ĐỀ THI OLYPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2001

ĐỀ THI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

 

LỜI GIẢI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Lời Giải

Giả sử $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ và $2 \leq \mathrm{a}<\mathrm{b}<\mathrm{c}$ thoả:

$\quad\quad\quad\quad\quad\quad\quad\quad a b+1 \vdots c ; a c+1 \vdots b ; b c+1 \vdots a$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow(a b+1)(a c+1)(b c+1) \vdots a b c \Rightarrow a b+b c+c a+1 \vdots a b c$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow a b+b c+c a+1 \geq a b c \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c} \geq 1$

Nếu $\mathrm{b} \geq 4$ thì $\mathrm{c} \geq 5$, khi đó

$\quad\quad\quad\quad\quad \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{abc}} \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{40}=\frac{39}{40}<1 \text { (vô lí) }$

Vậy $3 \leq \mathrm{b}<4 \Rightarrow \mathrm{b}=3$, $a=2$

Từ $\mathrm{ab}+1=7 \vdots \mathrm{c} \Rightarrow \mathrm{c}=7$.

Thử lại $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(2,3,7)$ thỏa điều kiện.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Lời Giải

Do vai trò $x, y, z$ như nhau nên giả sử: $1 \leq x \leq y \leq z \leq 2$

$\Rightarrow\left\{\begin{array}{l}\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right) \geq 0 \\ \left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right) \geq 0\end{array} \Rightarrow\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right) \leq 2+\left(\frac{x}{z}+\frac{z}{x}\right)\right.$

$\Rightarrow P=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+3 \leq 5+2\left(\frac{x}{z}+\frac{z}{x}\right)\quad\quad (1)$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}x=y \ y=z\end{array}\right.$

Đặt $t=\frac{x}{z} \in\left[\frac{1}{2} ; 1\right] t_i$ ta có $(2-t)\left(\frac{1}{2}-t\right) \leq 0 \Leftrightarrow t+\frac{1}{t} \leq \frac{5}{2}\quad\quad\quad\quad (2)$

Dấu “=” của $(2)$ xảy ra $\Leftrightarrow t=\frac{1}{2}$

Từ (1) và $(2$ ) suy ra $\mathrm{P} \leq 5+5=10=\mathrm{const}$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x=y=1 \\ z=2\end{array}\right. \\ \left\{\begin{array}{l}x=1 \\ y=z=2\end{array}\right.\end{array}\right.$

Vậy: $\max \mathrm{P}=10$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Lời Giải

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}\quad\quad (1)$

Ta có: $\quad \cos 3 \mathrm{a}=4 \cos ^3 \mathrm{a}-3 \cos \mathrm{a}$

$\quad\quad\quad\quad\quad\quad \Rightarrow\left\{\begin{array}{l}\cos 4 a=8 \cos ^4 a-8 \cos ^2 a+1 \\ \cos 5 a=16 \cos ^5 a-20 \cos ^3 a+5 \cos a \\ \cos 6 a=32 \cos ^6 a-48 \cos ^4 a+18 \cos ^2 a-1 \\ \cos 7 a=64 \cos ^7 a-112 \cos ^5 a+56 \cos ^3 a-7 \cos a\end{array}\right.$

Đặt $x=$ cost với $t \in[0 ; \pi],(1)$ trở thành:

$\quad\quad\quad\quad\quad\quad\quad 64 \cos ^6 t-112 \cos ^4 t+56 \cos ^2 t-7=2 \sqrt{1-\cos ^2 t} $

$\quad\quad\quad\quad\quad\quad \Leftrightarrow  64 \cos ^7 t-112 \cos ^5 t+56 \cos ^3 t-7 \cos t=2 \cos t \sin t$

(với cost $\neq 0$ )

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\sin 2 \mathrm{t}$

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\cos \left(\frac{\pi}{2}-2 \mathrm{t}\right) \Leftrightarrow\left[\begin{array}{l}\mathrm{t}=\frac{\pi}{18}+\mathrm{k} \frac{2 \pi}{9} \\ \mathrm{t}=-\frac{\pi}{10}+l \frac{2 \pi}{5}\end{array} \mathrm{k}, l \in \mathrm{Z}\right.$

$\quad\quad\quad \mathrm{t} \in[0 ; \pi]$

$\Rightarrow \mathrm{t}=\frac{\pi}{18} \vee \mathrm{t}=\frac{5 \pi}{18} \vee \mathrm{t}=\frac{9 \pi}{18} \vee \mathrm{t}=\frac{13 \pi}{19} \vee \mathrm{t}=\frac{17 \pi}{18} \vee \mathrm{t}=\frac{3 \pi}{10} \vee \mathrm{t}=\frac{7 \pi}{10}$

Vì cost $\neq 0$ nên $t \neq \frac{\pi}{2}$. Vậy phương trình (1) có 6 nghiệm thực là:

$\quad\quad\quad x=\cos \frac{\pi}{18} \vee x=\cos \frac{5 \pi}{18} \vee x=\cos \frac{9 \pi}{18} \vee x=\cos \frac{13 \pi}{19}$

$\quad\quad\quad\quad\quad\quad\quad\quad \vee x=\cos \frac{17 \pi}{18} \vee x=\cos \frac{3 \pi}{10} \vee x=\cos \frac{7 \pi}{10}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

Lời Giải

Theo giả thiết các tam giác $\mathrm{OAB}, \mathrm{OBC}$ và ODE là các tam giác đều nên:

$\quad\quad\quad\quad\quad\quad\quad \widehat{\mathrm{AOE}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad \text { Mà } \quad\quad  2 \widehat{\mathrm{DCO}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AOE}}=2 \widehat{\mathrm{DCO}} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AON}}=\widehat{\mathrm{MCO}}$

Từ đó $\triangle \mathrm{NOA}=\Delta \mathrm{MCO} \Rightarrow \mathrm{ON}=\mathrm{CM}$

Dẫn đến: $\Delta \mathrm{ONB}=\Delta \mathrm{CMB}$ (c.g.c) $\Rightarrow\left\{\begin{array}{l}\mathrm{BN}=\mathrm{NM} \\ \widehat{\mathrm{OBN}}=\widehat{\mathrm{CBM}}\end{array}\right.$

Mà $\widehat{\mathrm{OBC}}=60^{\circ} \Rightarrow \widehat{\mathrm{NBM}}=60^{\circ}$, vậy $\triangle \mathrm{MBN}$ đều.

Đặt $\alpha=\widehat{\mathrm{AON}}\left(0<\alpha<90^0\right)$. Khi đó

$\quad\quad\quad \mathrm{BN}^2 =\mathrm{R}^2+\mathrm{R}^2 \cos ^2 \alpha-2 \mathrm{R}^2 \cdot \cos \alpha \cos \left(\alpha+60^{\circ}\right) $

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left[1+\cos ^2 \alpha-2 \cos \alpha\left(\cos \alpha \cdot \cos 60^{\circ}-\sin \alpha \cdot \sin 60^{\circ}\right)\right]$

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left(1+\frac{\sqrt{3}}{2} \sin 2 \alpha\right) $

$\quad\quad \Rightarrow \mathrm{BN}^2 \leq \mathrm{R}^2\left(1+\frac{\sqrt{3}}{2}\right)$

Dấu “=” xảy ra khi $\sin 2 \alpha=1$ hay $\alpha=45^{\circ}$.

Chu vi lớn nhất có thể có của tam giác $\mathrm{BMN}$ là: $\mathrm{P}=\frac{3 \mathrm{R}(1+\sqrt{3})}{2}$.

 

 

 

 

 

 

 

 

 

 

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHÂN THỨC ĐẠI SỐ – P.2

 CÁC PHÉP TÍNH VỀ PHÂN THỨC

 

Muốn cộng các phân thức, ta quy đồng mẫu thức, cộng các tử thức với nhau, giữ nguyên mẫu thức chung, rồi rút gọn phân thức vừa tìm được.

Muốn trừ đi một phân thức, ta lấy phân thức bị trừ cộng với phân thức đối của phân thức trừ.

Muốn nhân các phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau, rồi rút gọn phân thức vừa tìm được. Muốn chia cho một phân thức khác 0 , ta lấy phân thức bị chia nhân với phân thức nghịch đảo của phân thức chia.

Ví dụ 1.

Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ đều khạ́c 0 . Rút gọn biểu thức

$A=\frac{a b}{a^2+b^2-c^2}+\frac{b c}{b^2+c^2-a^2}+\frac{c a}{c^2+a^2-b^2} \text {. }$

Giải : Từ $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ suy ra $\mathrm{a}+\mathrm{b}=-\mathrm{c}$.

Bình phương hai vế, ta được $\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ab}=\mathrm{c}^2$ nên $\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2=-2 \mathrm{ab}$.

Tương tự, $\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2=-2 \mathrm{bc}$ và $\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2=-2 \mathrm{ca}$.

Do đó $\mathrm{A}=\frac{\mathrm{ab}}{-2 \mathrm{ab}}+\frac{\mathrm{bc}}{-2 \mathrm{bc}}+\frac{\mathrm{ca}}{-2 \mathrm{ca}}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}$.

Ví dụ 2. Rút gọn biểu thức

$A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} .$

Giải : Do đặc điểm của bài toán, ta không quy đồng mẫu tất cả các phân thức mà cộng lần lượt từng phân thức.

$A =\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} $

$=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}=\frac{8}{1-x^8}+\frac{8}{1+x^8}=\frac{16}{1-x^{16}}$

Ví dụ 3. Rút gọn biểu thức

$\mathrm{B}=\frac{3}{(1.2)^2}+\frac{5}{(2.3)^2}+\ldots+\frac{2 n+1}{[n(n+1)]^2}$

Giải : Đương nhiên không thể quy đồng mẫu tất cả các phân thức. Ta tìm cách tách mỗi phân thức thành hiệu của hai phân thức rồi dùng phương pháp khử liên tiếp. Ta có :

$\frac{2 \mathrm{k}+1}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{(\mathrm{k}+1)^2-\mathrm{k}^2}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{1}{\mathrm{k}^2}-\frac{1}{(\mathrm{k}+1)^2}$

Do đó : $\quad \mathrm{B}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\ldots+\frac{1}{\mathrm{n}^2}-\frac{1}{(\mathrm{n}+1)^2}=$

$=1-\frac{1}{(n+1)^2}=\frac{n(n+2)}{(n+1)^2}$

Ví dụ 4. Xác định các ‘số a, b, c sao cho

$\frac{1}{\left(x^2+1\right)(x-1)}=\frac{a x+b}{x^2+1}+\frac{c}{x-1} \text {. }\quad\quad(1)$

Giải : Thực hiện phép cộng ở vế phải của (1) :

$\frac{(a x+b)(x-1)+c\left(x^2+1\right)}{\left(x^2+1\right)(x-1)}=\frac{a x^2-a x+b x-b+c x^2+c}{\left(x^2+1\right)(x-1)}=$

$=\frac{(a+c) x^2+(b-a) x+(c-b)}{\left(x^2+1\right)(x-1)} \text {. }$

Đồng nhất phân thức trên với phân thức $\frac{1}{\left(x^2+1\right)(x-1)}$, ta được :

$\left\{\begin{array} { l }{ \mathrm { a } + \mathrm { c } = 0 } \\ { \mathrm { b } – \mathrm { a } = 0 } \\ { \mathrm { c } – \mathrm { b } = 1 }\end{array} \Rightarrow \left\{\begin{array}{l}\mathrm{c}+\mathrm{b}=0 \\ \mathrm{c}-\mathrm{b}=1\end{array} \Rightarrow \mathrm{c}=\frac{1}{2} ; \mathrm{b}=-\frac{1}{2} .\right.\right.$

Do đó $a=-\frac{1}{2}$. Như vậy : $\frac{1}{\left(x^2+1\right)(x-1)}=\frac{-\frac{1}{2} x-\frac{1}{2}}{x^2+1}+\frac{\frac{1}{2}}{x-1}$.

Ví dụ 5. Cho $\quad A=\frac{1}{(x+y)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)$, $B=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right), \quad C=\frac{2}{(x+y)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)$.

Thực hiện phép tính $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

Giải : Ta có

$A =\frac{y^4-x^4}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)\left(y^2-x^2\right)}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2} $

$B+C =\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{1}{x+y} \cdot \frac{y^2-x^2}{x^2 y^2}\right) $

$=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{y-x}{x^2 y^2}\right)=\frac{2}{(x+y)^4} \cdot \frac{y^3-x^3+x y(y-x)}{x^3 y^3}$

$=\frac{2}{(x+y)^4} \cdot \frac{(y-x)\left(y^2+2 x y+x^2\right)}{x^3 y^3}=\frac{2(y-x)}{(x+y)^2 x^3 y^3}$

Do đó $A+B+C=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2}+\frac{2(y-x)}{x^3 y^3(x+y)^2}=$

$=\frac{\left(y^2+x^2\right)(y-x)+2 x y(y-x)}{x^4 y^4(x+y)^2}=\frac{(y-x)\left(y^2+x^2+2 x y\right)}{x^4 y^4(x+y)^2}=\frac{y-x}{x^4 y^4}$

 

BÀI TẬP

19. Thực hiện phép tính :
a) $\frac{x+3}{x+1}-\frac{2 x-1}{x-1}-\frac{x-3}{x^2-1}$
b) $\frac{1}{x(x+y)}+\frac{1}{y(x+y)}+\frac{1}{x(x-y)}+\frac{1}{y(y-x)}$.
10. Thực hiện phép tính :
a) $A=\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}$;
b) $B=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-a)(b-c)}+\frac{1}{c(c-a)(c-b)}$;
c) $\mathrm{C}=\frac{\mathrm{bc}}{(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})}+\frac{\mathrm{ac}}{(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{c})}+\frac{\mathrm{ab}}{(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})}$;
d) $D=\frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}$.
11. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số nguyên khác nhau đôi một. Chứng minh rằng biểu thức sau có giá trị là một số nguyên :
$P=\frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-a)(b-c)}+\frac{c^3}{(c-a)(c-b)}$

12. Cho $3 y-x=6$. Tính giá trị của biểu thức

$A=\frac{x}{y-2}+\frac{2 x-3 y}{x-6}$

13. Tìm $\mathrm{x}, \mathrm{y}, \mathrm{z}$, biết rằng $\frac{\mathrm{x}^2}{2}+\frac{\mathrm{y}^2}{3}+\frac{\mathrm{z}^2}{4}=\frac{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}{5}$.

14. Tìm $\mathrm{x}, \mathrm{y}$, biết rằng $\mathrm{x}^2+\mathrm{y}^2+\frac{1}{\mathrm{x}^2}+\frac{1}{\mathrm{y}^2}=4$.

15. Cho biết :

$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=2$

$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}=2 .$

Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{abc}$.

16. Cho

$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=0$

và $\quad \frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{z}}=2$.

Tính giá trị của biểu thức : $\frac{\mathrm{a}^2}{\mathrm{x}^2}+\frac{\mathrm{b}^2}{\mathrm{y}^2}+\frac{\mathrm{c}^2}{\mathrm{z}^2}$.

17. Cho $(a+b+c)^2=a^2+b^2+c^2$ và $a, b, c$ khác 0 . Chứng minh rằng

$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{a b c}$

18. Cho

$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{a}}+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{b}}$

Chứng minh rằng trong ba số $\mathrm{a}, \mathrm{b}, \mathrm{c}$, tồn tại hai số bằng nhau.

19. Tìm các giá trị nguyên của $\mathrm{x}$ để phân thức sau có giá trị là số nguyên :

a) $\mathrm{A}=\frac{2 \mathrm{x}^3-6 \mathrm{x}^2+\mathrm{x}-8}{\mathrm{x}-3}$

b) $\mathrm{B}=\frac{\mathrm{x}^4-2 \mathrm{x}^3-3 \mathrm{x}^2+8 \mathrm{x}-1}{\mathrm{x}^2-2 \mathrm{x}+1}$

c) $C=\frac{x^4+3 x^3+2 x^2+6 x-2}{x^2+2}$

20. Rút gọn biểu thức sau với $\mathrm{x}=\frac{\mathrm{a}}{3 \mathrm{a}+2}$ :

$A=\frac{x+3 a}{2-x}+\frac{x-3 a}{2+x}-\frac{2 a}{4-x^2}+a$

21. Rút gọn biểu thức :

$A=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a-b)(b-c)(c-a)} .$

  1. Cho biết $\frac{a+b-c}{a b}-\frac{b+c-a}{b c}-\frac{a+c-b}{a c}=0$. Chứng minh rằng trong ba phân thức ở vế trái, có ít nhất một phân thức bằng 0 .

23. Xác định các số a, b, c sao cho :

a) $\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{b x+c}{x^2+1}$

b) $\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}$

c) $\frac{1}{(x+1)^2(x+2)}=\frac{a}{x+1}+\frac{b}{(x+1)^2}+\frac{c}{x+2}$.

24. Rút gọn biểu thức

$\mathrm{B}=(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)-\mathrm{abc}\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)$

25. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ khác nhau đôi một và $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$. Rút gọn các biểu thức :

a) $M=\frac{1}{a^2+2 b c}+\frac{1}{b^2+2 a c}+\frac{1}{c^2+2 a b}$

b) $\mathrm{N}=\frac{\mathrm{bc}}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{ca}}{\mathrm{b}^2+2 \mathrm{ac}}+\frac{\mathrm{ab}}{\mathrm{c}^2+2 \mathrm{ab}}$;

c) $\mathrm{P}=\frac{\mathrm{a}^2}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{~b}^2+2 \mathrm{ac}}+\frac{\mathrm{c}^2}{\mathrm{c}^2+2 \mathrm{ab}}$.

26. Cho các số $a, b, c$ khác nhau đôi một và $\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}$. Tính giá trị của biểu thức

$\mathrm{M}=\left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)\left(1+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{a}}\right)$

27*. Cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3=3 \mathrm{abc}$ và $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$. Tính giá trị của biểu thức :

$N=\frac{a^2+b^2+c^2}{(a+b+c)^2}$

28. Rút gọn các biểu thức :

a) $A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right) \ldots\left(1-\frac{1}{n^2}\right)$;

b) $\mathrm{B}=\frac{1^2}{2^2-1} \cdot \frac{3^2}{4^2-1} \cdot \frac{5^2}{6^2-1} \cdot \cdots \cdot \frac{(2 n+1)^2}{(2 n+2)^2-1} .$

29. Rút gọn các biểu thức :

a) $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(n-1) n}$;

b) $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n+2)(3 n+5)}$;

c) $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{(n-1) n(n+1)}$.

30. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

a) $\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\ldots+\frac{1}{(2 n)^2}<\frac{1}{2}$

b) $\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots+\frac{1}{(2 n+1)^2}<\frac{1}{4}$.

31. Chứng minh rằng với mọi số tự nhiện $\mathrm{n} \geq 2$ :

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}<\frac{2}{3} .$

32. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 3$ :

$\mathrm{B}=\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\ldots+\frac{1}{\mathrm{n}^3}<\frac{1}{12} $

33. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

$A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right) \cdots\left(1+\frac{1}{n(n+2)}\right)<2$

34. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 2$ :

$\mathrm{B}=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right) \ldots\left(1-\frac{2}{\mathrm{n}(\mathrm{n}+1)}\right)>\frac{1}{3} \text {. }$

35. Rút gọn biểu thức

$A=\frac{3^2-1}{5^2-1} \cdot \frac{7^2-1}{9^2-1} \cdot \frac{11^2-1}{13^2-1} \cdot \ldots \frac{43^2-1}{45^2-1} .$

36*. Chứng minh rằng :

a) $\mathrm{A}=\frac{2^3+1}{2^3-1} \cdot \frac{3^3+1}{3^3-1} \cdot \frac{4^3+1}{4^3-1} \cdot \ldots \cdot \frac{9^3+1}{9^3-1}<\frac{3}{2}$.

b) $\mathrm{B}=\frac{2^3-1}{2^3+1} \cdot \frac{3^3-1}{3^3+1} \cdot \ldots \cdot \frac{\mathrm{n}^3-1}{\mathrm{n}^3+1}>\frac{2}{3}$.

37*. Rút gọn biểu thức

$P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right) \ldots\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right) \ldots\left(23^4+4\right)} .$

38. Rút gọn biểu thức

$M=\frac{1}{a^2-5 a+6}+\frac{1}{a^2-7 a+12}+\frac{1}{a^2-9 a+20}+\frac{1}{a^2-11 a+30}$

39. Rút gọn biểu thức

9.$\left(\frac{\mathrm{n}-1}{1}+\frac{\mathrm{n}-2}{2}+\frac{\mathrm{n}-3}{3}+\ldots+\frac{2}{\mathrm{n}-2}+\frac{1}{\mathrm{n}-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}\right) .$

40. Rút gọn biểu thức

$\frac{A}{B}=\frac{\frac{1}{1(2 n-1)}+\frac{1}{3(2 n-3)}+\frac{1}{5(2 n-5)}+\ldots+\frac{1}{(2 n-3) \cdot 3}+\frac{1}{(2 n-1) .1}}{1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}} .$

41. Cho

$a b c=1$

và $\quad \mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$.

Chứng minh rằng trong ba số a, b, c, tồn tại một số bằng 1 .

42. Chứng minh rằng nếu $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ và $\frac{1}{\dot{\mathrm{x}}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=\frac{1}{\mathrm{a}}$ thì tồn tại một trong ba số $\mathrm{x}, \mathrm{y}, \mathrm{z}$ bằng $\mathrm{a}$.

43. Các biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{z}$ và $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}$ có thể cùng có giá trị bằng 0 được hay không ?

44. Tính giá trị của biểu thức $\mathrm{M}=\frac{1}{\mathrm{x}+2}+\frac{1}{\mathrm{y}+2}+\frac{1}{\mathrm{z}+2}$, biết rằng $2 a=b y+c z, 2 b=a x+c z, 2 c=a x+b y$ và $a+b+c \neq 0$.

45. a) Cho abc $=2$. Rút gọn biểu thức

$M=\frac{a}{a b+a+2}+\frac{b}{b c+b+1}+\frac{2 c}{a c+2 c+2} .$

b) Cho abc $=1$. Rút gọn biểu thức

$\mathrm{N}=\frac{\mathrm{a}}{\mathrm{ab}+\mathrm{a}+1}+\frac{\mathrm{b}}{\mathrm{bc}+\mathrm{b}+1}+\frac{\mathrm{c}}{\mathrm{ac}+\mathrm{c}+1} .$

46. Cho $\frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}-\mathrm{c}}, \mathrm{a} \neq 0, \mathrm{c} \neq 0, \mathrm{a}-\mathrm{b} \neq 0, \mathrm{~b}-\mathrm{c} \neq 0$. Chứng minh rằng

$\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}$

47. Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0(\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0)$. Rút gọn các biểu thức :

a) $\mathrm{A}=\frac{\mathrm{a}^2}{\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{ca}}+\frac{\mathrm{c}^2}{\mathrm{ab}}$

b) $\mathrm{B}=\frac{\mathrm{a}^2}{\mathrm{a}^2-\mathrm{b}^2-\mathrm{c}^2}+\frac{\mathrm{b}^2}{\mathrm{~b}^2-\mathrm{c}^2-\mathrm{a}^2}+\frac{\mathrm{c}^2}{\mathrm{c}^2-\mathrm{a}^2-\mathrm{b}^2}$.

48*. Tính giá trị của biểu thức sau, biết rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ :

$A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right) \text {. }$

49. Chứng minh rằng nếu $\left(\mathrm{a}^2-\mathrm{bc}\right)(\mathrm{b}-\mathrm{abc})=\left(\mathrm{b}^2-\mathrm{ac}\right)(\mathrm{a}-\mathrm{abc})$ và các số $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{a}-\mathrm{b}$ khác 0 thì $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\mathrm{a}+\mathrm{b}+\mathrm{c}$.

50*. Cho $a+b+c=0, x+y+z=0, \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0$. Chứng minh rằng

$a x^2+b y^2+c z^2=0 .$

51. Cho $\frac{x y+1}{y}=\frac{y z+1}{z}=\frac{x z+1}{x}$. Chứng minh rằng $x=y=z$ hoặc $x^2 y^2 z^2=1$.

52. Cho $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1$. Chứng minh rằng $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0$.

53*. Cho $\frac{\mathrm{a}}{\mathrm{b}-\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}-\mathrm{a}}+\frac{\mathrm{c}}{\mathrm{a}-\mathrm{b}}=0$. Chứng minh rằng

$\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=0$

54. Cho $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{a}$. Tính các biểu thức sau theo $\mathrm{a}$ :

a) $x^2+\frac{1}{x^2}$

b) $x^3+\frac{1}{x^3}$

c) $x^4+\frac{1}{x^4}$

d) $x^5+\frac{1}{x^5}$

55. Cho $\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a$. Tính biểu thức

$M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right) \text { theo } a$

  1. Cho $x^2-4 x+1=0$. Tính giá trị của biểu thức $A=\frac{x^4+x^2+1}{x^2}$.

57. Cho $\frac{x}{x^2-x+1}=a$. Tính $M=\frac{x^2}{x^4+x^2+1}$ theo $a$.

58. Cho $x=\frac{b^2+c^2-a^2}{2 b c}, y=\frac{a^2-(b-c)^2}{(b+c)^2-a^2}$.

Tính giá trị của biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{xy}$.

59. Tìm hai số tự nhiên a và b sao cho :

a) $a-b=\frac{a}{b}$;

b) $a-b=\frac{a}{2 b}$

60. Cho hai số nguyên dương $\mathrm{a}$ và $\mathrm{b}$ trong đó $\mathrm{a}>\mathrm{b}$. Tìm số nguyên dương $\mathrm{c}$ khác b sao cho

$\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}$

61. Cho dãy số $a_1, a_2, a_3, \ldots$ sao cho :

$a_2=\frac{a_1-1}{a_1+1} ; a_3=\frac{a_2-1}{a_2+1} ; \ldots ; a_n=\frac{a_{n-1}-1}{a_{n-1}+1} .$

a) Chứng minh rằng $\mathrm{a}_1=\mathrm{a}_5$.

b) Xác định năm số đầu của dãy, biết rằng $\mathrm{a}_{101}=3$.

62. Tìm phân số $\frac{\mathrm{m}}{\mathrm{n}}$ khác 0 và số tự nhiên $\mathrm{k}$, biết rằng $\frac{\mathrm{m}}{\mathrm{n}}=\frac{\mathrm{m}+\mathrm{k}}{\mathrm{nk}}$.

63*. Cho hai số tự nhiên a và $\mathrm{b}(\mathrm{a}<\mathrm{b})$. Tìm tổng các phân số tối giản có mẫu bằng 7 , mỗi phân số lớn hơn a nhưng nhỏ hơn b.

64. a) Mức sản xuất của một xí nghiệp năm 2001 tăng a\% so với năm 2000, năm 2002 tăng b\% so với năm 2001. Mức sản xuất của xí nghiệp đó năm 2002 tăng so với năm 2000 là :

A) $(a+b) \%$;

B) $a b \%$

C) $\left(a+b+\frac{a+b}{100}\right) \%$

D) $\left(a+b+\frac{a b}{100}\right) \%$

$\mathrm{E})\left(\frac{\mathrm{a}+\mathrm{b}}{100}+\frac{\mathrm{ab}}{10000}\right) \%$

Hãy chọn câu trả lời đúng.

b) Một số a tăng m\%, sau đó lại giảm đi n\% ( $\mathrm{a}, \mathrm{m}, \mathrm{n}$ là các số dương) thì được số $b$. Tìm liên hệ giữa $m$ và $n$ để $b>a$.

65*. Chứng minh rằng các tổng sau không là số nguyên :

a) $\mathrm{A}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 2)$

b) $\mathrm{B}=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{2 \mathrm{n}+1}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 1)$.

 

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI ĐA THỨC

Định lý Bezout và áp dụng

1. Đa thức chia có dạng $x-a$ (a là hằng)

Ví dụ 1. Chứng minh rằng số dư khi chia đa thức $\mathrm{f}(\mathrm{x})$ cho nhị thức $\mathrm{x}$ – a bằng giá trị của đa thức $\mathrm{f}(\mathrm{x})$ tại $\mathrm{x}=\mathrm{a}$.

Định lí Bê-du (Bézout, 1730 – 1783, nhà toán học Pháp).

Giải : Do đa thức chia $\mathrm{x}$ – a có bậc nhất nên số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-\mathrm{a}$ là hằng số $\mathrm{r}$.

Ta có $\quad \mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a}) 、 \mathrm{Q}(\mathrm{x})+\mathrm{r}$.

Đẳng thức trên đúng với mọi $\mathrm{x}$ nên với $\mathrm{x}=\mathrm{a}$ ta có

$f(a)=0 . Q(a)+r \text { hay } f(a)=r \text {. }$

Chú ý : Từ định lí Bê-du ta suy ra :

Đa thức $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-\mathrm{a}$ khi và chỉ khi $\mathrm{f}(\mathrm{a})=0$ (tức là khi và chỉ khi a là nghiệm của đa thức).

Ví dụ 2. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số bằng 0 thì đa thức ấy chia hết cho $\mathrm{x}-1$ ‘.

Giải : Gọi : $f(x)=a_ox^n+a_1 x^n-1+\ldots+a_n-1x+a_n$.

Theo giả thiết, $\quad a_0+a_1+\ldots+a_{n-1}+a_n=0 $.

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-1$ là

$r = f(1) = a_\circ + a_1 + \ldots + a_{n-1} + a_n $

Từ (1) và (2) suy ra $r=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-1$.

Ví dụ 3. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì đa thức ấy chia hết cho $x+1$.

Giải : Gọi $f(x)=a_0 x^{2 n}+a_1 x^{2 n-1}+a_2 x^{2 n-2}+\ldots+a_{2 n-2} x^2+a_{2 n-1} x+a_{2 n}$, trong đó $\mathrm{a}_0$ có thể bằng 0 .

Theo giả thiết

$a_\circ + a_2 + \ldots + a_{2n} = a_2 + a_3 + \ldots + a_{2n-1}$ nên

$\left(a_0+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right)=0 .$

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}+1$ bằng

$r =f(-1)=a_0-a_1+a_2-\ldots+a_{2 n-2}-a_{2 n-1}+a_{2 n} $

$=\left(a_o+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right) $

Từ (1) và (2) suy ra $\mathrm{r}=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}+1$.

CHUYÊN ĐỀ: MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

Trong chuyên đề này, ta chỉ phân tích đa thức thành nhân tử với các hệ số nguyên.

 

PHƯƠNG PHÁP TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ

 

Ví dụ 1. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad3 x^2-8 x+4$

Giải : Đa thức trên không chứa nhân tử chung, không có dạng một hằng đẳng thức đáng nhớ nào, cũng không thể nhóm các hạng tử. Ta biến đổi đa thức ấy thành đa thức có nhiều hạng tử hơn.

Cách 1. (Tách hạng tử thứ hai)

$3 x^2-8 x+4=3 x^2-6 x-2 x+4=3 x(x-2)-2(x-2)=(x-2)(3 x-2) \text {. }$

Cách 2. (Tách hạng tử thứ nhất)

$3 x^2-8 x+4=4 x^2-8 x+4-x^2=(2 x-2)^2-x^2 $

$=(2 x-2+x)(2 x-2-x)=(3 x-2)(x-2) .$

Nhận xét : Trong cách 1 , hạng tử $-8 \mathrm{x}$ được tách thành hai hạng tử $-6 \mathrm{x}$ và $-2 x$. Trong đa thức $3 x^2-6 x-2 x+4$, hệ số của các hạng tử là $3,-6,-2,4$. Các hệ số thứ hai và thứ tư đều gấp $-2$ lần hệ số liền trước, nhờ đó mà xuất hiện nhân tử chung $x-2$.

Một cách tổng quát, để phân tích tam thức bậc hai $\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}$ thành nhân tử, ta tách hạng tử bx thành $b_1 x+b_2 x$ sao cho $\frac{b_1}{a}=\frac{c}{b_2}$, tức là $b_1 b_2=a c$.

Trong thực hành ta làm như sau :

Bước I : Tìm tích ac.

Bước 2 : Phân tích ac ra tích của hai thừa số nguyên bằng mọi cách.

Bước 3 : Chọn hai thừa số mà tổng bằng $\mathrm{b}$.

Trong ví dụ trên, đa thức $3 \mathrm{x}^2-8 \mathrm{x}+4$ có $\mathrm{a}=3, \mathrm{~b}=-8, \mathrm{c}=4$. Tích $\mathrm{ac}=3.4=12$. Phân tích 12 ra tích của hai thừa số, hai thừa số này cùng dấu (vì tích của chúng bằng 12 ), và cùng âm (để tổng của chúng bằng $-8)$ : $(-1)(-12)$, $(-2)(-6),(-3)(-4)$. Chọn hai thừa số mà tổng bằng $-8$, đó là $-2$ và $-6$.

Ví dụ 2. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad4 x^2-4 x-3$

Giải :

Cách 1. (Tách hạng tử thứ hai)

$4 \mathrm{x}^2-4 \mathrm{x}-3=4 \mathrm{x}^2+2 \mathrm{x}-6 \mathrm{x}-3=2 \mathrm{x}(2 \mathrm{x}+1)-3(2 \mathrm{x}+1)=(2 \mathrm{x}+1)(2 \mathrm{x}-3)$

Chú ý rằng hệ số $-4$ được tách thành 2 và $-6$ có tích bằng $-12$, bằng tích của $4(-3)$.

Cách 2. (Tách hạng tử thứ ba)

$4 x^2-4 x-3=4 x^2-4 x+1-4=(2 x-1)^2-2^2=(2 x+1)(2 x-3)$

Nhận xét : Qua hai ví dụ trên, ta thấy việc tách một hạng tử thành nhiều hạng tử khác thường nhằm mục đích

  • Làm xuất hiện các hệ số tỉ lệ, nhờ đó mà xuất hiện nhân tử chung (cách 1 ) ;

  • Làm xuất hiện hiệu của hai bình phương (cách 2).

Với các đa thức có bậc từ bậc ba trở lên, để dễ dàng làm xuất hiện các hệ số tỉ lệ, người ta thường dùng cách tìm nghiệm của đa thức.

Ta nhắc lại khái niệm nghiệm của đa thức : số a được gọi là nghiệm của đa thức $\mathrm{f}(\mathrm{x})$ nếu $\mathrm{f}(\mathrm{a})=0$. Như vậy, nếu đa thức $\mathrm{f}(\mathrm{x})$ có nghiệm $\mathrm{x}=\mathrm{a}$ thì nó chứa nhân tử $x-a$.

Ta chứng minh được rằng nghiệm nguyên của đa thức, nếu có, phải là ước của hệ số tự do.

Thật vậy, giả sử đa thức $a_0 x^n+a_1 x^{n-1}+\ldots+a_{n-1} x+a_n$ với các hệ số $\mathrm{a}_{\mathrm{O}}$, $a_1, \ldots, a_n$ nguyên, có nghiệm $x=a(a \in \mathbf{Z})$ . Thế thì

$a_0 x^n+a_1 x^{n-1}+\ldots+a_{n-1} x+a_n=(x-a)\left(b_0 x^{n-1}+b_1 x^{n-2}+\ldots+b_{n-1}\right)$

trong đó $b_0, b_1, \ldots, b_{n-1}$ nguyên. Hạng tử có bậc thấp nhất của tích ở vế phải bằng $-a b_{n-1}$ . Do đó $-a b_{n-1}=a_n$, tức a là ước của $a_n$

Ví dụ 3. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad f(x)=x^3-x^2-4$

Giải : Lần lượt kiểm tra với $\mathrm{x}=\pm 1, \pm 2, \pm 4$, ta thấy $\mathrm{f}(2)=2^3-2^2-4=0$. Đa thức có nghiệm $\mathrm{x}=2$, do đó chứa nhân tử $\mathrm{x}-2$.

Ta tách các hạng tử như sau :

Cách 1. $\quad \mathrm{x}^3-\mathrm{x}^2-4=\mathrm{x}^3-2 \mathrm{x}^2+\mathrm{x}^2-2 \mathrm{x}+2 \mathrm{x}-4$

$=x^2(x-2)+x(x-2)+2(x-2)=(x-2)\left(x^2+x+2\right)$

Cách 2. $\quad \mathrm{x}^3-\mathrm{x}^2-4=\mathrm{x}^3-8-\mathrm{x}^2+4$

$=(x-2)\left(x^2+2 x+4\right)-(x+2)(x-2) $

$=(x-2)\left(x^2+2 x+4-x-2\right)=(x-2)\left(x^2+x+2\right)$

Chú ý : Khi xét nghiệm nguyên của đa thức, nên nhớ hai định lí sau :

a) Nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số bằng 0 thì 1 là nghiệm của đa thức, do đó đa thức chứa nhân tử $\mathrm{x}-1$.

Chẳng hạn, đa thức $\mathrm{x}^3-5 \mathrm{x}^2+8 \mathrm{x}-4$ có $1-5+8-4=0$ nên 1 là nghiệm của đa thức, đa thức chứa nhân tử $\mathrm{x}-1$.

b) Nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số của hạng tử bậc chẵn bằng tổng các hệ số của hạng tử bậc lẻ thì $-1$ là nghiệm của đa thức, đa thức chứa nhân tử $\mathrm{x}+1$.

Chẳng hạn, đa thức $x^3-5 x^2+3 x+9$ có $9-5=3+1$ nên $-1$ là nghiệm của đa thức, đa thức chứa nhân tử $\mathrm{x}+1$.

Chú ý : Để nhanh chóng loại trừ các ước của hệ số tự do không là nghiệm của đa thức, có thể dùng nhận xét sau :

Nếu a là nghiệm nguyên của đa thức $\mathrm{f}(\mathrm{x})$ và $\mathrm{f}(1), \mathrm{f}(-1)$ khác 0 thì $\frac{\mathrm{f}(1)}{\mathrm{a}-1}$ và $\frac{\mathrm{f}(-1)}{\mathrm{a}+1}$ đều là số nguyên.

Chứng̉ minh. Số a là nghiệm của $\mathrm{f}(\mathrm{x})$ nên

$f(x)=(x-a) \cdot Q(x) \quad\quad(1)$

Thay $x=1$ vào (1), ta có $f(1)=(1-a) \cdot Q(1)$.

Do $\mathrm{f}(1) \neq 0$ nên $\mathrm{a} \neq 1$, vì thế $\mathrm{Q}(1)=\frac{\mathrm{f}(1)}{1-\mathrm{a}}$, tức là $\frac{\mathrm{f}(1)}{\mathrm{a}-1}$ là số nguyên.

Thay $\mathrm{x}=-1$ vào (1). Chứng minh tương tự, ta cũng có $\frac{\mathrm{f}(-1)}{a+l}$ là số nguyên. Lấy một ví dụ : $\quad \mathrm{f}(\mathrm{x})=4 \mathrm{x}^3-13 \mathrm{x}^2+9 \mathrm{x}-18$.

Các ước của 18 là $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$.

$f(1)=4-13+9-18=-18, f(-1)=-4-13-9-18=-44 .$

Hiển nhiên $\pm 1$ không là nghiệm của $f(x)$. Ta thấy $\frac{-18}{-3-1}, \frac{-18}{\pm 6-1}, \frac{-18}{\pm 9-1}$, $\frac{-18}{\pm 18-1}$ không nguyên nên $-3, \pm 6, \pm 9, \pm 18$ không là nghiệm của $f(x)$.

Ta thấy $\frac{-44}{2+1}$ không nguyên nên 2 không là nghiệm của $f(x)$. Chỉ còn $-2$ và 3 .

Kiểm tra ta thấy 3 là nghiệm của $\mathrm{f}(\mathrm{x})$. Do đó, ta tách các hạng tử như sau :

$ 4 x^3-13 x^2+9 x-18=4 x^3-12 x^2-x^2+3 x+6 x-18 $

$= 4 x^2(x-3)-x(x-3)+6(x-3)=(x-3)\left(4 x^2-x+6\right)$

Ví dụ 3. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad3 x^3-7 x^2+17 x-5$

Giải : Các số $\pm 1, \pm 5$ không là nghiệm của đa thức. Như vậy, đa thức không có nghiệm nguyên. Tuy vậy, đa thức có thể có nghiệm hữu tỉ khác. Ta chứng minh được rằng trong đa thức có các hệ số nguyên, nghiệm hữu tỉ (nếu có) phải có dạng $\frac{\mathrm{p}}{\mathrm{q}}$ trong đó $\mathrm{p}$ là ước của hệ số tự do, $\mathrm{q}$ là ước dương của hệ số cao nhất (*).

Xét các số $\pm \frac{1}{3}, \pm \frac{5}{3}$, ta thấy $\frac{1}{3}$ là nghiệm của đa thức, do đó đa thức chứa thừa số $3 x-1$. Ta tách các hạng tử như sau :

$3 x^3-7 x^2+17 x-5=3 x^3-x^2-6 x^2+2 x+15 x-5 $

$= x^2(3 x-1)-2 x(3 x-1)+5(3 x-1)=(3 x-1)\left(x^2-2 x+5\right)$

(*) $-$ Thật vậy, giả sử đa thức $a_0 x^n+a_1 x^{n-1}+\ldots+a_{n-1} x+a_n$ với các hệ số $a_0, a_1, \ldots, a_n$ nguyên, có nghiệm hữu tỉ $x=\frac{p}{q}$, trong đó $p, q \in \mathbf{Z}, \mathrm{q}>0,(\mathrm{p}, \mathrm{q})=1$. Thế thì

$a_0 x^n+a_1 x^{n-1}+\ldots+a_{n-1} x+a_n=(q x-p)\left(b_0 x^{n-1}+b_1 x^{n-2}+\ldots+b_{n-1}\right)$

Ta có $-pb_n-1=a_n$, $qb_o=a_o$ nên p là ước của $a_n$; còn q là ước dương của $a_o$.

 

PHƯƠNG PHÁP THÊM VÀ BỚT CÙNG MỘT HẠNG TỬ

 

1. Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương

Ví dụ 4. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad4 x^4+81$

Giải : Thêm và bớt $36 \mathrm{x}^2$ :

$4 \mathrm{x}^4+81=4 \mathrm{x}^4+36 \mathrm{x}^2+81-36 \mathrm{x}^2$

$=\left(2 x^2+9\right)^2-(6 x)^2=\left(2 x^2+9+6 x\right)\left(2 x^2+9-6 x\right) .$

Ví dụ 5. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^4+y^4 \text {. }$

Giải : Thêm và bớt $16 \mathrm{x}^2 \mathrm{y}^2$ :

$64 x^4+y^4 =64 x^4+16 x^2 y^2+y^4-16 x^2 y^2=\left(8 x^2+y^2\right)^2-(4 x y)^2 $

$=\left(8 x^2+y^2+4 x y\right)\left(8 x^2+y^2-4 x y\right)$

2. Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung

Ví dụ 6. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad x^5+x-1$

Giải :

Cách 1:

$x^5+x-1 =x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1 $

$=x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)-\left(x^2-x+1\right) $

$=\left(x^2-x+1\right)\left(x^3+x^2-1\right)$

Cách 2. Thêm và bớt $\mathrm{x}^2$ :

$x^5+x-1=x^5+x^2-x^2+x-1=x^2\left(x^3+1\right)-\left(x^2-x+1\right) $

$=\left(x^2-x+1\right)\left[x^2(x+1)-1\right]=\left(x^2-x+1\right)\left(x^3+x^2-1\right)$

Ví dụ 7. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad x^7+x^2+1$

Giải : Thêm và bớt x :

$x^7+x^2+1 =x^7-x+x^2+x+1 $

$=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right) $

$=x\left(x^3+1\right)(x-1)\left(x^2+x+1\right)+\left(x^2+x+1\right) $

$=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)$

Chú ý : Các đa thức dạng $\mathrm{x}^{3 \mathrm{~m}+1}+\mathrm{x}^{3 \mathrm{n}+2}+1 \mathrm{nhu} \mathrm{x}^7+\mathrm{x}^2+1, \mathrm{x}^7+\mathrm{x}^5+1$, $x+x^5+1, x+x^8+1, \ldots$ đều chứa nhân tử $x^2+x+1$

PHƯƠNG PHÁP ĐỔI BIẾN

Ví dụ 8. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad x(x+4)(x+6)(x+10)+128$

Giải :

$x(x+4)(x+6)(x+10)+128=\left(x^2+10 x\right)\left(x^2+10 x+24\right)+128$

Đặt $x^2+10 x+12=y$, đa thức đã cho có dạng :

$(y-12)(y+12)+128=y^2-16=(y+4)(y-4) $

$=\left(x^2+10 x+16\right)\left(x^2+10 x+8\right)=(x+2)(x+8)\left(x^2+10 x+8\right) .$

Nhận xét : Trong ví dụ trên, nhờ phương pháp đổi biến, ta đã đưa đa thức bậc bốn đối với $x$ thành đa thức bậc hai đối với y.

Ví dụ 9. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad A=x^4+6 x^3+7 x^2-6 x+1$

Giải : Giả sử $\mathrm{x} \neq 0$. Ta viết đa thức dưới dạng :

$A=x^2\left(x^2+6 x+7-\frac{6}{x}+\frac{1}{x^2}\right)=x^2\left[\left(x^2+\frac{1}{x^2}\right)+6\left(x-\frac{1}{x}\right)+7\right] \text {. }$

Đặt $x-\frac{1}{x}=y$ thì $x^2+\frac{1}{x^2}=y^2+2$. Do đó

$A =x^2\left(y^2+2+6 y+7\right)=x^2(y+3)^2=(x y+3 x)^2 $

$=\left[x\left(x-\frac{1}{\dot{x}}\right)+3 x\right]^2=\left(x^2+3 x-1\right)^2$

Dạng phân tích này cũng đúng với $x=0$.

Chú ý : Có thể trình bày lời giải của ví dụ trên như sau :

$A =x^4+6 x^3-2 x^2+9 x^2-6 x+1 $

$=x^4+2 x^2(3 x-1)+(3 x-1)^2=\left(x^2+3 x-1\right)^2$

 

PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH

Ví dụ 10. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad x^4-6 x^3+12 x^2-14 x+3$

Giải : Các số $\pm 1, \pm 3$ không là nghiệm của đa thức, đa thức không có nghiệm nguyên, cũng không có nghiệm hữu tỉ. Như vậy nếu đa thức trè̀n phân tích được thành nhân tử thì phải có dạng $\left(x^2+a x+b\right)\left(x^2+c x+d\right)$. Phép nhân. này cho kết quả $\mathrm{x}^4+(\mathrm{a}+\mathrm{c}) \mathrm{x}^3+(\mathrm{ac}+\mathrm{b}+\mathrm{d}) \mathrm{x}^2+(\mathrm{ad}+\mathrm{bc}) \mathrm{x}+\mathrm{bd}$. Đồng nhất đa thức này với đa thức đã cho, ta được hệ điều kiện :

$\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{l}a+c=-6 \\ a c+b+d=12 \\ a d+b c=-14 \\ b d=3 .\end{array}\right.$

Xét bd $=3$ với $\mathrm{b}, \mathrm{d} \in \mathbf{Z}, \mathrm{b} \in{\pm 1, \pm 3}$. Với $\mathrm{b}=3$ thì $\mathrm{d}=1$, hệ điều kiện trên trở thành :

$\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{l}a+c=-6 \\ a c=8 \\ a+3 c=-14\end{array}\right.$

Suy ra $2 \mathrm{c}=-14-(-6)=-8$. Do đó $\mathrm{c}=-4$, $\mathrm{a}=-2$.

Vậy đa thức đã cho phân tich thành $\left(x^2-2 x+3\right)\left(x^2-4 x+1\right)$.

Chú ý : Ta trình bày lời giải của ví dụ trên như sau :

$x^4-6 x^3+12 x^2-14 x+3=$

$= x^4-4 x^3+x^2-2 x^3+8 x^2-2 x+3 x^2-12 x+3 $

$= x^2\left(x^2-4 x+1\right)-2 x\left(x^2-4 x+1\right)+3\left(x^2-4 x+1\right) $

$=\left(x^2-4 x+1\right)\left(x^2-2 x+3\right)$

PHƯƠNG PHÁP XÉT GIÁ TRỊ RIÊNG

Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định nhân tử còn lại.

Ví dụ 11. Phân tích đa thức thành nhân tử :

$\quad\quad\quad\quad\quad\quad\quad\quad P=x^2(y-z)+y^2(z-x)+z^2(x-y)$

Giải : Thử thay $\mathrm{x}$ bởi $\mathrm{y}$ thì $\mathrm{P}=\mathrm{y}^2(\mathrm{y}-\mathrm{z})+\mathrm{y}^2(\mathrm{z}-\mathrm{y})=0$. Như vậy $\mathrm{P}$ chia hết cho $\mathrm{x}-\mathrm{y}$.

Ta lại thấy nếu thay $\mathrm{x}$ bởi $\mathrm{y}$, thay $\mathrm{y}$ bởi $\mathrm{z}$, thay $\mathrm{z}$ bởi $\mathrm{x}$ thì $\mathrm{P}$ không đổi ( $\mathrm{ta}$ nói đa thức $\mathrm{P}$ có thể hoán vị vòng quanh $\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z} \rightarrow \mathrm{x}$ ). Do đó, nếu $\mathrm{P}$ đã chia hết cho $\mathrm{x}-\mathrm{y}$ thì cũng chia hết cho $\mathrm{y}-\mathrm{z}$ và $\mathrm{z}-\mathrm{x}$. Vậy $\mathrm{P}$ có dạng

$\mathrm{k}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x}) \text {. }$

Ta thấy $\mathrm{k}$ phải là hằng số (không chứa biến) vì $\mathrm{P}$ có bậc ba đối với tập hợp các biến $\mathrm{x}, \mathrm{y}, \mathrm{z}$, còn tích $(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})$ cũng có bậc ba đối với tập hợp các biến $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Vì đẳng thức $\mathrm{x}^2(\mathrm{y}-\mathrm{z})+\mathrm{y}^2(\mathrm{z}-\mathrm{x})+\mathrm{z}^2(\mathrm{x}-\mathrm{y})=\mathrm{k}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})$ đúng với mọi $\mathrm{x}, \mathrm{y}, \mathrm{z}$ nên ta gán cho các biến $\mathrm{x}, \mathrm{y}, \mathrm{z}$ các giá trị riêng, chẳng hạn $\mathrm{x}=2$, $\mathrm{y}=1$, $\mathrm{z}=0$(*), ta được :

$4 \cdot 1+1 \cdot(-2)+0=\mathrm{k} \cdot 1 \cdot 1 \cdot(-2) \Leftrightarrow 2=-2 \mathrm{k} \Leftrightarrow \mathrm{k}=-1 \text {. }$

Vậy $P=-(x-y)(y-z)(z-x)=(x-y)(y-z)(x-z)$.

(*) Các giá trị của $\mathrm{x}, \mathrm{y}, \mathrm{z}$ có thể chọn tuỳ ý, chỉ cần chúng đôi một khác nhau để

$(x-y)(y-z)(z-x) \neq 0$

 

BÀI TẬP

 

Phân tích các đa thức sau thành nhân tử (từ bài 1 đến bài 14)

1. a) $6 \mathrm{x}^2-11 \mathrm{x}+3$

b) $2 x^2+3 x-27$

c) $2 x^2-5 x y-3 y^2$

2. a) $x^3+2 x-3$;

b) $x^3-7 x+6$

c) $x^3+5 x^2+8 x+4$

d) $x^3-9 x^2+6 x+16$

e) $x^3-x^2-x-2$;

g) $x^3+x^2-x+2$;

h) $x^3-6 x^2-x+30$.

3. $x^3-7 x-6$ (giải bằng nhiều cách).

4. a) $27 \mathrm{x}^3-27 \mathrm{x}^2+18 \mathrm{x}-4$

b) $2 x^3-x^2+5 x+3$;

c) $\left(x^2-3\right)^2+16$.

5. a) $\left(x^2+x\right)^2-2\left(x^2+x\right)-15$;

b) $x^2+2 x y+y^2-x-y-12$

c) $\left(x^2+x+1\right)\left(x^2+x+2\right)-12$;

d) $(x+2)(x+3)(x+4)(x+5)-24$

6. a) $(x+a)(x+2 a)(x+3 a)(x+4 a)+a^4$;

b) $\left(x^2+y^2+z^2\right)(x+y+z)^2+(x y+y z+z x)^2$;

$\left.c^*\right) 2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)(x+y+z)^2+$

$+(x+y+z)^4$

7*. $(\mathrm{a}+\mathrm{b}+\mathrm{c})^3-4\left(\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3\right)-12 \mathrm{abc}$ bằng cách đổi biến : đặt $\mathrm{a}+\mathrm{b}=\mathrm{m}$, $a-b=n$.

8. a) $4 x^4-32 x^2+1$;

b) $x^6+27$;

c) $3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2$

d) $\left(2 x^2-4\right)^2+9$

9. a) $4 x^4+1$

b) $4 x^4+y^4$;

c) $x^4+324$.

10. a) $x^5+x^4+1$

b) $x^5+x+1$

c) $x^8+x^7+1$

d) $x^5-x^4-1$

e) $x^7+x^5+1$

g) $x^8+x^4+1$.

11. a) $a^6+a^4+a^2 b^2+b^4-b^6$

$\left.b^*\right) x^3+3 x y+y^3-1$

12. Dùng phương pháp hệ số bất định :

a) $4 x^4+4 x^3+5 x^2+2 x+1$

b) $x^4-7 x^3+14 x^2-7 x+1$

c) $x^4-8 x+63$

d) $(x+1)^4+\left(x^2+x+1\right)^2$.

13* *. a) $x^8+14 x^4+1$;

b) $x^8+98 x^4+1$

14. Dùng phương pháp xét giá trị riêng :

$\mathrm{M}=\mathrm{a}(\mathrm{b}+\mathrm{c}-\mathrm{a})^2+\mathrm{b}(\mathrm{c}+\mathrm{a}-\mathrm{b})^2+\mathrm{c}(\mathrm{a}+\mathrm{b}-\mathrm{c})^2+$

$+(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{c}+\mathrm{a}-\mathrm{b})$

$180(3)$. Chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng thêm 1 là một số chính phương.

15*. Chứng minh rằng số $\mathrm{A}=(\mathrm{n}+1)^4+\mathrm{n}^4+1$ chia hết cho một số chính phương khác 1 với mọi số n nguyên dương.

16. Tìm các số nguyên a, b, c sao cho khi phân tích đa thức $(x+a)(x-4)-7$ thành nhân tử ta được $(\mathrm{x}+\mathrm{b})(\mathrm{x}+\mathrm{c})$.

17. Tìm các số hữu tỉ $a, b, c$ sao cho khi phân tích đa thức $x^3+a x^2+b x+c$ thành nhân tử ta được $(x+a)(x+b)(x+c)$.

18. Số tự nhiên $\mathrm{n}$ có thể nhận bao nhiêu giá trị, biết rằng khi phân tích đa thức $x^2+x-n$ thành nhân tử ta được $(x-a)(x+b)$ với $a, b$ là các số tự nhiên và $1<\mathrm{n}<100$ ?

19. Cho $A=a^2+b^2+c^2$, trong đó $a$ và $b$ là hai số tự nhiên liên tiếp, $\mathrm{c}=\mathrm{ab}$. Chứng minh rằng $\sqrt{\mathrm{A}}$ là một số tự nhiên lẻ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHÂN THỨC ĐẠI SỐ – P.1

TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC.

RÚT GỌN PHÂN THỨC

Phân thức đại số là một biểu thức có dạng $\frac{\mathrm{A}}{\mathrm{B}}$, trong đó $\mathrm{A}$ và $\mathrm{B}$ là các đa thức, $\mathrm{B} \neq 0$.

Phân thức đại số có các tính chất cơ bản sau :

$-$ Nếu nhân cả tử thức và mẫu thức của một phân thức với cùng một đa thức khác 0 thì được một phân thức bằng phân thức đã cho.

$-$ Nếu chia cả tử thức và mầu thức của một phân thức cho cùng một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

Muốn rút gọn một phân thức đại số, ta có thể :

$-$ Phân tích tử thức và mẫu thức thành nhân tử ;

$-$ Chia cả tử thức và mẫu thức cho nhân tử chung.

Ví dụ 1. Cho phân thức

$M=\frac{\left(a^2+b^2+c^2\right)(a+b+c)^2+(a b+b c+c a)^2}{(a+b+c)^2-(a b+b c+c a)}$

a) Tìm các giá trị của $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để phân thức được xác định (tức là để mẫu . khác 0).

b) Rút gọn phân thức $M$.

Giải : Ta có

$(a+b+c)^2-(a b+b c+c a)=0 \Leftrightarrow a^2+b^2+c^2+a b+b c+c a=0 $

$\Leftrightarrow  2 a^2+2 b^2+2 c^2+2 a b+2 b c+2 c a=0 $

$\Leftrightarrow (a+b)^2+(b+c)^2+(c+a)^2=0 \Leftrightarrow a+b=b+c=c+a=0 $

$\Leftrightarrow  a=b=c=0$

Vậy điều kiện để phân thức $\mathrm{M}$ được xác định là $\mathrm{a}, \mathrm{b}$, $\mathrm{c}$ không đồng thời bằng $0 .$

b) Chú ý rằng $(a+b+c)^2=a^2+b^2+c^2+2(a b+b c+c a)$. Do đó, ta đặt $a^2+b^2+c^2=x, a b+b c+c a=y$. Khi đó $(a+b+c)^2=x+2 y$. Ta có

$M=\frac{x(x+2 y)+y^2}{x+2 y-y}=\frac{x^2+2 x y+y^2}{x+y}=\frac{(x+y)^2}{x+y}=x+y$

$=a^2+b^2+c^2+a b+b c+c a .$

Ví  dụ 2.Rút gọn phân thức

$A=\frac{(b-c)^3+(c-a)^3+(a-b)^3}{a^2(b-c)+b^2(c-a)+c^2(a-b)} .$

Giải : Phân tích mẫu thức thành nhân tử :

$a^2(b-c)+b^2(c-a)+c^2(a-b)=a^2(b-c)+b^2 c-a b^2+a c^2-b c^2 $

$= a^2(b-c)+b c(b-c)-a\left(b^2-c^2\right)=(b-c)\left(a a^2+b c-a b-a c\right) $

$=(b-c)[a(a-b)-c(a-b)]=(b-c)(a-b)(a-c) . $

$\text { Do đó } \quad A=\frac{(b-c)^3+(c-a)^3+(a-b)^3}{-(a-b)(b-c)(c-a)} .$

Ta có nhận xét : Nếu $x+y+z=0$ thì $x^3+y^3+z^3=3 x y z$ (chứng minh : xem bài tập 42). Đặt $b-c=x, c-a=y, a-b=z$ thì $x+y+z=0$. Theo nhận xét trên :

$A=\frac{x^3+y^3+z^3}{-x y z}=\frac{3 x y z}{-x y z}=-3$

Ví dụ 3. Chứng minh rằng với mọi số nguyên n thì phân số $\frac{n^3+2 n}{n^4+3 n^2+1}$ là phân số tối giản.

Giải : Để chứng minh phân số đã cho là tối giản, ta sẽ chứng tỏ rằng tử và mẫu chỉ có ước chung là $\pm 1$.

Gọi d là ước chung của $n^3+2 n$ và $n^4+3 n^2+1$. Ta có :

$n^3+2 n \vdots d \Rightarrow n\left(n^3+2 n\right) \vdots d \Rightarrow n^4+2 n^2 \vdots d $

$n^4+3 n^2+1-\left(n^4+2 n^2\right)=n^2+1 \vdots d \Rightarrow\left(n^2+1\right)^2=n^4+2 n^2+1 \vdots d$

Từ $(1)$ và $(2)$ suy ra

$\left(n^4+2 n^2+1\right)-\left(n^4+2 n^2\right): d \Rightarrow 1: d \Rightarrow d=\pm 1 .$

Vậy $\frac{n^3+2 n}{n^4+3 n^2+1}$ là phân số tối giản.

Ví dụ 4. Chứng minh rằng

$1+x+x^2+x^3+\ldots+x^{31}=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\quad(1)$

Giải : Gọi vế trái của đẳng thức (1) là $\mathrm{A}$, vế phải là $\mathrm{B}$.

Ta có $(1-\mathrm{x}) \cdot \mathrm{A}=1-\mathrm{x}^{32}$ theo hằng đẳng thức 8 ,

$(1-x) \cdot B=(1-x)(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)=1-x^{32} \text {. }$

Nếu $\mathrm{x} \neq 1$ thì $\mathrm{A}$ và $\mathrm{B}$ đều bằng phân thức $\frac{1-\mathrm{x}^{32}}{1-\mathrm{x}}$. Do đó $\mathrm{A}=\mathrm{B}$.

Nếu $\mathrm{x}=1$ thì hai vế của (1) đều bằng 32 . Do đó $\mathrm{A}=\mathrm{B}$.

Trong cả hai trường hợp, đẳng thức (1) đều đúng.

 

BÀI TẬP

1. Tìm giá trị của $\mathrm{x}$ để các phân thức sau bằng 0 :

a) $\frac{x^4+x^3+x+1}{x^4-x^3+2 x^2-x+1}$

b) $\frac{x^4-5 x^2+4}{x^4-10 x^2+9}$

2. Rút gọn các phân thức :

a) $\mathrm{A}=\frac{1235.2469-1234}{1234.2469+1235}$;

b) $\mathrm{B}=\frac{4002}{1000.1002-999.1001}$.

3. Rút gọn các phân thức :

a) $\frac{3 x^3-7 x^2+5 x-1}{2 x^3-x^2-4 x+3}$

b) $\frac{(x-y)^3-3 x y(x+y)+y^3}{x-6 y}$

c) $\frac{x^2+y^2+z^2-2 x y+2 x z-2 y z}{x^2-2 x y+y^2-z^2}$.

4. Rút gọn các phân thức với n là số tự nhiên :

a) $\frac{(n+1) !}{n !(n+2)}$

b) $\frac{n !}{(n+1) !-n !}$

c) $\frac{(n+1) !-(n+2) !}{(n+1) !+(n+2) !}$

5. Rút gọn các phân thức :

a) $\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{a b^2-a c^2-b^3+b c^2}$;

b) $\frac{2 x^3-7 x^2-12 x+45}{3 x^3-19 x^2+33 x-9}$

c) $\frac{x^3-y^3+z^3+3 x y z}{(x+y)^2+(y+z)^2+(z-x)^2}$

d) $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$.

6. Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên $\mathrm{n}$ :

a) $\frac{3 n+1}{5 n+2}$;

b) $\frac{12 n+1}{30 n+2}$

$\left.c^*\right) \frac{n^3+2 n}{n^4+3 n^2+1}$

d) $\frac{2 n+1}{2 n^2-1}$.

7. Chứng minh rằng phân số $\frac{n^7+n^2+1}{n^8+n+1}$ không tối giản với mọi số nguyên dương $n$.

8. Viết gọn biểu thức sau dưới dạng một phân thức :

$\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\left(x^{16}-x^8+1\right)\left(x^{32}-x^{16}+1\right)$

9. Cho biết $\mathrm{x}, \mathrm{y}, \mathrm{z}$ khác 0 và $\frac{(\mathrm{ax}+\mathrm{by}+\mathrm{cz})^2}{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}=\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2$.

Chứng minh rằng $\frac{\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{y}}=\frac{\mathrm{c}}{\mathrm{z}}$.

10*. Cho biết $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$.

Rút gọn $\mathrm{A}=\frac{\mathrm{bc}(\mathrm{y}-\mathrm{z})^2+\mathrm{ca}(\mathrm{z}-\mathrm{x})^2+\mathrm{ab}(\mathrm{x}-\mathrm{y})^2}{a \mathrm{x}^2+\mathrm{by}^2+c \mathrm{z}^2}$.

11. Rút gọn $\frac{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}{(\mathrm{y}-\mathrm{z})^2+(\mathrm{z}-\mathrm{x})^2+(\mathrm{x}-\mathrm{y})^2}$, biết rằng $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$.

12. Tính giá trị của biểu thức $\mathrm{A}=\frac{\mathrm{x}-\mathrm{y}}{\mathrm{x}+\mathrm{y}}$, biết $\mathrm{x}^2-2 \mathrm{y}^2=\mathrm{xy}(\mathrm{y} \neq 0 ; \mathrm{x}+\mathrm{y} \neq 0)$.

13. Tính giá trị của phân thức $A=\frac{3 x-2 y}{3 x+2 y}$, biết rằng $9 x^2+4 y^2=20 x y$ và $2 y<3 x<0$

14. Cho $3 \mathrm{x}-\mathrm{y}=3 \mathrm{z}$ và $2 \mathrm{x}+\mathrm{y}=7 \mathrm{z}$. Tính giá trị của biểu thức

$M=\frac{x^2-2 x y}{x^2+y^2}(x \neq 0, y \neq 0)$

15. Tìm số nguyên $x$ để phân thức sau có giá trị là số nguyên :

a) $\frac{3}{2 x-1}$

b) $\frac{5}{x^2+1}$;

c) $\frac{7}{x^2-x+1}$

d) $\frac{x^2-59}{x+8}$

e) $\frac{x+2}{x^2+4}$

16. Tìm số hữu tỉ $x$ để phân thức $\frac{10}{x^2+1}$ có giá trị là số nguyên.

17*. Chứng minh rằng nếu các chữ số $\mathrm{a}, \mathrm{b}, \mathrm{c}$ khác 0 thoả mãn điều kiện $\overline{\mathrm{ab}}: \overline{\mathrm{bc}}=\mathrm{a}: \mathrm{c}$ thì $\overline{\mathrm{abbb}}: \overline{\mathrm{bbbc}}=\mathrm{a}: \mathrm{c} .$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.3

PHÂN TÍCH ĐA THỨC THÀNH PHÂN TỬ

 

Để phân tích một đa thức thành nhân tử, ta thường dùng các phương pháp :

  • Đặt nhân tử chung.

  • Dùng các hằng đẳng thức đáng nhớ.

  • Nhóm các hạng tử một cách thích hợp nhằm làm xuất hiện dạng hằng đẳng thức hoặc xuất hiện nhân tử chung mới.

Để phân tích đa thức thành nhân tử, người ta còn dùng các phương pháp khác. Xem chuyên đề Một số phương pháp phân tích đa thức thành nhân tủ̉.

Ví dụ 1. Phân tích đa thức sau thành nhân tử :

$x^4+x^3+2 x^2+x+1$

Giải : $\quad \mathrm{x}^4+\mathrm{x}^3+2 \mathrm{x}^2+\mathrm{x}+1=\left(\mathrm{x}^4+2 \mathrm{x}^2+1\right)+\left(\mathrm{x}^3+\mathrm{x}\right)$

$=\left(x^2+1\right)^2+x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+x+1\right) .$

Ví dụ 2. Cho $a+b+c=0$. Rút gọn biểu thức

$M=a^3+b^3+c\left(a^2+b^2\right)-a b c .$

Giải :

$M =a^3+b^3+a^2 c+b^2 c-a b c=\left(a^3+a^2 c\right)+\left(b^3+b^2 c\right)-a b c $

$=a^2(a+c)+b^2(b+c)-a b c=a^2(-b)+b^2(-a)-a b c $

$=-a b(a+b+c)=0$

Ví dụ 3.

a) Phân tích đa thức sau thành nhân tử : $a^3+b^3+c^3-3 a b c$.

b) Phân tích đa thức sau thành nhân tử bằng cách áp dụng câu a) :

$(x-y)^3+(y-z)^3+(z-x)^3$.

Giải : $a^3+b^3+c^3-3 a b c=(a+b)^3-3 a^2 b-3 a b^2+c^3-3 a b c $

$= {\left[(a+b)^3+c^3\right]-3 a b(a+b+c) } $

$=(a+b+c)\left[(a+b)^2-c(a+b)+c^2\right]-3 a b(a+b+c) $

$=(a+b+c)\left(a^2+2 a b+b^2-a c-b c+c^2-3 a b\right) $

$=(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$

b) Đặt $x-y=a, y-z=b, z-x=c$ thì $a+b+c=0$.

Do đó theo câu a) ta có $a^3+b^3+c^3-3 a b c=0 \Rightarrow a^3+b^3+c^3=3 a b c$

$\Rightarrow(x-y)^3+(y-z)^3+(z-x)^3=3(x-y)(y-z)(z-x) .$

Cần nhớ kết quả của câu a) để vận dụng vào giải toán.

Ví dụ 4. Phân tích các đa thức sau thành nhân tử :

a) $(a+b+c)^3-a^3-b^3-c^3$

b) $8(x+y+z)^3-(x+y)^3-(y+z)^3-(z+x)^3$

Giải : a) Áp dụng nhiều lần công thức $(\mathrm{x}+\mathrm{y})^3=\mathrm{x}^3+\mathrm{y}^3+3 \mathrm{xy}(\mathrm{x}+\mathrm{y})$, ta có :

$(a+b+c)^3-a^3-b^3-c^3=[(a+b)+c]^3-a^3-b^3-c^3 $

$=(a+b)^3+c^3+3 c(a+b)(a+b+c)-a^3-b^3-c^3 $

$=a^3+b^3+3 a b(a+b)+c^3+3 c(a+b)(a+b+c)-a^3-b^3-c^3 $

$=3(a+b)\left(a b+a c+b c+c^2\right) $

$=3(a+b)[a(b+c)+c(b+c)] $

$=3(a+b)(b+c)(c+a) .$

b) Đặt $\mathrm{x}+\mathrm{y}=\mathrm{a}, \mathrm{y}+\mathrm{z}=\mathrm{b}, \mathrm{z}+\mathrm{x}=\mathrm{c}$ thì $\mathrm{a}+\mathrm{b}+\mathrm{c}=2(\mathrm{x}+\mathrm{y}+\mathrm{z})$. Đa thức đã cho có dạng $(a+b+c)^3-a^3-b^3-c^3$.

Áp dụng kết quả của câu a), đa thức đã cho bằng :

$3(a+b)(b+c)(c+a)=3(x+2 y+z)(y+2 z+x)(z+2 x+y)$

Chú ý : Cần nhớ kết quả của câu a) để vận dụng vào giải toán.

Ví dụ 5. Phân tích đa thức sau thành nhân tử :

$P=x^2(y-z)+y^2(z-x)+z^2(x-y)$

Giải :

Cách 1 : Khai triển hai hạng tử cuối rồi nhóm các hạng tử làm xuất hiện ṇân tử chung $\mathrm{y}-\mathrm{z}$.

$P =x^2(y-z)+y^2 z-x y^2+x z^2-y z^2 $

$=x^2(y-z)+y z(y-z)-x\left(y^2-z^2\right) $

$=(y-z)\left(x^2+y z-x y-x z\right) $

$=(y-z)[x(x-y)-z(x-y)] $

$=(y-z)(x-y)(x-z)$

Cách 2. Tách $\mathrm{z}-\mathrm{x}$ thành $-[(\mathrm{y}-\mathrm{z})+(\mathrm{x}-\mathrm{y})]$, ta có

$P =x^2(y-z)-y^2[(y-z)+(x-y)]+z^2(x-y) $

$=(y-z)\left(x^2-y^2\right)-(x-y)\left(y^2-z^2\right) $

$=(y-z)(x+y)(x-y)-(x-y)(y+z)(y-z) $

$=(y-z)(x-y)(x+y-y-z) $

$=(y-z)(x-y)(x-z)$

Ví dụ 6. Xét hằng đẳng thức $(x+1)^3=x^3+3 x^2+3 x+1$.

Lần lượt cho $\mathrm{x}$ bằng $1,2,3, \ldots$, n rồi cộng từng vế $\mathrm{n}$ đẳng thức trên để tính giá trị của biểu thức :

$S=1^2+2^2+3^2+\ldots+n^2$

Giải : Từ hằng đẳng thức đã cho ta có :

$2^3=1^3+3.1^2+3.1+1 $

$3^3=2^3+3.2^2+3.2+1 $

$\cdots $

$(n+1)^3=n^3+3 n^2+3 n+1 $

Cộng từng vế $\mathrm{n}$ đẳng thức trên rồi rút gọn, ta được

$(n+1)^3=1^3+3\left(1^2+2^2+\ldots+n^2\right)+3(1+2+\ldots+n)+n$

Do đó

$ 3\left(1^2+2^2+\ldots+n^2\right)=(n+1)^3-\frac{3 n(n+1)}{2}-(n+1)=$

$=(n+1)\left[(n+1)^2-\frac{3 n}{2}-1\right]=(n+1)\left(n^2+\frac{n}{2}\right)=\frac{1}{2} n(n+1)(2 n+1) $

$\text { Vậy } S=\frac{1}{6} n(n+1)(2 n+1) $

BÀI TẬP

55. Phân tích thành nhân tử :

a) $(a b-1)^2+(a+b)^2$

b) $x^3+2 x^2+2 x+1$;

c) $x^3-4 x^2+12 x-27$

d) $x^4-2 x^3+2 x-1$;

e) $x^4+2 x^3+2 x^2+2 x+1$.

56. Phân tích thành nhân tử :

a) $x^2-2 x-4 y^2-4 y$

b) $x^4+2 x^3-4 x-4$;

c) $x^2\left(1-x^2\right)-4-4 x^2$

d) $(1+2 x)(1-2 x)-x(x+2)(x-2)$;

e) $x^2+y^2-x^2 y^2+x y-x-y$.

57. Chứng minh rằng $199^3-199$ chia hết cho 200 .

58. Tính giá trị của biểu thức sau, biết $x^3-x=6$ :

$A=x^6-2 x^4+x^3+x^2-x $

59. Phân tích thành nhân tử :

a) $a\left(b^2+c^2+b c\right)+b\left(c^2+a^2+a c\right)+c\left(a^2+b^2+a b\right)$

b) $(a+b+c)(a b+b c+c a)-a b c$;

$\left.c^*\right) a(a+2 b)^3-b(2 a+b)^3$

60. Phân tích thành nhân tử :

a) $a b(a+b)-b c(b+c)+a c(a-c)$;

b) $a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2 a b c$;

c) $(a+b)\left(a^2-b^2\right)+(b+c)\left(b^2-c^2\right)+(c+a)\left(c^2-a^2\right)$

d) $a^3(b-c)+b^3(c-a)+c^3(a-b)$;

e) $a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+a b c(a b c-1)$.

61*. Phân tích thành nhân tử :

a) $a(b+c)^2(b-c)+b(c+a)^2(c-a)+c(a+b)^2(a-b)$;

b) $a(b-c)^3+b(c-a)^3+c(a-b)^3$;

c) $a^2 b^2(a-b)+b^2 c^2(b-c)+c^2 a^2(c-a)$

d) $a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2 a b c-a^3-b^3-c^3$;

e) $a^4(b-c)+b^4(c-a)+c^4(a-b)$.

62. Phân tích thành nhân tử :

a) $(a+b+c)^3-(a+b-c)^3-(b+c-a)^3-(c+a-b)^3$.

b) $a b c-(a b+b c+c a)+(a+b+c)-1$.

63. Chứng minh rằng trong ba số $a, b, c$, tồn tại hąi số bằng nhau, nếu :

$a^2(b-c)+b^2(c-a)+c^2(a-b)=0 $

64. Chứng minh rằng nếu $\mathrm{a}^2+\mathrm{b}^2=2 \mathrm{ab}$ thì $\mathrm{a}=\mathrm{b}$.

65*. Chứng minh rằng nếu $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3=3 \mathrm{abc}$ và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số dương thì $\mathrm{a}=\mathrm{b}=\mathrm{c} .$

66*. Chứng minh rằng nếu $a^4+b^4+c^4+d^4=4 a b c d$ và $a, b, c, d$ là các số dương thì $a=b=c=d$

67. Chứng minh rằng nếu $\mathrm{m}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ thì

$(\mathrm{am}+\mathrm{bc})(\mathrm{bm}+\mathrm{ac})(\mathrm{cm}+\mathrm{ab})=$

$(\mathrm{a}+\mathrm{b})^2(\mathrm{~b}+\mathrm{c})^2(\mathrm{c}+\mathrm{a})^2 $

68. Cho $a^2+b^2=1, c^2+d^2=1, a c+b d=0$. Chứng minh rằng $a b+c d=0$.

69. Xét hằng đẳng thức $(x+1)^2=x^2+2 x+1$.

Lần lượt cho $x$ bằng $1,2,3, \ldots$, n rồi cộng từng vế n đẳng thức trên để tính giá trị của biểu thức $\mathrm{S}_1=1+2+3+\ldots+\mathrm{n}$.

70*. Bằng phương pháp tương tự như ở ví dụ 14 và bài tập 74 , tính giá trị của biểu thức $\mathrm{S}_3=1^3+2^3+3^3+\ldots+\mathrm{n}^3$.

 

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2017 – 2018

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Cho dãy số $\left(u_n\right)$ giảm ngặt thoả mãn $u_n>0$. Biết rằng $\left(s_n\right)$ hội tụ với:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad s_n=u_1+u_2+\ldots+u_n, \forall n \in \mathbb{N}^*$

(a) Chứng minh rằng $\lim n u_n=0$.

(b) Đặt $b_n=\frac{1}{u_{n+1}}-\frac{1}{u_n}, \forall n \in \mathbb{N}^*$. Chứng minh rằng $\left(b_n\right)$ không bị chặn.

Bài 2. Gọi $S$ là tập con của ${1,2, \ldots, 2017}$ sao cho $S$ không chứa hai phần tử mà phần tử này chia hết cho phần tử kia và cũng không chứa hai phần tử nguyên tố cùng nhau. Hỏi $S$ chứa nhiều nhất bao nhiêu phần tử ?

Bài 3. Cho $n>2$ là số tự nhiên và $X={1,2, \ldots, n}$. Với mỗi song ánh $f: X \rightarrow X$, gọi $A_f$ là tập hợp tất cả các bộ $(i, j)$ sao cho $i<j$ và $f(i)>f(j)$.

(a) Có bao nhiêu song ánh $f$ thoả mãn $\left|A_f\right|=1$ ?

(b) Giả sử $f$ là một song ánh mà $\left|A_f\right|=k>0$. Chứng minh rằng tồn tại một song ánh $g: X \rightarrow X$ sao cho $\left|A_g\right|=k-1$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \sum_{k=1}^n|f(k)-k| \geq \sum_{k=1}^n|g(k)-k|$

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ và điểm $D$ di động trên cung $B C$ chứa $A(D$ khác $A)$. Lấy trên $A B, A C$ lần lượt các điểm $M, N$ để $M D=M B$ và $N C=N D$.

(a) Chứng minh rằng đường cao $D H$ trong tam giác $D M N$ luôn đi qua một điểm cố định.

(b) $D M, D N$ theo thứ tự cắt lại $(O)$ tại $E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $E M B, F N C$ cắt nhau tại điểm $K$ thuộc đường thẳng $B C$ và đường cao $K I$ của tam giác $K M N$ luôn đi qua một điểm cố định.

Ngày thi thứ hai

Bài 5. Với mỗi số nguyên $n \notin{0,1,-1}$, ký hiệu $p(n)$ là ước nguyên tố lớn nhất của n. Gọi $\mathcal{F}$ là tập hợp tất cả các đa thức $f(x)$ có hệ số nguyên thoả mãn:

$\quad\quad\quad\quad f(n+p(n))=n+p(f(n)) \forall n \in \mathbb{Z}, n>2017, f(n) \notin{0,1,-1}$

(a) Tìm tất cả các đa thức bậc nhất là phần tử của $\mathcal{F}$.

(b) Xác định số phần tử của $\mathcal{F}$.

Bài 6. Với mỗi số tự nhiên $n$, ký hiệu $T(1+n, 3+n, 4+n)$ là tập hợp tất cả các bộ $(a, b, c)$ với $a, b, c$ là các số tự nhiên thoả mãn:

$\quad\quad\quad\quad\quad 1 \leq a \leq 1+n, a+1 \leq b \leq 3+n, b+1 \leq c \leq 4+n$

Gọi $a_n$ là số phần tử của $T(1+n, 3+n, 4+n)$.

(a) Tính $a_4$.

(b) Tìm tất cả số tự nhiên $n$ để $a_n$ chia hết cho 3 .

Bài 7. An và Bình luân phiên nhau đánh dấu các ô vuông của hình vuông $101 \times 101$ ô. An là người bắt đầu. Một ô sẽ không thể được tô màu nếu trên cùng hàng với nó hoặc cùng cột với nó đã có ít nhất 2 ô được tô. Ai không đi được nữa sẽ thua. Hãy xác định ai là người có chiến thuật thắng.

Bài 8. Đường tròn $(O)$ nội tiếp tứ giác $A B C D$ và tiếp xúc với các cạnh $A B, B C$, $C D, D A$ lần lượt tại các điểm $E, F, G, H$. Gọi $I, J$ là trung điểm của các đoạn thẳng $A C, B D$. Giả sử $I B, I D, J A, J C$ theo thứ tự cắt $E F, G H, H E, F G$ tại $M, N, P, Q$

(a) Chứng minh rằng $I J, M N, P Q$ đồng quy tại điểm $S$.

(b) Các tia đối của các tia $J A, I B, J C, I D$ lần lượt cắt $(O)$ tại các điểm $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} . A^{\prime} C^{\prime}, B^{\prime} D^{\prime}$ lần lượt cắt $P Q, M N$ tại $U, V$. Gọi $K$ là hình chiếu của $S$ trên $U V$. Chứng minh rằng $\angle A K B=\angle C K D$.

LỜI GIẢI

Bài 1. Cho dãy số $\left(u_n\right)$ giảm ngặt thoả mãn $u_n>0$. Biết rằng $\left(s_n\right)$ hội tụ với:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad s_n=u_1+u_2+\ldots+u_n, \forall n \in \mathbb{N}^* .$

(a) Chứng minh rằng $\lim n u_n=0$.

(b) Đặt $b_n=\frac{1}{u_{n+1}}-\frac{1}{u_n}, \forall n \in \mathbb{N}^*$. Chứng minh rằng $\left(b_n\right)$ không bị chặn.

Lời giải. (a) Do $\left(s_n\right)$ là dãy số dương tăng ngặt và hội tụ nên với $\epsilon>0$ bất kỳ, tồn tại $T \in \mathbb{N}^$ dể với $m, n \in \mathbb{N}^, T<m<n$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \sum_{k=m+1}^n u_k=s_n-s_m<\epsilon .$

Một hệ quả của sự kiện trên là $\lim u_n=0$. Do $\left(u_n\right)$ giảm ngặt nên cũng từ điều kiện trên, ta có $(n-m) u_n<s_n-s_m<\epsilon$ hay:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad n u_n<\epsilon+m u_n .$

Do $\lim u_n=0$ tồn tại $T^{\prime}>T$ dể với $n>T^{\prime}>T$, ta có $u_n<\frac{\epsilon}{m}$. Lúc đó thì:

$\quad\quad\quad\quad\quad\quad\quad\quad n u_n<\epsilon+m \cdot \frac{\epsilon}{m}=2 \epsilon, \forall n>T^{\prime} .$

Lại có $n u_n>0 \forall n \in \mathbb{N}^*$ nên theo định nghĩa về giới hạn, ta có $\lim n u_n=0$.

(b) Dĩ nhiên $\left(u_n\right)$ là dãy giảm nên $b_n>0 \forall n \in \mathbb{N}^*$

Do đó ta chỉ cần chứng minh rằng $\left(b_n\right)$  không bị chặn trên.

Giả sử rằng $\left(b_n\right)$ bị chặn trên. Khi đó tồn tại số thực $c>0$ để $b_n<c, \forall n \in \mathbb{N}^*$. Với điều kiện ấy, ta có

$\quad\quad\quad\quad \frac{1}{u_{n+1}}-\frac{1}{u_1}=\sum_{k=1}^n\left(\frac{1}{u_{k+1}}-\frac{1}{u_k}\right)<n c<(n+1) c, \forall n \in \mathbb{N}^*$

Từ đó thì

$\quad\quad\quad\quad\quad\quad\quad \frac{1}{(n+1) u_{n+1}}-\frac{1}{(n+1) u_1}<c, \forall n \in \mathbb{N}^* .$

Do $\lim n u_n=0$ nên khi $n \rightarrow+\infty$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{1}{(n+1) u_{n+1}}-\frac{1}{(n+1) u_1} \rightarrow+\infty$

Điều vô lý này cho thấy điều giả sử là sai. Do đó $\left(b_n\right)$ không bị chặn trên.

Bài 2. Gọi $S$ là tập con của ${1,2, \ldots, 2017}$ sao cho $S$ không chứa hai phần tử mà phần tử này chia hết cho phần tử kia và cũng không chứa hai phần tử nguyên tố cùng nhau. Hỏi $S$ chứa nhiều nhất bao nhiêu phần tử ?

Lời giải . Xét tập hợp $S={1010,1012,1014, \ldots, 2016}$. Tất cả các phần tử đều chẵn nên không có hai phần tử nào nguyên tố cùng nhau. Hơn thế nữa, phần tử lớn nhất nhỏ hơn 2 lần phần tử nhỏ nhất nên cũng không có hai phần tử mà phần tử này chia hết cho phần tử kia. Do đó $S$ thoả mãn đề bài và $|S|=504$.

Ta sẽ chứng minh rằng đây chính là giá trị lớn nhất cần tìm. Giả sử ngược lại rằng tồn tại một tập hợp $S$ thoả mãn tính chất đề bài và có ít nhất 505 phần tử.

Với mỗi số chẵn $i$ để $1010 \leq i \leq 2016, i$ có thể viết được dưới dạng $i=2^\alpha \cdot m$ với $\alpha \in \mathbb{N}^*$ và $(m, 2)=1$. Xét các tập hợp $A_i$ có dạng như sau:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad A_i=[2^k \cdot m \mid 0 \leq k \leq \alpha] .$

Rõ ràng 2017 là số nguyên tố nên $2017 \notin S$, vì nếu không thì tất cả các số còn lại đều nguyên tố cùng nhau với nó, mâu thuẫn với tính chất của $S$. Rõ ràng mọi số nguyên dương $a \leq 1008$ đều thuộc về ít nhất một tập hợp $A_i$ nào đó nêu trên.

Tiếp theo, ta xét 504 tập hợp:

$\quad\quad\quad\quad\quad\quad A_{1010} \cup{1009}, A_{1012} \cup{1011}, \ldots, A_{2016} \cup{2015} .$

Các tập hợp này chứa tất cả các số nguyên dương từ 1 dến 2016.

Vì $S$ có ít nhất 505 phần tử nên phải có ít nhất hai phần tử $a<b$ thuộc cùng một tập hợp nào đó trong 504 tập hợp ở trên. Ta có hai trường hợp:

  • Nếu $b=i+1$ và $a \in A_i$ thì rõ ràng $(i, i+1)=1$ nên $b$ nguyên tố cùng nhau với tất cả các số thuộc $A_i$, dẫn đến $(a, b)=1$, mâu thuẫn.

  • Nếu $a, b \in A_i$ thì theo cách xây dựng $A_i$, ta sẽ có $a \mid b$, cũng mâu thuẫn. Do đó không thể có $S$ để $|S| \geq 505$. Vậy $\max S=504$.

Nhận xét. Ngoài lời giải trên, dưới đây là một cách tiếp cận khác mang ý tưởng thuật toán

  • Xét tập hợp $S$ thoả mãn yêu cầu bài toán mà có $|S|$ lớn nhất. Ta thực hiện phép biến đổi trên các phần tử của $S$ như sau: Xét số $a=\min S$. Nếu như $a \leq 1008$ thì lập tập hợp $S^{\prime}=(S \backslash{a}) \cup{2 a}$.

  • Ta chứng minh rằng $S^{\prime}$ vẫn thoả mãn yêu cầu bài toán. Dĩ nhiên $2 a \notin S$ nên $|S|=\left|S^{\prime}\right|$. Rõ ràng không có $k \in S, k \neq a$ để $2 a \mid k$, vì nếu thế thì $a \mid k$, vô lý.

  • Nếu có $k \in S$ để $k \mid 2 a$, ta có $a<k \leq 2 a$ nên $k=2 a$, cũng vô lý.

  • Do đó tập hợp $S^{\prime}$ cũng thoả mãn điều kiện. Thực hiện phép biến đổi cho đến khi thu được tập hợp $S_f \subset{1009, \ldots, 2017}$ và thoả mãn yêu cầu.

  • Đến đây dễ dàng có $\left|S_f\right|=|S|=504$. Bài toán kết thúc.

Lời giải trên có thể thay 2017 bởi số nguyên dương $n$ bất kỳ.

Bài 3. Cho $n>2$ là số tự nhiên và $X={1,2, \ldots, n}$. Với mỗi song ánh $f: X \rightarrow X$, gọi $A_f$ là tập hợp tất cả các bộ $(i, j)$ sao cho $i<j$ và $f(i)>f(j)$.

(a) Có bao nhiêu song ánh $f$ thoả mãn $\left|A_f\right|=1$ ?

(b) Giả sử $f$ là một song ánh mà $\left|A_f\right|=k>0$. Chứng minh rằng tồn tại một song ánh $g: X \rightarrow X$ sao cho $\left|A_g\right|=k-1$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \sum_{k=1}^n|f(k)-k| \geq \sum_{k=1}^n|g(k)-k|$

Lời giải . (a) Gọi $S_n$ là số song ánh $f$ có $\left|A_f\right|=1$ tương ứng với mỗi giá trị $n$. Với $n=3$, ta có hai hoán vị thoả mãn là $(1,3,2)$ và $(2,1,3)$ nên $S_3=2$. Xét quan hệ giữa $S_{n+1}, S_n$ thông qua hoán vị của dãy $(1,2, \ldots, n, n+1)$.

  • Nếu $f(n+1)=n+1$ thì loại $n+1 \mathrm{ra}$, ta có một hoán vị thoả mãn đề bài của $n$ số nguyên dương đầu tiên, có tất cả $S_n$ hoán vị như thế.

  • Nếu $f(n+1) \neq n+1$ thì rõ ràng $f(n)=n+1$ vì nếu $f(i)=n+1$ với $i<n$ thì $\left|A_f\right| \geq 2$, không thoả mãn bài toán. Khi đó, ta phải có được $f(n+1)=n$, từ đó $f(n)=n+1$ và $f(i)=i$ với $1 \leq i \leq n-1$. Ta có thêm 1 hoán vị nữa.

Từ đó $S_{n+1}=S_n+1$. Từ công thức truy hồi này, ta có số song ánh cần tìm là $n-1$.

(b) Gọi $j$ là chỉ số lớn nhất sao cho $f(j)=t<j$. Rõ ràng chỉ số $j$ luôn tồn tại vì $\left|A_f\right|=k>0$. Khi đó, ta cũng có $f(i)=i$ với $j+1 \leq i \leq n$.

Xét chỉ số $m$ sao cho $f(m)=t+1 \leq j$ thì $1 \leq m \leq j$. Dễ thấy rằng khi đổi chỗ hai số $(f(j), f(m))$ này sẽ làm giảm giá trị $\left|A_f\right|$ đi 1 đơn vị. Xét song ánh $g: X \rightarrow X$ tương ứng với việc đổi chỗ này mà $\left|A_g\right|=k-1$. Ta sẽ chứng minh rằng

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad T=\sum_{i=1}^n\left|b_i-i\right|-\sum_{i=1}^n\left|a_i-i\right| \leq 0 .$

Thật vậy, ta có:

$\quad\quad\quad\quad\quad\quad\quad\quad T=\left|b_j-m\right|+\left|b_m-j\right|-\left|a_j-j\right|-\left|a_m-m\right| $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad =|t+1-j|+|t-m|-|t-j|-|t+1-m|$

Vì $t+1 \leq j$ nên ta có:

$T=j-(t+1)-(j-t)+|t-m|-|t+1-m|=|t-m|-|t+1-m|-1$

Vì $t-m$ và $t+1-m$ là hai số nguyên liên tiếp nên $T \leq 1-1=0$.

Song ánh $g$ như trên thoả mãn điều kiện bài toán.

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ và điểm $D$ di động trên cung $B C$ chứa $A(D$ khác $A)$. Lấy trên $A B, A C$ lần lượt các điểm $M, N$ để $M D=M B$ và $N C=N D$.

(a) Chứng minh rằng đường cao $D H$ trong tam giác $D M N$ luôn đi qua một điểm cố định.

(b) $D M, D N$ theo thứ tự cắt lại $(O)$ tại $E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $E M B, F N C$ cắt nhau tại điểm $K$ thuộc đường thẳng $B C$ và đường cao $K I$ của tam giác $K M N$ luôn đi qua một điểm cố định.

Lời giải. (a) Gọi $D H$ cắt $(O)$ tại $X$. Do

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \angle A M D=2 \angle A B D=2 \angle A C D=\angle A N D$

nên tứ giác $A M N D$ nội tiếp. Từ đó $\angle D M N=\angle D A C=\angle D B C$. Lại có:

$\quad\quad\quad\quad\quad\quad\quad \angle B D X =\angle H D M-\angle M D B=90^{\circ}-\angle H M D-\angle M D B $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =90^{\circ}-\angle M B D-\angle D B C=90^{\circ}-\angle A B C .$

Từ đó $A X \perp B C$. Vậy $D H$ đi qua điểm $X$ cố định.

(b) Ta có $\angle M E B=180^{\circ}-\angle B C D=180^{\circ}-\angle B O M$ nên tứ giác $O M E B$ nội tiếp. Tương tự thì tứ giác $C N O F$ nội tiếp. Khi đó, ta có $(O M B)$ và $(O C N)$ cắt nhau tại $K$ nằm trên $B C$. Ta có $\angle O M K=\angle O B C$ và:

$\quad\quad\quad\quad \angle M K N=\angle M K O+\angle N K O=\angle O B A+\angle O C A=\angle B A C$

Từ đó $\angle O M K+\angle M K N=\angle B A C+\angle O B C=90^{\circ}$ nên $M O \perp K N$. Chứng minh tương tự thì $O N \perp K M$. Do đó $O$ là trực tâm tam giác $K M N$.

Vậy $K O \perp M N$. Hơn nữa $K I \perp M N$ nên $K I$ đi qua điểm $O$ cố định.

Nhận xét. Một số bài toán ở Đội tuyển PTNK 2017 liên quan đến mô hình trên:

1) Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Đường tròn qua $O, A$ lần lượt cắt $(O), A B, A C$ tại $D, E, F$. Gọi $D E, D F$ cắt lại $(O)$ tại $M, N . M N$ cắt $B C$ tại $K$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $K E F$ luôn thuộc một đường thẳng cố định.

2) Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Lấy $D, E, F$ trên $B C, C A, A B$ sao cho $(A E F),(B F D),(C D E)$ cùng đi qua $(O)$. Các đường tròn này lần lượt cắt lại $(O)$ tại $K, M, N$. Các đường cao $d_K, d_M, d_N$ của các tam giác $K E F, M F D, N D E$ cắt nhau tạo thành tam giác $\delta$. Gọi $H, P, Q$ lần lượt là trực tâm các tam giác $D E F, K M N$ và $\delta$. Chứng minh rằng $H P=H Q$ và $Q$ là trực tâm tam giác $A B C$.

 

Ngảy thi thứ hai

Bài 5. Với mỗi số nguyên $n \notin{0,1,-1}$, ký hiệu $p(n)$ là ước nguyên tố lớn nhất của $n$. Gọi $\mathcal{F}$ là tập hợp tất cả các đa thức $f(x)$ có hệ số nguyên thoả mãn điều kiện

$\quad\quad\quad\quad f(n+p(n))=n+p(f(n)) \forall n \in \mathbb{Z}, n>2017, f(n) \notin{0,1,-1}$

(a) Tìm tất cả các đa thức bậc nhất là phần tử của $\mathcal{F}$.

(b) Xác định số phần tử của $\mathcal{F}$.

Lời giải . (a) Trước hết, ta thấy rằng $f(n) \equiv 0, f(n) \equiv 1, f(n) \equiv-1$ thoả mãn bài toán vì không có ràng buộc ở đề bài cho các giá trị này. Ta thấy rằng có hữu hạn giá trị $n>2017$ để $f(n) \in{0,1,-1}$ nên có vô hạn $n>2017$ để $f(n) \notin{0,1,-1}$. Trong lập luận bên dưới, ta chỉ xét $n$ để $f(n) \notin{0,1,-1}$.

Nhận xét rằng với mọi $n \in \mathbb{Z}$ và $|n| \geq 2$ thì $2 \leq p(n) \leq|n|$. Đẳng thức ở bất đẳng thức thứ hai xảy ra khi và chỉ khi $|n|$ là số nguyên tố.

Trong đẳng thức đã cho, thay $n=q>2017$ là số nguyên tố, ta có:

$\quad\quad\quad\quad\quad f(q+p(q))=q+p(f(q)) \text { hay } f(2 q)=q+p(f(q))$

Từ đó $f(2 q)>q$ với mọi $q>2017$ là số nguyên tố. Do đó, $f(n)$ không thể là đa thức hằng (khác $0,1,-1$ ) và trong trường hợp deg $f>0$, hệ số bậc cao nhất của $f$ cũng không thể âm, vì nếu không thì có $q$ đủ lớn để $f(2 q)<0$, mâu thuẫn.

Cũng từ đẳng thức trên, ta có $f(2 q) \leq q+f(q)$ với mọi $q$ nguyên tố và $q>2017$.

Nếu deg $f=1$, đặt $f(n)=a n+b$ với $a \neq 0$. Bất đẳng thức ở trên đưa về:

$\quad\quad\quad\quad\quad\quad\quad\quad a(2 q)+b \leq q+a q+b \Leftrightarrow a q \leq q \Leftrightarrow a \leq 1$

Theo nhận xét ở trên thì $a>0$ nên $a=1$. Thay vào phía trên thì:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 2 q+b=q+p(q+b) \Leftrightarrow q+b=p(q+b) .$

Từ đây $q+b$ là số nguyên tố. Ta chọn được $q$ đủ lớn để $q+b>2017$ nên áp dụng lập luận trên khi thay $q$ bởi $q+b$, ta có $q+2 b$ cũng phải là số nguyên tố. Tương tự thì $q+k b$ là số nguyên tố với $k \in \mathbb{N}^*$. Chọn $k=q$ thì $q+q b=q(b+1)$ phải là số nguyên tố. Điều này chỉ xảy ra khi $b=0$. Do đó $f(n)=n$. Thử lại ta thấy đa thức này thoả mãn.

(b) Nếu $\operatorname{deg} f=k \geq 2$, ta có $f(2 q) \leq q+f(q)$ và hệ số bậc cao nhất là $a>0$.Viết lại bất đẳng thức trên thành:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{f(2 q)}{(2 q)^k} \leq \frac{q}{(2 q)^k}+\frac{f(q)}{(2 q)^k}$

Cho $q \rightarrow+\infty$ thì vế trái tiến tới $a$ trong khi vế phải tiến tới 0 . Từ đó ta phải có $a=0$, vô lý. Vậy có tất cả 4 đa thức thoả mãn đề bài nên $|\mathcal{F}|=4$.

Bài 6. Với mỗi số tự nhiên $n$, ký hiệu $T(1+n, 3+n, 4+n)$ là tập hợp tất cả các bộ $(a, b, c)$ với $a, b, c$ là các số tự nhiên thoả mãn:

$\quad\quad\quad\quad\quad 1 \leq a \leq 1+n, a+1 \leq b \leq 3+n, b+1 \leq c \leq 4+n$

Gọi $a_n$ là số phần tử của $T(1+n, 3+n, 4+n)$.

a) Tính $a_4$.

b) Tìm tất cả số tự nhiên $n$ để $a_n$ chia hết cho 3 .

Lời giải . (a) Xét một bộ $(a, b, c)$ gồm các số nguyên dương thoả mãn điều kiện $1 \leq a<b<c \leq n+4$. Có tất cả $C_{n+4}^3$ bộ như thế. Xét các khả năng sau:

  • Nếu $a=n+2$ thì rõ ràng $b=n+3, c=n+4$ và chỉ có duy nhất một bộ $(a, b, c)$ như thế. Bộ này không thoả mãn điều kiện của bài toán.

  • Nếu $a \leq n+1$, dĩ nhiên ta cũng có $b \leq n+3, c \leq n+4$ và đây là tất cả các bộ thoả mãn đề bài.

Số các bộ thoả mãn đề bài là $a_n=C_{n+4}^3-1$, dẫn đến $a_4=C_8^3-1=55$.

(b) Ta có biến đổi sau:

$\quad\quad\quad\quad a_n=\frac{(n+4)(n+3)(n+2)}{6}-1=\frac{n(n+1)(n+8)}{6}+3(n+1) .$

Vì $3 \mid 3(n+1)$ nên để $3 \mid a_n$ thì $9 \mid n(n+1)(n+8)$.

Không có hai số nào trong ba số $n, n+1, n+8$ có thể cùng chia hết cho 3 nên điều kiện trên chỉ xảy ra khi $9 \mid n$ hoặc $9 \mid n+1$ hoặc $9 \mid n+8$.

Vậy tất cả các số $n$ cần tìm để $3 \mid a_n$ là $n$ chia 9 dư $0,1,8$.

Nhận xét. Dưới đây là một số bài toán có liên quan về cấu trúc của tập hợp $T$ để bạn đọc thử sức.

1) Chứng minh rằng với các số nguyên dương $a_1<a_2, \ldots<a_n$ thì:

$\quad\quad\quad\quad \left|T\left(a_1, a_2, \ldots, a_n\right)\right|=\sum_{k=1}^{a_1}\left|T\left(a_2-k, \ldots, a_n-k\right)\right|$

2) Với hai bộ số $A=\left(a_1, a_2, \ldots, a_n\right)$ và $B=\left(b_1, b_2, \ldots, b_n\right)$, ta định nghĩa $A<B$ nếu tồn tại chỉ số $t$ để $a_t<b_t$ và $a_k=b_k$ với $t<k \leq n$. Giả sử rằng:

$\quad\quad\quad\quad\quad\quad \left|T\left(a_1, a_2, \ldots, a_n\right)\right|=\left|T\left(b_1, b_2, \ldots, b_n\right)\right|$

Liệu ta luôn có $\left|T\left(a_2, \ldots, a_n\right)\right|<\left|T\left(b_2, \ldots, b_n\right)\right|$ ?

Bài 7. An và Bình luân phiên nhau đánh dấu các ô vuông của hình vuông $101 \times 101$ ô. An là người bắt đầu. Một ô sẽ không thể được tô màu nếu trên cùng hàng với nó hoặc cùng cột với nó đã có ít nhất 2 ô được tô. Ai không đi được nữa sẽ thua. Hãy xác định ai là người có chiến thuật thắng.

Lời giải. Xin giới thiệu hai lời giải của bài toán

CÁCH 1. Để đơn giản, ta gọi hai người chơi là $A$ và $B$ thay vì An và Bình. Ta sẽ chứng minh rằng $B$ có chiến thuật để thắng. Điều này cũng đúng khi thay 101 bằng một số nguyên dương $n \geq 2$ bất kỳ.

Rõ ràng theo luật chơi thì có không quá $2 n$ ô được đánh dấu. Vì thế nên chiến thuật ở đây là $B$ sẽ tìm cách đánh được ô cuối cùng.

Chiến thuật là: người đi trước đánh ô nào thì người sau sẽ đánh một ô bất kỳ cùng dòng với nó sao cho số cột được đánh là nhiều nhất có thể.

Đặc điểm của chiến thuật này là:

  • Sau mỗi lượt của $A, B$ thì có thêm một hàng có hai ô được đánh; không có hàng nào chứa một ô.

  • Sau mỗi lượt của $A$ thì trên hàng mà $A$ vừa đánh, còn đúng $n-1$ ô chưa được đánh và $B$ sẽ đánh tùy ý vào ô thuộc cột chưa có ô nào được đánh; nếu như tất cả các cột đều có ô được đánh thì $B$ sẽ chọn cột tùy ý mà chỉ có 1 ô được đánh trên đó.

Bằng cách đó, trong $n-1$ lượt đầu tiên, một khi $A$ còn đi được thì $B$ vẫn đi được vì vẫn luôn còn hàng trống và các cột vẫn chưa đầy 2 ô. Do đó, sau $n-1$ lượt của $A, B$, bảng còn lại sẽ có đặc điểm là:

  • Chỉ còn một hàng duy nhất mà chưa có ô nào được đánh, $n-1$ hàng kia đều có ô đã được đánh.

  • Tất cả các cột đều có ô được đánh (có cột có 1 ô, có cột có 2 ô).

Tổng số ô đã đánh là $2 n-2$ nên gọi $a, b$ lần lượt là số cột có 1 ô, 2 ô được đánh thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad a+b=n$ và $a+2 b=2 n-2$.

Suy ra $a=2, b=n-2$, nghĩa là có đúng hai cột mà trên đó có 1 ô được đánh. Hai ô nằm ở vị trí giao giữa hai cột đó và dòng chưa được đánh là hai vị trí cuối cùng có thể đánh. $A, B$ thay phiên đánh vào hai ô đó và $B$ là người đánh cuối cùng nên chiến thắng.

CÁCH 2. Ta có nhận xét rằng

(1) Nếu ở lượt đầu tiên, An đánh vào ô $(1,51)$ giữa hàng 1 thì Bình sẽ đánh vào ô $(101,51)$ giữa hàng cuối. Khi đó, hai bạn sẽ không thể điền vào ô trung tâm nữa. Tiếp theo, mỗi khi An đánh dấu ô nào thì Bình sẽ đánh dấu vào ô đối xứng với ô đó qua tâm. Mỗi khi An điền được thì Bình cũng điền được, vậy Bình sẽ thắng.

(2) Nếu ở lượt đầu tiên, An đánh vào ô $(a, b)$ thì ta có thể đưa về nhận xét (1) bằng cách xây dựng một bảng tương ứng cùng kích thước nhưng hàng 1 và hàng $a$, cột 51 và cột $b$ đổi chỗ cho nhau. Khi đó, An đánh vào ô nào thì Bình sẽ đánh vào ô ở chỉ số hàng/cột tương ứng ở bảng đối chiếu; Bình sẽ đánh vào ô đối xứng như ở chiến lược (1) rồi đánh vào ô có cùng chỉ số hàng/cột ở bảng gốc. Dễ thấy rằng đánh dấu được của mỗi hàng và cột ở hai bảng là giống nhau.

Hình minh họa cho trường hợp $5 \times 5$ khi An đánh vào ô $(5,5)$ trong nước đi đầu tiên. Từ hai nhận xét trên, ta thấy Bình là người có chiến lược thắng trò chơi.

Bài 8. Đường tròn $(O)$ nội tiếp tứ giác $A B C D$ và tiếp xúc với các cạnh $A B, B C, C D, D A$ lần lượt tại $E, F, G, H$. Gọi $I, J$ là trung điểm của $A C, B D$. $I B, I D, J A, J C$ theo thứ tự cắt $E F, G H, H E, F G$ tại $M, N, P, Q$.

(a) Chứng minh rằng $I J, M N, P Q$ đồng quy tại điểm $S$.

(b) Các tia đối của các tia $J A, I B, J C, I D$ lần lượt cắt $(O)$ tại các điểm $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} . A^{\prime} C^{\prime}, B^{\prime} D^{\prime}$ lần lượt cắt $P Q, M N$ tại $U, V$. Gọi $K$ là hình chiếu của $S$ trên $U V$. Chứng minh rằng $\angle A K B=\angle C K D$.

Lời giải. (a) Theo định lý đường thẳng Newton thì $I, J, O$ thẳng hàng. Ta sẽ chứng minh rằng $M N, P Q, I J$ đồng quy tại $O$.

Thật vậy, lấy điểm $K$ trên $H E$ sao cho $A K | B D$. Do $J$ là trung diểm $B D$ nên $A(K J, D B)=-1$. Chiếu tâm $A$ lên $H E$ thì $A(K Q, H E)=-1$ hay $(K Q, H E)=$ $-1$. Do đó $K$ nằm trên đường đối cực của $Q$ với $(O)$.

Lại có $H E$ là đường đối cực của $A$ với $(O)$ và $Q \in H E$ nên theo định lý La Hire, $A$ nằm trên đường đối cực của $Q$ với $(O)$. Do đó $A K$ là đường đối cực của $Q$ với $(O)$ nên $A K \perp O Q$. Từ đó mà $B D \perp O Q$.

Chứng minh tương tự thì $B D \perp O P$ nên $O, P, Q$ thẳng hàng. Cũng tương tự, ta có $O, M, N$ thẳng hàng. Vậy $M N, P Q, I J$ đồng quy tại $O$. Hệ quả là $S \equiv O$.

(b) Trước hết, ta chứng minh rằng $E F, G H, A C, P Q$ đồng quy tại $U$ và $H E, G F$, $B D, M N$ đồng quy tại $V$. Gọi $E F$ cắt $A C$ tại $U^{\prime}$. Áp dụng định lý Menelaus cho tam giác $A B C$, ta có:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{F C}{F B} \cdot \frac{E B}{E A} \cdot \frac{U^{\prime} A}{U^{\prime} C}=1 .$

Do $A H=A E, B E=B F, C F=C G, D G=D H$ nên ta viết lại thành:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{G C}{G D} \cdot \frac{H D}{H A} \cdot \frac{U^{\prime} A}{U^{\prime} C}=1$

Theo định lý Menelaus cho tam giác $A D C$ thì $U^{\prime}, G, H$ thẳng hàng. Do đó $E F, G H, A C$ đồng quy tại $U^{\prime}$. Chứng minh tương tự, ta có $H E, G F, B D$ đồng quy tại $V^{\prime}$.

Mặt khác, ta có tỉ số kép sau:
$\left(U^{\prime} M, E F\right)=B\left(U^{\prime} M, E F\right)=\left(U^{\prime} I, A C\right)=D\left(U^{\prime} N, H G\right)=\left(U^{\prime} N, H G\right) .$
Từ đây thì $H E, M N, F G$ đồng quy tại $V^{\prime} \in B D$. Do $V^{\prime}$ nằm trên $E H, F G$ là các đối của $A, C$ với $(O)$ nên theo định lý La Hire, $A C$ là đường đối cực của $V^{\prime}$ với $(O)$. Tương tự, $E F, A C, P Q, G H$ đồng quy tại $U^{\prime}$ và $B D$ là đối cực của $U^{\prime}$ với $(O)$.

Gọi $S^{\prime}$ là giao diểm của $A C, B D$ thì $S^{\prime}$ là giao diểm hai đường đối cực của $U^{\prime}, V^{\prime}$ với $(O)$, do đó $U^{\prime} V^{\prime}$ là đường đối cực của $S^{\prime}$ với $(O)$. Hơn nữa $E F$ cắt $G H$ tại $U^{\prime}$ và $E H$ cắt $F G$ tại $V^{\prime}$ nên $E G, F H$ đi qua $S^{\prime}$.

Do tính chất đường đối cực, $O S^{\prime} \perp U V$ hay $O, S^{\prime}, K$ thẳng hàng. Gọi $U^{\prime} C^{\prime}$ cắt $(O)$ tại $A_1$ và cắt $B D$ tại $A_2$. Do $B D$ là đường đối cực của $U^{\prime}$ với $(O)$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left(U^{\prime} A_2, A_1 C^{\prime}\right)=-1=\left(U^{\prime} S, A C\right) .$

Khi đó $S A_2, A A_1, C C^{\prime}$ đồng quy. Lại có $C C^{\prime}$ cắt $S A_2$ tại $J$ và $A, J, A^{\prime}$ thẳng hàng nên $A_1 \equiv A^{\prime}$. Từ đó $A^{\prime} C^{\prime}$ qua $U^{\prime} \in P Q$, dẫn đến $U^{\prime} \equiv U$. Tương tự thì $V^{\prime} \equiv V$. Điều này nghĩa là $E F, G H, A C, P Q$ đồng quy tại $U$ và $H E, G F, B D, M N$ đồng quy tại $V$. Để ý rằng $\angle U K O=90^{\circ}$ và $\left(U S^{\prime}, A C\right)=-1$ nên $K S$ là phân giác $\angle A K C$. Tương tự, $K O$ là phân giác $\angle B K D$. Vậy nên ta được

$\quad\quad\quad\quad \angle A K B=\angle A K O+\angle B K O=\angle C K O+\angle D K O=\angle C K D .$

Bài toán kết thúc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2018 – 2019

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Cho số nguyên $a>1$. Tìm giá trị lớn nhất của số thực $d$ sao cho tồn tại một cấp số cộng có công sai $d$, số hạng đầu tiên là $a$ và có đúng hai trong các số $a^2, a^3, a^4, a^5$ là những số hạng của cấp số cộng đó.

Bài 2. Cho $n$ số thực $x_1, x_2, \ldots, x_n$. Với mỗi $i \in{1,2, \ldots, n}$, gọi $a_i$ là số các chỉ số $j$ mà $\left|x_i-x_j\right| \leq 1$ và $b_i$ là số các chỉ số $j$ mà $\left|x_i-x_j\right| \leq 2$ ( $i$ và $j$ có thể bằng).

(a) Chứng minh rằng tồn tại $i$ để $b_i \leq 3 a_i$.

(b) Gọi $A$ là số cặp $(i, j)$ có thứ tự mà $\left|x_i-x_j\right| \leq 1$ và $B$ là số cặp $(i, j)$ có thứ tự mà $\left|x_i-x_j\right| \leq 2$ ( $i$ và $j$ có thể bằng nhau). Chứng minh rằng $B \leq 3 A$.

Bài 3. Cho $p$ là số tự nhiên. Xét phương trình nghiệm nguyên $x^3+x+p=y^2$.

(a) Tìm số nguyên tố $p$ nhỏ nhất dạng $4 k+1$ sao cho phương trình có nghiệm.

(b) Chứng minh rằng nếu $p$ là số chính phương thì phương trình trên có nghiệm nguyên dương.

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ di động trên $(O)$. $D$ là trung điểm $B C$. Trên $A B$ lấy các điểm $M, P$ và trên $A C$ lấy các điểm $N, Q$ sao cho $D A=D P=D Q$, dồng thời $D M \perp A C, D N \perp A B$.

(a) Chứng minh rằng các điểm $M, N, P, Q$ cùng thuộc một đường tròn $(\mathcal{C})$ và $(\mathcal{C})$ luôn đi qua một điểm cố định.

(b) Chứng minh rằng tâm của $(\mathcal{C})$ luôn thuộc một đường tròn cố định.

 

Ngày thi thứ hai

Bài 5. Cho số thực $a \neq 0$. Tìm giới hạn của dãy số $\left(u_n\right)$ thoả mãn:

$\quad\quad\quad\quad\quad\quad\quad\quad u_1=0, u_{n+1}\left(u_n+a\right)=a+1, \forall n \in \mathbb{N}^*$

Bài 6. Tìm tất cả các hàm số $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$thoả mãn điều kiện:

$\quad\quad\quad\quad f\left(x f\left(y^2\right)-y f\left(x^2\right)\right)=(y-x) f(x y) \forall x, y \in \mathbb{R}^{+}, x>y$

Bài 7. Cho $n=2018.2019$. Gọi $A$ là tập hợp các bộ $\left(a_1, a_2, \ldots, a_n\right)$ có thứ tự thoả mãn điều kiện $a_i \in{0,1} \forall i \in{1,2, \ldots, n}$ và $\sum_{i=1}^n a_i=2018^2$. Có bao nhiêu bộ $\left(a_1, a_2, \ldots, a_n\right)$ từ $A$ để $\sum_{i=1}^k a_i \geq \frac{a}{2}$ và $\sum_{i=n-k+1}^n a_i \geq \frac{k}{2} \forall k \in{1,2, \ldots, n}$ ?

Bài 8. Đường tròn $(\mathcal{C})$ tâm $I$ nội tiếp tam giác $A B C$ và tiếp xúc với các cạnh $A B, A C$ tại $E, F$. $A M, A N$ là các đường phân giác trong, phân giác ngoài của góc $\angle B A C(M, N$ nằm trên $B C)$. Gọi $d_M, d_N$ lần lượt là các tiếp tuyến của $(\mathcal{C})$ qua $M, N$ và khác $B C$.

(a) Chứng minh rằng $d_M, d_N, E F$ đồng quy tại điểm $D$.

(b) Lấy trên $A B, A C$ các điểm $P, Q$ thoả mãn $D P|A C, D Q| A B$. Gọi $R, S$ là trung điểm của $D E, D F$. Chứng minh rằng $I$ thuộc đường thẳng qua các trực tâm của hai tam giác $D P S, D Q R$.

 

LỜI GIẢI

Ngày thi thứ nhất

Bài 1. Cho số nguyên $a>1$. Tìm giá trị lớn nhất của số thực $d$ sao cho tồn tại một cấp số cộng có công sai $d$, số hạng đầu tiên là $a$ và có đúng hai trong các số $a^2, a^3, a^4, a^5$ là những số hạng của cấp số cônng đó.

Lời giải: Trước hết, ta chứng minh rằng $d=a^3-a$ thoả mãn điều kiện. Thật vậy, xét cấp số cộng có số hạng đầu là $a$ và công sai là $d=a^3-a$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}a^3=a+\left(a^3-a\right) \\ a^5=a+\left(a^3-a\right)\left(a^2+1\right)\end{array} .\right.$

Do đó $a^3, a^5$ cùng thuộc cấp số cộng có công sai $d=a^3-a$.

Giả sử rằng tồn tại giá trị $d>a^3-a$ thoả mãn điều kiện bài toán. Khi đó:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad a+d>a+a^3-a=a^3$

Dẫn đến hai số hạng thuộc cấp số cộng phải là $a^4$ và $a^5$. Lại để ý rằng $a>1$ nên có $a<a^4<a^5$, kết hợp lại thì phải tồn tại hai số nguyên dương $k<l$ sao cho:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}a^4=a+k d \\ a^5=a+l d\end{array}\right.$

Từ đó $a(a+k d)=a+l d$ hay $d(l-a k)=a^2-a>0$.

Chú ý rằng ta có $d>0$ nên $l-a k>0$, hơn nữa $l-a k \in \mathbb{Z}$ nên $l-a k \geq 1$. Điều này dẫn đến $a^2-a \geq d>a^3-a$, vô lý do $a>1$.

Vậy giá trị lớn nhất của $d$ là $\max d=a^3-a$.

Bài 2. Cho $n$ số thực $x_1, x_2, \ldots, x_n$. Với mỗi $i \in{1,2, \ldots, n}$, gọi $a_i$ là số các chỉ số $j$ mà $\left|x_i-x_j\right| \leq 1$ và $b_i$ là số các chỉ số $j$ mà $\left|x_i-x_j\right| \leq 2(i$ và $j$ có thể bằng nhau).

(a) Chứng minh rằng tồn tại $i$ dể $b_i \leq 3 a_i$.

(b) Gọi $A$ là số cặp $(i, j)$ có thứ tự mà $\left|x_i-x_j\right| \leq 1$ và $B$ là số cặp $(i, j)$ có thứ tự mà $\left|x_i-x_j\right| \leq 2$ ( $i$ và $j$ có thể bằng nhau). Chứng minh rằng $B \leq 3 A$.

Lời giải . (a) Không mất tính tổng quát, giả sử $x_1 \leq x_2 \leq \ldots \leq x_n$.

Xét $k=\max [a_1, a_2, \ldots, a_n]$ và $a_i=k$, khi đó tồn tại $k$ số trong dãy là:

$\quad\quad\quad\quad x_u \leq x_{u+1} \leq \ldots \leq x_i \leq \ldots \leq x_v \text { với }\left|x_u-x_i\right|,\left|x_v-x_i\right| \leq 1 .$

Ngoài ra vì tính lớn nhất của $k$ nên $\left|x_{u-1}-x_i\right|>1,\left|x_{v+1}-x_i\right|>1$.

Trong $\left[x_u, x_v\right]$, có đúng $k$ chỉ số $j$ để $\left|x_j-x_i\right| \leq 1<2$. Còn trước $x_u$, xét hai số $x_r, x_s$ sao cho $x_r \leq x_s$ và $\left|x_r-x_i\right| \leq 2,\left|x_s-x_i\right| \leq 2$ thì:

$\quad\quad\quad\quad \left|x_r-x_s\right|=x_s-x_r=\left(x_i-x_r\right)-\left(x_i-x_s\right)<2-1=1$

nên sẽ có không quá $k$ số $j$ để $\left|x_j-x_i\right| \leq 2$ vì nếu ngược lại, sẽ có nhiều hơn $k$ số liên tiếp trong dãy cách nhau không quá 1 đơn vị, mâu thuẫn với tính lớn nhất của $k$. Tương tự với các số sau $x_v$, vì thế nên $b_i \leq 3 k$ kéo theo $b_i \leq 3 a_i$.

(b) Ta sẽ chứng minh bằng quy nạp theo $n$.

Với $n=1$ rõ ràng $A=B=1$ nên khẳng định hiển nhiên đúng. Giả sử kết quả đúng với $n \geq 1$, ta sẽ chứng minh nó cũng đúng với $n+1$.

Xét dãy số thực $T=\left(x_1, x_2, \ldots, x_{n+1}\right)$ bất kỳ và giả sử $x_1 \leq x_2 \leq \ldots \leq x_{n+1}$. Ký hiệu $A_T, B_T$ là số cặp có thứ tự các chỉ số $(i, j)$ tương ứng với định nghĩa của đề bài. Giả sử $k \geq 1$ là số lượng lớn nhất các số của $T$ được chứa trong một đoạn độ dài bằng 2 nào đó.

Gọi $x_i$ là số cuối cùng của dãy mà trong đoạn $\left[x_i-1, x_i+1\right]$ có chứa đúng $k$ số (kể cả $x_i$ ). Gọi $T^{\prime}$ là dãy mới sau khi bỏ $x_i$ đi. Khi đó, số lượng các số thuộc $T^{\prime}$ có trong $\left[x_i-1, x_i+1\right]$ là $k-1$, ngoài ra $x_i$ đã bị bỏ đi thuộc về đúng $2 k-1$ cặp của $A_T$.

Do đó: $A_T=A_{T^{\prime}}+2 k-1$.

Ta viết lại như sau

$\quad\quad\quad\quad \left[x_i-2 ; x_i+2\right]=\left[x_i-2 ; x_i-1\right] \cup\left[x_i-1 ; x_i+1\right] \cup\left[x_i+1 ; x_i+2\right]$

Trừ đoạn ở giữa thì hai đoạn đầu và cuối chứa tối đa $k$ phần tử của $T$. Hơn nữa, do định nghĩa số $x_i$ nên trong đoạn $\left[x_i+1 ; x_i+2\right]$ có tối đa $k-1$ phần tử của $T$. Từ đó có tối đa:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 2(k-1)+k=3 k-2$

phần tử của $T$ (không tính $x_i$ ) thuộc $\left[x_i-2 ; x_i+2\right]$. Dẫn đến:

$\quad\quad\quad\quad\quad\quad B_T \leq 2(3 k-2)+1+B_{T^{\prime}}=3(2 k-1)+B_{T^{\prime}}$

Áp dụng giả thiết quy nạp, ta có $B_{T^{\prime}}<3 A_{T^{\prime}}$ nên từ các điều trên thì:

$\quad\quad\quad\quad B_T \leq 3(2 k-1)+B_{T^{\prime}}<3(2 k-1)+3 A_{T^{\prime}}=3\left(A_{T^{\prime}}+2 k-1\right)=3 A_T .$

Theo nguyên lý quy nạp, bài toán cũng đúng với $n+1$.

Vậy bài toán được chứng minh hoàn toàn.

Nhận xét. Bài toán này thật ra liên quan đến phương pháp xác suất trong tổ hợp, có thể xem tại quyển “The Probabilistic Method” của GS. Noga Alon. Ta xét một lời giải khác như sau:

(a) Chọn $i$ sao cho số các chỉ số $j$ để $\left|x_i-x_j\right| \leq 1$ là lớn nhất. Khi đó, số lượng chỉ số $j$ sao cho $x_j \in\left(x_i+1, x_i+2\right]$ tối đa là $a_i$, vì nếu không thì tồn tại $j$ để $a_j>a_i$. Tương tự, số lượng chỉ số $j$ sao cho $x_j \in\left[x_i-2, x_i-1\right)$ tối đa là $a_i$.

Chú ý rằng với các chỉ số $j$ để $\left|x_i-x_j\right| \leq 2$ thì ta có điều sau:

$\quad\quad\quad\quad x_j \in\left[x_i-2, x_i-1\right) \cup\left(x_i-1, x_i+1\right) \cup\left(x_i+1, x_i+2\right]$

Số lượng các chỉ số đó chính là $b_i$, dẫn đến $b_i \leq a_i+a_i+a_i=3 a_i$. Hơn nữa, nếu đẳng thức xảy ra, ta phải có mỗi đoạn (hay nửa khoảng) ở phân hoạch trên chứa chính xác $a_i$ chỉ số $j$ của $x_j$.

(b) Bài toán hiển nhiên đúng với $n=1$. Giả sử rằng tồn tại $n>1$ để kết luận không đúng, ta chọn $n$ nhỏ nhất. Ta cũng chọn $i$ sao cho $a_i$ lớn nhất.

Gọi $A^{\prime}, B^{\prime}$ tương ứng là số cặp chỉ số $(k, l)$ mà $\left|x_k-x_l\right| \leq 1$ và $\left|x_k-x_l\right| \leq 2$, trong đó $1 \leq k, l \leq n$ và $k, l \neq i$. Vì $n$ là phản ví dụ nhỏ nhất nên $B^{\prime} \leq 3 A^{\prime}$.

Các cặp chỉ số $(k, l)$ mà $k=i$ hoặc $l=i$ và $\left|x_k-x_l\right| \leq 1$ đều phải có dạng $(k, i)$ hoặc $(i, k)$ trong đó $k \neq i$ và $(i, i)$. Có tổng cộng $2\left(a_i-1\right)+1$ cặp như thế nên $A=A^{\prime}+2\left(a_i-1\right)+1$.

Tương tự thì $B=B^{\prime}+2\left(b_i-1\right)+1$. Do đó nếu $b_i \leq 3 a_i-1$ thì:

$\quad\quad\quad\quad B=B^{\prime}+2 b_i-1 \leq 3 A^{\prime}+2\left(3 a_i-1\right)-1=3\left(A^{\prime}+2 a_i-1\right)=3 A$

Điều này trái với việc $n$ là phản ví dụ nhỏ nhất. Do đó $b_i \geq 3 a_i$. Theo ý (a) thì $b_i \leq 3 a_i$, từ đây phải có $b_i=3 a_i$. Hơn nữa, số lượng chỉ số $j$ để thỏa mãn $x_j \in\left[x_i-2, x_i-1\right)$ hoặc $x_j \in\left(x_i+1, x_i+2\right]$ dều phải bằng $a_i$.

Với mỗi $j, j^{\prime}$ sao cho $x_j, x_{j^{\prime}} \in\left[x_i-2, x_i-1\right)$, ta có $\left|x_j-x_{j^{\prime}}\right|<1$, dẫn đến $a_j \geq a_i$. Mặt khác $a_i$ là lớn nhất có thể nên $a_j=a_i$. Tương tự, với mỗi $j$ sao cho $x_j \in\left(x_i+1, x_i+2\right]$ thì $a_j=a_i$. Như vậy với mọi $j$ sao cho $1<\left|x_i-x_j\right| \leq 2$ thì $a_j=a_i$. Cũng với cách chọn chỉ số $j$ đó, lập luận tương tự như những ý trên, ta cũng phải có $b_j=3 a_j$.

Xây dựng đồ thị $\mathcal{G}$ với các đỉnh được đánh số là $1,2, \ldots, n$ sao cho cặp đỉnh $(k, l)$ kề nhau khi và chỉ khi $1<\left|x_k-x_l\right| \leq 2$. Những lập luận trên cho thấy mọi đỉnh $j$ mà tồn tại một đường đi từ $i$ đến $j$ đều phải thỏa mãn $a_j=a_i$ và $b_j=3 a_j$. Gọi $\mathcal{X}$ là tập hợp tất cả các đỉnh $j$ sao cho tồn tại một đường đi từ $i$ dến $j$ trong $\mathcal{G}$. Đặt $\mathcal{Y}={1,2, \ldots, n} \backslash \mathcal{X}(\mathcal{Y}$ có thể rỗng $)$.

Bây giờ, gọi $A_y, B_y$ tương ứng là số cặp chỉ số $(k, l)$ có tính thứ tự, có thể bằng nhau mà $\left|x_k-x_l\right| \leq 1$ và $\left|x_k-x_l\right| \leq 2$, trong đó $k, l \in \mathcal{Y}$. Chú ý rằng $A_{\mathcal{Y}}=B_{\mathcal{Y}}=0$ nếu $\mathcal{Y}=\emptyset$. Bởi $n$ là phản ví dụ nhỏ nhất, ta phải có $B_{\mathcal{Y}} \leq 3 A_{\mathcal{Y}}$. Ta gọi $a_{y, k}$ và $b_{y, k}$ tương ứng là số chỉ số $j \in \mathcal{Y}$ mà $\left|x_j-x_k\right| \leq 1$ và $\left|x_j-x_k\right| \leq 2$. Định nghĩa tương tự $a_{\mathcal{X}, k}$ và $b_{\mathcal{X}, k}$.

Với mọi $k \in \mathcal{Y}$, dễ thấy $k$ không kề bất cứ đỉnh nào trong $\mathcal{X}$, vì vậy ta có được $b_{\mathcal{X}, k}=0$ và $b_k=b_{\mathcal{Y}, k}+a_{\mathcal{X}, k}$. Từ đây dẫn đến đẳng thức sau:

$\quad\quad\quad\quad\quad\quad B=\sum_{k \in \mathcal{X}} b_k+\sum_{k \in \mathcal{Y}} b_k=3 \sum_{k \in \mathcal{X}} a_k+\sum_{k \in \mathcal{Y}}\left(b_{y, k}+a_{\mathcal{X}, k}\right)$

Ta đồng thời có $\sum_{k \in \mathcal{Y}} b_{y, k}=B_{\mathcal{Y}} \leq 3 A_{\mathcal{Y}}$. Hơn nữa, ta cũng có được:

$\quad\quad A=\sum_{k \in \mathcal{X}} a_k+\sum_{k \in \mathcal{Y}} a_k=\sum_{k \in \mathcal{X}} a_k+\sum_{k \in \mathcal{Y}}\left(a_{\mathcal{Y}, k}+a_{\mathcal{X}, k}\right)=\sum_{k \in \mathbb{X}} a_k+A_{\mathcal{Y}}+\sum_{k \in \mathcal{Y}} a_{\mathcal{X}, k}$

Do đó:

$\quad\quad\quad\quad B \leq 3 A_{\mathcal{Y}}+\sum_{k \in \mathcal{Y}} a_{\mathcal{X}, k}+3 \sum_{k \in \mathcal{X}} a_k \leq 3\left(A_{\mathcal{Y}}+\sum_{k \in \mathcal{Y}} a_{\mathcal{X}, k}+\sum_{k \in \mathcal{X}} a_k\right)=3 A$

Điều này dẫn đến giả sử phản chứng là sai.

Vì vậy, với mọi số nguyên dương $n$, ta phải có $B \leq 3 A$. Bài toán kết thúc.

Bài 3. Cho $p$ là số tự nhiên. Xét phương trình nghiệm nguyên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad x^3+x+p=y^2 .$

(a) Tìm số nguyên tố $p$ nhỏ nhất dạng $4 k+1$ sao cho phương trình có nghiệm.

(b) Chứng minh rằng nếu $p$ là số chính phương thì phương trình trên có nghiệm nguyên dương.

Lời giải. (a) Các số nguyên tố có dạng $4 k+1$ là $5,13,17, \ldots$

Trước hết, ta thấy với $p=13$ thì $x^3+x+13=y^2$ có nghiệm là $(x ; y)=(4 ; 9)$. Ta sẽ chứng minh rằng phương trình $x^3+x+5=y^2$ không có nghiệm nguyên. Xét modulo 4. Có các khả năng sau xảy ra:

  • Khi $x$ chia 4 dư $0,1,2,3$, vế trái chia 4 lần lượt dư $1,3,3,3$.
  • Khi $y$ chia 4 dư $0,1,2,3$, vế phải chia 4 lần lượt dư $0,1,0,1$.

Do đó $y$ phải lẻ và $4 \mid x$. Viết biểu thức đã cho thành:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad (x+3)\left(x^2-3 x+10\right)=y^2+5^2$

Do $x+3 \equiv 3(\bmod 4)$ nên $x+3$ có ước nguyên tố $q \equiv 3(\bmod 4)$. Ta biết rằng với $a, b \in \mathbb{Z}$ thì $a^2+b^2$ chia hết cho số nguyên tố $q \equiv 3(\bmod 4)$ khi và chỉ khi $q \mid a$ và $q \mid b$. Từ đó thì $q \mid 5$ hay $q=5$, mâu thuẫn.

Vậy $p=13$ là số nguyên tố nhỏ nhất cần tìm.

(b) Trước hết, ta giới thiệu kết quả sau (còn gọi là định lý 4 số):

Bổ Đề. Với các số nguyên dương $a, b, c, d$ thoả mãn $a b=c d$ thì tồn tại các số nguyên dương $x, y, z, t$ sao cho $a=x y, b=z t, c=x z, d=y t$.

Chứng minh bổ đề. Đặt $k=\operatorname{gcd}(a, c)$ và viết $a=k a_1, c=k c_1$ thì rõ ràng $\operatorname{gcd}\left(a_1, c_1\right)=1$. Thay vào đề bài, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad k a_1 b=k c_1 d \text { hay } a_1 b=c_1 d .$

Từ đây chú ý $a_1 \mid c_1 d$, nên $a_1 \mid d$, đặt $d=a_1 \ell$. Thay vào thì có $b=\ell c_1$. Từ đó, ta chọn $x=k, y=a_1, z=c_1, t=\ell$ thì có ngay điều phải chứng minh.

Quay lại bài toán, do $p$ là số chính phương nên đặt $p=a^2, a \in \mathbb{Z}$. Ta viết lại phương trình thành dạng:

$\quad\quad\quad\quad\quad\quad\quad\quad x^3+x+a^2=y^2 \text { hay } x\left(x^2+1\right)=(y-a)(y+a) .$

Áp dụng kết quả trên vào bài toán, ta thấy tồn tại các số nguyên dương $m, n, p, q$ để $x=m n, x^2+1=p q, y+a=m p, y-a=n q$. Từ đó:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad (m n)^2+1=p q \text { và } m p-n q=2 a \text {. }$

Xét dãy số $\left(u_n\right)$ xác định bởi $u_0=0, u_1=1, u_{n+2}=\alpha u_{n+1}+u_n$, trong đó $\alpha$ là hằng số mà ta sẽ chọn sau. Rõ ràng với mọi $n$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad u_n^2-u_{n+1} u_{n-1}=(-1)^{n-1}\left(u_1^2-u_2 u_0\right)=(-1)^{n-1} .$

Khi đó, với $n$ chẵn thì $u_n^2-u_{n+1} u_{n-1}=-1$. Chọn $m n=u_{2 k}$. Ta có:

$\quad\quad\quad\quad\quad\quad\quad u_2=\alpha, u_3=\alpha^2+1, u_4=\alpha\left(\alpha^2+2\right), u_5=\alpha^4+3 \alpha^2+1$

Chọn $p=u_3, q=u_5, m n=u_4$ thì rõ ràng $(m n)^2+1=p q$. Bây giờ ta chỉ cần có được

$\quad\quad\quad\quad\quad\quad m u_3-n u_5=2 a \text { hay } m\left(\alpha^2+1\right)-n\left(\alpha^4+3 \alpha^2+1\right)=2 a .$

Từ đây chọn $\alpha=4 a^2$ và viết $m=2 a\left(\alpha^2+2\right), n=2 a\left(\alpha^4+3 \alpha^2+1\right)$ thì đẳng thức trên sẽ thoả mãn, vì

$\quad\quad\quad\quad\quad\quad\quad\quad \left(\alpha^2+1\right)\left(\alpha^2+2\right)-\left(\alpha^4+3 \alpha^2+1\right)=1 .$

Vậy phương trình có một cặp nghiệm cụ thể là

$\quad\quad (x, y)=\left(4 a^2\left(16 a^4+2\right), 2 a\left(16 a^4+2\right)\left(16 a^4+1\right)-a\right) \text { với } a=\sqrt{p} \in \mathbb{Z}^{+} .$

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ di động trên $(O)$. $D$ là trung điểm $B C$. Trên $A B$ lấy các điểm $M, P$ và trên $A C$ lấy các điểm $N, Q$ sao cho $D A=D P=D Q$, dồng thời $D M \perp A C, D N \perp A B$.

(a) Chứng minh rằng các điểm $M, N, P, Q$ cùng thuộc một đường tròn $(\mathcal{C})$ và (C) luôn đi qua một điểm cố định.

(b) Chứng minh rằng tâm của $(\mathcal{C})$ luôn thuộc một đường tròn cố định.

Lời giải . (a) Dễ thấy tam giác $A M Q$ cân tại $M$ nên

$\quad\quad \angle D M Q=\angle D M A=90^{\circ}-\angle A=\frac{180^{\circ}-2 \angle A}{2}=\frac{180^{\circ}-\angle P D Q}{2}=\angle D P Q$

Do đó tứ giác $M P D Q$ nội tiếp. Chứng minh tương tự, ta có tứ giác $Q N D P$ nội tiếp nên $M, N, P, Q$ cùng thuộc một đường tròn $(\mathcal{C})$, và $(\mathcal{C})$ luôn đi qua điểm $D$ cố định.

(b) Gọi $K B, K C$ là hai tiếp tuyến của $(O)$. Ta có $D, K, O$ thẳng hàng, lại có:

$\quad\quad\quad\quad\quad \angle B K O=90^{\circ}-\angle B O K=90^{\circ}-\angle B A C=\angle B M D$

Từ đó tứ giác $B D K M$ nội tiếp. Để ý rằng $K D \perp B C$ nên $K M \perp A B$, hơn nữa $D N \perp A B$ nên $K M | D N$. Tương tự thì $K N | D M$. Do đó $D M K N$ là hình bình hành hay $D K, M N$ có $J$ là trung điểm chung.

Gọi $I$ là tâm của $(\mathcal{C})$ thì $I J \perp M N$ và $J L | A D$. Chú ý rằng $D$ là tâm $(A P Q)$ và cũng là trực tâm tam giác $A M N$ nên $P Q, M N$ là hai đường đối song. Đồng thời nếu $L$ là trung điểm $A D$ thì $J L$ vuông góc với đường nối hai chân đường cao từ $M, N$ của tam giác $A M N$ nên $J L \perp P Q$. Lại có $D P=D Q$ và $I P=I Q$ nên $I D \perp P Q$, do đó $J L | D I$.

Từ đây $I D L J$ là hình bình hành và $I L, D J$ có $T$ là trung điểm chung cố định. Xét phép vị tự tâm $D$ tỉ số $\frac{1}{2}$ hợp với phép đối xứng tâm $T$ thì $A \mapsto I$. Do $A$ thuộc đường tròn $(O)$ cố định nên $I$ cũng thuộc đường tròn cố định là ảnh của $(O)$ qua hợp các phép biến hình trên. Bài toán kết thúc.

Nhận xét. Bài toán này còn một hướng tiếp cận bản chất hơn như sau. Nếu gọi $A^{\prime}$ là điểm đối xứng của $A$ qua $D$ thì $K, A^{\prime}$ là hai điểm liên hợp đẳng giác trong tam giác $A B C$, từ đó đường tròn $(\mathcal{C})$ chính là đường tròn đi qua các hình chiếu của $K, A^{\prime}$ trên các cạnh tam giác $A B C$, dồng thời $I$ là trung diểm $K A^{\prime}$.

Dưới đây là một bài toán tương tự: Cho tam giác nhọn $A B C$ nội tiếp đường tròn $(O)$ có $B C$ cố định và $A$ di dộng trên $(O)$. Gọi $H$ là trực tâm tam giác và lấy điểm $E, F$ thuộc $A B, A C$ theo thứ tự đó sao cho $H$ là trung điểm $E F$.

  1. Chứng minh rằng tâm của đường tròn $(A E F)$ luôn thuộc một đường tròn cố định. Đặt là $\omega$.
  2. Giả sử $\omega$ cắt lại $(O)$ tại các điểm $X, Y$. Chứng minh rằng $X, Y, O$ thẳng hàng.

 

Ngày thi thứ hai

Bài 5. Cho số thực $a \neq 0$. Dãy số $\left(u_n\right)$ thoả mãn:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad u_1=0, u_{n+1}\left(u_n+a\right)=a+1 \forall n \in \mathbb{N}^*$

Tìm giới hạn của dãy số $\left(u_n\right)$.

Lời giải: Đặt $x_{n+1}=(a+1) y_n$ và $y_{n+1}=x_n+a y_n$. Ta có:

$\quad\quad\quad\quad\quad\quad\quad y_{n+2}=x_{n+1}+a y_{n+1}=a y_{n+1}+(a+1) y_n$

Đồng thời $u_n=\frac{x_n}{y_n}$. Để ý rằng $u_1=0, u_2=\frac{a+1}{a}$. Chọn $y_1=1, y_2=a$. Từ đó:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad y_n=\frac{(a+1)^n-(-1)^n}{a+2} \forall n \geq 1$

Công thức trên chỉ xác định với $a \neq-2$ nên xét trường hợp $a=-2$, ta có dãy

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}u_1=0, \\ u_{n+1}=\frac{1}{2-u_n}, n \geq 1\end{array} .\right.$

Bằng quy nạp, ta chứng minh được $u_n \in[0 ; 1)$ nên:

$\quad\quad\quad\quad\quad\quad\quad u_{n+1}-u_n=\frac{1}{2-u_n}-u_n=\frac{\left(u_n-1\right)^2}{2-u_n}>0$

Dãy $\left(u_n\right)$ tăng và bị chặn trên bởi 1 nên có giới hạn hữu hạn là $L \in(0,1)$. Giải phương trình giới hạn, ta có được $L=\frac{1}{2-L}$. Khi đó thì $L=1$.

Tiếp theo, xét $a \neq-2$, ta có:

$\quad\quad\quad\quad u_n=\frac{x_n}{y_n}=\frac{(a+1) y_{n-1}}{y_n}=\frac{(a+1)^n+(a+1)(-1)^n}{(a+1)^n-(-1)^n} \forall n \in \mathbb{N}^*$

Đặt $-(a+1)=b \in{-1 ; 1}$, ta viết lại thành:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad u_n=\frac{b^n-b}{b^n-1} \forall n \geq 1$

Có các khả năng sau xảy ra:

  • Nếu $b>1$ hoặc $b<-1$, tương ứng là $a<-2$ hoặc $a>0$, thì $\lim u_n=1$.
  • Nếu $-1<b<1$, tương ứng là $-2<a<0$, thì $\lim u_n=b=-(a+1)$.

Vậy ta có kết luận sau trong các trường hợp của $a$ :

  • Nếu $a \in(-2 ; 0)$ thì $\lim u_n=-(a+1)$.
  • Nếu $a \notin(-2 ; 0)$ thì $\lim u_n=-1$.

Bài 6. Tìm tất cả các hàm số $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$thoả mãn diều kiện:

$\quad\quad\quad\quad\quad\quad f\left(x f\left(y^2\right)-y f\left(x^2\right)\right)=(y-x) f(x y) \forall x, y \in \mathbb{R}^{+}, x<y .$

Lời giải . Theo giả thiết thì với mọi $y>x>0$, ta đều có

$\quad\quad\quad\quad\quad\quad\quad\quad x f\left(y^2\right)-y f\left(x^2\right)>0 \Rightarrow \frac{f\left(y^2\right)}{f\left(x^2\right)}>\frac{y}{x}>1 .$

Do đó,

$\quad\quad\quad\quad\quad\quad\quad\quad y^2>x^2 \Leftrightarrow y>x \Leftrightarrow f\left(y^2\right)>f\left(x^2\right)$

nên hàm $f$ dã cho đồng biến trên $\mathbb{R}^{+}$. Trong đề bài, thay $y=x+1$, ta có

$\quad\quad\quad\quad\quad\quad\quad f\left(x f\left((x+1)^2\right)-(x+1) f\left(x^2\right)\right)=f(x(x+1))$

hay

$\quad\quad\quad\quad\quad\quad\quad\quad x f\left((x+1)^2\right)-(x+1) f\left(x^2\right)=x(x+1) $

$\quad\quad\quad\quad\quad\quad\quad\quad \Leftrightarrow \frac{f\left((x+1)^2\right)}{x+1}=\frac{f\left(x^2\right)}{x}+1, \forall x>0$

Thực hiện thao tác này nhiều lần, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{f\left((x+n)^2\right)}{x+n}=\frac{f\left(x^2\right)}{x}+n, \forall x>0, n \in \mathbb{Z}^{+}$

hay

$\quad\quad\quad\quad\quad\quad\quad\quad x f\left((x+n)^2\right)-(x+n) f\left(x^2\right)=n x(x+n) .$

Trong dề bài, thay $y=x+n$, ta có

$\quad\quad\quad\quad\quad\quad f\left(x f\left((x+n)^2\right)-(x+n) f\left(x^2\right)\right)=n f(x(x+n)) $

$\quad\quad\quad\quad\quad\quad \Leftrightarrow f(n x(x+n))=n f(x(x+n)) .$

Với mọi $n \in \mathbb{Z}^{+}, y>0$, ta luôn chọn được $x>0$ để $x(x+n)=y$ nên ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f(n y)=n f(y), \forall n \in \mathbb{Z}^{+}, y \in \mathbb{R}^{+} .$

Đặt $f(1)=a>0$, với mọi $n \in \mathbb{Z}^{+}$, cho $y=\frac{1}{n}$, suy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f(1)=n f\left(\frac{1}{n}\right) \Rightarrow f\left(\frac{1}{n}\right)=\frac{a}{n} .$

Do đó,

$\quad\quad\quad\quad\quad\quad\quad\quad f\left(\frac{n}{m}\right)=n f\left(\frac{1}{m}\right)=\frac{n}{m} a, \forall m, n \in \mathbb{Z}^{+}$

hay $f(x)=a x, \forall x \in \mathbb{Q}^{+}$. Với mọi số thực $x_0>0$, chọn hai dãy số hữu tỷ $\left(a_n\right),\left(b_n\right)$ sao cho $a_n<x_0<b_n$ và $\lim a_n=\lim b_n=x_0$. Rõ ràng

$\quad\quad\quad\quad\quad\quad f\left(a_n\right)<f\left(x_0\right)<f\left(b_n\right) \Rightarrow a \cdot a_n<f\left(x_0\right)<a \cdot b_n,$

nên cho $n \rightarrow+\infty$, ta có $f\left(x_0\right)=a x_0$. Do đó, với mọi số thực $x>0$ thì $f(x)=a x$. Thay vào biểu thức đã cho, ta có

$\quad\quad\quad\quad\quad \left\{\begin{array}{l}f\left(x f\left(y^2\right)-y f\left(x^2\right)\right)=a^2\left(x y^2-x^2 y\right)=a^2(y-x) x y \\ (y-x) f(x y)=a(y-x) x y\end{array}\right.$

nên $a=1$. Vậy tất cả các hàm số cần tìm là $f(x)=x, \forall x>0$.

Nhận xét. Có một điều đáng chú ý ở bài toán này là việc từ giả thiết, ta phải ngầm hiểu rằng $x f\left(y^2\right)-y f\left(x^2\right)>0$ với mọi cặp số dương $x<y$. Ta có thể thêm tường minh điều kiện đó vào đề bài cho rõ. Tuy nhiên, nếu thêm theo kiểu như sau thì sẽ có một chút vấn đề phát sinh:

Tìm tất cả các hàm số $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$thoả mãn với mọi cặp số dương $x<y$, nếu $x f\left(y^2\right)-y f\left(x^2\right)>0$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f()=(y-x) f(x y) \forall x, y \in \mathbb{R}^{+}, x<y .$

Khi đó, ta có thể nhận thêm một hàm số thỏa mãn nữa là $f(x)=\sqrt{x}$. Lý do là vì với mọi cặp số $y>x>0$, ta đều có $x f\left(y^2\right)-y f\left(x^2\right)=0$, mà vì thế, điều kiện “nếu” ở trên là sai nên mệnh đề kéo theo là đúng.

Bài 7. Cho $n=2018.2019$. Gọi $A$ là tập hợp các bộ $\left(a_1, a_2, \ldots, a_n\right)$ có thứ tự thoả mãn điều kiện $a_i \in{0,1} \forall i \in{1,2, \ldots, n}$ và $\sum_{i=1}^n a_i=2018^2$.

Có bao nhiêu bộ $\left(a_1, a_2, \ldots, a_n\right)$ từ $A$ dể:

$\quad\quad\quad\quad\quad \sum_{i=1}^k a_i \geq \frac{a}{2} \text { và } \sum_{i=n-k+1}^n a_i \geq \frac{k}{2} \forall k \in{1,2, \ldots, n}$

Lời giải. Ta giải bài toán tổng quát khi thay 2018 bởi $m \in \mathbb{Z}^{+}$. Bài toán đã cho tương đương với bài toán sau:

Trong hệ trục tọa độ Oxy, xét lưới điểm nguyên trong hình chũ nhật có đỉnh dưới bên trái là $O(0 ; 0)$ và dỉnh trên bên phải là $A\left(m^2 ; m\right)$. Dặt $B(m ; m)$ và $C\left(m^2-m ; 0\right)$, hỏi có bao nhiêu đương đi tù̀ $O \rightarrow A$ sao cho mỗi bước, ta đi sang phải hoặc lên trên 1 đơn vị, gọi là đương đi đơn, và không vượt lên trên $O B$ cũng nhu không xuống dưới $A C$ ?

Ở đây, các số $0 ; 1$ tương ứng với các bước đi lên trên, các bước đi sang phải; còn điều kiện tổng $k$ số đầu và tổng $k$ số cuối không nhỏ hơn $\frac{k}{2}$ tương ứng với số lượng bước đi lên không vượt quá số lượng bước đi sang phải. Để thuận tiện, ta gọi đường đi cắt $d$ nếu nó có các phần nằm về cả hai phía của $d$. Trước hết, ta sẽ chứng minh bổ đề sau:

Bổ Đề. Số đường đi đơn từ $O \rightarrow A(m ; n)$, có cắt đường thẳng $y=x$, là $C_{m+n}^{m+1}$.

Thật vậy, Xét đường thẳng $(d): y=x+1$, rõ ràng các đường đi đơn cắt $y=x$ dều sẽ có điểm chung với đường thẳng $(d)$ này. Tại các điểm chung đó, ta thực hiện đối xứng trục để được một đường đi mới xuất phát từ $O \rightarrow A^{\prime}(n-1, m+1)$.

Trong hình trên, đường cũ là đứt nét, còn đường mới là liền nét. Rõ ràng phép đối xứng trục trên là song ánh, biến các đường cần tìm (cắt $y=x$ ), thành các đường từ $O \rightarrow A^{\prime}$; do đó, số lượng đường cần tìm là $C_{m+n}^{n-1}$.

Trở lại bài toán,

Số đường đi đơn từ $O \rightarrow A\left(m^2 ; m\right)$ là $C_{m^2+m}^m$ vì nó bằng số cách chọn $m$ lần đi lên trong tổng số $m^2+m$ lần di chuyển, trong đó số đường đi cắt $O B$ bằng số đường đi cắt $A C$ và bằng $C_{m^2+m}^{m-1}$ (theo bổ đề).

Do đó, ta chỉ cần tìm số đường đi cắt cả $O B, A C$ với ý tưởng đối xứng hai lần đã dùng để chứng minh bổ đề.

Đầu tiên, ta thực hiện đối xứng qua đường thẳng $y=x+1$; khi đó, các đường đi đơn sẽ xuất phát từ $O \rightarrow A^{\prime}\left(m-1 ; m^2+1\right)$. Do các đường ban đầu còn vượt qua $A C$ nên các đường mới phải cắt thêm $y=x+m^2-m+3$. Tiếp tục đối xứng qua đường thẳng này, ta đưa về đếm số đường đi đơn từ $O \rightarrow A^{\prime \prime}\left(m-2, m^2+2\right)$. Suy ra số đường đi trong trường hợp này là $C_{m^2+m}^{m-2}$. Vậy theo nguyên lý bù trừ, kết quả cần tìm sẽ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad C_{m^2+m}^m-2 C_{m^2+m}^{m-1}+C_{m^2+m}^{m-2} .$

Thay $m=2018$, ta có số lượng đường đi, cũng chính là số bộ thỏa mãn đề bài.

Nhận xét. Dưới đây là một số kết quả tương tự về đường đi đơn trong đề bài

$1$. Số đường đi đơn từ $(0 ; 0) \rightarrow(m ; n)$ mà không có điểm chung với $y=x$ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{m-n}{m+n} C_{m+n}^m .$

$2$. Số đường đi đơn từ $(0 ; 0) \rightarrow(m ; n)$ mà không vượt qua $y=x$ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad C_{m+n}^n-C_{m+n}^{n-1} .$

$3$. Số đường đi gồm $n$ bước mà không vượt $y=x$ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad \sum_{i=n / 2}^n \frac{n !(2 i+1-n)}{(i+1) !(n-i) !}=C_n^{[n / 2]} .$

$4$. Số đường đi đơn từ $(0 ; 0) \rightarrow(m ; n)$ mà không có điểm chung với $y=x+t$ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad C_{m+n}^n-C_{m+n}^{m-t}$.

Bạn đọc có thể dùng phương pháp tương tự trên để giải quyết các bài toán này.

Bài 8. Đường tròn $(\mathcal{C})$ tâm $I$ nội tiếp tam giác $A B C$ và tiếp xúc với các cạnh $A B, A C$ tại $E, F$. $A M, A N$ là các đường phân giác trong, phân giác ngoài của góc $\angle B A C(M, N$ nằm trên $B C)$. Gọi $d_M, d_N$ lần lượt là các tiếp tuyến của $(\mathcal{C})$ qua $M, N$ và khác $B C$.

(a) Chứng minh rằng $d_M, d_N, E F$ dồng quy tại điểm $D$.

(b) Lấy trên $A B, A C$ các điểm $P, Q$ thoả mãn $D P|A C, D Q| A B$. Gọi $R, S$ là trung điểm của $D E, D F$. Chứng minh rằng $I$ thuộc đường thẳng qua các trực tâm của hai tam giác $D P S, D Q R$.

Lời giải. (a) Gọi $X, Y$ lần lượt là tiếp điểm của tiếp tuyến thứ hai kẻ từ $M$ dến $(I)$ và $D^{\prime}$ là tiếp điểm của $(I)$ trên $B C$. Gọi $K$ là trung điểm $E F$.

Xét trong đường tròn $(I)$ thì $E F$ là đường đối cực của $A$ và $K \in E F$ nên đối cực của $K$ sẽ đi qua $A$, mà $N A \perp I A$ nên $N A$ chính là đường đối cực của $K$.

Đường đối cực của $K$ đi qua $N$ nên đối cực của $N$, là $D^{\prime} Y$, sẽ đi qua $K$. Dễ thấy rằng $A M$ là trục đối xứng của tứ giác $D^{\prime} X E F$ nên suy ra $D^{\prime} X | E F$. Xét $D^{\prime}(E F, X Y)$, ta có có $D^{\prime} Y$ đi qua trung điểm của $E F$ và $D^{\prime} X | E F$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad D^{\prime}(E F, X Y)=-1$

hay tứ giác $E X F Y$ điều hòa. Suy ra $M X, N Y, E F$ đồng quy. Ngoài ra ta cũng có $X, Y, A$ thẳng hàng.

(b) Dễ thấy các tam giác $P E D$ và $D Q F$ là các tam giác cân. Gọi $H_1, H_2$ lần lượt là trực tâm của tam giác $\triangle D P S, \triangle D Q R$. Ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \angle P H_1 S=\angle P D F=\angle A F E=\angle P E S$

nên $E P S H_1$ là tứ giác nội tiếp. Suy ra $R H_1 \cdot R P=R S \cdot R E$. Ngoài ra,

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad K A \cdot K I=K E \cdot K F$

nên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{R P}{K A} \cdot \frac{R H_1}{K I}=\frac{R E}{K E} \cdot \frac{R S}{K F} .$

Theo định lý Thales thì $\frac{R P}{K A}=\frac{R E}{K E}$ nên $\frac{R H_1}{K I}=\frac{R S}{K F}$, mà

$\quad\quad\quad\quad\quad\quad\quad R S=R D-S D=\frac{D E-D F}{2}=\frac{E F}{2}=K F$

Suy ra $R H_1=K I$, mà $R H_1 | K I$ (do cùng vuông góc với $E F$ ) nên $I K R H_1$ là hình chữ nhật, kéo theo $I H_1 | E F$. Một cách tương tự, ta có $I H_2 | E F$ vậy nên đường thẳng $H_1 H_2$ đi qua $I$.

Nhận xét. Trong câu a, tính chất $A, X, Y$ thẳng hàng của bài toán cũng đúng khi thay $M, N$ là chân các đường phân giác bởi cặp điểm liên hợp điều hòa bất kỳ với $B, C$. Điều này có được nhờ tính chất của các đường đối cực (hoặc có thể chứng minh nhờ việc sử dụng phép chiếu trực giao các chùm điều hòa).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2019 – 2020

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Số thực $\alpha$ được gọi là điểm tụ của dãy số $\left(u_n\right)$ nếu tồn tại ít nhất một dãy con của $\left(u_n\right)$ có hội tụ đến $\alpha$.

(a) Hãy chỉ ra một dãy số có vô hạn điểm tụ.

(b) Chứng minh rằng nếu dãy số có mọi dãy con hội tụ thì nó cũng hội tụ.

(c) Gọi $S$ là tập hợp tất cả các số chính phương dương. Dãy số $\left(a_n\right)$ xác định bởi $a_n=\frac{1}{n}$ nếu $n \in S$ và $a_n=\frac{1}{n^2}$ nếu $n \notin S$.

Đặt $b_n=\sum_{k=1}^n a_k$. Xét tính hội tụ của các dãy số $\left(a_n\right)$ và $\left(b_n\right)$.

Bài 2. Tìm tất cả các hợp số dương $n$ sao cho $n \cdot \sigma(n) \equiv 2(\bmod \varphi(n))$, trong đó ký hiệu $\sigma(n), \varphi(n)$ là hàm tổng các ước của $n$ và hàm Euler.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn

$\quad\quad\quad\quad\quad f(f(x)+y)+f(x) f(f(y))=x f(y)+x+y, \forall x, y \in \mathbb{R} .$

Bài 4. Cho tam giác $A B C$ không cân nội tiếp trong đường tròn $(O)$ với $B C$ cố định và $A$ thay đổi trên cung lớn $B C$. Các đường tròn bàng tiếp góc $A, B, C$ lần lượt tiếp xúc với $B C, C A, A B$ tại $D, E, F$. Gọi $L, M, N$ lần lượt là giao điểm khác $A, B, C$ của $(A B E),(A C F) ;(B C F),(B A D) ;(C A D),(C B E)$.

(a) Chứng minh rằng $A L$ luôn đi qua điểm cố định khi $A$ thay đổi.

(b) Gọi $K, I, J$ lần lượt là trung điểm của $A D, B E, C F$. Chứng minh rằng $K L, I M, J N$ dồng quy.

Ngày thi thứ hai

Bài 5. Cho $a, b, c$ là các số thực dương thỏa mãn $8\left(a^2+b^2+c^2\right)=9(a b+b c+c a)$.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad T=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b} .$

Bài 6. Tìm tất cả các hàm số $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$thỏa mãn đồng thời các điều kiện sau

$\quad\quad$ i) $m f(m)+n f(n)+2 m f(n)$ là số chính phương với mọi $m, n$;

$\quad\quad$ ii) $f(m n)=f(m) f(n)$ với mọi $m, n$ nguyên dương;

$\quad\quad$  iii) Với mọi số nguyên tố $p, f(p)$ không chia hết cho $p^2$.

Bài 7. Một trường phổ thông có $n$ học sinh. Các học sinh tham gia vào tổng cộng $m$ câu lạc bộ là $A_1, A_2, \ldots, A_m$.

(a) Chứng minh rằng nếu mỗi câu lạc bộ có 4 học sinh và hai học sinh bất kỳ tham gia chung nhất một câu lạc bộ thì $m \leq \frac{n(n-1)}{12}$.

(b) Giả sử tồn tại $k>0$ sao cho hai câu lạc bộ bất kỳ có chung nhau $k$ thành viên và tồn tại một câu lạc bộ $A_t$ có $k$ thành viên. Chứng minh rằng $m \leq n$

Bài 8. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Đường tròn nội tiếp $(I)$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $D, E, F$. Gọi $J$ là tâm bàng tiếp góc $A$ của tam giác $A B C$ và $H$ là hình chiếu của $D$ lên $E F$.

(a) Chứng minh rằng giao điểm của $A H, J D$ thì thuộc đường thẳng $O I$.

(b) Giả sử $D H$ cắt lại $(I)$ ở $K$ và $I K$ cắt lại đường tròn ngoại tiếp $(I E F)$ ở $L$. Chứng minh rằng $A D, L H$ cắt nhau tại một điểm nằm trên $(I E F)$.

LỜI GIẢI

Ngày thi thứ nhất

Bài 1. Số thực $\alpha$ được gọi là điểm tụ của dãy số $\left(u_n\right)$ nếu tồn tại ít nhất một dãy con của $\left(u_n\right)$ có hội tụ đến $\alpha$.

(a) Hãy chỉ ra một dãy số có vô hạn điểm tụ.

(b) Chứng minh rằng nếu một dãy số có mọi dãy con hội tụ thì nó cũng hội tụ.

(c) Gọi $S$ là tập hợp tất cả các số chính phương dương. Dãy số $\left(a_n\right)$ xác định bởi $a_n=\frac{1}{n}$ nếu $n \in S$ và $a_n=\frac{1}{n^2}$ nếu $n \notin S$.

Đặt $b_n=\sum_{k=1}^n a_k$. Xét tính hội tụ của các dãy số $\left(a_n\right)$ và $\left(b_n\right)$.

Lời giải. (a) Ta sẽ chỉ ra dãy số mà mỗi số nguyên dương xuất hiện vô hạn lần trong đó. Chẳng hạn $\left(u_n\right)$ : là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 1,2,1,2,3,1,2,3,4,1,2,3,4,5, \ldots$

với $u_n=1$ nếu $n \in S$ và $u_{n+1}=u_n+1$ nếu $n \notin S$, trong đó $S$ là tập hợp các số có dạng $\frac{m(m+1)}{2}$ như $1,3,6,10,15, \ldots$ Khi đó, với mỗi số nguyên dương $m \in \mathbb{Z}^{+}$thì ta luôn có thể trích ra một dãy con vô hạn của $\left(u_n\right)$ có tất cả các phần tử đều bằng $m$, tức là hội tụ về $m$.

(b) Do mỗi dãy số là dãy con của chính nó nên rõ ràng khẳng định của bài toán là đúng.

(c) Ta có $0 \leq a_n \leq \frac{1}{n}$ với mọi $n$ nên theo nguyên lí kẹp, ta suy ra $\lim a_n=0$. Nhận xét rằng $b_n$ là dãy tăng. Ta có

$\quad\quad\quad\quad\quad b_{n^2}=\sum_{i=1}^{n^2} a_i =\sum_{i \in S, i=1}^{n^2} a_i+\sum_{i \notin S, i=1}^{n^2} a_i=\sum_{i \in S, i=1}^{n^2} \frac{1}{i}+\sum_{i \notin S, i=1}^{n^2} \frac{1}{i^2} $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =\left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)+\sum_{i \notin S, i=1}^{n^2} \frac{1}{i^2} $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad <\left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)+\left(\sum_{i=1}^{n^2} \frac{1}{i^2}\right) $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =\left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)+\left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^4}\right)$

Vì dãy $u_n=1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}<1+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n}=2-\frac{1}{n}<2$ là bị chặn trên nên từ đánh giá đã xây dựng được, ta có $b_{n^2}$ cũng bị chặn trên. Kết hợp với $b_n$ là dãy tăng, ta suy ra bản thân dãy $b_n$ cũng bị chặn trên nên nó hội tụ.

Bài 2. Tìm tất cả các hợp số dương $n$ sao cho

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \sigma(n) \equiv 2 \quad(\bmod \varphi(n)),$

trong đó ký hiệu $\sigma(n), \varphi(n)$ là hàm tổng các ước của $n$ và hàm Euler.

Lời giải . Giả sử $p$ là một ước nguyên tố lẻ của $n$. Nếu $v_p(n)>1$ thì theo công thức của hàm Euler, ta có $p \mid \varphi(n)$, mà $n \cdot \sigma(n)-2$ chia hết cho $\varphi(n)$, tức là cũng chia hết cho $p$ nên kéo theo $p \mid 2$, vô lý. Suy ra $v_p(n)=1$ với mọi $p \mid n$.

Đặt $n=2^k \cdot p_1 p_2 \ldots p_t$ với $k \geq 0$ và $p_1<p_2<\ldots<p_t$ là các số nguyên tố phân biệt. Theo công thức tính các hàm, ta có

$\quad\quad\quad\quad\quad\quad\quad \varphi(n)=2^{k-1}\left(p_1-1\right)\left(p_2-1\right) \ldots\left(p_t-1\right)$

$\quad\quad\quad\quad\quad\quad\sigma(n)=\left(2^{k+1}-1\right)\left(p_1+1\right)\left(p_2+1\right) \ldots\left(p_t+1\right) .$

Đánh giá lũy thừa 2 trong các số trên, ta có

$\quad\quad\quad\quad\quad\quad v_2(\varphi(n)) \geq k-1+t \text { và } v_2(n \cdot \sigma(n)) \geq k+t .$

Do đó từ $\varphi(n) \mid n \cdot \sigma(n)-2$, ta suy ra $1 \geq k-1+t$ nên $k+t \leq 2$. Ta xét các trường hợp sau

  • Nếu $t=0$ thì $n=2^k$ là hợp số nên $k=2, n=4$, thử trực tiếp ta thấy thỏa.
  • Nếu $t=1$ thì $n=2 p$ nên $\varphi(n)=p-1, \sigma(n)=3(p+1)$ và đưa về

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad p-1 \mid 6 p(p+1)-2$

Chú ý rằng

$\quad\quad\quad\quad\quad\quad 6 p(p+1)-2=6 p^2+6 p-2=(p-1)(6 p+12)-10$

nên $p-1 \mid 10$. Từ đó ta tìm được $p=3, p=11$ tương ứng với $n=6, n=22$.

  • Nếu $t=2$ thì $k=0$, ta có $n=p_1 p_2$ nên

$\quad\quad\quad\quad n \cdot \varphi(n)=\left(p_1-1\right)\left(p_2-1\right) \text { và } \sigma(n)=\left(p_1+1\right)\left(p_2+1\right)$

đưa về

$\quad\quad\quad\quad \left(p_1-1\right)\left(p_2-1\right) \mid\left(p_1+1\right)\left(p_2+1\right)-2 .$

Điều này không thể xảy ra vì $\left(p_1-1\right)\left(p_2-1\right)$ chia hết cho 4 trong khi biểu thức còn lại chia 4 dư 2 . Do đó, trường hợp này không có số $n$ thỏa mãn.

Vậy tất cả các số cần tìm là $4,6,22$.

Nhận xét. Chú ý rằng mọi số nguyên tố đều thỏa mãn yêu cầu của đề bài.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn

$\quad\quad\quad\quad\quad\quad f(f(x)+y)+f(x) f(f(y))=x f(y)+x+y$

với mọi số thực $x, y$.

Lời giải. Thay $x=y=0$ vào phương trình đề cho, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f(f(0))+f(0) f(f(0))=0 .$

suy ra $f(f(0))=0$ hoặc $f(0)=-1$. Ta xét các trường hợp sau:

  1. Nếu $f(f(0))=0$. Thay $y=0$, vào phương trình dề cho, ta có $f(f(x))=$ $x f(0)+x, \forall x \in \mathbb{R}$ Thay $x=f(0)$ và sử dụng $f(f(0))=0$, ta được $f(0)=$ $[f(0)]^2+f(0)$, hay $f(0)=0$. Do đó $f(f(x))=x$ với mọi $x \in \mathbb{R}$. Thay vào phương trình đề bài, ta có

$\quad\quad\quad\quad\quad\quad f(f(x)+y)+y f(x)=x f(y)+x+y, \forall x, y \in \mathbb{R} .$

Thay $y$ bởi $f(y)$ và sử dụng tính đối xứng của vế trái, ta được

$\quad\quad\quad\quad\quad\quad f(f(x)+f(y))+f(x) f(y)=x y+x+f(y)=x y+y+f(x) .$

Do đó $f(x)-x=f(y)-y$ với mọi $x, y \in \mathbb{R}$, hay $f(x)=x+c$. Thử lại, ta có $c=0$.

  1. Nếu $f(0)=-1$. Thay $y=0$ vào phương trình đề cho, ta có $f(f(x))+$ $f(x) f(-1)=0, \forall x \in \mathbb{R}$. Từ đây suy ra $f(f(-1))=-[f(-1)]^2$. Thay $x=0$ vào phương trình đề cho, ta có $f(y-1)-f(f(y))=y, \forall y \in \mathbb{R}$. Kết hợp các đẳng thức trên lại, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad f(x-1)+f(x) f(-1)=x, \forall x \in \mathbb{R} .$

Thay $y=-1$ vào phương trình đề cho và sử dụng $f(f(-1))=-[f(-1)]^2$, ta lại có

$\quad\quad\quad\quad\quad\quad f(f(x)-1)-f(x)[f(-1)]^2=x f(-1)+x-1, \forall x \in \mathbb{R} .$

Mặt khác, ta cũng có

$\quad\quad\quad\quad\quad\quad\quad\quad f(-1) f(f(x))+f(x)[f(-1)]^2=0, \forall x \in \mathbb{R} .$

Cộng vế theo vế hai biểu thức trên lại, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f(x)=[1+f(-1)] x+1, \forall x \in \mathbb{R} .$

Thử lại, ta thấy không thỏa mãn.

Vậy phương trình có nghiệm hàm duy nhất là $f(x)=x$.

Bài 4. Cho tam giác $A B C$ không cân nội tiếp trong đường tròn $(O)$ với $B C$ cố định và $A$ thay đổi trên cung lớn $B C$. Các đường tròn bàng tiếp góc $A, B, C$ lần lượt tiếp xúc với các cạnh $B C, C A, A B$ tại $D, E, F$. Gọi $L, M, N$ lần lượt là giao điểm khác $A, B, C$ của các cặp đường tròn

$\quad\quad\quad\quad (A B E),(A C F) ;(B C F),(B A D) ;(C A D),(C B E) .$

(a) Chứng minh rằng $A L$ luôn đi qua điểm cố định khi $A$ thay đổi.

(b) Gọi $K, I, J$ lần lượt là trung điểm của $A D, B E, C F$. Chứng minh rằng $K L, I M, J N$ đồng quy.

Lời giải . (a) Đặt $B C=a, C A=b, A B=c$ và $p$ là nửa chu vi thì theo tính chất tiếp điểm bàng tiếp, ta có $B F=C E=p-a$.

Bằng biến đổi góc, ta có được $\triangle L B F \sim \triangle L E C(g . g)$, mà $B F=C E$ nên hai tam giác này bằng nhau. Suy ra $L B=L E, L C=L F$ nên $L$ là trung điểm cung $B E$ của đường tròn $(A B E)$ và cũng là trung diểm cung $C F$ của $(A C F)$.

Từ đó ta có $A L$ là phân giác góc $B A C$ hay $A L$ luôn đi qua trung điểm cung nhỏ $B C$ của $(O)$, là điểm cố định.

(b) Để ý rằng vai trò của $M, N, L$ là bình đẳng trong tam giác $A B C$. Do đó, từ câu a, một cách tương tự, ta có $M, N$ thuộc phân giác góc $B, C$ nên cũng lần lượt là trung điểm các cung nhỏ của các đường tròn tương ứng. Suy ra $M, K, N$ thẳng hàng (cùng thuộc trung trực của đoạn $A D$ ); tương tự với các bộ ba $N, I, L$ và $L, J, M$. Cuối cùng, ta thấy rằng

$\quad\quad\quad\quad\quad\quad\quad \frac{K M}{K N}=\frac{A K \cdot \tan \angle M A K}{A K \cdot \tan \angle N A K}=\frac{\tan (B / 2)}{\tan (C / 2)} .$

Tương tự với các tỷ số khác. Đến đây, áp dụng định lý Ceva cho tam giác $M N L$, ta có các đoạn thẳng $L K, I M, J N$ dồng quy.

Nhận xét. Một cách khác cho câu a như sau: Xét phép nghịch đảo đối xứng với phương tích $k=A B \cdot A C$ và trục đối xứng là phân giác góc $A$. Ta có $E \rightarrow E^{\prime} \in$ $A C, F \rightarrow F^{\prime} \in A B$ sao cho $A E \cdot A E^{\prime}=A F \cdot A F^{\prime}=k$. Ta tính được

$\quad\quad\quad\quad A E^{\prime}=\frac{b c}{p-c} \rightarrow B E^{\prime}=\frac{c(p-a)}{p-c} \rightarrow \frac{E^{\prime} B}{E^{\prime} A}=\frac{p-a}{b} .$

Tương tự thì $\frac{F^{\prime} C}{F^{\prime} A}=\frac{p-a}{c}$. Áp dụng định lý Ceva cho tam giác $A B C$ thì $C E^{\prime}, B F^{\prime}$ và phân giác góc $A$ đồng quy.

Lại có qua phép nghịch đối xứng trên thì phân giác giữ nguyên,

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad (A B E) \rightarrow C F^{\prime},(A C F) \rightarrow B E^{\prime}$

nên ta có $L$ thuộc phân giác góc $A$.

Ngày thi thứ hai

Bài 5. Cho $a, b, c$ là các số thực dương thỏa mãn $8\left(a^2+b^2+c^2\right)=9(a b+b c+c a)$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad T=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b} .$

Lời giải . Do tính thuần nhất đối xứng của các biến nên chuẩn hóa

$\quad\quad\quad\quad\quad a b+b c+c a=8 \rightarrow a^2+b^2+c^2=9 \rightarrow a+b+c=5 .$

Ta có $P+3=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{40}{a b c}$ nên ta đưa về tìm min, max của $T=a b c$ trong điều kiện

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}a+b+c=5 \\ a b+b c+c a=8\end{array}\right.$

Chú ý rằng $b+c=5-a, b c=8-a(b+c)=8-a(5-a)$ nên từ đánh giá quen thuộc $(b+c)^2 \geq 4 b c$, ta có

$\quad\quad\quad\quad\quad\quad (5-a)^2 \geq 4\left(8-5 a+a^2\right) \Leftrightarrow 1 \leq a \leq \frac{7}{3} .$

Suy ra $T=a b c=a\left(8+a^2-5 a\right)=f(a)$. Đến đây khảo sát hàm số này trên miền $\left[1 ; \frac{7}{3}\right]$, ta được $\min T=4, \max T=\frac{112}{27}$ nên $\min P=\frac{93}{14}$, $\max P=7$. Từ đó, ta thu được kết luận như sau

  • Giá trị lớn nhất của $P$ là 7 , đạt được chẳng hạn khi $(a, b, c)=(2,2,1)$.
  • Giá trị nhỏ nhất của $P$ là $\frac{93}{14}$, đạt được chẳng hạn khi $(a, b, c)=\left(\frac{7}{3}, \frac{4}{3}, \frac{4}{3}\right)$.

Bài 6. Tìm tất cả các hàm số $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$thỏa mãn đồng thời các điều kiện sau đây

$\quad\quad$ i) $m f(m)+n f(n)+2 m f(n)$ là số chính phương với mọi $m, n$;

$\quad\quad$  ii) $f(m n)=f(m) f(n)$ với mọi $m, n$ nguyên dương;

$\quad\quad$  iii) Với mọi số nguyên tố $p, f(p)$ không chia hết cho $p^2$.

Lời giải . Thay $m=n=1$ vào ii), ta suy ra $f(1)=f(1)^2$ nên $f(1)=1$. Thay $m=n$ vào i), ta suy ra $4 m f(m)$ là số chính phương với mọi $m \in \mathbb{Z}^{+}$nên $m f(m)$ cũng là số chính phương với mọi $m \in \mathbb{Z}^{+}$.

Với $p$ là số nguyên tố, vì $p f(p)$ là số chính phương nên $p \mid f(p)$ và ta đặt $f(p)=k^2 p$, với $k$ là số nguyên dương nào đó. Thay $m=p, n=1$ vào i), ta suy ra $p f(p)+1+2 p$ là số chính phương, hay $k^2 p^2+2 p+1$ là số chính phương.

Vì $k^2 p^2+2 p+1>(k p)^2$ nên

$\quad\quad\quad\quad\quad\quad k^2 p^2+2 p+1 \geq(k p+1)^2=k^2 p^2+2 k p+1 .$

Do đó $2 p \geq 2 k p$ nên ta phải có $k=1$.

Vì thế nên $f(p)=p$ với mọi số nguyên tố $p$. Sử dụng điều kiện ii), hàm $f$ nhân tính, và cũng vì mọi số nguyên dương bất kỳ đều có thể viết dưới dạng tích của các số nguyên tố nên ta có được $f(n)=n$ với mọi $n \in \mathbb{Z}^{+}$.

Thử lại ta thấy hàm số này thỏa mãn các ràng buộc của đề bài.

Nhận xét. Trên thực tế, ta có thể bỏ bớt diều kiện ii), iii) đi mà bài toán gốc vẫn có thể giải quyết được. Cụ thể như sau:

Chứng minh rằng nếu hàm số $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$thỏa mãn $f(1)=1$ và với mọi $m, n \in \mathbb{Z}^{+}$, ta có $m f(m)+n f(n)+2 m f(n)$ là số chính phương thì $f(n)=n, \forall n \in \mathbb{Z}^{+}$.

Bài 7. Một trường phổ thông có $n$ học sinh. Các học sinh tham gia vào tổng cộng $m$ câu lạc bộ là $A_1, A_2, \ldots, A_m$.

(a) Chứng minh rằng nếu mỗi câu lạc bộ có 4 học sinh và hai học sinh bất kỳ tham gia chung nhất một câu lạc bộ thì $m \leq \frac{n(n-1)}{12}$.

(b) Giả sử tồn tại $k>0$ sao cho hai câu lạc bộ bất kỳ có chung nhau $k$ thành viên và tồn tại một câu lạc bộ $A_t$ có $k$ thành viên. Chứng minh rằng $m \leq n$

Lời giải . (a) Gọi $S$ là số bộ $({A, B}, C)$ mà trong đó học sinh $A, B$ cùng tham gia vào câu lạc bộ $C$. Ta thực đếm $S$ bằng hai cách

  1. Chọn câu lạc bộ trước, có $m$ cách, chọn cặp học sinh cùng tham gia vào đó có $C_4^2=6$ cách nên $S=6 \mathrm{~m}$.
  2. Chọn cặp học sinh trước, có $C_n^2$ cách, chọn câu lạc bộ mà hai học sinh đó cùng tham gia, có không quá 1 cách nên $S \leq C_n^2$.

Từ đó suy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad 6 m \leq C_n^2 \Leftrightarrow m \leq \frac{n(n-1)}{12} .$

(b) Xét câu lạc bộ $X$ nào đó có $k$ thành viên. Xét $m-1$ câu lạc bộ còn lại thì theo giả thiết, rõ ràng các câu lạc bộ này đều có chứa $k$ thành viên trên của câu lạc bộ $X$. Từ đó suy ra $m-1$ câu lạc bộ còn lại đôi một không có thành viên chung.

Xét $n-k$ học sinh còn lại của trường thì rõ ràng một học sinh thuộc tối đa một câu lạc bộ (trong số các câu lạc bộ còn lại), suy ra số câu lạc bộ còn lại không vượt quá $n-k$ nên suy ra $m \leq n-k+1 \leq n$. Ta có điều phải chứng minh.

Nhận xét. Ý b của bài toán khá hiển nhiên, nhưng thực ra nó là một “phiên bản dễ” của bất đẳng thức Fisher sau đây:

Cho $A_1, A_2, \ldots, A_m$ là các tập con của tập ${1,2, \ldots, n}$ sao cho hai tập con bất kỳ có chung nhau đúng $k$ (với $k$ là số nguyên cố định nào đó không vượt quá n). Khi đó $m \leq n$.

Tuy nhiên, chứng minh sơ cấp cho kết quả này quả thực rất khó. Cách phổ biến nhất là dùng đại số tuyến tính. Cụ thể là:

Ta đặt tương ứng mỗi tập $A_i$ với một vector $v_i$ trong $\mathbb{F}_2^n$ như sau

$\quad\quad\quad\quad\quad\quad\quad\quad v_{i j}=\left\{\begin{array}{l}1 \text { nếu } j \in A_i \\ 0 \text { nếu } j \notin A_i\end{array} .\right.$

Chú ý rằng $\left|A_i \cap A_j\right|=k$ với mọi $i \neq j$. Bởi vậy, các vector $v_1, \ldots, v_m$ là các vector trong $\mathbb{R}^n$. Mặt khác, ta có số chiều của $\mathbb{R}^n$ là $n$. Do đó, trong bước tiếp theo chúng ta chỉ cần chứng minh $v_1, \ldots, v_m$ độc lập tuyến tính trong không gian $\mathbb{R}^n$.

Giả sử phản chứng rằng tồn tại các hệ số $\alpha_1, \ldots \alpha_m$ không đồng nhất bằng không sao cho $\sum_{i=1}^m \alpha_i v_i=0$. Do đó, ta có

$\quad\quad\quad\quad\quad\quad 0 =\left|\sum_{i=1}^m \alpha_i v_i\right|^2=\left\langle\sum_{i=1}^m \alpha_i v_i, \sum_{i=1}^m \alpha_i v_i\right\rangle $

$\quad\quad\quad\quad\quad\quad\quad =\sum_{i=1}^m \alpha_i^2\left|v_i\right|^2+\sum_{1 \leq i \neq j \leq m} \alpha_i \alpha_j\left\langle v_i, v_j\right\rangle$

Mặt khác, $\left|v_i\right|^2=\left|A_i\right|$, và $\left\langle v_i, v_j\right\rangle=\left|A_i \cap A_j\right|$. Bởi vậy,

$\quad\quad\quad\quad 0=\sum_{i=1}^m \alpha_i^2\left|v_i\right|^2+\sum_{i \neq j} k \alpha_i \alpha_j=\sum_{i=1}^m \alpha_i^2\left(\left|A_i\right|-k\right)+k \sum_{1 \leq i, j \leq m} \alpha_i \alpha_j$

Ta thấy rằng $\sum_{1 \leq i, j \leq m} \alpha_i \alpha_j=\left(\sum_{1 \leq i \leq m} \alpha_i\right)^2$, nên $0=\sum_{i=1}^m \alpha_i^2\left(\left|A_i\right|-k\right)+k\left(\sum_{1 \leq i, j \leq m} \alpha_i\right)^2$. Vì $\left|A_i\right| \geq k$ và có nhiều nhất một tập với chính xác $k$ phần tử, nên $\alpha_1=\cdots=\alpha_m=0$.

Điều này mâu thuẫn với giả thiết, hay các vector $v_1, \ldots, v_m$ là độc lập tuyến tính. Như vậy ta sẽ có $m \leq n$.

Bài 8. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Đường tròn nội tiếp $(I)$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $D, E, F$. Gọi $J$ là tâm bàng tiếp góc $A$ của tam giác $A B C$ và $H$ là hình chiếu của $D$ lên $E F$.

(a) Chứng minh rằng giao điểm của $A H, J D$ thì thuộc đường thẳng $O I$.

(b) Giả sử $D H$ cắt lại $(I)$ ở $K$ và $I K$ cắt lại đường tròn ngoại tiếp $(I E F)$ ơ $L$. Chứng minh rằng $A D, L H$ cắt nhau tại một diểm nằm trên $(I E F)$.

Lời giải. (a) Ta có bổ đề sau:

Bổ ĐỀ. $O I$ là đường thẳng Euler của tam giác $D E F$.

Bổ đề này quen thuộc và có thể chứng minh bằng cách hướng như sau (chi tiết xin dành cho bạn đọc).

  1. Sử dụng phép nghịch đảo tâm $I$, phương tích $r^2$ biến $(O)$ thành đường tròn Euler của $D E F$ nên có các tâm thẳng hàng.
  2. Sử dụng phép vị tự bằng cách gọi thêm trung điểm các cung nhỏ $B C, C A, A B$ của $(O)$.

Khi đó, gọi $T$ là giao điểm của $I O$ và $H D$ thì rõ ràng $T$ là trực tâm của tam giác $D E F$. Gọi $M$ là trung điểm cung nhỏ $B C$ của $(O)$ thì dễ thấy $M$ là trung điểm $I J$.

Bằng biến đổi góc, ta có $\triangle T E F \sim \triangle I B C$, mà $T H, I D$ là hai đường cao tương ứng nên $\frac{T H}{I D}=\frac{E F}{B C}$. Mặt khác, $\triangle I E F \sim \triangle M B C$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{E F}{B C}=\frac{I E}{M C}=\frac{2 I E}{2 M I}=\frac{2 I E}{I J}$

suy ra $\frac{T H}{I D}=\frac{2 I E}{I J}$. Do đó

$\quad\quad\quad\quad\quad\quad T H \cdot I J=2 I D^2=2 I N \cdot I A=T D \cdot I A$

(vì $I, T$ lần lượt là tâm ngoại tiếp và trực tâm tam giác $D E F$ ) nên $\frac{T H}{T D}=\frac{I A}{I J}$. Cuối cùng, vì $H D | A J$ (cùng vuông góc với $E F$ ) nên theo định lý Talet thì $A H, J D, T I$ đồng quy hay nói cách khác, $A H, J D$ cắt nhau trên $O I$.

(b) Giả sử $A D$ cắt lại $(I)$ tại $G$. Ta cần chứng minh rằng $G, H, L$ thẳng hàng.

Do $D K | A I$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\angle A G L=\angle A I L=\angle A I K=\angle D K I$

suy ra $\angle D G L=\angle D K L$. Vì thế nên $D G K L$ là tứ giác nội tiếp. Do đó, $L G$ là trục đẳng phương của $(L K D),(I E F)$. Lại có

nên suy ra $H$ thuộc trục đẳng phương của hai đường tròn này, tức là $H \in L G$. Từ đó ta có điều phải chứng minh.

Nhận xét. Liên quan đến ý b, có một bài toán khá thú vị với nội dung như sau:

Trung tuyến đỉnh $D$ của tam giác $D E F$ cắt $(I)$ ở $L$. Chứng minh rằng trục đẳng phương của $(L B F),(L C E)$ đi qua giao điểm của $J D$ và đường thẳng qua $A$, vuông góc với $A I$.