Từ (1), ta cũng có
$\angle AQN=\angle ADN=\angle ADM=\angle APM.$
Do đó, $\vartriangle ANQ\sim \vartriangle AMP.$ (2) \
Mặt khác, $\frac{FL}{AL}=\frac{\sin LFA}{\sin LAF};\frac{KA}{KE}=\frac{\sin KAE}{\sin KEA}.$ Vì $AK=AL;\angle FAL=\angle ABC;\angle EAK=\angle ACB,$ nên
$$\begin{aligned}
\frac{FL}{AL}.\frac{KA}{KE} &=\frac{\sin LFA}{\sin FAL}.\frac{\sin KAE}{\sin KEA}=\frac{FL}{KE} \
& =\frac{\sin LFA}{\sin KEA}.\frac{\sin KAE}{\sin FAL}=\frac{\sin ACB}{\sin ABC}.\frac{\sin LFA}{\sin KEA}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}. \
\end{aligned}$$
Ta lại có
$$\frac{\sin LFA}{\sin KEA}=\frac{\sin NFA}{\sin NAF}.\frac{\sin MAP}{\sin MEA}=\frac{AN}{FN}.\frac{ME}{MA}=\frac{AN}{AM}.\frac{ME}{FN}=\frac{AQ}{AP}.\frac{ME}{FN}=\frac{AC}{AB}.\frac{ME}{FN}.$$ (do (2)). Vậy nên $$\frac{FL}{KE}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}=\frac{AB.AC}{AC.AB}.\frac{ME}{NF}=\frac{ME}{NF}.$$

Bài 7. (Chọn đội tuyển PTNK TPHCM) Cho $\vartriangle ABC$, trực tâm $H.$ Lấy điểm $M$ bất kỳ trên cung $BHC$ của $(BHC)$. Trên $BM,CM$ lấy các điểm $E,F$ sao cho $\angle ECA=\angle FBA=90{}^\circ .$ Chứng minh rằng khi $M$ chuyển động thì trung điểm $EF$ luôn nằm trên đường thẳng cố định.

Lời giải. Ở bài toán này, ta có hai hướng tiếp cận như sau:
Cách 1.
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $P$ đối xứng với $N$ qua $BC$, $BP,CP$ lần lượt cắt $CE,BF$ tại $X,Y.$ Dễ dàng chứng minh $B,H,M,P,C$ nằm trên đường tròn.


Ta sẽ chứng minh $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC.$
Do $\angle BMC=\angle BNC=180{}^\circ -\angle BAC$ nên $\angle CME=\angle CNF$ hay 4 điểm $M,N,E,F$ nằm trên đường tròn nên $\angle CFY=\angle BEX.$ (1)
Mặt khác, do $B,H,M,P,C$nằm trên đường tròn nên $\angle YCF=\angle MCP=\angle XBE.$ (2)
Từ (1) và (2) suy ra $\vartriangle CYF\sim \vartriangle BXE(g.g)$. Do đó, $\frac{XE}{YF}=\frac{BX}{CY}$ không đổi.
Vậy $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC$ nên theo bổ đề $ERIQ$, trung điểm của $EF$ luôn nằm trên đường thẳng cố định. \medskip

Cách 2. Trước hết ta phát biểu và chứng minh bổ đề sau: \textbf{(IMO2009 Shortlist G4)} Cho tứ giác $ABCD$ nội tiếp đường tròn $(O).$ $AC$ cắt $BD$ ở $E,$ $AD$ cắt $BC$ tại $F.$ Gọi $M,N$ lần lượt là trung điểm của $AB,CD$. Khi đó, $EF$ tiếp xúc với đường tròn ngoại tiếp của $\vartriangle EMN.$
Chứng minh.
Gọi $I$ là trung điểm của $EF.$ Xét tứ giác toàn phần $AEBF.CD$ có $I,M,N$ lần lượt là trung điểm của các đường chéo $EF,AB,CD$ nên $I,M,N$ thẳng hàng.


Ta sẽ chứng minh $\overline{IM}.\overline{IN}=I{{E}^{2}}.$
Gọi $L,P,T$ lần lượt là giao điểm của $AB$ với $CD$, $EF$ với $AB,CD$. Khi đó,
$(LP,AB)=(LT,CD)=-1$
nên áp dụng hệ thức $Maclaurin$ và $ABCD$ là tứ giác nội tiếp, ta thu được
$\overline{LM}.\overline{LP}=\overline{LA}.\overline{LB}=\overline{LC}.\overline{LD}=\overline{LT}.\overline{LN}$
nên 4 điểm $M,P,N,T$ nằm trên đường tròn.
Do đó, $\overline{IM}.\overline{IN}=\overline{IP}.\overline{IT}.$
Mặt khác, ta lại có $(EF,PT)=-1$ nên theo $I{{E}^{2}}=\overline{IT}.\overline{IP}$.
Vậy $\overline{IM}.\overline{IN}=I{{E}^{2}}.$ Do đó, $EF$ là tiếp tuyến của đường tròn ngoại tiếp $\vartriangle EMN.$ (đpcm)

Trở lại bài toán,
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $I,P,Q$ lần lượt là trung điểm của $BC,EF,MN.$

Theo lời giải thứ nhất, ta có 4 điểm $M,N,E,F$ nằm trên đường tròn nên theo bổ đề 4 thì $BC$ là tiếp tuyến của $(QCP)$ hay $I{{C}^{2}}=\overline{IQ}.\overline{IP}.$

Do đó, $I_I^{IC^2}:P\leftrightarrow Q.$ (1)
Mặt khác $V_{N}^{2}:Q\mapsto M$ mà $M$ chuyển động trên cung $BHC$ nên $Q$ chuyển động trên đường tròn $(\omega )$ cố định. (2)

Từ (1) và (2), ta thu được $P$ chuyển động trên đường thẳng ảnh của $(\omega )$ qua ${I}_{I}^{IC^2}:P\leftrightarrow Q.$

Nhận xét. Qua các bài toán trên, ta có thể thấy được ứng dụng của bổ đề $ERIQ$ trong các bài toán hình học. Sau đây sẽ là một số các bài toán luyện tập.

Bài tập tự giải.

  1. Cho $\vartriangle ABC$ nội tiếp $(O)$. Tiếp tuyến của $(O)$ tại $A$ cắt tiếp tuyến của $(O)$ tại $B,C$ lần lượt tại $E,F$. Gọi $M,N$ là trung điểm của $BF,CE$. Đường thẳng qua $O$ và vuông góc với $OA$ cắt $BC$ tại $S$. Chứng minh rằng $MN$ chia đôi $SO$.

  2. Cho $\vartriangle ABC,$ trực tâm $H$, trung tuyến $AM.$ $P$ bất kỳ trên $HM$. Đường tròn đường kính $AP$ cắt $CA,AB$ tại $E,F$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Chứng minh rằng $TB=TC.$

  3. Cho $\vartriangle ABC$, đường tròn $(K)$ đi qua $B,C$ cắt $CA,AB$ tại $E,F$. Gọi $H$ là giao điểm của $BE,CF.$ Lấy $P$ bất kỳ trên $BC$. Đường thẳng qua $P$ và song song với $AH$ cắt $CA,AB$ tại $X,Y.$Lấy $Q$ bất kỳ trên $HP.$ Đường thẳng qua $Q$ song song với $BE,CF$ cắt $CA,AB$ tại $X,Y,Z,T.$ \
    a) Chứng minh rằng 4 điểm $X,Y,Z,T$ nằm trên đường tròn $(L)$. \
    b) $KL$ cắt trung trực $PQ$ tại $Z$. Chứng minh rằng $\vartriangle ZPQ\sim \vartriangle KBC.$

  4. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC.$ Đường thẳng qua $P$ song song với $CA,AB$ cắt trung trực $BA,AC$ tại $M,N$. Chứng minh rằng khi $P$ chuyển động trên $BC$, tâm đường tròn ngoại tiếp của $\vartriangle MNP$ luôn nằm trên một đường thẳng cố định.

  5. (Việt Nam TST 2008) Cho $\triangle ABC$ nhọn không cân nội tiếp $(O).$ Với $k\in {{\mathbb{R}}^{+}},$ trên các đoạn phân giác $AD,BE,CF,$ lấy $M,N,P$ sao cho $\frac{AM}{AD}=\frac{BN}{BE}=\frac{CP}{CF}=k.$

Vẽ đường tròn $({{O}_{1}})$ đi qua $A,M$ và tiếp xúc với $OA;$

Vẽ đường tròn $({{O}_{2}})$ đi qua $B,N$ và tiếp xúc với $OB;$

vẽ đường tròn $({{O}_{3}})$ đi qua $C,P$ và tiếp xúc với $OC.$

Tìm tất cả các giá trị $k$ sao cho $(O_1),(O_2),(O_3)$ có đúng hai điểm chung.

  1. Cho tam giác $ABC$ nhọn không cân có điểm $D$ thay đổi trong tam giác sao cho $\angle ABD=\angle ACD,$ lấy $E\in AB,F\in AC$ sao cho $D$ là trực tâm tam giác $AEF.$ Chứng minh rằng:
    a) Trung tuyến đỉnh $D$ của tam giác $DEF$ luôn đi qua điểm cố định.
    b) Trung trực $EF$ luôn đi qua điểm cố định.
    c) Tâm đường tròn ngoại tiếp tam giác $(DEF)$ luôn thuộc đường cố định.
    d) Trục đẳng phương của $(BDE),(CDF)$ luôn đi qua một điểm cố định.

Tài liệu tham khảo.

  1. Nguyễn Văn Linh, Về bài 3 đề VMO 2016.
  2. Nguyễn Văn Linh, 2015, Định lý ERIQ, \url{https://nguyenvanlinh.wordpress.com
  3. Diễn đàn \url{artofproblemsolving.com/community
  4. Trần Quang Hùng, Các bài giảng đội tuyển.

Bội chung – Bội chung nhỏ nhất

Bội chung. Một số là bội chung của hai hay nhiều số khi nó là bội của tất cả các số đó.

Kí hiệu bội chung của $a, b$ là BC(a, b).

Ví dụ 1. B(4) = {0, 4, 8, 12, 16, 20,…} và B(6) = {0, 6, 12, 18, 24, 30,…}

Thì BC(4,6) = {0, 12, 24, …}

Cách tìm bội chung của a và b

  • Tìm tập các bội của a là B(a), tìm bội của b là B(b)
  • Tìm các phần tử của của B(a) và B(b), ta được BC(a, b).

Bội chung nhỏ nhất. 

Bôi chung nhỏ nhất của hai hay nhiều số là số khác 0 nhỏ nhất trong tập các bội chung của nó.

Kí hiệu là BCNN(a,b).

Chú ý. Nếu $a \neq 1$ thì BCNN(a,1) = a và BCNN(a,b,1) = BCNN(a,b).

Ví dụ 2. Một lớp có không quá 42 học sinh. Nếu xếp hàng 4 hoặc hàng 6 thì vừa đủ. Nếu xếp hàng 5 thì thừa 1 em. Hỏi lớp đó có bao nhiêu học sinh?
Lời giải.
Số học sinh của lớp đó là bội chung của 4 và 6 .

Ta có $\mathrm{BCNN}(4,6)=12$ nên $\mathrm{BC}(4,6)={0 ; 12 ; 24 ; 36 ; 48 ; \ldots}$.
Vi số học sinh của lớp đó không quá 42 và là một số chia cho 5 dư 1 nên lớp đó có 36 học sinh.

Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  • Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Ví du 5: Tìm BCNN của 12,90 và 150 .
Lời giải.
– Phân tích mỗi số $12,90,150$ ra thừa số nguyên tố:
$$
12=2^{2} \cdot 3 ; 90=2 \cdot 3^{2} \cdot 5 ; 150=2 \cdot 3 \cdot 5^{2} .
$$
– Các thừa số nguyên tố chung và riêng là 2,3 và 5 .
– Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: $2^{2} \cdot 3^{2} \cdot 5^{2}$
Vậy $\operatorname{BCNN}(12,90,150)=2^{2} \cdot 3^{2} \cdot 5^{2}=900$.

Ứng dụng trong quy đổng mẫu các phân số

Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

  • Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.
  • Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).
  • Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

Ví dụ 6. Ta có thể quy đồng mẫu hai phân số $\frac{1}{6}$ và $\frac{5}{8}$ theo hai cách như sau:
Ta có: 48 là một bội chung của 6 và 8 ; Ta có: $\mathrm{BCNN}(6,8)=24$;

Do đó: $\quad 24: 6=4 ; 24: 8=3$.

$\frac{1}{6}=\frac{1.4}{6.4}=\frac{4}{24}$ và $\frac{5}{8}=\frac{5.3}{8.3}=\frac{15}{24}$.

 

Bài tập rèn luyện.

Bài 1. Tìm:
a) $\mathrm{BC}(6,14)$;
b) $\mathrm{BC}(6,20,30)$
c) $\mathrm{BCNN}(1,6)$
d) $\mathrm{BCNN}(10,1,12)$;
e) $\mathrm{BCNN}(5,14)$.
Bài 2. a) Ta có $\mathrm{BCNN}(12,16)=48$. Hãy viết tập hợp A các bội của 48 . Nhận xét về tập hợp $\mathrm{BC}(12,16)$ và tập hợp $\mathrm{A}$.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của $\mathrm{BCNN}(\mathrm{a}, \mathrm{b})$. Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30 ; $\quad$ ii. 42 và 60 ; $\quad$ iii. 60 và 150 ; $\quad$ iv. 28 và 35 .
Bài 3. Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
a) $\frac{3}{16}$ và $\frac{5}{24}$;
b) $\frac{3}{20} ; \frac{11}{30}$ và $\frac{7}{15}$

Bài 4. Chị Hoà có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hoà có bao nhiêu bông sen? Biết rằng chị Hoà có khoảng từ 200 đến 300 bông.

Ước chung lớn nhất

Ước chung

  • Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
  • Tập các ước chung của $a$ và $b$ kí hiệu ƯC(a,b). Ta có x thuộc ƯC(a,b) khi và chỉ khi $a \vdots x$ và $b \vdots x$.

Ví dụ 1. Ư(12) = {1, 2, 3, 4, 6, 12}, Ư(8) = {1, 2, 4, 8}

Thì ước chung của 12 và 8 là 1, 2, 4, kí hiệu ƯC(8,12) = {1, 2, 4}.

Cách tìm ước chung của $a$ và $b$.

  • Tìm tập các số là ước của $a$, tập các ước của $b$.
  • Tìm các phần tử của của hai tập trên ta được tập ước chung của $a$ và $b$.

Ví dụ 2. Tìm ước chung của 24 và 30.

Ta có Ư(24) = {1, 2, 3, 4, 6, 8, 12, 24}, Ư(30) = {1, 2, 3, 5, 6, 15, 30}

Khi đó ƯC(24,30) = {1, 2, 3, 6}.

Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của $a$ và $b$ là ƯCLN(a,b)

Ví dụ 3. ƯC(24,30) = {1, 2, 3, 6}, ƯCLN(24,30) = 6.

Ví dụ 4. Các bạn học sinh lớp 6 A đang lên kế hoạch làm sạch môi trường ở địa phương. Cả lớp có 12 bạn nữ và 18 bạn nam. Các bạn muốn chia lớp thành các nhóm nhỏ gồm cả nam và nữ sao cho số bạn nam và số bạn nữ được chia đều vào các nhóm. Có thể chia được nhiều nhất thành bao nhiêu nhóm học sinh? Khi đó, mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Lời giải.

  • Số nhóm được chia phải là ước của cả 12 và 18 .
  • Số nhóm được chia phải là nhiều nhất có thể. Vì vậy, số nhóm được chia là ước chung lớn nhất của 12 và 18 .

Ta có $\mathrm{U}^{\circ} \mathrm{CLN}(12,18)=6$. Do đó cần chia lớp thành 6 nhóm.

Số học sinh trong mỗi nhóm là $(12+18): 6=5$ (học sinh).

Vậy mỗi nhóm có 5 học sinh, gồm 2 nữ và 3 nam.

Cách tìm ước chung lớn nhất của $a, b$ bằng phân tích thành thừa số nguyên tố.

Muốn tìm U’CLN của hai hay nhiều số lớn hơn 1 , ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.
    Tích đó là ƯCLN phải tìm.

Ví dụ 5. Tìm ước chung lớn nhất của 24 và 30.

Lời giải.

Ta có $24 = 2^3 \cdot 3$ và $30 = 2 \cdot 3 \cdot 5$.

Ta có ƯCLN (a, b) = 2 \cdot 3 = 6.

Định nghĩa. Hai số có ước chung lớn nhất bằng 1 được gọi là nguyên tố cùng nhau. 

Kí hiệu hai số $a, b$ nguyên tố cùng nhau là (a,b) = 1

Ứng dụng tối giản phân số. Khi rút gọn $\frac{90}{126}$, ta chia cả tử số và mẫu số cho
một ước chung của 90 và 126 để được phân số mới. Tiếp tục
quy trình đó đến khi không rút gọn cho đến khi
tử số và mẫu số của chúng không có ước chung nào khác 1
(tử số và mẫu số là hai số nguyên tố cùng nhau). Khi đó, ta
được một phân số tối giản.

Bài tập rèn luyện

Bài 1. Tìm:
a) $\mathrm{UCLN}(1,16)$;
b) $\operatorname{UCLN}(8,20)$
c) UCLN $(84,156)$;
d) UCLN $(16,40,176)$.
Bài 2. a) Ta có $\mathrm{U}^{\prime} \mathrm{CLN}(18,30)=6$. Hãy viết tập hợp A các ước của 6 . Nêu nhận xét về tập hợp UC $(18,30)$ và tập hợp $\mathrm{A}$.
b) Cho hai số a và b. Để tìm tập hợp $\mathrm{UC}(\mathrm{a}, \mathrm{b})$, ta có thể tìm tập hợp các ước của $\mathrm{U}^{\circ} \mathrm{CLN}(\mathrm{a}, \mathrm{b})$. Hãy tìm UCLN rồi tìm tập hợp các ước chung của:
i. 24 và 30 ;
ii. 42 và 98 ;
iii. 180 và 234 .
Bài 3. Rút gọn các phân số sau: $\frac{28}{42} ; \frac{60}{135} ; \frac{288}{180}$.
Bài 4. Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là $140 \mathrm{~cm}, 168 \mathrm{~cm}$ và $210 \mathrm{~cm}$. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

BÀI GIẢNG ƯỚC CHUNG LỚN NHẤT VÀ MỘT SỐ TÍNH CHẤT

Số nguyên tố – Hợp số

Định nghĩa. 

  • Số nguyên tố là số tự nhiên lớn hơn 1 có hai ước là 1 và chính nó/
  • Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước số.

Ví dụ 1. Số 17 là số nguyên tố, 18 là hợp số.

Chú ý. Số 0 và 1 không phải là số nguyên tố, cũng không phải là hợp số.

Phân tích một số là thừa số nguyên tố là viết số đó thành tích các thừa số nguyên tố.

Ví dụ 2. $12 = 2 \cdot 2 \cdot 3$ viết gọn là $12 = 2^2 \cdot 3$.

Chú ý:
– Mọi số tự nhiên lớn hơn 1 đều phân tích được thành tích các thừa số nguyên tố.
– Mỗi số nguyên tố chỉ có một dạng phân tích ra thừa số nguyên tố là chính số đó.
– Có thể thu gọn thành dạng lũy thừa.

Cách phân tích thành thừa số nguyên tố.

 

Bài tập có lời giải.

Bài 1. Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
a) 213 ;
b) 245 ;
c) 3737
d) 67 .

Lời giải


Bài 2.Lớp của bạn Hoàng có 37 học sinh. Trong một lần thi đồng diễn thể dục, các bạn lớp Hoàng muốn xếp thành các hàng có cùng số bạn để được một khối hình chữ nhật có ít nhất là hai hàng. Hỏi các bạn có thực hiện được không? Em hãy giải thích.

Lời giải

Bài 3.Hãy cho ví dụ về:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố. Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.

Lời giải

Bài 4.Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
a) 80 ;
b) 120 ;
c) 225 ;
d) 400 .

Lời giải

Bài 5.Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
a) 1024 ;
b) $242 ;$
c) 375 ;
d) 329 .

Lời giải

Bài 6. Cho số $\mathrm{a}=2^{3} .3^{2}$. 7. Trong các số $4,7,9,21,24,34,49$, số nào là ước của a?
Bình dùng một khay hình vuông cạnh $60 \mathrm{~cm}$ để xếp bánh chưng. Mỗi chiếc bánh chưng hình vuông có cạnh $15 \mathrm{~cm}$. Bình có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay này không? Giải thích.

Lời giải

Bài tập tự giải

Dấu hiệu chia hết cho 3, 9

Dấu hiệu chia hết cho 9. Các số có tổng các chữ số chia hết thì chia hết cho 9 và chỉ các số đó mới chia hết cho 9.

Ví dụ. Trong các số sau, số nào chia hết cho 9

a) 315, 216, 325, 871, 909

b) 126 + 324, 369 + 127

Dấu hiệu chia hết cho 3. Các số có tổng các chữ số chia hết thì chia hết cho 3 và chỉ các số đó mới chia hết cho 3.

Ví dụ. Trong các số sau, số nào chia hết cho 3.

a) 214, 327, 123, 457

b) 132 + 546, 216 + 829

Bài tập rèn luyện

Bài 1. Cho các số: $117 ; 3447 ; 5085 ; 534 ; 9348 ; 123$.
a) Em hãy viết tập hợp A gồm các số chia hết cho 9 trong các số trên.
b) Có số nào trong các số trên chỉ chia hết cho 3 mà không chia hết cho 9 không? Nếu có, hãy viết các số đó thành tập hợp $\mathrm{B}$.

Bài 2. Không thực hiện phép tính, em hãy giải thích các tổng (hiệu) sau có chia hết cho 3 hay không, có chia hết cho 9 hay không.
a) $1260+5306$;
b) $436-324$
c) $2.3 .4 .6+27$.
Bài 3. Bạn Tuấn là một người rất thích chơi bi nên bạn ấy thường sưu tầm những viên bi rồi bỏ vào 4 hộp khác nhau, biết số bi trong mỗi hộp lần lượt là $203,127,97,173$.
a) Liệu có thể chia số bi trong mỗi hộp thành 3 phần bằng nhau được không? Giải thích.
b) Nếu Tuấn rủ thêm 2 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?
c) Nếu Tuấn rủ thêm 8 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?

Dấu hiệu chia hết 2,5

Dấu hiệu chia hết cho 2. Các số có chữ số tận cùng là 0, 2, 4, 6, 8 (các chữ số chẵn) thì chia hết cho 2 và chỉ các số đó mới chia hết cho 2.

Ví dụ 1. Trong các số sau, số nào chia hết cho 2: 2012, 123, 311, 4024, 1998

Dấu hiệu chia hết cho 5. Các số có chữ số tận cùng là 0, 5 thì chia hết cho 5 và chỉ các số đó mới chia hết cho 5.

Ví dụ 2. Trong các số sau, số nào chia hết cho 5: 214, 315, 420, 611.

Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 25) Trong những số sau: $2023,19445,1010$, số nào:
a) chia hết cho $2 ?$
b) chia hết cho 5 ?
c) chia hết cho $10 ?$

Lời giải


Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 25)Không thực hiện phép tính, em hãy cho biết những tổng (hiệu) nào sau đây chia hết cho 2 , chia hết cho 5 .
a) $146+550$;
b) $575-40$
c) $3.4 .5+83$
d) $7.5 .6-35.4$

Lời giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 25) Lớp $6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}, 6 \mathrm{D}$ lần lượt có $35,36,39,40$ học sinh.
a) Lớp nào có thể chia thành 5 tổ có cùng số tổ viên?
b) Lớp nào có thể chia tất cả các bạn thành các đôi bạn học tập?

Lời giải

Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 25) Bà Huệ có 19 quả xoài và 40 quà quýt. Bà có thể chia số quả này thành 5 phần bằng nhau (có cùng số xoài, có cùng số quýt) được không?

Lời giải

Bài tập tự luyện

Lũy thừa của một số tự nhiên

1.Lũy thừa của một số tự nhiên

Lũy thừa bậc $\mathrm{n}$ của a, kí hiệu $\mathrm{a}^{\mathrm{n}}$, là tích của $\mathrm{n}$ thừa số $\mathrm{a}$.
$$
\mathrm{a}^{\mathrm{n}}=\underbrace{\mathrm{a} \cdot \mathrm{a} \ldots \ldots \mathrm{a}}_{\mathrm{n} \text { thừa số a }} \quad(\mathrm{n} \neq 0)
$$

  • Ta đọc $\mathrm{a}^{\mathrm{n}}$ là “a $m \tilde{u} \mathrm{n}$ ” hoặc “a lũy thừa n” hoặc “lũy thừa bậc $\mathrm{n}$ của a”.
  • Số a được gọi là cơ số, n được gọi là số $m \tilde{u}$. Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên luỹ thìa.
  • Đặc biệt, $\mathrm{a}^{2}$ còn được đọc là a bình phương hay bình phương của a và a $^{3}$ còn được đọc là a lập phương hay lập phương của a.
  • Quy ước: $\mathrm{a}^{1}=\mathrm{a}$.

Ví dụ 1. $10^4 = 10 \cdot 10 \cdot 10 \cdot 10$.

2.Tính chất.

a) Khi nhân hai luỹ thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
$$
a^{m} \cdot a^{n}=a^{m+n}
$$

a) Khi chia hai luỹ thừa cùng cơ số (khác 0 ), ta giữ nguyên cơ số và trừ các số mũ.
$$
\mathrm{a}^{\mathrm{m}}: \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}(\mathrm{a} \neq 0 ; \mathrm{m} \geq \mathrm{n})
$$
Quy ước: $\mathrm{a}^{0}=1$.

Ví dụ 2. 

a) $2^{10} = 2^7 \cdot 2^3$.

b) $3^5 = 3^7 : 3^2$.

3.Các ví dụ thực hành

Ví dụ 3. a) Viết các tích sau dưới dạng luỹ thừa:
$$
3.3 .3 ; \quad 6.6 .6 .6 .
$$
b) Phát biểu hoàn thiện các câu sau:
$3^{2}$ còn gọi là “3 …” hay “… của 3”; $5^{3}$ còn gọi là “5 …” hay “… của 5”.
c) Hãy đọc các luỹ thừa sau và chỉ rõ cơ số, số mũ: $3^{10} ; 10^{5}$.

Lời giải

 

 

Ví dụ 4. Viết các tích sau dưới dạng một luỹ thừa:  3^{3} \cdot 3^{4} ; 10^{4} \cdot 10^{3} ; \mathrm{x}^{2} \cdot \mathrm{x}^{5}$.

Lời giải

 

 

Ví dụ 5. a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$11^{7}: 11^{3}$ $11^{7}: 11^{7}$
$7^{2} \cdot 7^{4}$ $7^{2} \cdot 7^{4}: 7^{3}$
b) Cho biết mỗi phép tính sau đúng hay sai.
$$
\begin{array}{ll}
9^{7}: 9^{2}=9^{5} ; & 7^{10}: 7^{2}=7^{5} ; \
2^{11}: 2^{8}=6 ; & 5^{6}: 5^{6}=5 .
\end{array}
$$

Lời giải

 

 

4.Bài tập rèn luyện

Bài 1.(SGK CTST Toán 6 Tập 1 – Trang 18) a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$$
\begin{array}{lll}
5^{7} .5^{5} ; & 9^{5}: 8^{0} ; & 2^{10}: 64.16
\end{array}
$$
b) Viết cấu tạo thập phân của các số $4983 ; 54297 ; 2023$ theo mẫu sau:
$$
4983=4.1000+9.100+8.10+3
$$
$$
=4.10^{3}+9.10^{2}+8.10+3
$$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 18)Theo Tổng cục Thống kê, tháng 10 năm 2020 dân số Việt Nam được làm tròn là 98000000 người. Em hãy viết dân số Việt Nam dưới dạng tích của một số với một luỹ thừa của $10 .$

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 18)Biết rằng khối lượng của Trái Đất khoảng $600 \ldots 00$(21  số  0) tấn, khối lượng của Mặt Trăng khoảng
$7500 \ldots 00$(18 số  0) tấn.
a) Em hãy viết khối lượng Trái Đất và khối lượng Mặt Trăng dưới dạng tích của một số với một luỹ thừa của $10 .$
b) Khối lượng Trái Đất gấp bao nhiêu lần khối lượng Mặt trăng.

Chuyên đề: Biến đổi biểu thức

RÚT GỌN BIẾN ĐỔI BIỂU THỨC CHỨA CĂN THỨC

Chuyên đề này đề cập tới các bài toán rút gọn biểu thức, chứng minh các đẳng thức, tính toán biểu thức,…Đây là chuyên đề quan trọng, rèn luyện kĩ năng biến đổi đại số cho các em, là kĩ năng ta sẽ dùng sau này.

Kiến thức là toàn bộ chương căn bậc hai, các hằng đẳng thức và kĩ năng biến đổi đã học ở lớp 8.

Các bạn có thể xem trước các bài cơ bản ở đây.

Dạng 1. Tính toán rút gọn

Ví dụ 1. Đặt $x = \sqrt{2}+\sqrt{3}$.
a) Chứng minh rằng $x^4 – 10x^2 + 1 = 0$.
b) Tìm giá trị của biểu thức $P(x) = (x^6 – 11x^4 + 11x^2 + 1)^{2019}$.

Lời giải

 

 

 

 

 

 

 

Ví dụ 2.  Cho $x$ thỏa $x \geq 2$. Rút gọn biểu thức $$A = \dfrac{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} – 2}}{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} + 2}}$$

Lời giải

Ví dụ 3.

a) Chứng minh rằng với mọi số nguyên dương n ta có: $$1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} = {\left( {1 + \dfrac{1}{n} – \dfrac{1}{{n + 1}}} \right)^2}$$
b) Tính tổng $$S = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} + \cdots + \sqrt {1 + \dfrac{1}{{{{2021}^2}}} + \dfrac{1}{{{{2022}^2}}}} $$

Lời giải

Ví dụ 4. Rút gọn biểu thức: $$A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + \cdots + \dfrac{1}{{2019\sqrt {2018} + 2018\sqrt {2019} }}$$

Lời giải

Dạng 1. Chứng minh đẳng thức

Ví dụ 5. Cho $a, b \ge 0, a^2>b$. Chứng minh $$\sqrt{a+\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$ và $$\sqrt{a-\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$

Lời giải

Ví dụ 6. Cho $a, b >0, c \neq 0$. Chứng minh rằng:
$$ \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0 \Leftrightarrow \sqrt {a + b} = \sqrt {a + c} + \sqrt {b + c} $$

Lời giải

Ví dụ 7. Cho $xy + \sqrt {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} = a > 1$. Tính $S = x\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} $.

Lời giải

Ví dụ 8. Đặt $a_n = \sqrt[4]{2} + \sqrt[n]{4}, n = 2, 3…$. Chứng minh rằng $$ \dfrac{1}{a_5}+\dfrac{1}{a_6}+\dfrac{1}{a_{12}}+\dfrac{1}{a_{20}} = \sqrt[4]{8} $$

Lời giải

Ví dụ 9.  Chứng minh rằng nếu $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{{a + b + c}}$ thì với mọi số nguyên dương lẻ n ta có $\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} = \sqrt[n]{{a + b + c}}$.

Lời giải

Dạng 3. Hữu tỉ và vô tỉ

Ví dụ 10. 

a) Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

b) Cho $n$ và số tự nhiên và $m$ là số tự nhiên thỏa $n^2 < m < (n+1)^2$. Chứng minh $\sqrt{m}$ là một số vô tỉ.

Lời giải

Ví dụ 11. Chứng minh số
$A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}$ là một số nguyên.

Lời giải

Ví dụ 12. 

a) Chứng minh rằng nếu $a, b$ là các số hữu tỉ thỏa $a+b\sqrt{2} = 0$ thì $a = b= 0$.

b) Tìm các số $a, b$ hữu tỉ thỏa $\sqrt{a} +\sqrt{b} = \sqrt{2+\sqrt{3}}$.

 

Bài tập rèn luyện.

Bài 1. Với mọi $x \ge 2$. Chứng minh rằng $$\sqrt{\sqrt{x}+\sqrt{\dfrac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\dfrac{x^2-4}{x}}}=\sqrt{\dfrac{2x+4}{\sqrt{x}}}$$

Bài 2. Rút gọn $A=\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{(x+y)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{(x^2+y^2)^2}}}$

Bài 3. Cho $x,y<0$. Chứng minh $|\sqrt{xy}-\dfrac{x+y}{2}|+|\dfrac{x+y}{2}+\sqrt{xy}|=|x|+|y|.$
Bài 4. Cho các số $x,y,z>0$ và đôi một phân biệt. Chứng minh giá trị của $P$ không phụ thuôc vào $x,y,z$ với
$$P=\dfrac{x}{(\sqrt{x}-\sqrt{y})(\sqrt{x}-\sqrt{z})}+\dfrac{y}{(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{x})}+\dfrac{z}{(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})}.$$
Bài 5.  Cho $a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1$.

a) Chứng minh: $a^4-14a^2+9=0$.
b) Cho $f(x)=x^5+2x^4-14x^3-28x^2+9x+19$. Tính $f(a).$

Bài 6.  Cho $a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[38]{38-17\sqrt{5}}$ và $f(x)=(x^3+3x+2018)^{2018}$. Tính $f(a).$
Bài 7.  Cho $x=1+\sqrt[3]{2}+\sqrt[3]{4}$. Tính $x^5-4x^4+x^3-x^2-2x+2018.$

Bài 8. Cho $f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}, n \in \mathbb{N}^*$. Tính $f(1)+f(2)+…+f(2018)$. %NTK

Bài 9.  Cho $f(n)=\dfrac{2n+1+\sqrt{n(n+1)}}{\sqrt{n}+\sqrt{n+1}}$. Tính $f(1)+f(2)+…+f(n).$ %NTK
Bài 10. Cho $x,y,z >0$ thoả $xyz=4$. Tính giá trị biểu thức $$A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}.$$

Bài 11.  Cho các số dương $x,y,z$ thoả $\begin{cases} x+y+z=2&\\\sqrt{x}+\sqrt{y}+\sqrt{z}=2 \end{cases}$. Tính $$A=\sqrt{(1+x)(1+y)(1+z)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right).$$

Bài 12.  Cho các số $abc \ne 0$ thoả $a+b+c=0$. Chứng minh $$\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\big|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\big|$$

Bài 13.  Cho $a,b,c>0$ thoả $a\sqrt{1-b^2}+b\sqrt{1-c^2}+c \sqrt{1-a^2}=\dfrac{3}{2}.$\ Chứng minh $a^2+b^2+c^2=\dfrac{3}{2}.$
Bài 14.  Tìm tất cả các số thực $a,b,c$ thoả $\sqrt[3]{a-b}+\sqrt[3]{b-c}+\sqrt[3]{c-a}=0.$ %105-38
Bài 15. Cho các số $a_1, a_2,…,a_n$ thoả $a_1=1, a_{n+1}=\dfrac{\sqrt{3}+a_n}{1-\sqrt{3}a_n}$. Tính $a_{2020}$.
Bài 16.  Chứng minh rằng nếu $\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a$ thì $$\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2} $$