Bài tập tứ giác

Bài 1. Tính tổng các góc ngoài của tứ giác (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).

Giải
  Cho tứ giác $ABCD$.

  • Ta có $\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1} = 360^\circ$,
    cần tính $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$.
  • $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$
  • $= (180^\circ – \angle{A_1}) + (180^\circ – \angle{B_1}) + (180^\circ – \angle{C_1}) + (180^\circ – \angle{D_1})$
  • $= 720^\circ – (\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1}) = 720^\circ – 360^\circ = 360^\circ$.
  • Vậy tổng các góc ngoài của tứ giác bằng $360^\circ$.

 

Bài 2. Tứ giác $ABCD$ có $AB = BC$, $CD = DA$.
a) Chứng minh rằng $BD$ là đường trung trực của $AC$.
b) Cho biết $\angle{B} = 100^\circ$, $\angle{D} = 70^\circ$, tính $\angle{A}$ và $\angle{C}$.

Giải

a) $BA = BC$ và $DA = DC$ nên $BD$ là đường trung trực của $AC$.
b)

  • $\triangle{ABD} = \triangle{CBD}$ (c.c.c)
  • $\Rightarrow \angle{BAD} = \angle{BCD}$.
  • Ta lại có
    $\angle{BAD} + \angle{BCD} = 360^\circ – \angle{B} – \angle{D}$
  • $= 360^\circ – 100^\circ – 70^\circ = 190^\circ$.
  • Do đó $\angle{A} = \angle{C} = 190^\circ : 2 = 95^\circ$.

Bài 3. Tính các góc của tứ giác $ABCD$, biết rằng :
$\angle{A} : \angle{B} : \angle{C} : \angle{D} = 1 : 2 : 3 : 4$.

Giải
  • Theo tính chất dãy tỉ số bằng nhau và tổng các góc của tứ giác :
    $\dfrac{\angle{A}}{1} = \dfrac{\angle{B}}{2} = \dfrac{\angle{C}}{3} = \dfrac{\angle{D}}{4} = \dfrac{\angle{A} + \angle{B} + angle{C} + \angle{D}}{1 + 2 + 3 +4} = \dfrac{360^\circ}{10} = 36^\circ$
  • Do đó, $\angle{A} = 36^\circ, \angle{B} = 72^\circ, \angle{C} = 108^\circ, \angle{D} = 144^\circ$.

Bài 4. Tứ giác $ABCD$ có $\angle{A} = 65^\circ$, $\angle{B} = 117^\circ$, $\angle{C} = 71^\circ$. Tính số đo góc ngoài tại đỉnh $D$.

Giải

Tính góc $D$ của tứ giác $ABCD$, được $107^\circ$.

Góc ngoài tại đỉnh $D$ bằng $73^\circ$.

Bài 5. Chứng minh rằng tất cả các góc của một tứ giác không thể đều là góc nhọn, hoặc không thể đều là góc tù.

Giải

Giả sử bốn góc của một tứ giác là bốn góc nhọn thì tổng bốn góc của tứ giác nhỏ hơn $360^\circ$, trái với tính chất về tổng các góc của tứ giác bằng $360^\circ$. Vậy bốn góc của tứ giác không thể đều là góc nhọn. Học sinh tự chứng minh bốn góc của tứ giác không thể đều là góc tù.

Bài 6. Cho tứ giác $ABCD$. Chứng minh rằng tổng hai góc ngoài tại các đỉnh $A$ và $C$ bằng tổng hai góc trong tại các đỉnh $B và D$.

Giải
  • Gọi $\angle{A_1}$ và $\angle{C_1}$ là các góc trong tại các đỉnh $A$ và $C$. Gọi $\angle{A_2}$ và $\angle{C_2}$ là các góc ngoài tại các đỉnh $A$ và $C$.
  • Ta có: $\angle{A_2} + \angle{C_2} = (180^\circ – \angle{A_1}) + (180^\circ – \angle{C_1})$
  • $= 360^\circ – \angle{A_1} – \angle{C_1}$ (1)
  • Ta lại có : $\angle{B} + \angle{D} = 360^\circ – \angle{A_1} – \angle{C_1}$ (2)
  • Từ (1) và (2) suy ra : $\angle{A_2} + \angle{C_2} = \angle{B} + \angle{D}$.

Bài 7. Tứ giác $ABCD$ có $\angle{A} = 110^\circ$, $\angle{B} = 100^\circ$. Các tia phân giác của các góc $C$ và $D$ cắt nhau ở $E$. Các đường phân giác của các góc ngoài tại các đỉnh $C$ và $D$ cắt nhau ở $F$. Tính $\angle{CED}$, $\angle{CFD}$.

Giải

Tứ giác $ABCD$ ta có
$\angle{C} + \angle{D} = 360^\circ – \angle{A} – \angle{B}
= 360^\circ – 110^\circ – 100^\circ = 150^\circ$
nên $\angle{C_1} + \angle{D_1} = \frac{angle{C_1} + \angle{D_1}} = \frac{150^\circ}{2} = 75^\circ.
\triangle{CED} có \angle{CED} = 180^\circ – (angle{C_1} + \angle{D_1})
= 180^\circ – 75^\circ = 105^\circ$
Vì $DE$ và $DF$ là các tia phân giác của hai góc kề bù nên $DE \perp DF$. Trong tự, $CE \perp CF$.
Xét tứ giác $CEDF$:
$\angle{F} = 360^\circ – \angle{E} – \angle{ECF} – \angle{EDF} = 360^\circ – 105^\circ – 90^\circ – 90^\circ = 75^\circ$.

Bài tập tự giải.

  1. Tứ giác $ABCD$ có $\angle{B} = \angle{A} + 10^\circ$, $\angle{C} = \angle{B} + 10^\circ$, $\angle{D} = \angle{C} + 10^\circ$. Khẳng định nào dưới đây là đúng ?
    (A) $\angle{A} = 65^\circ$ , (B) $\angle{B} = 85^\circ$ ; (C) $\angle{C} = 100^\circ$ ; (D) $\angle{D} = 90^\circ$.
  2. Tứ giác $ABCD$ có $\angle{C} = 60^\circ$, $\angle{D} = 80^\circ, \angle{A} – \angle{B} = 10^\circ$. Tính số đo các góc $A$ và $B$.
  3. Tứ giác $ABCD$ có chu vì 66cm. Tính độ dài $AC$, biết chu vi tam giác $ABC$ bằng 56cm, chu vi tam giác $ACD$ bằng 60cm.

Tứ giác – Phần 1

Định nghĩa. Tứ giác $ABCD$ là hình gồm bốn đoạn thẳng $AB, BC, CD, DA$, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Định nghĩa. Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

Định lý. (Tổng 4 góc trong của một tứ giác lồi)

Tổng các góc của một tứ giác bằng $ 360^\circ $

Ví dụ 1. Cho tứ giác $ABCD$ có $\angle A =\angle C = 90^\circ$ và $\angle B= 2 \angle D$.

a. Tính số đo các góc $B$ và $D$.

b. Chứng minh $AB^2+AD^2 = BC^2+CD^2$.

Giải

 

a. Ta có $\angle A + \angle B + \angle C + \angle D = 360^\circ$.

$90^\circ + 2 \angle D + 90^\circ + \angle D = 360^\circ$

$3 \angle D = 180^\circ$.

$\angle D = 60^\circ$.

$\angle B = 120^\circ$.

b. Áp dụng Pitagore cho tam giác $ABD$ ta có: $AB^2 +AD^2 = AC^2$.

Tương tự cho tam giác $BCD$ ta có $CB^2+CD^2 = AC^2$.

Vậy $AB^2+AD^2=CB^2+CD^2$.

Ví dụ 2. Cho tứ giác $ABCD$ có $\dfrac{\angle A}{1} = \dfrac{\angle B}{2} = \dfrac{\angle C}{3} = \dfrac{\angle D}{4}$. Tìm số đo góc $C$.

Giải

Áp dụng dãy tỉ số bằng nhau ta có:

$\dfrac{\angle A}{1} = \dfrac{\angle B}{2} = \dfrac{\angle C}{3} = \dfrac{\angle D}{4}= \dfrac{\angle A+ \angle B  + \angle C + \angle D}{1+2+3+4} = \dfrac{360^\circ}{10} = 36^\circ$.

$\angle  C = 36 \times 3 = 108^\circ$.

Bài tập. 

  1. Cho tứ giác $ABCD$ có $AB = AD, CB = CD$. Chứng minh $ AC \bot CD $.
  2. Cho tứ giác $ABCD$ có $ \angle {A} : \angle {B} : \angle {C} = \angle {D} = 3: 4 : 2 : 3 $.
  3. Cho tứ giác $ABCD$, $ \triangle ABD $ là tam giác cân đỉnh $A$ và số đo góc $A$ gấp đôi số đo góc $ \angle ABD $; $ \triangle BCD $ có các góc $ \angle  B, \angle  C, \angle D $ có số đo tỉ lệ với 4; 3; 2.
    a.Tính số đo các góc của tứ giác $ABCD$.
    b.Tứ giác $ABCD$ có đặc biệt gì?
  4. Cho tam giác $ABC$ có $\angle {A} = 70^\circ $. Các tia phân giác $BD, CE$ của góc $B$ và $C$ cắt nhau tại điểm $I$; các tia phân giác ngoài của góc $B$ và $C$ cắt nhau tại điểm $J$.
    a.Tính số đo các góc ngoài của tứ giác $BICJ$.
    b. Chứng minh $A, I, J$ là ba điểm thẳng hàng.
    c.Tứ giác $ABIC$ có phải là tứ giác lồi không? Vì sao?
  5. Tính tổng các góc ngoài của tứ giác (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).
  6. Tứ giác $ABCD$ có $AB = BC, CD = DA$.
    a.Chứng minh rằng $BD$ là đường trung trực của $AC$.
    b.Cho biết $\hat{B} = 100^\circ, \angle {D} = 70^\circ$, tính $\angle A$ và $\angle C$.
  7. Tính các góc của tứ giác $ABCD$, biết rằng :
    $A : B : C : D = 1: 2 : 3 : 4$.
  8. Tứ giác ABCD có $\angle {A} = 65^\circ, \angle {B} = 117^\circ, \angle {C} = 71^\circ$. Tính số đo góc ngoài tại đinh $D$.
  9. Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù.
  10. Cho tứ giác $ABCD$. Chứng minh rằng tổng hai góc ngoài tại các đỉnh $A$ và $C$  bằng tổng hai góc trong tại các đỉnh $B$ và $D$.
  11. Tứ giác $ABCD$ có $\angle {A} = 110^\circ, \angle {B} = 100^\circ$. Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các định C và D cắt nhau ở F. Tính $\angle CED, \angle CFD$.

Điểm thuộc đường cố định (Phần 1)

Đây là phần thuận của bài toán quỹ tích, một dạng toán khó và rất rộng. Trong bài viết nhỏ này tôi xin trình bày một số bước để giải bài toán và một số ví dụ minh họa.

Điểm thuộc đường cố định, thì có thể thuộc đường thẳng hoặc đường tròn, đôi khi giới hạn trong đoạn thẳng hoặc cung tròn. Do đó ta cần trang bị một số kiến thức cơ bản về quỹ tích một số đường hay gặp:

Quỹ tích là đường thẳng.

  1. Quỹ tích các đường thẳng cách đều hai điểm là đường trung trực.
  2. Quỹ tích cách đều hai cạnh của một góc là phân giác của góc đó.
  3. Quỹ tích các điểm cách một đường thẳng một khoảng cho trước là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng đã cho.
  4. Điểm thuộc đường thẳng qua hai điểm cố định, qua một điểm cố định vuông góc hoặc song song với một đường cố định…

Trong một số trường hợp ta chỉ cần chứng minh điểm thuộc đường cố định nào đó, ta lại quy về việc chứng minh ba điểm thẳng hàng.

Ta biết được điểm thuộc đường thẳng hay đường tròn thường ta phải dự đoán bằng cách cho 3 trường hợp phân biệt, trong đó có các trường hợp đặc biệt. Nếu không vẽ thêm hình thì đòi hỏi người làm toán phải có trực giác và cảm nhận hình học tốt. Sau khi dự đoán được thì ta dùng các kiến thức đã biết để tìm lời giải.

Sau đây ta xem một vài ví dụ sau.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB = 2R$. $CD$ là đường kính thay đổi, $AC, AD$ cắt tiếp tuyến tại $B$ của $(O)$ tại các điểm $P, Q$. Chứng minh rằng $CDQP$ nội tiếp và tâm đường tròn ngoại tiếp của tứ giác thuộc một đường cố định.

Gợi ý

Bước dự đoán, ta có thể vẽ hình chính xác cho $CD$ thay đổi rồi dựng điểm $I$, khi vẽ hình chích xác ta xác định được các điểm $I$ sẽ cùng thuộc một đường thẳng.

Đến lúc này, ta hãy liên hệ đường thẳng mà ta phát hiện với các yếu tố có trên hình đó là $O$, đường tròn $(O)$, $AB$ và tiếp tuyến tại $B$.

Nếu phát hiện được đường thẳng đó song song với tiếp tuyến tại $B$ thì ta hãy liên hệ với các quỹ tích hay gặp để tìm ra tính chất.

  • Ta có $\angle ACD = \angle ABD  = \angle AQP$, suy ra $BPCQ$ nội tiếp.
  • Gọi $I$ là tâm đường tròn ngoại tiếp tứ giác. Ta có $IM \bot PQ, IO \bot CD$.
  • Mặt khác, ta có $AM \bot CD, AO \bot PQ$.
  • Khi đó $IM ||AO, IO ||AM$, suy ra $AOIM$ là hình bình hành. Suy ra $IM = AO$ không đổi.
  • Hơn nữa $IM \bot PQ$ và $I, A$ khác phía đối với $PQ$ do đó $I$ thuộc đường thẳng song song với $PQ$ và cách $PQ$ một khoảng bằng bán kính và khác phía $A$ đối với $PQ$.

Ví dụ 2. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn, một cát $d$ tuyến qua $A$ cắt $(O)$ tại hai điểm $C, D$. Tiếp tuyến tại $C, D$ cắt nhau tại $P$, chứng minh $P$ luôn thuộc một đường thẳng cố định khi $d$ thay đổi và luôn qua $A$.

Gợi ý

Chỉ cần vẽ hình chính xác ta có thể xác định ngay rằng $P$ thuộc một đường thẳng vuông góc với $AO$, như nhận xét trên, để chứng minh đường thẳng này cố định ta chỉ cần chứng minh nó đi qua một điểm cố định nào đó, việc này dễ dàng khi có thể chứng minh điểm đó thuộc $OA$. Từ đó có cách giải sau:

Gọi $H$ là hình chiếu của $P$ trên $AO$. Ta chứng minh $H$ cố đinh. Gọi $I$ là giao điểm của $OP$ và $CD$.

Ta có $OI.OP = OC^2$ không đổi.

$\triangle OPH \backsim OIA$, suy ra $OH.OA = OI.OP = OC^2$ không đổi. Mà $O, A$ cố định, suy ra $H$ có định.

Do đó $P$ thuộc đường thẳng vuông góc với $OA$ tại $H$ cố định.

Ví dụ 3. (PTNK 2004) Cho đường tròn tâm $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Một đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B, C$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $OBC$ luôn thuộc một đường thẳng cố định.

Gợi ý

Đây là một bài toán khó, nhưng cách giải của nó cũng là kinh nghiệm cho những bài toán khác.

Nhận thấy rằng đường tròn ngoại tiếp tam giác $OBC$ đi qua một điểm cố định là $O$, khi đó để chứng minh tâm $I$ của đường tròn này thuộc một đường thẳng cố định, một cách suy nghĩ tự nhiên là cần chứng minh thêm nó đi qua một điểm cố định khác, khi đó sẽ nằm trên đường trung trực của đoạn thẳng nối $O$ và điểm kia.

Nếu vẽ hình chính xác, ta có thể dự đoán được đường thẳng đó vuông góc với đường $OA$ cố định, khi đó ta có thể nghĩ đến cách như ví dụ 2, vẽ $OH \bot OA$ và chứng minh $OH$ không đổi.

Nói chung tùy cách suy nghĩ ta có thể đi tìm lời giải.

  • Gọi $D$ là giao điểm của $AO$ và $(OBC)$.
  • Ta có $AD.AO = AB.AC = AH^2 = OA^2 – R^2$ không đổi, suy ra $D$ cố định.
  • Do đó tâm $I$ của $(OBC)$ thuộc đường trung trực của đoạn $OD$.

 

Ví dụ 4. Cho tam giác $ABC$, tâm ngoại tiếp là $(O)$. Một đường tròn thay đổi qua $A, O$ cắt các cạnh $AB, AC$ tại $D, E$.

a. Chứng minh rằng hình chiếu của $O$ trên $DE$ thuộc một đường thẳng cố định.

b. Chứng minh rằng trực tâm tam giác $ODE$ thuộc một đường thẳng cố định.

Gợi ý

Gọi $K$ là hình chiếu của $O$ trên $DE$. Ta thấy $ADOE$ nội tiếp và $K$ là hình chiếu $O$ trên $DE$, mô hình quen thuộc, gợi ý cho ta đến một định lý khá quen thuộc.

a.

  • Gọi $M, N$ là hình chiếu của $O$ trên $AB, AC$, ta có $M, N$ là trung điểm của $AB, AC$ nên cố định.
  • Theo định lý Simson thì $M, K, N$ thẳng hàng, hay $K$ thuộc đường thẳng $MN$ cố định.

b.

Nếu vẽ hình chính xác, ta có thể dựđoán được trực tâm $H$ của tam giác $ODE$ thuộc đường thẳng $BC$ cố định, do đó ta chỉ cần chứng minh $B, H, C$ thẳng hàng, ta lại quay về việc chứng minh 3 điểm thẳng hàng.

  • Ta có $\angle OHD = \angle OED = \angle OAD = \angle OBA$, suy ra $ODBH$ nội tiếp.
  • Tương tự ta có $OECH$ nội tiếp.
  • Khi đó $\angle OHB = \angle ODA = \angle OEC = 180^\circ – \angle OHC$. Suy ra $B, H, C$ thẳng hàng.
  • Vậy $H$ thuộc đường thẳng $BC$ cố định.

Bài tập rèn luyện.

  1. Cho đoạn thẳng $AB$ và điểm $M$ thỏa $MA^2 – MB^2 = k$ không đổi. Chứng minh rằng $M$ thuộc một đường thẳng cố định.
  2. Cho tam giác $ABC$, đường tròn thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $D, E$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $ADE$ luôn thuộc một đường thẳng cố định.
  3. Cho tam giác $ABC$ vuông tại $A$ với $B, C$ cố định. Đường cao $AH$, gọi $D, E$ là hình chiếu của $H$ trên $AB, AC$. Đường tròn đường kính $AH$ cắt đường tròn ngoại tiếp tam giác $ABC$ tại $P$. Gọi $Q$ là giao điểm của $AP$ và $DE$. Chứng minh $Q$ thuộc một đường cố định.
  4. Cho đường tròn $(O)$ cố định và điểm $A$ nằm trong đường tròn, đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B$ và $C$. Gọi $D$ là giao điểm hai tiếp tuyến tại $B$ và $C$ của $(O)$. Chứng minh rằng $D$ thuộc một đường cố định.
  5. Cho tam giác $ABC$ cân tại $A$ nội tiếp đường tròn $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $(I)$ qua $D$ và tiếp xúc với cạnh $AB$ tại $B$; đường tròn $(J)$ qua $D$ tiếp xúc với cạnh $AC$ tại $C$. Chứng minh rằng trung điểm của $IJ$ luôn thuộc một đường cố định.
  6. Cho hình chữ nhật $ABCD$. Gọi $H$ là hình chiếu vuông góc của $A$ trên $BD$. $M$ là điểm thay đổi trên đoạn $BH$. Đường tròn ngoại tiếp tam giác $ADM$ cắt $CD$ tại điểm $N$. Chứng minh rằng trung điểm của $MN$ luôn thuộc một đường thẳng cố định.

Đáp án Toán PTNK 2017

Bài 1. (Toán chung)  Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$

Gợi ý

a.

  • Ta có $\angle AOC = 2 \angle ABC = 90^\circ$ (góc ở tâm bằng 2 lần góc nội tiếp cùng chắn 1 cung).
  • Suy ra tam giác $OAC$ vuông tại $O$, suy ra $AC^2 = OA^2 + OC^2 = 2R^2 \Rightarrow AC = R\sqrt{2}$. Tứ giác $BNPC$ có $\angle BNC = \angle BPC =90^\circ$ nên là tứ giác nội tiếp.
    Suy ra $\angle HPN = \angle HBC = 90^\circ – \angle ACB = 75^\circ$.
  • Các tứ giác $ANBM$ và $BNPC$ nội tiếp nên $\angle ANM = \angle ABC = 45^\circ, \angle CNP = \angle PBC = 45^\circ$.
  • Suy ra $\angle MNP = \angle CNP + \angle CPN = 90^\circ$.
    Và $\angle NPB = \angle ACB = \angle APM = 15^\circ$, suy ra $\angle NPM = \angle NPB + \angle APM = 30^\circ$.
  • Khi đó $\dfrac{MN}{MP} = \sin \angle NPM = \sin 30^\circ = \dfrac{1}{2}$. Suy ra $\dfrac{MP}{MN} = 2$.

b.

  • Ta có $\angle AEF = 90^\circ$ (góc nội tiếp chắn nửa đường tròn).
    Ta có $\angle ANH = \angle AEH = \angle APH = 90^\circ$ nên 5 điểm $A, N, H, P E$ cùng thuộc đường tròn đường kính $AH$.
  • Ta có $\angle ABD = \angle ACD = 90^\circ$ (góc nội tiếp chắn nửa đường tròn),
    suy ra $AB \bot BD$, suy ra $HC || BD$.
  • Tương tự ta có $HB \bot CN, \angle CD \bot CN$, suy ra $HB||CD$.
  • Tứ giác $HBDC$ có các cặp cạnh đối song song nên là hình bình hành, suy ra $F$ là trung điểm của $BC$ và $HD$.

c.

  • Ta có $\angle CAD = 45^\circ = \angle CNM$, suy ra $AD||MN$. Mà $MN \bot NP$, suy ra $AD \bot NP$.
  • Ta có $OF$ là trung trực của $BC$, suy ra $IB = IC$. $\angle BDC = 180^\circ – \angle BAC = 60^\circ$.
  • Xét tam giác $IOC$ có $\angle IOC = \dfrac{1}{2}\angle BOC = \angle 60^\circ$. Suy ra tam giác $IBC$ đều.
  • Do đó $IB =IC = IO$. (1)
  • Mặt khác tứ giác $HBOC$ có $\angle BHC + \angle BOC = 60^\circ + 120^\circ = 180^\circ$, suy ra $HBOC$ nội tiếp. (2)
  • Từ (1) và (2) suy ra $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$.
  • Tam giác $PBC$ có $\angle BPC = 90^\circ, \angle PBC = 45^\circ$ nên là tam giác vuông cân,
    suy ra $PB = PC$, suy ra $P$ thuộc trugn trực của BC. Do đó $P, O, I$ thẳng hàng và $PI \bot BC$, suy ra $PI||AM$.
  • Mặt khác ta có $\angle BIH = 2\angle HCB = 90^\circ$, suy ra $HBMI$ nội tiếp, suy ra $\angle IMC = \angle IBH = 45^\circ$.
  • Suy ra $\angle IMC = \angle PBC = 45^\circ$, suy ra $IM||PA$.
  • Tứ giác $APIM$ có 2 cặp cạnh đối song song nên là hình bình hành, suy ra $AI$ qua trung điểm của $MP$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.

Gợi ý

a.

  • Tứ giác $AEDB$ $\Rightarrow$ $\widehat{AEB}=\widehat{ADB}$, tứ giác $AFDC$ nội tiếp $\Rightarrow$ $\widehat{AFC}=\widehat{ADC}$.
  • Suy ra $\widehat{AEK}+\widehat{AFD}=\widehat{ADB}+\widehat{ADC}=180^o$.

b.

  • Ta có $\widehat{BKC}=\widehat{DKE}=180^o-\widehat{BAC}$ và $\widehat{BHC}=180^o-\widehat{BAC}$.
  • Suy ra $\widehat{BKC}=\widehat{BHC}$ $\Rightarrow$ $BHKC$ nội tiếp.
  • Suy ra $\widehat{FKH}=\widehat{HBC}=\widehat{HAC}$ và $\widehat{KCB}=\widehat{BAD}$.
  • Khi $A,\,O,\,D$ thẳng hàng, ta có $\widehat{BAD}=\widehat{BAO}=\widehat{HAC}$.
  • Do đó $\widehat{FKH}=\widehat{KCB}$ suy ra $KH//BC$

c.

  • Ta có $K$ thuộc cung $BHC$ của đường tròn ngoại tiếp tam giác $BHC$ tâm $T$.
  • Gọi $M$ là trung điểm của $BC$ và $N$ là điểm chính giữa cung $BHC$.
  • Dựng $KL\perp BC$, ta có $KL\le TN-TM=MN$.
  • Mà $\dfrac{MN}{BC}=\tan \dfrac{\widehat{NBM}}{2}=\tan \dfrac{\widehat{BAC}}{2}$, suy ra $MN=\tan \dfrac{\widehat{BAC}}{2}.\dfrac{BC}{2}$.
  • Do đó $S_{BKC}=\dfrac{1}{2}.KL.BC\le \dfrac{BC^2}{4}\tan \dfrac{\widehat{BAC}}{2}$.

d.

  • Xét tam giác $BCF$ và tam giác $BDA$ có $\widehat{BCF}=\widehat{BAD}$ và góc $B$ chung.
  • Suy ra $\Delta BFC\sim \Delta BDA$ $\Rightarrow$ $\dfrac{BD}{BA}=\dfrac{BF}{BC}$ $\Rightarrow$ $BF.BA=BD.BC$.
  • Chứng minh tương tự ta có $CE.CA=CB.CD$.
  • Suy ra $BF.BA-CE.CA=BC.BD-BC.CD=BC(BD-CD)=(BD+BC)(BD-BC)=BD^2-CD^2$.
  • Ta có $\widehat{ADF}=\widehat{ACF}=\widehat{AEB}-\widehat{EKC}=\widehat{AEB}-\widehat{A}$
  • và $\widehat{ADE}=\widehat{ABE}=\widehat{AFC}-\widehat{A}$,suy ra $\widehat{EDF}=\widehat{ADF}+\widehat{ADE}=\widehat{AEB}+\widehat{AFC}-2\widehat{A}=180^o-2\widehat{A}=\widehat{EIF}$.
  • Do đó tứ giác $IEDF$ nội tiếp, hơn nữa $IE=IF$ nên $DI$ là phân giác $\widehat{EDF}$.
  • Mặt khác $\widehat{FDB}=\widehat{BAC}=\widehat{CDE}$.
  • Suy ra $DB,\,DI$ lần lượt là phân giác ngoài và phân giác trong của $\widehat{EDF}$. Vậy ta có điều phải chứng minh.

Đáp án toán PTNK 2016

Bài 1 (Toán chung) Tam giác $ABC$ đều có tâm $O$,$AB = 6a$ và các điểm $M, N$ lần lượt thuộc các cạnh $AB, AC$ mà $AM = AN = 2a$. Gọi $I, J, K$ lần lượt là trung điểm của $BC, AC$ và $MN$.
a. Chứng minh các điểm $M, N, B, C$ cùng thuộc một đường tròn T. Tính diện tích tứ giác $BMNC$ theo $a$.
b. Tính bán kính đường tròn ngoại tiếp tam giác $IJK$. Chứng minh đường tròn đường kính $NC$ tiếp xúc với $AI$.
c . $AE$ tiếp xúc với đường tròn $T$ tại $E$ ($E, B$ cùng phía đối với $AI$).Gọi $F$ là trung điểm $OE$, tính số đo $\angle AFJ$.

Gợi ý

a.

  • Ta có $AM = AN = 2a$,$\angle MAN = 60^o$ nên tam giác $AMN$ đều. Suy ra $\angle AMN = 60^o = \angle ACB$. Suy ra $BMNC$ nội tiếp.
  • Ta có $MN ||BC$, $AK \bot MN, AI \bot BC$. Suy ra$A, K, I$ thẳng hàng. $AI = AC \sin \angle ACB = 3a \sqrt{3}$, $AI = AN \sin \angle ANM = a\sqrt{3}$. Suy ra $IK = 2a\sqrt{3}$.
  • Do đó $S_{BMNC} = \dfrac{1}{2}IK(MN+BC) = 8a^2\sqrt{3}$.

b.

  • Ta có $OJ \bot AC$, $NJ = AJ-AN=a, NK = \dfrac{1}{2}MN=a$. Suy ra $\Delta OJN = \Delta OKN$, suy ra $OJ = OK$, tương tự ta có $OJ = OI$. Tam giác $IJK$ nội tiếp đường tròn tâm $O$ bán kính $OI = a\sqrt{3}$.
  • Gọi $P$ là trung điểm của $CN$. Ta có $KNCI$ là hình thang, và $OP$ là đường trung bình. Suy ra $OP = \dfrac{1}{2}(KN+CI) = 2a = PN = PC$.
  • Suy ra $O$ thuộc đường tròn đường kính $CN$ mà $PO||KN$ nên $PO \bot KI$. Suy ra $KI$ là tiếp tuyến của đường tròn đường kính $CN$.

c.

  • Ta có $\angle AEM = \angle ABE$. Suy ra $\Delta AEM \sim \Delta ABE$, suy ra $AE^2=AM.AB = 12a^2$.
  • Suy ra $AE = 2a\sqrt{3}= AO$. Suy ra tam giác $AEO$ cân tại $A$. Do đó $\angle AFO = 90^o$, suy ra $AFOJ$ nội tiếp. Suy ra $\angle AFJ = \angle AOJ = 60^o$.

Bài 2. (Toán chuyên) Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.
a. Chứng minh $\Delta ABE \sim \Delta ACF$ và tứ giác $EFQN$ nội tiếp.
b. Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c. $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

Gợi ý

a.

  • Ta có $\angle EAB + \angle BAC = 90^o, \angle FAC + \angle BAC = 90^o$. Suy ra $\angle EAB = \angle FAC$.
  • Mặt khác có $\angle ABE = \angle ACF = 90^o$. Suy ra $\Delta ABE \sim \Delta ACF$.
  • Suy ra $AE.AC = AF.AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE.AQ = AN.AF$. Suy ra tứ giác $QNEF$ nội tiếp.

b.

Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF||ET, AE||FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX ||BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

c.

  • $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$. Suy ra $NDFK’$ nội tiếp.
  • Chứng minh tương tự ta có $DQK’E$ nội tiếp. Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
  • Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^o – 2 \angle BKE = 2(90^o – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
  • Mặt khác $\angle BKA = 180^o – \angle AEB = 180^o – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
  • Vậy 4 điểm $D, A, K, J$ thẳng hàng.

 

Đáp án toán PTNK 2015

Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Gợi ý

Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.

Gợi ý

a.

  • Ta có $E$ là điểm chính giữa cung BC, suy ra $EB = EC$ và $OE \bot BC$ nên $M, O, E$ thẳng hàng.
  • Vẽ đường kính $EK$. Ta có $EM.EK = EB^2$.
  • Mặt khác $EF = 2EM, EO = \dfrac{1}{2}EK$. Do đó $EF.EO = EM.EK = EB^2$. (1)

b.

  • Ta có $\angle EBC = \angle EAC = \angle EAB$. Suy ra $\Delta EAB \sim \Delta EBD$. Suy ra $EB^2 + ED.EA$ (2).
  • Từ (1) và (2) ta có: $EA.ED = EO.EFF$. Suy ra tứ giác $OFDA$ nội tiếp.

c.

  • Ta có $\angle EIB = \angle EAB + \angle ABI = \dfrac{1}{2}(\angle A + \angle B) = \angle EBC + \angle CBI = \angle EBI$, suy ra $EB = EI = EC$. Vậy $E$ là tâm đường tròn ngoại tiếp tam giác $BIC$. Do đó $EP = EB$. Ta có $EP^2 = EB^2 = EO.EF$.
  • Suy ra $\Delta EPF \sim \angle EOP$. Suy ra $\angle EPF = \angle FOP$.
  • Hơn nữa, do $O,F$ cùng phía đối với $E$ nên $PO, PF$ cùng phía đối với $PE$.
  • Vẽ tia tiếp tuyến $Px$($PF, PO$ cùng phía đối với $Px$)của đường tròn ngoại tiếp tam giác $POF$. Khi đó $\angle xPF = \angle FOP = \angle EPx$. Suy ra $Px$ và $PE$ trùng nhau. Vậy $Px$ luôn qua điểm $E$ cố định.

 

Đáp án toán PTNK 2014

Bài 1. (Toán chung) Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.
a. Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.
b. $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với
$CD$. Tính $\dfrac{AP}{PD}$
c. $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Gợi ý

a.

  • Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.
  • Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.
  • Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b.

  • Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$. Khi đó $BP = EB + EP = AB+PD=BC+PD$.
  • Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.
  • Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.
  • Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.
  • Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$ Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c.

  • Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^0=\angle{IAF}$, suy ra tứ giác $AEIF$ nội tiếp, do đó $\angle{IEA}=\angle{IFA}=90^0$ và $EM$ là phân giác $\angle{CED}$. Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$. Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.
  • Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ vuông tại $A$ với các đường phân giác trong $BM, CN$. Chứng minh bất đẳng thức $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Gợi ý
  • Áp dụng tính chất đường phân giác ta có:
    $\dfrac{MC}{MA} = \dfrac{BC}{AB}$, suy ra $\dfrac{MC+MA}{MA} = 1 + \dfrac{BC}{AB}$.
  • $\dfrac{NB}{NA} = \dfrac{BC}{AC}$, suy ra $\dfrac{BN+NA}{NA} = 1+ \dfrac{BC}{AC}$.
  • Suy ra:\\ $\dfrac{(MC+MA)(NB+NA)}{MA.NA} = \left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right) = 1 + \dfrac{BC^2}{AB.AC}+ \dfrac{BC}{AB}+ \dfrac{BC}{AC}$.
  • Ta có $BC^2 = AB^2 + AC^2 \geq 2.AB.AC$, suy ra $\dfrac{BCC^2}{AB.AC} \geq 2$.
  • Và $\dfrac{BA}{AC} +\dfrac{BC}{AC} \geq \sqrt{\dfrac{BC.BC}{AB.AC}} \geq 2\sqrt{2}$.
  • Do đó $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Bài 3. (Toán chuyên) Cho điểm C thay đổi trên nửa đường tròn đường kính $AB = 2R$ ($C \neq A, C \neq B$). Gọi $H$ là hình chiếu vuông góc của $C$ lên $AB$; $I$ và $J$ lần lượt là tâm đường tròn nội tiếp các
tam giác $ACH$ và $BCH$. Các đường thẳng $CI, CJ$ cắt $AB$ tại $M, N$.
a. Chứng minh $AN = AC, BM = BC$.
b. Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng
$MJ, NI$ và $CH$ đồng quy.
c. Tìm giá trị lớn nhất của MN và giá trị lớn nhất của diện tích tam giác $CMN$ theo $R$.

Gợi ý

a.

  • Ta có $\angle HCB = \angle CAB$ (cùng phụ với $\angle ABC$) và $\angle HCA = \angle CBA$ (cùng phụ với $\angle BAC)$.
  • Ta có $\angle CAN =\angle NAC + \angle ABC = \angle HAN + \angle ACB = \angle CAN$. Suy ra tam giác $CAN$ cân tại $A$ hay $AN = AC$. Chứng minh tương tự ta có $BM = BC$.

b.

  • Tam giác $CAN$ cân tại $A$ có $AI$ là phân giác nên cũng là trung trực, suy ra $IC = IN$, suy ra $\angle INC = \angle ICN = \angle ICH + \angle NCH = \dfrac{1}{2} \angle ACH + \dfrac{1}{2} \angle BCH = 45^o$.
  • Tương tự thì $\angle JMC = 45^o$.
  • Tứ giác $MIJN$ có $\angle JMC = \angle INC = 45^o$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
  • Tam giác $INC$ cân có $\angle ICN = 45^o$ nên $\angle CIN = 90^o$, suy ra $CI \bot CM$.
  • Chứng minh tương tự $MJ \bot CN$.
  • Tam giác $CMN$ có $CH, MJ, NI$ là các đường cao nên đồng quy.

c.

  • Đặt $AC = b, BC = a$. Ta có $a^2 + b^2 = BC^2 = 4R^2$.
  • Ta có $AN = AC = b, BM = BC = a$. \\$AM + BN = BC + MN$, suy ra $MN = a+b-BC = a+b-2R$.
  • Ta có $(a+b)^2 \leq 2(a^2+b^2) = 8R^2$. Suy ra $a+b \leq 2 \sqrt{2}R$, suy ra $a+b-2R \leq 2R(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $a=b=R\sqrt{2}$.
  • Vậy giá trị lớn nhất của $MN$ bằng $2R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn.
    Khi đó $S_{CMN} = \dfrac{1}{2}CH.MN \leq R^2(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.