Đáp án Toán PTNK 2017

Bài 1. (Toán chung)  Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$

Gợi ý

a.

  • Ta có $\angle AOC = 2 \angle ABC = 90^\circ$ (góc ở tâm bằng 2 lần góc nội tiếp cùng chắn 1 cung).
  • Suy ra tam giác $OAC$ vuông tại $O$, suy ra $AC^2 = OA^2 + OC^2 = 2R^2 \Rightarrow AC = R\sqrt{2}$. Tứ giác $BNPC$ có $\angle BNC = \angle BPC =90^\circ$ nên là tứ giác nội tiếp.
    Suy ra $\angle HPN = \angle HBC = 90^\circ – \angle ACB = 75^\circ$.
  • Các tứ giác $ANBM$ và $BNPC$ nội tiếp nên $\angle ANM = \angle ABC = 45^\circ, \angle CNP = \angle PBC = 45^\circ$.
  • Suy ra $\angle MNP = \angle CNP + \angle CPN = 90^\circ$.
    Và $\angle NPB = \angle ACB = \angle APM = 15^\circ$, suy ra $\angle NPM = \angle NPB + \angle APM = 30^\circ$.
  • Khi đó $\dfrac{MN}{MP} = \sin \angle NPM = \sin 30^\circ = \dfrac{1}{2}$. Suy ra $\dfrac{MP}{MN} = 2$.

b.

  • Ta có $\angle AEF = 90^\circ$ (góc nội tiếp chắn nửa đường tròn).
    Ta có $\angle ANH = \angle AEH = \angle APH = 90^\circ$ nên 5 điểm $A, N, H, P E$ cùng thuộc đường tròn đường kính $AH$.
  • Ta có $\angle ABD = \angle ACD = 90^\circ$ (góc nội tiếp chắn nửa đường tròn),
    suy ra $AB \bot BD$, suy ra $HC || BD$.
  • Tương tự ta có $HB \bot CN, \angle CD \bot CN$, suy ra $HB||CD$.
  • Tứ giác $HBDC$ có các cặp cạnh đối song song nên là hình bình hành, suy ra $F$ là trung điểm của $BC$ và $HD$.

c.

  • Ta có $\angle CAD = 45^\circ = \angle CNM$, suy ra $AD||MN$. Mà $MN \bot NP$, suy ra $AD \bot NP$.
  • Ta có $OF$ là trung trực của $BC$, suy ra $IB = IC$. $\angle BDC = 180^\circ – \angle BAC = 60^\circ$.
  • Xét tam giác $IOC$ có $\angle IOC = \dfrac{1}{2}\angle BOC = \angle 60^\circ$. Suy ra tam giác $IBC$ đều.
  • Do đó $IB =IC = IO$. (1)
  • Mặt khác tứ giác $HBOC$ có $\angle BHC + \angle BOC = 60^\circ + 120^\circ = 180^\circ$, suy ra $HBOC$ nội tiếp. (2)
  • Từ (1) và (2) suy ra $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$.
  • Tam giác $PBC$ có $\angle BPC = 90^\circ, \angle PBC = 45^\circ$ nên là tam giác vuông cân,
    suy ra $PB = PC$, suy ra $P$ thuộc trugn trực của BC. Do đó $P, O, I$ thẳng hàng và $PI \bot BC$, suy ra $PI||AM$.
  • Mặt khác ta có $\angle BIH = 2\angle HCB = 90^\circ$, suy ra $HBMI$ nội tiếp, suy ra $\angle IMC = \angle IBH = 45^\circ$.
  • Suy ra $\angle IMC = \angle PBC = 45^\circ$, suy ra $IM||PA$.
  • Tứ giác $APIM$ có 2 cặp cạnh đối song song nên là hình bình hành, suy ra $AI$ qua trung điểm của $MP$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.

Gợi ý

a.

  • Tứ giác $AEDB$ $\Rightarrow$ $\widehat{AEB}=\widehat{ADB}$, tứ giác $AFDC$ nội tiếp $\Rightarrow$ $\widehat{AFC}=\widehat{ADC}$.
  • Suy ra $\widehat{AEK}+\widehat{AFD}=\widehat{ADB}+\widehat{ADC}=180^o$.

b.

  • Ta có $\widehat{BKC}=\widehat{DKE}=180^o-\widehat{BAC}$ và $\widehat{BHC}=180^o-\widehat{BAC}$.
  • Suy ra $\widehat{BKC}=\widehat{BHC}$ $\Rightarrow$ $BHKC$ nội tiếp.
  • Suy ra $\widehat{FKH}=\widehat{HBC}=\widehat{HAC}$ và $\widehat{KCB}=\widehat{BAD}$.
  • Khi $A,\,O,\,D$ thẳng hàng, ta có $\widehat{BAD}=\widehat{BAO}=\widehat{HAC}$.
  • Do đó $\widehat{FKH}=\widehat{KCB}$ suy ra $KH//BC$

c.

  • Ta có $K$ thuộc cung $BHC$ của đường tròn ngoại tiếp tam giác $BHC$ tâm $T$.
  • Gọi $M$ là trung điểm của $BC$ và $N$ là điểm chính giữa cung $BHC$.
  • Dựng $KL\perp BC$, ta có $KL\le TN-TM=MN$.
  • Mà $\dfrac{MN}{BC}=\tan \dfrac{\widehat{NBM}}{2}=\tan \dfrac{\widehat{BAC}}{2}$, suy ra $MN=\tan \dfrac{\widehat{BAC}}{2}.\dfrac{BC}{2}$.
  • Do đó $S_{BKC}=\dfrac{1}{2}.KL.BC\le \dfrac{BC^2}{4}\tan \dfrac{\widehat{BAC}}{2}$.

d.

  • Xét tam giác $BCF$ và tam giác $BDA$ có $\widehat{BCF}=\widehat{BAD}$ và góc $B$ chung.
  • Suy ra $\Delta BFC\sim \Delta BDA$ $\Rightarrow$ $\dfrac{BD}{BA}=\dfrac{BF}{BC}$ $\Rightarrow$ $BF.BA=BD.BC$.
  • Chứng minh tương tự ta có $CE.CA=CB.CD$.
  • Suy ra $BF.BA-CE.CA=BC.BD-BC.CD=BC(BD-CD)=(BD+BC)(BD-BC)=BD^2-CD^2$.
  • Ta có $\widehat{ADF}=\widehat{ACF}=\widehat{AEB}-\widehat{EKC}=\widehat{AEB}-\widehat{A}$
  • và $\widehat{ADE}=\widehat{ABE}=\widehat{AFC}-\widehat{A}$,suy ra $\widehat{EDF}=\widehat{ADF}+\widehat{ADE}=\widehat{AEB}+\widehat{AFC}-2\widehat{A}=180^o-2\widehat{A}=\widehat{EIF}$.
  • Do đó tứ giác $IEDF$ nội tiếp, hơn nữa $IE=IF$ nên $DI$ là phân giác $\widehat{EDF}$.
  • Mặt khác $\widehat{FDB}=\widehat{BAC}=\widehat{CDE}$.
  • Suy ra $DB,\,DI$ lần lượt là phân giác ngoài và phân giác trong của $\widehat{EDF}$. Vậy ta có điều phải chứng minh.

Đáp án toán PTNK 2016

Bài 1 (Toán chung) Tam giác $ABC$ đều có tâm $O$,$AB = 6a$ và các điểm $M, N$ lần lượt thuộc các cạnh $AB, AC$ mà $AM = AN = 2a$. Gọi $I, J, K$ lần lượt là trung điểm của $BC, AC$ và $MN$.
a. Chứng minh các điểm $M, N, B, C$ cùng thuộc một đường tròn T. Tính diện tích tứ giác $BMNC$ theo $a$.
b. Tính bán kính đường tròn ngoại tiếp tam giác $IJK$. Chứng minh đường tròn đường kính $NC$ tiếp xúc với $AI$.
c . $AE$ tiếp xúc với đường tròn $T$ tại $E$ ($E, B$ cùng phía đối với $AI$).Gọi $F$ là trung điểm $OE$, tính số đo $\angle AFJ$.

Gợi ý

a.

  • Ta có $AM = AN = 2a$,$\angle MAN = 60^o$ nên tam giác $AMN$ đều. Suy ra $\angle AMN = 60^o = \angle ACB$. Suy ra $BMNC$ nội tiếp.
  • Ta có $MN ||BC$, $AK \bot MN, AI \bot BC$. Suy ra$A, K, I$ thẳng hàng. $AI = AC \sin \angle ACB = 3a \sqrt{3}$, $AI = AN \sin \angle ANM = a\sqrt{3}$. Suy ra $IK = 2a\sqrt{3}$.
  • Do đó $S_{BMNC} = \dfrac{1}{2}IK(MN+BC) = 8a^2\sqrt{3}$.

b.

  • Ta có $OJ \bot AC$, $NJ = AJ-AN=a, NK = \dfrac{1}{2}MN=a$. Suy ra $\Delta OJN = \Delta OKN$, suy ra $OJ = OK$, tương tự ta có $OJ = OI$. Tam giác $IJK$ nội tiếp đường tròn tâm $O$ bán kính $OI = a\sqrt{3}$.
  • Gọi $P$ là trung điểm của $CN$. Ta có $KNCI$ là hình thang, và $OP$ là đường trung bình. Suy ra $OP = \dfrac{1}{2}(KN+CI) = 2a = PN = PC$.
  • Suy ra $O$ thuộc đường tròn đường kính $CN$ mà $PO||KN$ nên $PO \bot KI$. Suy ra $KI$ là tiếp tuyến của đường tròn đường kính $CN$.

c.

  • Ta có $\angle AEM = \angle ABE$. Suy ra $\Delta AEM \sim \Delta ABE$, suy ra $AE^2=AM.AB = 12a^2$.
  • Suy ra $AE = 2a\sqrt{3}= AO$. Suy ra tam giác $AEO$ cân tại $A$. Do đó $\angle AFO = 90^o$, suy ra $AFOJ$ nội tiếp. Suy ra $\angle AFJ = \angle AOJ = 60^o$.

Bài 2. (Toán chuyên) Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.
a. Chứng minh $\Delta ABE \sim \Delta ACF$ và tứ giác $EFQN$ nội tiếp.
b. Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c. $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

Gợi ý

a.

  • Ta có $\angle EAB + \angle BAC = 90^o, \angle FAC + \angle BAC = 90^o$. Suy ra $\angle EAB = \angle FAC$.
  • Mặt khác có $\angle ABE = \angle ACF = 90^o$. Suy ra $\Delta ABE \sim \Delta ACF$.
  • Suy ra $AE.AC = AF.AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE.AQ = AN.AF$. Suy ra tứ giác $QNEF$ nội tiếp.

b.

Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF||ET, AE||FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX ||BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

c.

  • $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$. Suy ra $NDFK’$ nội tiếp.
  • Chứng minh tương tự ta có $DQK’E$ nội tiếp. Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
  • Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^o – 2 \angle BKE = 2(90^o – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
  • Mặt khác $\angle BKA = 180^o – \angle AEB = 180^o – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
  • Vậy 4 điểm $D, A, K, J$ thẳng hàng.

 

Đáp án toán PTNK 2015

Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Gợi ý

Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.

Gợi ý

a.

  • Ta có $E$ là điểm chính giữa cung BC, suy ra $EB = EC$ và $OE \bot BC$ nên $M, O, E$ thẳng hàng.
  • Vẽ đường kính $EK$. Ta có $EM.EK = EB^2$.
  • Mặt khác $EF = 2EM, EO = \dfrac{1}{2}EK$. Do đó $EF.EO = EM.EK = EB^2$. (1)

b.

  • Ta có $\angle EBC = \angle EAC = \angle EAB$. Suy ra $\Delta EAB \sim \Delta EBD$. Suy ra $EB^2 + ED.EA$ (2).
  • Từ (1) và (2) ta có: $EA.ED = EO.EFF$. Suy ra tứ giác $OFDA$ nội tiếp.

c.

  • Ta có $\angle EIB = \angle EAB + \angle ABI = \dfrac{1}{2}(\angle A + \angle B) = \angle EBC + \angle CBI = \angle EBI$, suy ra $EB = EI = EC$. Vậy $E$ là tâm đường tròn ngoại tiếp tam giác $BIC$. Do đó $EP = EB$. Ta có $EP^2 = EB^2 = EO.EF$.
  • Suy ra $\Delta EPF \sim \angle EOP$. Suy ra $\angle EPF = \angle FOP$.
  • Hơn nữa, do $O,F$ cùng phía đối với $E$ nên $PO, PF$ cùng phía đối với $PE$.
  • Vẽ tia tiếp tuyến $Px$($PF, PO$ cùng phía đối với $Px$)của đường tròn ngoại tiếp tam giác $POF$. Khi đó $\angle xPF = \angle FOP = \angle EPx$. Suy ra $Px$ và $PE$ trùng nhau. Vậy $Px$ luôn qua điểm $E$ cố định.

 

Đáp án toán PTNK 2014

Bài 1. (Toán chung) Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.
a. Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.
b. $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với
$CD$. Tính $\dfrac{AP}{PD}$
c. $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Gợi ý

a.

  • Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.
  • Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.
  • Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b.

  • Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$. Khi đó $BP = EB + EP = AB+PD=BC+PD$.
  • Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.
  • Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.
  • Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.
  • Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$ Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c.

  • Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^0=\angle{IAF}$, suy ra tứ giác $AEIF$ nội tiếp, do đó $\angle{IEA}=\angle{IFA}=90^0$ và $EM$ là phân giác $\angle{CED}$. Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$. Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.
  • Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ vuông tại $A$ với các đường phân giác trong $BM, CN$. Chứng minh bất đẳng thức $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Gợi ý
  • Áp dụng tính chất đường phân giác ta có:
    $\dfrac{MC}{MA} = \dfrac{BC}{AB}$, suy ra $\dfrac{MC+MA}{MA} = 1 + \dfrac{BC}{AB}$.
  • $\dfrac{NB}{NA} = \dfrac{BC}{AC}$, suy ra $\dfrac{BN+NA}{NA} = 1+ \dfrac{BC}{AC}$.
  • Suy ra:\\ $\dfrac{(MC+MA)(NB+NA)}{MA.NA} = \left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right) = 1 + \dfrac{BC^2}{AB.AC}+ \dfrac{BC}{AB}+ \dfrac{BC}{AC}$.
  • Ta có $BC^2 = AB^2 + AC^2 \geq 2.AB.AC$, suy ra $\dfrac{BCC^2}{AB.AC} \geq 2$.
  • Và $\dfrac{BA}{AC} +\dfrac{BC}{AC} \geq \sqrt{\dfrac{BC.BC}{AB.AC}} \geq 2\sqrt{2}$.
  • Do đó $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Bài 3. (Toán chuyên) Cho điểm C thay đổi trên nửa đường tròn đường kính $AB = 2R$ ($C \neq A, C \neq B$). Gọi $H$ là hình chiếu vuông góc của $C$ lên $AB$; $I$ và $J$ lần lượt là tâm đường tròn nội tiếp các
tam giác $ACH$ và $BCH$. Các đường thẳng $CI, CJ$ cắt $AB$ tại $M, N$.
a. Chứng minh $AN = AC, BM = BC$.
b. Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng
$MJ, NI$ và $CH$ đồng quy.
c. Tìm giá trị lớn nhất của MN và giá trị lớn nhất của diện tích tam giác $CMN$ theo $R$.

Gợi ý

a.

  • Ta có $\angle HCB = \angle CAB$ (cùng phụ với $\angle ABC$) và $\angle HCA = \angle CBA$ (cùng phụ với $\angle BAC)$.
  • Ta có $\angle CAN =\angle NAC + \angle ABC = \angle HAN + \angle ACB = \angle CAN$. Suy ra tam giác $CAN$ cân tại $A$ hay $AN = AC$. Chứng minh tương tự ta có $BM = BC$.

b.

  • Tam giác $CAN$ cân tại $A$ có $AI$ là phân giác nên cũng là trung trực, suy ra $IC = IN$, suy ra $\angle INC = \angle ICN = \angle ICH + \angle NCH = \dfrac{1}{2} \angle ACH + \dfrac{1}{2} \angle BCH = 45^o$.
  • Tương tự thì $\angle JMC = 45^o$.
  • Tứ giác $MIJN$ có $\angle JMC = \angle INC = 45^o$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
  • Tam giác $INC$ cân có $\angle ICN = 45^o$ nên $\angle CIN = 90^o$, suy ra $CI \bot CM$.
  • Chứng minh tương tự $MJ \bot CN$.
  • Tam giác $CMN$ có $CH, MJ, NI$ là các đường cao nên đồng quy.

c.

  • Đặt $AC = b, BC = a$. Ta có $a^2 + b^2 = BC^2 = 4R^2$.
  • Ta có $AN = AC = b, BM = BC = a$. \\$AM + BN = BC + MN$, suy ra $MN = a+b-BC = a+b-2R$.
  • Ta có $(a+b)^2 \leq 2(a^2+b^2) = 8R^2$. Suy ra $a+b \leq 2 \sqrt{2}R$, suy ra $a+b-2R \leq 2R(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $a=b=R\sqrt{2}$.
  • Vậy giá trị lớn nhất của $MN$ bằng $2R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn.
    Khi đó $S_{CMN} = \dfrac{1}{2}CH.MN \leq R^2(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Đáp án toán PTNK 2013

Bài 1. (Toán chung)  Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a. Tính $BC$ và $CN$ theo $a$.
b. Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$.
Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo a.
c. $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Gợi ý

a.

  • Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.
  • $\angle{BOC}=2\angle{BAC}=60^0$ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$, suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$.

b.

  • Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.
  • Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^0$ nên 5 điểm $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.
  • Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.
  • Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c.

  • Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.
  • Do đó $\angle{KMI}=\angle{KFM}$. (1)
  • Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\angle{xMI}=\angle{IFM} $  (2)
  • Từ (1) và (2) suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^0$, mà $KF // ND$, suy ra $\angle{IND} =90^0$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.
a. Chứng minh rằng các tứ giác IFMK và IMAN nội tiếp .
b. Gọi J là trung điểm cạnh BC.Chứng minh rằng ba điểm A,K,J thẳng hàng.
c. Gọi r là bán kính của dường tròn (I) và S là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

Gợi ý

a.

  • Do $MN||BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^o$ nên tứ giác $IFMK$ nội tiếp.
  • Tam giác $AEF$ đều nên $\angle KFI = 30^o$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^o$ nên tứ giác $IMAN$ nội tiếp.

b.

  • Ta có $\angle IMN = \angle INM = 30^o$ nên tam giác $IMN$ cân tại $I$.
  • Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
  • Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.

c.

  • Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF.AF = r^2 \sqrt{3}$.
  • Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
  • Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
  • Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Đáp án PTNK năm 2012

Bài 1. (Toán chung) Cho hình thang $ABC (AB||CD)$ nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle DAB = 105^\circ, \angle ACD =30^\circ$.
a. Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b. Tiếp tuyến của $(C)$ tại $B$ cắt đường thẳng $DO$ và $DA$ lần lượt tại $M, N$. Tính $\dfrac{MN}{MD}$.
c. Gọi $E$ là trung điểm của $AB$, tía $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Gợi ý

a.

  • Ta có $\angle DAB + \angle BCD = 180^\circ$, suy ra $\angle BCD = 75^\circ$ (1), suy ra $\angle ABC = 105^\circ$.
  • $\angle ABD = \angle ACD = 30^\circ$, suy ra $\angle DBC = \angle ABC – \angle ABD = 75^\circ$. (2)
  • Từ (1) và (2) ta có $\angle DBC = \angle DCB$, nên tam giác $DCB$ cân tại $D$, do đó $\dfrac{DB}{DC} = 1$.
  • Ta có $\angle ACB = 75^\circ – 30^\circ = 45^\circ$,suy ra $\angle AOB = 90^\circ$, tam giác $ABO$ vuông cân tại $O$ nên $AB = AO \sqrt{2} = R\sqrt{2}$.

b.

  • Ta có $\angle AOD = 2\angle ACD = 60^\circ$, suy ta tam giác $OAD$ đều. Suy ra $\angle ODA = 60^\circ$ hay $\angle NDM = 60^\circ$.
  • Tam giác $DBC$ cân, nên $DO$ cũng là trung trực của $BC$ và cũng là phân giác góc $\angle BDC$.
  • $\angle BOM = 180^\circ – \angle AOB – \angle AOD = 30^\circ$, suy ra $\angle OMB = 90^\circ – \angle BOM = 60^\circ$ (do $OB \bot BM$).
  • Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} = 1$.

c.

  • Gọi $E$ là trung điểm của $AB$, tam giác $AOB$ vuông cân tại $O$ nên $OE = AE, \angle AEO = 90^\circ$.
  • Ta có $\triangle ADE = \triangle ODE$ nên $\angle AED = \angle OED = 45^\circ$, $\angle ADE = \angle ODE = 30^\circ$, suy ra $DF$ là đường cao của tam giác $MDN$.
  • Gọi $I$ là trung điểm $BC$. Ta có $\angle FDB = 15^\circ = \angle IDB$.
  • Khi đó $\triangle BFD = \triangle BID$, suy ra $BF = BI$, suy ra $\dfrac{BF}{BC} = \dfrac{1}{2}$.

 

Bài 2. (Toán Chuyên) Cho hình vuông $ABCD$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $AB$ và $BC$ sao cho $\dfrac{AM}{AB} = \dfrac{CN}{CB} = x$ với $0 < x < 1$. Các đường thẳng qua $M , N$ song song với $BD$ lần lượt cắt $AD$ tại $Q$ và $CD$ tại $P$. Tính diện tích tứ giác $MNPQ$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

 

Gợi ý
  • Chứng minh được $MNPQ$ là hình chữ nhật.
  • Ta có $\dfrac{MN}{AC} = \dfrac{MB}{BA} = \dfrac{AB-AM}{AB} = 1 – \dfrac{AM}{AB} = 1 – x$, suy ra $MN = (1-x)a\sqrt{2}$.
  • $\dfrac{MQ}{BD} = \dfrac{AM}{AB} = x$, suy ra $MQ = xa\sqrt{2}$.
  • Từ đó $S = MN.MQ = 2a^2x(1-x)$ Mà $x(1-x) \leq \dfrac{1}{4}(x+1-x)^2 = \dfrac{1}{4}$. Suy ra $S \leq \dfrac{a^2}{2}$. Đẳng thức xảy ra khi $x = \dfrac{1}{2}$.
  • Vậy diện tích đạt giá trị lớn nhất bằng $\dfrac{1}{2}a^2$ khi $M$ là trung điểm $AB$.

Bài 3 (Toán chuyên)  Cho tam giác $ABC$ vuông tại $A$. Trên đường thẳng vuông góc với $AB$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $AB$ .
a. Chứng minh rằng nếu $AC + BD < CD$ thì trên cạnh $AB$ tồn tại hai điểm $M$ và $N$ sao cho $\angle CMD =\angle CND = 90^\circ$
b. Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $MD$ cắt đường thẳng qua $B$ song song với $MC$ tại $E$. Chứng minh rằng đường thẳng $DE$ luôn đi qua một điểm cố định . 

Gợi ý

a.

  • Xét đường tròn đường kính $CD$ có tâm $O$ là trung điểm $CD$. Gọi $I$ là trung điểm $AB$, khi đó $OI \bot AB$ và $OI$ là đường trung bình của hình thang $ACDB$ nên $OI = \dfrac{1}{2} (AC+BD) < \dfrac{CD}{2}$.
  • Do đó khoảng cách từ $O$ đến $AB$ nhỏ hơn bán kính đường tròn đường kính $CD$ nên $AB$ cắt đường tròn đường kính $AB$ tại hai điểm $M, N$. Suy ra $\angle CMD = \angle CND = 90^o$.
  • Hơn nữa $\angle OCA + \angle ODB = 180^o$ nên có một góc lớn hơn hoặc bằng $90^o$.
  • Giả sử là $\angle ACD \geq 90^o$. Suy ra $OA > OC$. Suy ra $A$ nằm ngoài đường tròn $(O)$. Do đó $M, N$ thuộc đoạn $AB$.

b.

  • Gọi $E’$ là giao điểm của đường thẳng qua $A$ song song với $MD$ với $CD$. Gọi $P$ là giao điểm của $MD$ với $AC$, $Q$ là giao điểm của $MC$ với $BD$.
  • Theo định lý Thalet ta có: $\dfrac{CE’}{CD} = \dfrac{CA}{CP}, \dfrac{CA}{CD} = \dfrac{BQ}{DQ}$. Suy ra $\dfrac{CE’}{CD} = \dfrac{BQ}{DQ}$.
  • Từ đó ta có $BE’ ||MC$. Suy ra $C, D, E$ thẳng hàng. Vậy đường thẳng $DE$ luôn qua điểm $C$ cố định.

Đáp án Phổ thông Năng khiếu 2011

Bài 1. (Toán chung) Tam giác $ABC$ có $\angle BAC = 75^\circ, \angle BCA = 45^\circ, AC = a\sqrt{2}$, $AK$
vuông góc với $BC$ ($K$ thuộc $BC$).
a. Tính độ dài các đoạn $KC$ và $AB$ theo $a$.
b. Gọi $H$ là trực tâm và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\angle OHC$.
c. Đường tròn tâm $I$ nội tiếp tam giác $ABC$. Tính bán kính đường tròn ngoại tiếp tam giác $HIO$ theo $a$.

Gợi ý

a.

  • Tam giác $ACK$ vuông cân tại $C$, suy ra $AK = \frac{{AC}}{{\sqrt 2 }} = a$
  • $\sin ABK = \frac{{AK}}{{AB}} = \frac{{\sqrt 3 }}{2} \Rightarrow AB = \dfrac{{2a}}{{\sqrt 3 }}$

b.

  • Ta có $\angle AOC = 2\angle ABC = 120^\circ$, và $\angle AHC = \angle EHF = 180^\circ – \angle BAC = 120^\circ$.
  • Suy ra $\angle AHC = \angle AOC$, suy ra $AHOC$ nội tiếp. Do đó $\angle OHC = \angle OAC = 30^\circ$.

c.

  • Ta có $\angle AIC = 180^\circ- \angle IAC – \angle ICA = 180^\circ– \dfrac{1}{2} (\angle BAC + \angle ACB) = 120^\circ = \angle AOC$.
  • Do đó tứ giác $AIOC$ nội tiếp.Vậy 5 điểm $A, H, I, O, C$ cùng thuộc đường tròn.
  • Gọi $D$ là điểm chính giữa cung $AC$. Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC  = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO = OA = \dfrac{{AB}}{{\sqrt 2 }} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }}$

Bài 2. (Toán chuyên) Cho tam giác nhọn $ABC$ có $AB = b, AC = c$. $M$ là một điểm thay đổi trên cạnh $AB$. Đường tròn ngoại tiếp tam giác $BMC$
cắt cạnh $AC$ tại $N$.
a. Chứng minh tam giác $AMN$ đồng dạng với tam giác $ACB$. Tính tỷ số $\dfrac{MA}{MB}$ để diện tích tam giác $AMN$
bằng một nửa diện tích tam giác $ACB$.
b. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AMN$. Chứng minh $I$ Thuộc một đường thẳng cố định.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $BMC$. Chứng minh rằng độ dài $IJ$ không đổi.

Gợi ý

a.

  • Ta có $BMN$ nội tiếp, suy ra $\angle ANM = \angle MBC = \angle ABC$. Mặt khác $\angle NAM = \angle BAC$. Suy ra hai tam giác $AMN$ và $ACB$ đồng dạng. Suy ra $\dfrac{AM}{AC} = \dfrac{AN}{AB} \Leftrightarrow AM.AB = AN.AC$.
  • Để diện tích $AMN$ bằng một nửa diện tích tam giác $ACB$ thì tỷ số đồng dạng phải bằng $\dfrac{1}{\sqrt{2}}$, tứ là $\dfrac{AM}{AC} = \dfrac{1}{\sqrt{2}}$. Suy ra $AM = \dfrac{c}{\sqrt{2}}$.
  • Từ đây tính được $BM = b – \dfrac{c}{\sqrt{2}}$. Suy ra $\dfrac{AM}{BM} = \dfrac{c}{b\sqrt{2}-c}$.

b.

  • Vẽ tia tiếp tuyến $Ay$ của đường tròn $(I)$ ngoại tiếp tam giác $AMN$.
  • Ta có $\angle yAM = \angle ANM$, mà $\angle ANM = \angle ABC$. Suy ra $\angle yAM = \angle ABC$. Suy ra $Ay||BC$.
  • Mà $IA \bot Ay$, suy ra $AI \bot BC$. Do đó $I$ thuộc đường cao hạ từ $A$ của tam giác $ABC$ cố định.

c.

  • Hai đường tròn $(O)$ và $(J)$ cắt nhau tại $B, C$ nên $OJ \bot BC$, $AI \bot BC$. Suy ra $AI ||BC$.
  • Mặt khác $OA \bot MN$ và $OI \bot MN$ (MN là giao của $(I), (O)$, suy ra $OA||IJ$.
  • Vậy tứ giác $AIJO$ là hình bình hành, vậy $IJ = OA$ không đổi.

Đáp án Phổ thông Năng khiếu 2010

Bài 1. (Toán chung)  Cho hình chữ nhật $ABCD$ có tâm $O$, cạnh $AB = 3a$ và $\angle ABD = 30^\circ$. Gọi $G$ là trọng tâm của tam giác $AOD$; $AG$ cắt $CD$ tại $E$.

a. Chứng minh tứ giác $ADOE$ nội tiếp một đường tròn.

b. Cho $DG$ cắt $AB$ tại $F$.Tính diện tích tứ giác $AFOE$.

c. Đường tròn tâm $J$ nội tiếp tam giác $BCD$ tiếp xúc với $DB, CD$ tại $I$ và $K$. Gọi $H$ là giao điểm của $IK$ và $AC$. Tính $\angle IOJ$ và độ dài đoạn $HE$ theo $a$.

Lời giải

a.

  • Ta có $OA = OD$ do $ABCD$ là hình chữ nhật và $\angle ADO = 90^\circ – \angle ABD = 60^\circ$. Suy ra tam giác $ADO$ đều.
  • Mà $G$ là trọng tâm nên cũng là tâm đường tròn nội tiếp, ngoại tiếp của tam giác $OAD$. Suy ra AG là phân giác $AOD$.
  • Suy ra $\triangle ADE = \triangle AOE $ (c.g. c), từ đó $\angle AOE = \angle ADE = 90^\circ$.
  • Xét tứ giác ADEO có $\angle ADE + \angle AOE = 180^\circ$ nên là tứ giác nội tiếp.

b. Gọi $P$ là giao điểm của $AE$ và $OD$.

  • Tam giác $OAD$ đều nên $DG$ là trung trực của $AO$, suy ra $FA = FO$,tam giác $FAO$ cân tại $F$. Do đó $\angle FAO = \angle FOA = 90^\circ – \angle AOD = 30^\circ = \angle OAE$.
  • Suy ra $OF||AE$, suy ra $OFAE$ là hình thang.
  • $AD = AB \tan \angle ABD = 3a \tan 30^\circ = a\sqrt{3}$.
  • Tính được $AE = 2a, OF = AF = a$ và $OP = \dfrac{a\sqrt{3}}{2}$.
  • Suy ra $S_{AEOF} = \dfrac{1}{2}(OF+AE)OP = \dfrac{3a^2\sqrt{3}}{4}$.

c.

  • Ta có $\triangle OBC = \triangle OAD$ nên $\triangle OBC$ cũng là tam giác đều.
    Suy ra $BO = BC$, suy ra $\triangle BOJ = \triangle BCJ$ (c.g.c)
  • Mà $\angle BCJ = \dfrac{1}{2} \angle BCD = 45^\circ$ nên $\angle BOJ = 45^\circ$ hay $\angle IOJ = 45^\circ$.
    Ta có tứ giác $JIDK$ nội tiếp, suy ra $\angle JIK = \angle JDK = \dfrac{1}{2} \angle IDC = 15^\circ$. Và $\angle JOH = \angle BOC – \angle JOI = 15^\circ$.
  • Ta có $\angle JIK = \angle JOH$ nên tứ giác $JIOH$ nội tiếp, suy ra $\angle JHO = 90^\circ$.
  • Tam giác $JOC$ cân tại $J$ ($BJ$ là đường trung trực của $OC$) mà $JH \bot OC$, suy ra $H$
    là trung điểm của $OC$, do đó $OH = \dfrac{1}{2}OC = \dfrac{1}{2}OA = \dfrac{a\sqrt{3}}{2}$.
  • Từ đó áp dụng định lý Pytagore cho tam giác $EOH$ tính được $EH = \dfrac{a\sqrt{7}}{2}$

 

Bài 2. (Toán chuyên)  Cho đường tròn tâm $O$, bán kính $R$, dây cung $BC$ cố định có độ dài $R\sqrt{3}$. $A$ là một điểm thay đổi trên cung lớn $BC$. Gọi $E$ là điểm đối xứng của $C$ qua $AB$; $F$ là điểm đối xứng của $B$ qua $AC$. Các đường tròn ngoại tiếp các tam giác $ABE$ và $ACF$ cắt nhau tại $K$ ($K \neq A$).

a. Chứng minh $K$ luôn thuộc một đường tròn cố định.
b. Xác định vị trí của $K$ để tam giác $KBC$ có diện tích lớn nhất và tính diện tích đó theo $R$.
c. Gọi $H$ là giao điểm của $BE$ và $CF$. Chứng minh rằng tam giác $ABH$ đổng dạng với tam giác $ACK$ và $AK$ đi qua điểm cố định.

Lời giải

a.

  • Từ $BC = R\sqrt{3}$ nên tính được $\angle BAC = 60^o$, suy ra $\angle ABE = \angle AEB = 30^o$ ($\Delta ABE$ cân tại $A$).
  • Tứ giác $ABKE$ nội tiếp, suy ra $\angle AKB = \angle AEB = 30^o$.
  • Chứng minh tương tự ta cũng có $\angle AKC = \angle AFC = 30^o$.
  • Từ đó $\angle BKC = \angle AKB + \angle AKC = 60^o$.
  • Xét tứ giác $OBKC$ có $\angle BOC + \angle BKC = 120^o + 60^o = 180^o$ nên là tứ giác nội tiếp. Vậy $K$ thuộc đường tròn ngoại tiếp tam giác $OBC$ cố định.

b.

  • Ta có $S_{KBC} = \dfrac{1}{2}BC.KT$($T$ là hình chiếu của $T$ trên $BC$).
  • Suy ra $S_{KBC}$ max khi và chỉ khi $KT$ max khi và chỉ khi $K$ là điểm chính giữa cung lớn $BC$ của đường tròn ngoại tiếp tam giác $OBC$. Khi đó $A$ là điểm chính giữa cung lớn $BC$ của $(O)$.
  • Khi đó tam giác $BCK$ đềy cạnh $BC = R\sqrt{3}$ nên có diện tích là $S_{BCK} =\dfrac{3R\sqrt{3}}{4}$.

c.

  • Ta có $\angle AKC = \angle AKE = 30^o$ nên suy ra $K, C, E$ thẳng hàng. Tứ giác $AHCE$ có $\angle AEH = \angle ACH = 30^o$ nên là tứ giác nội tiếp ,suy ra $\angle AHE = \angle ACE$. Từ đó suy ra $\angle AHB = \angle ACK$.
  • Xét $\Delta ABH$ và $\Delta ACK$ có $\angle ABH = \angle AKC, \angle AHB = \angle ACK (cmt)$ nên $\Delta ABH \sim \Delta ACK (g.g)$.
  • Gọi $D$ là giao điểm của $AO$ và $(O)$. Ta có $\angle ABC = \angle ADC, \angle BAH +\angle BAC = \angle DAC + \angle ADC = 90^o$. Suy ra $\angle BAH = \angle DAC$.
  • Hơn nữa $\angle BAH = \angle KAC$. Từ đó ta có $\angle KAC = \angle OAC$. Suy ra $A, K, O$ thẳng hàng. Vậy $AK$ qua $O$ cố định.

Đường đi qua điểm cố định

Những bài toán hình học liên qua đến yếu tố thay đổi thường gây rất nhiều khó khăn cho các em học sinh. Để giải các bài toán dạng này, các em cần phải có những kiến thức rộng và tư duy hình học tốt. Trong bài viết nhỏ này, tôi trình bày một vài kinh nghiệm giải các bài toán “Đường qua điểm cố định” thông qua lời giải của một vài bài toán quen thuộc.

Đầu tiên, đường ở đây chỉ có thể là đường thẳng hoặc đường tròn. Các bước thực hiện bài toán là:

  • Tìm được điểm cố định.
  • Chứng minh đường qua điểm cố định đó.

Vậy làm sao để tìm được điểm cố định? Đây là một việc khó, tất nhiên không phải ai cũng nhận ra được điểm cố định ngay, mà phải dự đoán, mà dự đoán bằng kinh nghiệm và thực hành.

  • Ta có thể sử dụng những kiến thức hình học đã biết, những định lý đã biết để dự đoán.
  • Vẽ nhiều hình. Ví dụ ta cần chứng minh đường $H$ qua điểm cố định, ta vẽ được hai hình $H_1$ và $H_2$ thì giao của $H_1, H_2$ là điểm cố định.
  • Đến lúc này, ta phải nhận biết được tính chất đặc biệt của điểm cố định đó, có thể bằng trực giác để thấy ngay, đôi khi nếu ta vẽ hình có lệch chút đỉnh, thì sử dụng cảm giác hình học để tìm ra tính chất đặc biệt. Mặt khác ta có thể nối điểm cố định mà ta phát hiện với các điểm cố định có trên hình để tìm tính chất.
  • Một số tính chất hay gặp: Điểm đặc biệt của tam giác như trực tâm, trọng tâm, tâm đường tròn ngoại tiếp, nội tiếp, chân đường cao; Trung điểm đoạn thẳng (thường gặp), điểm $M$ thuộc tia $Ax$ mà $AM$ có độ dài không đổi,….
  • Một chú ý là vai trò của các điểm cố định có trên hình, nếu vai trò $B, C$ như nhau, thì điểm cố định cũng có tính đối xứng đối với $BC$ như: trung điểm $BC$, tạo với $B, C$ tam giác đều, vuông cân…

Sau khi đã xác định chắc chắn điểm cố định, ta đi chứng minh đường đi qua điểm cố định đó. Việc chứng minh này tùy thuộc vào tính chất điểm cố định.

  • Nếu là đường thẳng qua điểm cố định ta quy về việc chứng minh thẳng hàng mà các chuyên đề chứng minh thẳng hàng đã trình bày.
  • Nếu chứng minh đường tròn qua điểm cố định, ta quy về việc chứng minh tứ giác nội tiếp mà chuyên đề tứ giác nội tiếp đã trình bày.
  • Cho đường thẳng hoặc đường tròn cắt một đường cố định chứa điểm đó, sau đó chứng minh tính chất của điểm cố định.

Ví dụ 1. (PTNK 2007) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ là điểm thay đổi trên cung $BC$ không chứa $A$. Gọi $H, K$ là hình chiếu của $A$ trên $PB, PC$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Hướng dẫn

Đầu tiên khi $P$ thay đổi thì đường thẳng $HK$ cũng thay đổi, tất nhiên ta chưa biết ngay rằng $HK$ đi qua điểm cố định nào. Vậy ta phải dự đoán được điểm cố định trước bằng cách cho $P$ ở một vị trí khác, ta sẽ được đường $H’K’$. Khi đó $HK$ và $H’K’$ sẽ cắt nhau tại một điểm $T$ nào đó, vậy $T$ là điểm gì? Trong hình, có các điểm $A, B, C$ cố định, ta tìm mối liên hệ của $T$ và $A, B, C$ trước. Đến đây bằng trực giác hình học, ta có thể dự đoán rằng $T$ thuộc $BC$ và $AT \bot BC$, việc dự đoán này là chủ quan dựa trên trực giác và cảm giác về mặt hình học. Nếu muốn chắc chắn, chỉ có thể là chứng minh một cách chính xác và cụ thể.

Vậy khi đã đoán được điểm cố định ta phải làm gì? Ta có nhiều cách để giải quyết bài toán: có thể gọi $T$ là giao điểm của $HK$ và $BC$, sau đó chứng minh $AT \bot BC$ hoặc dựng $AT \bot BC$, chứng minh $H, K, T$ thẳng hàng.

Trên đây là một ví dụ về cách suy nghĩ khi ta cần giải quyết một bài toán kiểu thế này, tất nhiên, nhiều bạn giỏi và nhanh nhẹn hơn có thể nhận ra $HK$ là đường thẳng Simson của $A$ đối với tam giác $PBC$, có thể giải quyết ngay bài toán.

Gọi $T$ là hình chiếu của $A$ trên $BC$. Ta chứng minh $H, K, T$ thẳng hàng.

  • Ta có các tứ giác $ATBH, ATKC, ABPC$ nội tiếp. Suy ra $\angle ATH = \angle ABH = \angle ACK = 180^\circ – \angle ATK$.
  • Suy ra $\angle ATH + \angle ATK = 180^\circ$.
  • Do đó $H, T, K$ thẳng hàng.
  • Vậy $KH$ qua điểm $T$ cố định.

Ví dụ 2. Cho đường tròn $(O;R)$ và đường thẳng $d$ nằm ngoài $O$. $A$ là một điểm thay đổi trên $d$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$. Chứng minh $BC$ luôn đi qua một điểm cố định. 

Hướng dẫn

Tương tự cách làm như ví dụ 1, ta cũng phát hiện được điểm cố định thuộc $BC$ là điểm $T$. Tuy vậy đối với bài toán này, điểm $T$ có vẻ hơi lưng chừng khó dự đó nó là điểm có đặc trưng gì.

Vì thế sau khi đã tìm được điểm $T$, ta thử nối $T$ với các yếu tố cố định có trên hình, và chắc chắn nó sẽ có quan hệ với $O$, đường thẳng $d$ và đường tròn $(O)$.

Sau khi nối lại ta sẽ thấy được, có vẻ $OT \bot d$, vậy $T$ thuộc một tia cố định. Việc còn lại chỉ cần chứng minh $OT$ có độ dài không đổi nữa là $T$ sẽ cố định.

  • Gọi $T$ là giao điểm của $BC$ và đường thẳng qua $O$ vuông góc $d$ và $E$ là giao điểm của $OA$ và $BC$.
  • Ta có $OH.OT = OE.OA = OB^2=R^2$ không đổi. Suy ra $OT = \dfrac{R^2}{OH}$.
  • $OH$ cố định, suy ra $T$ cố định. Vậy $BC$ đi qua điểm cố định.

Ví dụ 3. Cho đường tròn tâm $O$ và dây cung $BC$ cố định. $A$ thay đổi trên cung lớn $BC$. Gọi $D$ là điểm đối xứng của $C$ qua $AB$, $E$ là điểm đối xứng của $B$ qua $AC$. Đường tròn ngoại tiếp các tam giác $ADC$ và $ABE$ cắt nhau tại điểm thứ hai $P$. Chứng minh rằng $AP$ luôn đi qua một điểm cố định.

Gợi ý

Đây là một bài toán khá dễ toán điểm cố định, đó chính là tâm $O$. Ta chứng minh $A, O, P$ thẳng hàng.

  • Ta có $\angle ADB = \angle ACB$ (t\c đối xứng). Và $\angle ADP = \angle ACE = \angle ACB$. Suy ra $\angle ADB = \angle ADP$, do đó $D, B, P$ thẳng hàng.
  • Chứng minh tương tự ta có $P, C, E$ thẳng hàng.
  • Khi đó $\angle BPC = 180^\circ – \angle CAD = 180^\circ  – 2\angle A = 180^\circ – \angle BOC$. Suy ra $PBOC$ nội tiếp. Mà $OB = OC$ nên $PO$ là phân giác góc $\angle PBC$. (1)
  • Mặt khác $\angle BPA = \angle ACD = \angle ABE = \angle APC$. Suy ra $PA$ cũng là phân giác của $\angle BPC$. (2)
  • Từ (1) và (2) ta có $A, O, P$ thẳng hàng, hay $AP$ luôn đi qua điểm $O$ cố định.

Trên đây là một số bài toán chứng minh đường thẳng đi qua điểm cố định. Tiếp theo chúng ta xem xét một vài ví dụ chứng minh đường tròn đi qua điểm cố định.

Ví dụ 4. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn $(O)$. Trên các cạnh $AB, AC$ lấy các điểm thay đổi $D, E$ sao cho $BD = CE$. Chứng minh rằng đường tròn ngoại tiếp tam giác $ADE$ đi qua một điểm cố định khác $A$.

Gợi ý

Đây là một bài toán khá nhẹ nhàng, nếu cho $D, E$ thay đổi ta có thể nhận thấy ngoài $A$ thì điểm đường tròn ngoại tiếp tam giác $ADE$ còn đi qua một điểm nữa, có vẻ gần gần điểm chính giữa cung $BC$. Một chú ý là vai trò $B, C$ như nhau nên điểm cố định đó đối với $B, C$ phải là như nhau. Từ đó ta có thể “mạnh dạn” khẳng định, điểm cố định đó chính là điểm chính giữa cung $BC$. Từ đó đi đến chứng minh.

  • Gọi $F$ là điểm chính giữa cung $BC$ chứa $A$.
  • Ta có $FB = FC$, $\angle DBF = \angle ECF$ và $BD = CE$, suy ra $\triangle DBF = \angle ECF$ (c.g.c).
  • Do đó $\angle BDF = \angle CEF$, suy ra $\angle ADF = \angle AEF$, suy ra tứ giác $ADEF$ nội tiếp hay $(ADE)$ qua điểm $F$ cố định.

Chú ý: $(ADE)$ là đường tròn ngoại tiếp tam giác $ADE$.

Ví dụ 5. Cho tam giác $ABC$ nhọn. Các điểm $M, N$ lần lượt thay đổi trên $AB, AC$ sao cho độ dài hình chiếu của $MN$ trên đường thẳng $BC$ bằng nửa độ dài cạnh $BC$. Chứng minh rằng đường tròn ngoại tiếp tam giác $AMN$ luôn đi qua một điểm cố định khác $A$.

Hướng dẫn

Khi vẽ hình ta sẽ thấy điểm cố định nằm trong tam giác $ABC$, do $B, C$ là vai trò như nhau, ta có thể đoán điểm này là điểm đặc biệt trong tam giác: trực tâm, trọng tâm, hay tâm đường tròn ngoại tiếp.

  • Gọi $F, G$ là trung điểm của $AB, AC$, D, E là hính chiếu của $M, N$ trên $BC$ và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
  • Đường thẳng qua $O$ song song $BC$ cắt $MD, NE$ tại $P, Q$.
  • Ta có $DE = PQ = FG = \dfrac{1}{2}BC$. Suy ra $FGQP$ là hình bình hành.
  • Các tứ giác $OMFP, OGNQ$ nội tiếp. Suy ra $\angle ONG = \angle OQG = 180^o – \angle OPF = \angle OMF$.
  • Do đó $AMOG$ nội tiếp. Vậy $(AMN)$ đi qua điểm $O$ cố định.

Trên đây là một số ví dụ về các bài toán chứng minh đường đi qua điểm cố định, hy vọng qua các bài toán này các bạn nắm được các bước giải và không ngại khó khi gặp những bài toán dạng này. Sau đây là một số bài tập rèn luyện thêm.

Bài tập

  1. Cho tam giác $ABC$ vuông tại $A$, trên các tia $BA, CA$ lấy các điểm $D, E$ thay đổi sao cho $BD = CE$. Chứng minh rằng đường trung trực $DE$ luôn đi qua một điểm cố định.
  2. Cho nửa đường tròn đường kính $AB$. $D$ thay đổi trên nửa đường tròn, trên tia $AD$ lấy điểm $D$ sao cho $AE = BD$. Chứng minh rằng đường trung trực của $DE$ đi qua một điểm cố định.
  3. Cho tam giác $ABC$, trong đó $BC$ cố định và $A$ thay đổi. Về phía ngoài tam giác dựng các tam giác vuông cân tại $A$ là $ABD$ và $ACE$. Chứng minh rằng đường thẳng qua $A$ vuông góc với $DE$ luôn đi qua một điểm cố định.
  4. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các hình chữ nhật thay đổi $ABDE$ và $ACFG$ sao cho chúng có diện tích bằng nhau.  Gọi $M$ là trung điểm của $EG$, chứng minh rằng đường thẳng $AM$ luôn đi qua một điểm cố định.
  5. Cho tam giác $ABC$ có $BC$ cố định và $A$ thay đổi. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với $BC, AB, AC$ tại $D, E, F$. $DI$ cắt $EF$ tại $K$. Chứng minh rằng $AK$ luôn đi qua một điểm cố định.
  6. Cho tam giác $ABC$ cân tại $A$,  các điểm $D, E$ thay đổi trên các cạnh $AB, AC$ sao cho $AD = CE$. Chứng minh rằng đường tròn ngoại tiếp tam giác $ADE$ luôn đi qua một điểm cố định.
  7. Cho tam giác $ABC$ có $BC$ cố định $A$ thay đổi. Đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $BC, AC, AB$ tại $D, E, F$. $BI, CI$ cắt $EF$ lần lượt tại $M, N$. Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định.
  8. Cho tam giác $ABC$. Các điểm $D, E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ ($D$ nằm giữa $B, E$). Gọi $K$ là hình chiếu của $B$ trên $AD$, $L$ là hình chiếu của $C$ trên $AE$. Gọi $M$ là trung điểm của $BC$. Chứng minh rằng đường tròn ngoại tiếp tam giác $MKL$ luôn đi qua một điểm cố định.

 

Phép vị tự (Phần 2)

Xem phần 1 tại [Phần 1]

Ví dụ 4.  Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I); đường tròn (I) tiếp xúc với $BC, AB, AC$ tại $D, E, F$. Vẽ $OH \bot EF$ và đường kính $AM$ của $(O)$. Chứng minh $H, I, M$ thẳng hàng.

Gợi ý
  • Xét phép vị tự ngoài tâm $P$ biến $(I)$ thành $(O)$. Khi đó $D \mapsto D’, E \mapsto E’, F \mapsto F’, H \mapsto H’$ với $D’, E’, F’$ là điểm chính giữa các cung $BC, AC, AB$.
  • Ta có $D’H’ \bot E’F’$ và $H’$ là trung điểm của $AI$.
  • Ta có $IH||OH’$. (1)
  • Tam giác $AIM$ có $OH’$ là đường trung bình nên $IM||OH’$. (2)
  • Từ (1) và (2) ta có $H, I, M$ thẳng hàng.

Ví dụ 5. Cho tam giác $ABC$, đường tròn $(I)$ nội tiếp tam giác. Đường tròn $w_a$ qua $B, C$ tiếp xúc trong với (I); các đường tròn $w_b, w_c$ được xác định tương tự. Gọi $A’$ là giao điểm của $w_b, w_c$ khác $A$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy tại một điểm nằm trên $IO$, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Gợi ý

  • Gọi $X$ là tiếp điểm của $w_a$ và $(I)$. Theo tính chất 1.5 thì $XD$ đi qua điểm chính giữa cung $BC$ của $w_a$, đặt là $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
  • Hơn nữa $A_1D.A_1X = A_1C^2$ và $B_1E.B_1Y = B_1C^2$, khi đó $B_1C_1$ là trục đẳng phương của $(I)$ và đường tròn điểm $C$, suy ra $IC \bot A_1B_1$.
  • Mặt khác $IC \bot DE$, suy ra $DE||A_1B_1$.
  • Ta có hai tam giác $DEF$ và $A_1B_1C_1$ đôi một có các cạnh song song nên có phép vị tự tâm $K$, biến $\Delta DEF$ thành $\Delta A_1B_1C_1$. Vì $K$ thuộc $DA_1$ nên $K \in XA_1$.
  • Ta có $\dfrac{KD}{KA_1} = \dfrac{KE}{KB_1}$ mà $KX.KD = KY.KE$, suy ra $KX.KA_1 = KY.KB_1$; do đó $K$ thuộc trục đẳng phương của $w_a$ và $w_b$, vậy $K \in AA’$.
  • Chứng minh tương tự ta cũng có $K \in BB’, CC’$.
  • Xét phép vị tự tâm K thì $I \mapsto O’$; ta có vì $ID \bot BC$ nên $O’A_1 \bot BC$; tương tự thì $O’B_1 \bot AC$; do đó $O’ \equiv O$.
  • Vậy $AA’, BB’, CC’$ đồng qui tại K thuộc IO.

Ví dụ 6. (Đường tròn mixtilinear incircle) Cho đường tam giác ABC nội tiếp đường tròn (O). Đường tròn $w_a$ tiếp xúc với các cạnh AB, AC tại D, E và tiếp xúc trong với $(O)$ tại $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
1. Chứng minh rằng DE qua tâm đường tròn nội tiếp tam giác ABC.
2. Chứng minh rằng $AA_1, BB_1, CC_1$ đồng quy.

Gợi ý

  1. Theo bổ đề 3.1 thì $A_1D$ qua điểm $D’$ chính giữa cung AB, $A_1E$ qua điểm $E’$ chính giữa cung AC. Khi đó $I \in CD’, I \in BE’$.
    Áp dụng định lý Pascal ta có $D, I, E$ thẳng hàng.
  2. Xét $H(A_1): (O) \mapsto (I_a), H(A): (I_a) \mapsto (I)$, theo định lý Monge D’lemabert thì $AA_1$ đi qua tâm vị tự ngoài biến $(O) \mapsto (I)$. Chứng minh tương tự ta cũng có $BB_1, CC_1$ qua tâm vị tự ngoài biến $(O)$ thành $(I)$.
    Do đó các đường thẳng $AA_1, BB_1, CC_1$ đồng quy tại một điểm thuộc IO.

Ví dụ 7. (Định lý Thebault)
Cho tam giác $ABC$ nội tiếp đường tròn $w$. $D$ là một điểm thuộc cạnh $BC$. Đường tròn $w_1$ tiếp xúc với đoạn $AD, CD$ tại $P, Q$ và tiếp xúc với $w$ tại $W$.

1. Chứng minh $PQ$ qua tâm đường tròn nội tiếp tam giác $ABC$.
2. Gọi $w_2$ là đường tròn tiếp xúc với $AD, BD$ và tiếp xúc với $w$. Chứng minh đường thẳng nối tâm của $w_1, w_2$ qua tâm nội tiếp của tam giác $ABC$.

Gợi ý

  1. Ta có $PE$ qua điểm $M$ chính giữa cung BC. Gọi $I’$ là giao điểm của $EF$ và $AM$.
    Xét phép vị tự tâm P thì $EF||MN$, suy ra $\angle AIF = \angle AMN = \angle APF$. Suy ra $AFIP$ nội tiếp.
    Khi đó $\angle AFP = \angle AI’P = \angle I’EP$.
    Suy ra $\triangle MEI’ \backsim \triangle MI’P$. Suy ra $MI’^2 = ME.MP = MB^2$.
    Do đó $I’ \equiv I$.
  2. Xét tứ giác $JGEK$ và điểm $D$ thuộc $GE$. Khi đó $IG||DK$ và $IE||DJ$.
    Gọi $I’$ là giao điểm của $GI$ và $JK$. Khi đó $\dfrac{JI’}{I’K} = \dfrac{JT}{TD} = \dfrac{EQ}{EK}$. Suy ra $I’E||JQ$, do đó $I’ \equiv I$.
    Vậy $J, I, K$ thẳng hàng.

Ví dụ 8. (IMO 1999) Cho hai đường tròn $(w_1)$ và $(w_2)$ tiếp xúc trong với$ ( w) $tại M, N và tâm của đường tròn $(w_2)$ nằm trên đường tròn $(w_1)$. Dây cung chung của $(w_1)$ và $(w_2)$cắt $(w )$ tại A và B. MA và MB cắt $(w_1)$ tại C và D. Chứng minh rằng đường tròn $(w_2)$ tiếp xúc với đường thẳng $CD$.

Gợi ý

  • Vẽ tiếp tuyến chung $XY$ của $w_1, w_2$ với $X, Y$ là các tiếp điểm, giả sử $XY$ cắt $w$ tại $S,T$. Gọi $A’$ là điểm chính giữa cung $ST$.
  • Theo bổ đề 3.1 ta có $A’, X, M$ và $A’, Y, N$ thẳng hàng. Ta có $A’Y.A’N = AS^2 = A’X.A’M$. Suy ra $A’$ thuộc trục đẳng phương của $w_1, w_2$. Suy ra $A’ \in PQ$.
  • Vậy $A’ \equiv A$ và $X \equiv C, Y \equiv E$. Gọi $U$ là giao điểm của $CE$ và $O_1O_2$. Suy ra $\dfrac{UO_2}{UO_1} = \dfrac{r_2}{r_1}$.
  • Ta có $CD || PQ$, suy ra $CD \bot O_1O_2$. Gọi $H$ là giao điểm của $CD$ và $O_1O_2$. Ta tính được $O_2H = r_2$ nên $CD$ tiếp xúc với $w_2$.

Ví dụ 9. Cho tam giác $ABC$ nội tiếp đường tròn tâm O, đường tròn tâm I nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, AC, AB tại D,E, F. Chứng minh rằng trực tâm của tam giác $DEF$ thuộc đường thẳng $IO$.

Gợi ý

  • Xét phép nghịch đảo tâm I, tỉ số $r^2$, biến $M \mapsto A, N \mapsto C, P \mapsto B$. Khi đó $(MNP) \mapsto (ABC)$. Khi đó có phép vị tự tâm I biến $(MNP) \mapsto (ABC)$.
  • Gọi $F$ là tâm của $(MNP)$ ta có $I, F, O$ thẳng hàng.
  • Mặt khác $(MNP)$ là đường tròn euler của tam giác $DEF$ nên $F, I, H$ thẳng hàng, với $H$ là trực tâm tam giác DEF.
  • Vậy $H, I, O$ thẳng hàng.

Ví dụ 10. (Barasil MO 2013) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Gọi $P$ là giao điểm của $AD$ và $BE$. Gọi $X, Y, Z$ là các điểm đối xứng của $P$ qua $EF, DF$ và $DE$. Chứng minh rằng các đường thẳng $AX, BY, CZ$ đồng quy tại một điểm thuộc đường thẳng $OI$, với $O, I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$.

Gợi ý

  • Gọi $K$ là hình chiếu của $D$ trên $EF$, tương tự với $L, J$.
    Gọi $T$ là giao điểm của $AD$ và $EF$, ta có $(AIDT) = -1$ và $DK \bot KT$ nên $KT$ là phân giác của $\angle AKD$. Do đó $X$ thuộc $AK$.
  • Ta có $\angle FKJ = \angle FDE = \angle AFE$, suy ra $KJ||AB$; tương tự ta có $\angle KL||AC; LJ||BC$. Khi đó tồn tại phép vị tự tâm $V_(H): \Delta KJL \mapsto ABC$ và $F \mapsto O$, với $F$ là tâm đường tròn euler của tam giác $DEF$ và $H$ là giao điểm của $AK, BJ, CL$.
  • Mặt khác theo ví dụ 1.9 thì $F, I, O$ thẳng hàng. Do đó $H, I, O$ thẳng hàng.
  • Vậy $AX, BY, CZ$ đồng quy tại điểm $H$ thuộc đường thẳng $IO$.

III. BÀI TẬP

  1. Cho hai đường tròn $(O_1)$ và $(O_2)$ tiếp xúc nhau tại $M$. Một điểm $A$ thay đổi trên đường tròn $(O_2)$, từ $A$ vẽ hai tiếp tuyến $AB, AC$ đến $(O_1)$ với $B, C$ là hai tiếp điểm. $BM, CM$ lần lượt cắt $(O_2)$ tại $D$ và $E$. $DE$ cắt tiếp tuyến tại $A$ của $(O_2)$ tại $F$. Chứng minh rằng $F$ thuộc một đường thẳng cố định khi $A$ di chuyển trên $(O_2)$ không thẳng hàng với $O_1$ và $M$.
  2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC$, $AC, AB$ lần lượt tại $D, E, F$. Gọi $P$ là hình chiếu của $D$ trên $EF$; $M$ là trung điểm của $DP$. Gọi $H$ là trực tâm của tam giác $IBC$. Chứng minh rằng $MH$ qua trung điểm của $EF$.
  3. Cho tam giác $ABC$ nội tiếp $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $w$ tiếp xúc với các đoạn $AD, CD$ và tiếp xúc trong với $(O)$ tại $E, F, X$. Chứng minh rằng $XF$ đi qua một điểm cố định và $EF$ cũng đi qua một điểm cố định.
  4. Cho tam giác nhọn $ABC$ khác tam giác cân. Gọi $O$ và $I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$. Gọi $D, E, F$ là tiếp điểm của $(I)$ với các cạnh $BC, CA $ và $AB$. Gọi $P$ là giao điểm của $AI$ và $OD$, $Q$ là giao điểm của $BI$ và $OE$, và $R$ là giao điểm của $CI$ và $OF$. Gọi $M$ là tâm đường tròn ngoại tiếp tam giác $PQR$. Chứng minh rằng $I, M, O$ thẳng hàng.
  5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ tâm O, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Kí hiệu $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $(O_1)$ là đường tròn thay qua $A, B$ và tiếp xúc với $(I)$ tại $E$. Gọi $(O_2)$ là đường tròn thay qua $A, C$ và tiếp xúc với $(I)$ tại $F$. Đường phân giác trong của góc $\widehat{AEB}$ cắt $(O_1)$ tại $M$ và đường phân giác trong của góc $\widehat{AFC}$ cắt $(O_2)$ tại $N$.

    a.Chứng minh rằng tứ giác $EFMN$ nội tiếp.
    b. Gọi $J$ là giao điểm của $EM$ và $FN$. Chứng minh rằng đường thẳng $IJ$ đi qua một điểm cố định.

  6.  (ELMO shortlist 2011)
    Cho 3 đường tròn $\omega,\omega_1,\omega_2$ đôi một tiếp xúc nhau sao cho $\omega_1,\omega_2$ tiếp xúc ngoài tại $P$, $\omega_1,\omega$ tiếp xúc trong tại $A$, and $\omega,\omega_2$ tiếp xúc trong tại $B$. Gọi $O,O_1,O_2$ lần lượt là tâm của $\omega,\omega_1,\omega_2$. Gọi $X$ chân đường vuông góc từ $P$ đến $AB$, chứng minh $\angle{O_1XP}=\angle{O_2XP}$.
  7. Cho tam giác $ABC$ khác tam giác vuông nội tiếp đường tròn $(O)$ cố định có $BC$ cố định và $A$ thay đổi. Trên đường thẳng $BC$ lấy các điểm $K, L$ sao cho $\angle BAK = \angle CAL = 90^o$. Gọi $H$ là hình chiếu của $A$ trên $BC$. Chứng minh rằng đường thẳng qua trung điểm của $AH$ và $KL$ luôn đi qua một điểm cố định.
  8. (IMO shortlist 1998) Cho tam giác ABC. Gọi H là trực tâm và O là tâm đường tròn ngoại tiếp tam giác. Gọi D, E, F lần lượt là điểm đối xứng của A qua BC, B qua CA và của C qua AB. Chứng minh rằng D, E, F thẳng hàng khi và chỉ khi OH = 2R, với R là bán kính đường tròn ngoại tiếp tam giác.
  9. (USA TST 2010) Cho tam giác $ABC$. Điểm M,N trên các cạnh AC và BC sao cho $MN||AB$; Các điểm $P, Q$ lần lượt thuộc $AB, BC$ sao cho $PQ ||AC$. Đường tròn nội tiếp tam giác $CMN$ tiếp xúc với AC tại E; đường tròn nội tiếp tam giác $BPQ$ tiếp xúc với $AB$ tại $F$. Đường thẳng $EN$ cắt $AB$ tại $R$; đường thẳng $FQ$ cắt AC tại S. Cho $AE = AF$, chứng minh rằng tâm nội tiếp của tam giác $AEF$ thuộc đường tròn nội tiếp của tam giác $ARS$.
  10. Cho tam giác ABC nội tiếp đường tròn tâm O và ngoại tiếp đường tròn tâm I. Đường tròn mitilinear incircle của tam giác ABC tâm K tiếp xúc với (O) tại D. DI cắt BC tại L. Chứng minh KL chia OI theo tỉ số $\dfrac{1}{2}$.
  11. (IMO 2008) Cho tứ giác lồi ABCD (AB khác BC). Gọi đường tròn nội tiếp của các tam giác ABC và ADC lần lượt là $(w_1)$ và $(w_2)$. Giả sử tồn tại đường tròn $(w )$ tiếp xúc với tia BA về hướng A và tia BC về hướng C và tiếp xúc với các đường thẳng AD và CD. Chứng minh rằng tiếp tuyến chung ngoài của các đường tròn $(w_1)$ và $(w_2)$ cắt nhau tại một điểm thuộc đường tròn (C ).