Phương trình đưa về phương trình bậc nhất

1.Cách giải

Khi giải phương trình, chúng ta thường tìm cách biến đổi (dùng quy tắc chuyển vế hay quy tắc nhân) để đưa phương trình đó về dạng biết cách giải (đơn giản nhất là dạng $ax+b=0$ hay $ax=-b$).

2.Chú ý

  • Trong một vài trường hợp, ta còn có những cách biến đổi khác đơn giản hơn (ngoài việc bỏ dấu ngoặc và quy đồng mẫu).
  • Qúa trình giải có thể dẫn đến các trường hợp đặc biệt là hệ số của ẩn bằng $0$. Khi đó, phương trình có thể vô nghiệm hoặc nghiệm đúng với mọi $x$.

3. Ví dụ: Giải các phương trình sau:
a) $ 2(x-3)=12 $

Giải

$ 2(x-3)=12 $

$\Leftrightarrow 2x-6=12$

$\Leftrightarrow 2x=18$

$\Leftrightarrow x=9$

Tập nghiệm của phương trình: $S=\{9\}.

 

b)  $ x-(8+x)=4 $

Giải

$ x-(8+x)=4 $

$\Leftrightarrow x-8-x=4$

$\Leftrightarrow 0x=12$

$\Leftrightarrow 0=12 $ (vô lý)

Vậy phương trình trên vô nghiệm.

c) $ \dfrac{7x-1}{6}+2x=$ \dfrac{16-x}{5} $

Giải

$ \dfrac{5(7x-1)}{30}+\dfrac{30 \cdot 2x}{30}=$ \dfrac{6(16-x)}{30} $

$\Leftrightarrow 35x-5+60x=96-6x$

$\Leftrightarrow 95x-5=96-6x$

$\Leftrightarrow 95x+6x=96+5$

$\Leftrightarrow 101x=101$

$\Leftrightarrow x=1$

Tập nghiệm của phương trình: $S=\{1\}.

d)  $ (x+3)^2=x^2+4x $

Giải

$ (x+3)^2=x^2+4x $

$\Leftrightarrow x^2+6x+9=x^2+4x$

$\Leftrightarrow x^2-x^2+6x-4x=-9$

$\Leftrightarrow 2x=-9$

$\Leftrightarrow x=-\dfrac{9}{2}$

Tập nghiệm của phương trình: $S=\{-\dfrac{9}{2}\}.

4. Bài tập

Bài 1. Giải các phương trình sau:

a) $ 4x+20=0 $
b)  $ 2x-3=3(x-1)+x+2 $
c) $ (x-1)(x+3)=x^2+4 $
d) $ x-(x+2)(x-3)=4-x^2 $.

Bài 2. Giải các phương trình ẩn $ x $ sau:

a) $ \dfrac{x+2}{5}=3 $
b) $ \dfrac{3x-2}{7}=4 $
c) $\dfrac{x-2}{3}=1 $
d) $ \dfrac{x}{2}=x+5 $.

Bài 3. Giải các phương trình sau:

a) $ (x-1)^2+(x+3)^2=2(x-2)(x+1)+38 $
b) $ 5(x^2-2x-1)+2(3x-2)=5(x+1)^2 $
c) $(x-3)^3-2(x-1)=x(x-2)^2-5x^2 $
d) $ x(x+3)^2-3x=(x+2)^3+1 $.

Bài 4. Tìm giá trị của $ m $ sao cho phương trình:

a) $ 12-2(1-x)^2=4(x-m)-(x-3)(2x+5) $ có nghiệm $ x=3. $
b) $ (9x+1)(x-2m)=(3x+2)(3x-5) $ có nghiệm $ x=1. $

Phương trình bậc nhất một ẩn

1.Định nghĩa phương trình bậc nhất một ẩn

Phương trình dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \neq 0$, được gọi là phương trình bậc nhất một ẩn.

2. Hai quy tắc biến đổi phương trình

a) Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

b) Quy tắc nhân với một số: Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác $0$.

3. Cách giải phương trình bậc nhất một ẩn

  • Từ một phương trình, dùng quy tắc chuyển vế hay quy tắc nhân, ta luôn nhận được một phương trình mới tương đương với phương trình đã cho.
  • Phương trình bậc nhất $ax+b=0$ (với $a \neq 0$) được giải như sau:

$ax+b=0 \Leftrightarrow ax=-b \Leftrightarrow x = -\dfrac{b}{a}$

Vậy phương trình bậc nhất $ax+b=0$ luôn có một nghiệm duy nhất $x = -\dfrac{b}{a}$.

Ví dụ 1: 

Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) $ 1-x=0 $
b) $ x^3+1=0 $
c) $ 2+t=0 $
d) $ y=0 $
e) $ 0x-2=0 $.

Giải
  • Phương trình $ 1-x=0 $ là phương trình bậc nhất ẩn $x$ (vì có dạng $ax+b=0$ với $a=-1; b=1$).
  • Phương trình $ 2+t=0 $ là phương trình bậc nhất ẩn $t$ (vì có dạng $at+b=0$ với $a=1; b=2$).
  • Phương trình $ y=0 $ là phương trình bậc nhất ẩn $y$ (vì có dạng $ay+b=0$ với $a=1; b=0$).

Các phương trình còn lại không phải phương trình bậc nhất.

Ví dụ 2: 

Giải các phương trình:
a) $ 4x-12=0 $
b)  $ 5x+x+18=0 $
c) $ x-3=1-4x $
d) $ 6-2x=3-x $.

Giải

a) $ 4x-12=0 $

$\Leftrightarrow 4x=12$

$\Leftrightarrow x=12:4$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

b)  $ 5x+x+18=0 $

$\Leftrightarrow 6x+18=0$

$\Leftrightarrow 6x=-18$

$\Leftrightarrow x=-18:6$

$\Leftrightarrow x=-3$

Vậy tập nghiệm của phương trình là $S=\{-3\}$.

c) $ x-3=1-4x $

$\Leftrightarrow x+4x=1+4$

$\Leftrightarrow 5x=5$

$\Leftrightarrow x=5:5$

$\Leftrightarrow x=1$

Vậy tập nghiệm của phương trình là $S=\{1\}$.

d) $ 6-2x=3-x $

$\Leftrightarrow -2x+x=3-6$

$\Leftrightarrow -x=-3$

$\Leftrightarrow x=-3:(-1)$

$\Leftrightarrow x=3$

Vậy tập nghiệm của phương trình là $S=\{3\}$.

 

Ví dụ 3: 

Tìm giá trị của $ m, $ biết rằng phương trình: $ -4x^2+m^2=6x $ có nghiệm là $ x=\dfrac{1}{2} $.

Giải

Thay $ x=\dfrac{1}{2} $ vào $ -4x^2+m^2=6x $, ta được:

$ -4 \cdot \left(\dfrac{1}{2}\right)^2+m^2=6 \cdot \dfrac{1}{2} $

$\Leftrightarrow -1+m^2=3$

$\Leftrightarrow m^2=4$

$\Leftrightarrow m=2$ hoặc $m=-2$

Vậy $m=2$ hoặc $m=-2$.

 

4. Bài tập áp dụng

Bài 1. Trong các phương trình sau, phương trình nào là phương trình bậc nhất:
a) $ 3+3x=0 $
b) $ 5-4y=0 $
c) $ z^2-2z=0 $
d) $ 7t=0 $.

Bài 2. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
a) $ 2x^2-3=0 $
b) $ x+5=0 $
c) $ 0x-10=0 $
d)  $ x^2+2x-3=0 $.

Bài 3. Giải các phương trình:
a) $ x+5=7 $
b) $ 3=x-2 $
c) $ 2x=7+x $
d) $ 3x+1=5x+2 $.

Bài 4. Giải các phương trình:
a) $ 5x+35=0 $
b) $ 9x-3=0 $
c) $ 24-8x=0 $
d) $ -6x+16=0 $.

Bài 5. Giải các phương trình:
a) $ 7x-5=13-5x $
b) $ 2-3x=5x+10 $
c) $ 13-7x=4x-20 $
d) $ 11-9x=3-7x $.

Bài 6. Giải các phương trình sau:
a) $ \dfrac{3x}{4}=6 $
b) $ \dfrac{3}{5}x=-12 $
c) $ 7+\dfrac{5x}{3}=x-2 $
d) $ 1+\dfrac{x}{9}=\dfrac{4}{3} $.

Bài 7. Giải các phương trình sau, viết số gần đúng của mỗi nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
a) $ 3x=13 $
b) $ 16+9x=0 $
c) $ 6-2x=7x $

Bài 8. Tìm giá trị của $ m, $ sao cho phương trình sau nhận $ x=-3 $ làm nghiệm:
$ 4x+3m=3-2x. $

Bài 9. Cho hai phương trình ẩn $ x: \ 3x+3=0 \ (1); 5-kx=7 \ (2) $. Tìm giá trị của $ k $ sao cho nghiệm của phương trình $ (1) $ là nghiệm của phương trình $ (2) $.

Tập san Star Education – Số 3 năm 2019

Tập san Star Education là tập hợp các chuyên đề bài viết về toán do các giáo viên của Star Education biên soạn, ngoài ra còn có sự hợp tác của giáo viên học sinh khác nhằm đem đến cho bạn đọc một nguồn tài liệu mới tham khảo.

Tập san ra định kì mỗi năm hai số, tháng 11 và tháng 05.

tap san STAR 03-2019

Đáp án đề học kì môn toán 11 – PTNK năm học 2019 – 2020

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$

b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$

Bài 2.

a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ?

b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên.

Bài 3.  Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$

Bài 4. Cho cấp số cộng $u_{n}$ với công sai $d$ thỏa điều kiện:

$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$

$S_{n}=u_{1}+u_{2}+\ldots+u_{n} $. Tìm $u_{1}, d$.

Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung.

Bài 6. Cho hình chóp $S . A B C D$ có đáy là hình bình hành tâm $O, M, N$ lần lượt là trung điểm $S A, C D$.

a) Tìm giao tuyến của măt phẳng $(S A C)$ và $(S B D) ;(S A D)$ và $(S B N)$.

b) Gọi $G$ là trọng tâm tam giác $A C D, K$ là trọng tâm tam giác $S B D$. Chứng minh: $G K |(S A D) . B K$ cắt $S D$ tại $I$. Chứng minh $I$ thuộc mặt phẳng $(O M N)$

c) Chứng minh: $SB \parallel (O M N)$ và tìm giao điểm của mặt phẳng $(A N K)$ với $S B$.

Lời giải

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
$\Leftrightarrow \dfrac{1}{2} \sin 3 x-\dfrac{\sqrt{3}}{2} \cos 3 x=\cos 2 x$
$\Leftrightarrow \cos \left(3 x+\dfrac{\pi}{6}\right)=\cos (2 x+\pi)$
$\Leftrightarrow\left[\begin{array}{c}x=\dfrac{5 \pi}{6}+k 2 \pi \ x=-\dfrac{7 \pi}{6}+\frac{k 2 \pi}{5}\end{array}(k \in \mathbb{Z}\right.$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Điều kiện: $x \neq \dfrac{\pi}{6}+\dfrac{k \pi}{3}$
$\Leftrightarrow \sin 2 x+\sin 6 x-\sin 2 x=\cos 3 x$
$\Leftrightarrow \cos \left(\dfrac{\pi}{2}-6 x\right)=\cos 3 x$
$\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{18}-\frac{k 2 \pi}{9} \ x=\dfrac{\pi}{6}-\dfrac{k 2 \pi}{3}\end{array}(k \in \mathbb{Z})\right.$
So sánh với điều kiện, ta được hoăc $\dfrac{5 \pi}{18}+\dfrac{k 2 \pi}{3}$

Bài 2. 

$\quad$ a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ? Gọi số cần tìm: $\overline{a b c d}$ +TH1: a là số lẻ, có 4 cách Ta có: $4 \times A_{5}^{3}$
+TH2: a là số chãn, có 4 cách Ta chọn ra 1 số lẻ rồi xếp vào 3 vị trí còn lại: $4 \times 3$ Nên có: $4 \times 4 \times 3 \times A_{4}^{2}$
Do đó, có tất cả: 816 số.
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên. Không gian mẫu: $|\Omega|=C_{30}^{10}$ Xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình là: $P=\dfrac{C_{27}^{7}+3 C_{27}^{8}}{C_{30}^{10}}=\dfrac{51}{203}$.

Bài 3. 

Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Ta có: $A_{n}^{2}+3 C_{n+1}^{n}=38$
$\Leftrightarrow \dfrac{n !}{(n-2) !}+3 \cdot \dfrac{(n+1) !}{n !}=38$
$\Rightarrow n=5$
Nên $\left(\sqrt{x}-3 x^{3}\right)^{5}$ có $\mathrm{SHTQ}: C_{5}^{k}(-3)^{k} \cdot x^{\frac{5}{2}}(k+1)$
Theo ycbt ta được: $k=1$. Do đó, số hạng chứa $x^{5}$ là $-15 x^{5}$

Bài 4.
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
Từ phương trình ( 2 ) ta được: $d=15$, thế vào ta được $u_{1}=-155$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung. Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $M(x ; y) \in d_{1}$ qua phép đối xứng trục $d$. Ta có: $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x\end{array}\right.$
Nên ta có $d_{2}: 3 y^{\prime}-6 x^{\prime}-15=0$ hay $2 x-y+5=0$
Vậy giao điểm của $d_{2}$ và trục tung là $A(0 ; 5)$

Bài 6. 

a) $+(S A C) \cap(S B D)=S O$
$+$ Gọi $B N \cap A D=E .(S A D) \cap(S B N)=S E$
b) Ta có: $\dfrac{O G}{O D}=\dfrac{O K}{S}=\frac{1}{3}$
$\Leftrightarrow D K | S D$
Nên $G K |(S A D)$
Ta có: $K$ là trọng tâm tam giác $S B D$ nên $I$ là trung điểm $S D \Rightarrow M I | A D$. Ta lại có: $(M N O) \cap(S A D)=M x|A D| O N$.
Do đó: $I \in M x$ nên $I \in(O M N)$.
c) Gọi $F=O N \cap A B,$ ta được $F$ là trung điểm $A B$. $\Rightarrow M F | S B$
$\Rightarrow S B |(O M N)$
$+$ Ta thấy $(A K N) \cap(S B D)=K G$
Gọi $T=K G \cap S B$
Do đó: $T=S B \cap(A K N)$.

Giải nhanh đề học kì 1 gửi đến các em học sinh,  cảm ơn thầy Dương Trọng Đức đã đóng góp cho geosiro.com

LOP 11 PTNK_HK1