
Tag Archives: VMO


Đề thi và đáp án HSG Quốc gia năm 2025

Đề thi và lời giải Học sinh giỏi Quốc gia năm 2019 (VMO 2019)
Ngày thi thứ nhất. Thời gian làm bài 180 phút.
Bài 1. Cho hàm số liên tục $f: \mathbb{R} \rightarrow(0 ;+\infty)$ thỏa mãn
$\lim_{x \rightarrow – \infty} f(x)= \lim_{x \rightarrow + \infty} f(x) = 0$
a) Chứng minh rằng $f(x)$ đạt giá trị lớn nhất trên $\mathbb{R}$.
b) Chứng minh rằng tồn tại hai dãy $\left(x_n\right),\left(y_n\right)$ với $x_n<y_n, \forall n=1,2,3, \ldots$ sao cho chúng cùng hội tụ tới một giới hạn và thỏa mãn $f\left(x_n\right)=f\left(y_n\right)$ với mọi $n$.
Bài 2. Cho dãy số nguyên dương $\left(x_n\right)$ thỏa mãn $0 \leq x_0<x_1 \leq 100$ và
$$
x_{n+2}=7 x_{n+1}-x_n+280, \quad \forall n \geq 0 .
$$
a) Chứng minh rằng nếu $x_0=2, x_1=3$ thì với mỗi số nguyên dương $n$, tổng các ước nguyên dương của $x_n x_{n+1}+x_{n+1} x_{n+2}+x_{n+2} x_{n+3}+2018$ thì chia hết cho 24 .
b) Tìm tất cả các cặp số $\left(x_0, x_1\right)$ để số $x_n x_{n+1}+2019$ là số chính phương với vô số số $n$.
Bài 3. Với mỗi đa thức $f(x)=a_0+a_1 x+\cdots+a_n x^n$, đặt
$$
\Gamma(f(x))=a_0^2+a_1^2+\cdots+a_m^2 .
$$
Cho đa thức $P(x)=(x+1)(x+2) \ldots(x+2020)$. Chứng minh rằng tồn tại ít nhất 2019 đa thức đôi một phân biệt $Q_k(x)$ với $1 \leq k \leq 2^{2019}$ với các hệ số dương thỏa mãn hai điều kiện sau:
i) $\operatorname{deg} Q_k(x)=2020$.
ii) $\Gamma\left(Q_k(x)^n\right)=\Gamma\left(P(x)^n\right)$ với mọi số nguyên dương $n$.
Bài 4. Cho tam giác $A B C$ có tâm đường tròn nội tiếp $I$ và trực tâm $H$. Trên các tia $A B, A C, B C, B A, C A, C B$ lần lượt lấy các điểm $A_1, A_2, B_1, B_1, C_1, C_2$ sao cho $A A_1=A A_2=B C$, $B B_1=B B_2=A C, C C_1=C C_2=A B$. Gọi $A^{\prime}, B^{\prime}, C^{\prime}$ lần lượt là giao điểm của các cặp đường thẳng $\left(B B_1, C C_1\right) ;\left(C C_1, A A_1\right) ;\left(A A_1, B B_1\right)$.
a) Chứng minh rằng diện tích tam giác $A^{\prime} B^{\prime} C^{\prime}$ không vượt quá diện tích tam giác $A B C$.
b) Gọi $J$ là tâm đường tròn ngoại tiếp $A^{\prime} B^{\prime} C^{\prime}$. Các đường thẳng $A J, B J, C J$ lần lượt cắt $B C, C A, A B$ theo thứ tự tại $R, S, T$. Gọi $K$ là điểm chung của các đường tròn ngoại tiếp $A S T, B T R, C R S$. Giả sử tam giác $A B C$ không cân, chứng minh $I H J K$ là hình bình hành.
Ngày thi thứ hai. Thời gian làm bài 180 phút.
Bài 5. Xét đa thức $f(x)=x^2-\alpha x+1$ với $\alpha \in \mathbb{R}$.
a) Khi $\alpha=\frac{\sqrt{15}}{2}$, hãy viết $f(x)$ thành thương của hai đa thức với các hệ số không âm.
b) Tìm tất cả các giá trị $\alpha$ để $f(x)$ có thể viết được thành thương của hai đa thức với các hệ số không âm.
Bài 6. Cho tam giác nhọn, không cân $A B C$ nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $M, N, P$ lần lượt là trung điểm cạnh $B C, C A, A B$ và $D, E, F$ lần lượt là chân đường cao ứng với các đỉnh $A, B, C$ của tam giác $A B C$. Gọi $K$ là đối xứng của $H$ qua $B C$. Hai đường thẳng $D E, M P$ cắt nhau tại $X$; hai đường thẳng $D F, M N$ cắt nhau tại $Y$.
a) Đường thẳng $X Y$ cắt cung $\overparen{B C}$ của $(O)$ tại $Z$. Chứng minh rằng $K, Z, E, F$ đồng viên.
b) Hai đường thẳng $K E, K F$ cắt lại $(O)$ tại $S, T$. Chứng minh rằng $B S, C T, X Y$ đồng quy.
Bài 7. Có một số mảnh giấy hình vuông có cùng kích thước, mỗi mảnh được chia caro thành $5 \times 5$ ô vuông ở cả hai mặt. Ta dùng $n$ màu để tô các mảnh giấy sao cho mỗi ô của mỗi mảnh giấy được tô cả hai mặt bởi cùng một màu. Hai mảnh giấy màu được coi là giống nhau nếu có thể xếp chúng chồng khít lên nhau sao cho các cặp ô vuông ở cùng vị trí có cùng màu. Chứng minh rằng ta thu được không quá $\frac{1}{8}\left(n^{25}+4 n^{15}+n^{13}+2 n^7\right)$ mảnh giấy đôi một không giống nhau.

Đề thi và đáp án học sinh giỏi quốc gia năm 2022 (VMO 2022)
Ngày thi thứ nhất. Thời gian làm bài 180 phút.
Bài 1 (5,0 điểm)
Cho $a$ là một số thực không âm và dãy số $\left(u_n\right)$ được xác định bởi
$$
u_1=6, u_{n+1}=\dfrac{2 n+a}{n}+\sqrt{\dfrac{n+a}{n} u_n+4}, \quad \forall n \geq 1 .
$$
a) Với $a=0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mọi $a \geq 0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn.
Bài 2 (5,0 điểm)
Tìm tất cả các hàm số $f:(0 ;+\infty) \rightarrow(0 ;+\infty)$ thoả mãn
$$
f\left(\dfrac{f(x)}{x}+y\right)=1+f(y), \forall x, y \in(0 ;+\infty) .
$$
Bài 3(5,0$ điểm)
Cho tam giác nhọn $A B C$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $B A, C A$ sao cho $B F=C E(E \neq B, F \neq C)$. Gọi $M, N$ tương ứng là trung điểm của $B E, C F$ và $D$ là giao điểm của $B F$ với $C E$.
a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $D B E, D C F$. Chứng minh rằng $M N$ song song với $I J$.
b) Gọi $K$ là trung điểm của $M N$ và $H$ là trực tâm của tam giác $A E F$. Chứng minh rằng $H K$ luôn đi qua một điểm cố định.
Bài 4 (5,0 điểm)
Với mỗi cặp số nguyên dương $(n, m)$ thoả mãn $n<m$, gọi $s(n, m)$ là số các số nguyên dương thuộc đoạn $[n ; m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thoả mãn đồng thời hai điều kiện sau:
i) $\dfrac{s(n, m)}{m-n} \geq \frac{s(1, m)}{m}$ với mọi $n=1,2, \ldots, m-1$;
ii) $2022^m+1$ chia hết cho $m^2$.
Ngày thi thứ hai. Thời gian làm bài 180 phút.
Bài 5(6,0 điểm)
Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022)=Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \neq 0(p, q \in \mathbb{Z} ; p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $|p|+n|q| \leq Q(n)-P(n)$ với mọi $n=1,2, \ldots, 2021$.
Bài 6 (7,0 điểm)
Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_i\left(1 \leq x_i \leq 6\right)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i(i=1,2,3,4)$.
a) Tính số các bộ $\left(x_1, x_2, x_3, x_4\right)$ có thể có.
b) Tính xác suất để có một số trong $x_1, x_2, x_3, x_4$ bằng tổng của ba số còn lại.
c) Tính xác suất để có thể chia $x_1, x_2, x_3, x_4$ thành hai nhóm có tổng bằng nhau.
Bài 7 (7,0 điểm)
Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ( $B C$ không đi qua tâm $O$ ) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_a$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, L$ là giao điểm của $I_a D$ với $O I$ và $E$ là điểm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_a B C$ lấy điểm $M$ sao cho $I_a M$ song song với $A D, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.
(Nguồn: Bộ giáo dục Việt Nam)

Đề thi học sinh giỏi quốc gia năm 2023 (VMO 2023)
Ngày thi thứ nhất. Thời gian làm bài 180 phút.
Bài 1 (5,0 điểm) Xét dãy số $\left(a_n\right)$ thỏa mãn $a_1=\frac{1}{2}, a_{n+1}=\sqrt[3]{3 a_{n+1}-a_n}$ và $0 \leq a_n \leq 1$, với mọi $n \geq 1$.
a) Chứng minh rằng dãy $\left(a_n\right)$ xác định duy nhất và có giới hạn hữu hạn.
b) Cho dãy số $\left(b_n\right)$ xác định bởi $b_n=\left(1+2 a_1\right)\left(1+2^2 a_2\right) \cdots\left(1+2^n a_n\right)$ với mọi $n \geq 1$. Chứng minh rằng dãy $\left(b_n\right)$ có giới hạn hữu hạn.
Bài 2 (5,0 điểm) Cho các số nguyên $a, b, c, \alpha, \beta$ và dãy số $\left(u_n\right)$ xác định bởi
$$
u_1=\alpha, u_2=\beta, u_{n+2}=a u_{n+1}+b u_n+c \text { với mọi } n \geq 1 \text {. }
$$
a) Chứng minh rằng nếu $a=3, b=-2, c=-1$ thì có vô số cặp số nguyên $(\alpha ; \beta)$ để $u_{2023}=2^{2022}$.
b) Chứng minh rằng tồn tại số nguyên dương $n_0$ sao cho có duy nhất một trong hai khẳng định sau là đúng:
i) Có vô số số nguyên dương $m$ để $u_{n_0} u_{n_0+1} \cdots u_{n_0+m}$ chia hết cho $7^{2023}$ hoặc $17^{2023}$;
ii) Có vô số số nguyên dương $k$ để $u_{n_0} u_{n_0+1} \cdots u_{n_0+k}-1$ chia hết cho 2023.
Bài 3 (5,0 điểm) Tìm số thực dương $k$ lớn nhất sao cho bất đẳng thức
$$
\frac{1}{k a b+c^2}+\frac{1}{k b c+a^2}+\frac{1}{k c a+b^2} \geq \frac{k+3}{a^2+b^2+c^2}
$$
đúng với mọi bộ ba số thực dương $(a ; b ; c)$ thỏa mãn điều kiện $a^2+b^2+c^2=2(a b+b c+c a)$.
Bài 4 (5,0 điểm) Cho tứ giác $A B C D$ có $D B=D C$ và nội tiếp một đường tròn. Gọi $M, N$ tương ứng là trung điểm của $A B, A C$ và $J, E, F$ tương ứng là các tiếp điểm của đường tròn $(I)$ nội tiếp tam giác $A B C$ với $B C, C A, A B$. Đường thẳng $M N$ cắt $J E, J F$ lần lượt tại $K, H ; I J$ cắt lại đường tròn $(I B C)$ tại $G$ và $D G$ cắt lại $(I B C)$ tại $T$.
a) Chứng minh rằng $J A$ đi qua trung điểm của $H K$ và vuông góc với $I T$.
b) Gọi $R, S$ tương ứng là hình chiếu vuông góc của $D$ trên $A B, A C$. Lấy các điểm $P, Q$ lần lượt trên $I F, I E$ sao cho $K P$ và $H Q$ đều vuông góc với $M N$. Chứng minh rằng ba đường thẳng $M P, N Q$ và $R S$ đồng quy.
Ngày thi thứ hai. Thời gian làm bài 180 phút.
Bài 5 (6,0 điểm) Xét các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn điều kiện $f(0)=2022$ và
$$
f(x+g(y))=x f(y)+(2023-y) f(x)+g(x) \text { với mọi } x, y \in \mathbb{R} \text {. }
$$
a) Chứng minh rằng $f$ là một toàn ánh và $g$ là một đơn ánh.
b) Tìm tất cả các hàm số $f$ và $g$ thỏa mãn điều kiện bài toán.
Bài 6 (7,0 điểm) Có $n \geq 2$ lớp học tổ chức $m \geq 1$ tổ ngoại khóa cho học sinh. Lớp nào cũng có học sinh tham gia ít nhất một tổ ngoại khóa. Mọi tổ ngoại khóa đều có đúng a lớp có học sinh tham gia. Với hai tổ ngoại khóa bất kỳ, có không quá $b$ lớp có học sinh tham gia đồng thời cả hai tổ này.
a) Tính $m$ khi $n=8, a=4, b=1$.
b) Chứng minh rằng $n \geq 20 \mathrm{khi} m=6, a=10, b=4$.
c) Tìm giá trị nhỏ nhất của $n$ khi $m=20, a=4, b=1$.
Bài 7 (7,0 điểm) Cho tam giác nhọn, không cân $A B C$ có trực tâm $H$ và tâm đường tròn ngoại tiếp $O$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ tương ứng tại $M, N, P$. Gọi $\Omega_A$ là một đường tròn đi qua $A$, tiếp xúc ngoài với $(I)$ tại một điểm $A^{\prime}$ và cắt lại $A B, A C$ tương ứng tại $A_b, A_c$. Các đường tròn $\Omega_B, \Omega_C$ và các điểm $B^{\prime}, B_a, B_c$, $C^{\prime}, C_a, C_b$ được xác định một cách tương tự.
a) Chứng minh rằng $B_c C_b+C_a A_c+A_b B_a \geq N P+P M+M N$.
b) Xét trường hợp $A^{\prime}, B^{\prime}, C^{\prime}$ tương ứng thuộc các đường thẳng $A M, B N, C P$. Gọi $K$ là tâm đường tròn ngoại tiếp tam giác có ba cạnh tương ứng thuộc ba đường thẳng $A_b A_c, B_c B_a, C_a C_b$. Chứng minh rằng $O H$ song song với $I K$.
(Nguồn: Bộ Giáo Dục Việt Nam)

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA CÁC TỈNH, THÀNH
ĐỀ THI CHỌN ĐỘI TUYỂN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2008 – 2009 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2009 – 2010 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK 2010 – 2011 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2011 – 2012 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2013 – 2014 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2014 – 2015 – Toán Việt (toanviet.net)
Đáp án thi chọn đội tuyển Toán trường PTNK năm 2015 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2017 – 2018 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2018 – 2019 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2019 – 2020 – Toán Việt (toanviet.net)
Đáp án đề thi chọn đội tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)
Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021 – Toán Việt (toanviet.net)
ĐỀ THI CHỌN ĐỘI TUYỂN CÁC TỈNH THÀNH KHÁC
Bổ đề về số mũ đúng
BỔ ĐỀ VỀ SỐ MŨ ĐÚNG
(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)
Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.
1. Kiến thức cần nhớ
Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.
Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.
Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .
Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:
- $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
- Nếu $p|a$ thì $v_p(a) >0.$
- $v_p \left( a^n \right)=n v_p \left( a \right)$.
- $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
- $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$
Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$
$i)$ Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.
$ii)$ Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.
$iii)$ Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.
2. Các bài toán áp dụng
Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.
Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.
Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.
Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.
Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.
Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.
Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.
Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$
Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$
Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .
Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).
Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$
Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$
Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.
Phép vị tự (Phần 2)
Xem phần 1 tại [Phần 1]
Ví dụ 4. Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I); đường tròn (I) tiếp xúc với $BC, AB, AC$ tại $D, E, F$. Vẽ $OH \bot EF$ và đường kính $AM$ của $(O)$. Chứng minh $H, I, M$ thẳng hàng.
Ví dụ 5. Cho tam giác $ABC$, đường tròn $(I)$ nội tiếp tam giác. Đường tròn $w_a$ qua $B, C$ tiếp xúc trong với (I); các đường tròn $w_b, w_c$ được xác định tương tự. Gọi $A’$ là giao điểm của $w_b, w_c$ khác $A$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy tại một điểm nằm trên $IO$, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Ví dụ 6. (Đường tròn mixtilinear incircle) Cho đường tam giác ABC nội tiếp đường tròn (O). Đường tròn $w_a$ tiếp xúc với các cạnh AB, AC tại D, E và tiếp xúc trong với $(O)$ tại $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
1. Chứng minh rằng DE qua tâm đường tròn nội tiếp tam giác ABC.
2. Chứng minh rằng $AA_1, BB_1, CC_1$ đồng quy.
Ví dụ 7. (Định lý Thebault)
Cho tam giác $ABC$ nội tiếp đường tròn $w$. $D$ là một điểm thuộc cạnh $BC$. Đường tròn $w_1$ tiếp xúc với đoạn $AD, CD$ tại $P, Q$ và tiếp xúc với $w$ tại $W$.
1. Chứng minh $PQ$ qua tâm đường tròn nội tiếp tam giác $ABC$.
2. Gọi $w_2$ là đường tròn tiếp xúc với $AD, BD$ và tiếp xúc với $w$. Chứng minh đường thẳng nối tâm của $w_1, w_2$ qua tâm nội tiếp của tam giác $ABC$.
Ví dụ 8. (IMO 1999) Cho hai đường tròn $(w_1)$ và $(w_2)$ tiếp xúc trong với$ ( w) $tại M, N và tâm của đường tròn $(w_2)$ nằm trên đường tròn $(w_1)$. Dây cung chung của $(w_1)$ và $(w_2)$cắt $(w )$ tại A và B. MA và MB cắt $(w_1)$ tại C và D. Chứng minh rằng đường tròn $(w_2)$ tiếp xúc với đường thẳng $CD$.
Ví dụ 9. Cho tam giác $ABC$ nội tiếp đường tròn tâm O, đường tròn tâm I nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, AC, AB tại D,E, F. Chứng minh rằng trực tâm của tam giác $DEF$ thuộc đường thẳng $IO$.
Ví dụ 10. (Barasil MO 2013) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Gọi $P$ là giao điểm của $AD$ và $BE$. Gọi $X, Y, Z$ là các điểm đối xứng của $P$ qua $EF, DF$ và $DE$. Chứng minh rằng các đường thẳng $AX, BY, CZ$ đồng quy tại một điểm thuộc đường thẳng $OI$, với $O, I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$.
III. BÀI TẬP
- Cho hai đường tròn $(O_1)$ và $(O_2)$ tiếp xúc nhau tại $M$. Một điểm $A$ thay đổi trên đường tròn $(O_2)$, từ $A$ vẽ hai tiếp tuyến $AB, AC$ đến $(O_1)$ với $B, C$ là hai tiếp điểm. $BM, CM$ lần lượt cắt $(O_2)$ tại $D$ và $E$. $DE$ cắt tiếp tuyến tại $A$ của $(O_2)$ tại $F$. Chứng minh rằng $F$ thuộc một đường thẳng cố định khi $A$ di chuyển trên $(O_2)$ không thẳng hàng với $O_1$ và $M$.
- Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC$, $AC, AB$ lần lượt tại $D, E, F$. Gọi $P$ là hình chiếu của $D$ trên $EF$; $M$ là trung điểm của $DP$. Gọi $H$ là trực tâm của tam giác $IBC$. Chứng minh rằng $MH$ qua trung điểm của $EF$.
- Cho tam giác $ABC$ nội tiếp $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $w$ tiếp xúc với các đoạn $AD, CD$ và tiếp xúc trong với $(O)$ tại $E, F, X$. Chứng minh rằng $XF$ đi qua một điểm cố định và $EF$ cũng đi qua một điểm cố định.
- Cho tam giác nhọn $ABC$ khác tam giác cân. Gọi $O$ và $I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$. Gọi $D, E, F$ là tiếp điểm của $(I)$ với các cạnh $BC, CA $ và $AB$. Gọi $P$ là giao điểm của $AI$ và $OD$, $Q$ là giao điểm của $BI$ và $OE$, và $R$ là giao điểm của $CI$ và $OF$. Gọi $M$ là tâm đường tròn ngoại tiếp tam giác $PQR$. Chứng minh rằng $I, M, O$ thẳng hàng.
- Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ tâm O, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Kí hiệu $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $(O_1)$ là đường tròn thay qua $A, B$ và tiếp xúc với $(I)$ tại $E$. Gọi $(O_2)$ là đường tròn thay qua $A, C$ và tiếp xúc với $(I)$ tại $F$. Đường phân giác trong của góc $\widehat{AEB}$ cắt $(O_1)$ tại $M$ và đường phân giác trong của góc $\widehat{AFC}$ cắt $(O_2)$ tại $N$.
a.Chứng minh rằng tứ giác $EFMN$ nội tiếp.
b. Gọi $J$ là giao điểm của $EM$ và $FN$. Chứng minh rằng đường thẳng $IJ$ đi qua một điểm cố định. - (ELMO shortlist 2011)
Cho 3 đường tròn $\omega,\omega_1,\omega_2$ đôi một tiếp xúc nhau sao cho $\omega_1,\omega_2$ tiếp xúc ngoài tại $P$, $\omega_1,\omega$ tiếp xúc trong tại $A$, and $\omega,\omega_2$ tiếp xúc trong tại $B$. Gọi $O,O_1,O_2$ lần lượt là tâm của $\omega,\omega_1,\omega_2$. Gọi $X$ chân đường vuông góc từ $P$ đến $AB$, chứng minh $\angle{O_1XP}=\angle{O_2XP}$. - Cho tam giác $ABC$ khác tam giác vuông nội tiếp đường tròn $(O)$ cố định có $BC$ cố định và $A$ thay đổi. Trên đường thẳng $BC$ lấy các điểm $K, L$ sao cho $\angle BAK = \angle CAL = 90^o$. Gọi $H$ là hình chiếu của $A$ trên $BC$. Chứng minh rằng đường thẳng qua trung điểm của $AH$ và $KL$ luôn đi qua một điểm cố định.
- (IMO shortlist 1998) Cho tam giác ABC. Gọi H là trực tâm và O là tâm đường tròn ngoại tiếp tam giác. Gọi D, E, F lần lượt là điểm đối xứng của A qua BC, B qua CA và của C qua AB. Chứng minh rằng D, E, F thẳng hàng khi và chỉ khi OH = 2R, với R là bán kính đường tròn ngoại tiếp tam giác.
- (USA TST 2010) Cho tam giác $ABC$. Điểm M,N trên các cạnh AC và BC sao cho $MN||AB$; Các điểm $P, Q$ lần lượt thuộc $AB, BC$ sao cho $PQ ||AC$. Đường tròn nội tiếp tam giác $CMN$ tiếp xúc với AC tại E; đường tròn nội tiếp tam giác $BPQ$ tiếp xúc với $AB$ tại $F$. Đường thẳng $EN$ cắt $AB$ tại $R$; đường thẳng $FQ$ cắt AC tại S. Cho $AE = AF$, chứng minh rằng tâm nội tiếp của tam giác $AEF$ thuộc đường tròn nội tiếp của tam giác $ARS$.
- Cho tam giác ABC nội tiếp đường tròn tâm O và ngoại tiếp đường tròn tâm I. Đường tròn mitilinear incircle của tam giác ABC tâm K tiếp xúc với (O) tại D. DI cắt BC tại L. Chứng minh KL chia OI theo tỉ số $\dfrac{1}{2}$.
- (IMO 2008) Cho tứ giác lồi ABCD (AB khác BC). Gọi đường tròn nội tiếp của các tam giác ABC và ADC lần lượt là $(w_1)$ và $(w_2)$. Giả sử tồn tại đường tròn $(w )$ tiếp xúc với tia BA về hướng A và tia BC về hướng C và tiếp xúc với các đường thẳng AD và CD. Chứng minh rằng tiếp tuyến chung ngoài của các đường tròn $(w_1)$ và $(w_2)$ cắt nhau tại một điểm thuộc đường tròn (C ).
Phép vị tự (Phần 1)
Phép vị tự là một trong những phép biến hình quan trọng nhất, có nhiều ứng dụng trong giải toán hình học phẳng. Thông qua phép vị tự, ta có một công cụ giải toán khá mạnh, giúp chúng ta nhìn lại những bài toán cũ theo một cách khác, toàn diện và rõ ràng hơn. Ngoài ra, một số bổ đề suy ra trực tiếp hoặc chứng minh một cách dễ dàng bằng phép vị tự cũng giúp giải được những bài toán khó hơn. Qua bài viết nhỏ này, hy vọng các em học sinh có cơ hội nhìn lại các bài toán cũ và thêm một hướng để giải quyết các bài toán hình học phẳng.
I. LÝ THUYẾT
Định nghĩa 1. Trong mặt phẳng cho điểm O cố định và một số thực k khác 0 cho trước. Phép biến hình biến mỗi điểm M thành điểm $M’$ sao cho $\overrightarrow{OM’} = k.\overrightarrow{OM}$ được gọi là phép vị tự tâm O hệ số(tỉ số) k và được kí hiệu là $H_{(O;k)}$.
Tính chất 2. Trong phép vị tự $H_{(O;k)}$ thì:
- Tâm O là điểm bất động duy nhất.
- $\overrightarrow {AB} \mapsto \overrightarrow {A’B’} $ thì $\overrightarrow {AB} = k.\overrightarrow {A’B’} $
- Chùm đường thẳng qua tâm vị tự là những đường thẳng bất biến duy nhất.
- Một đường thẳng không qua tâm biến thành một đường thẳng song song với nó.
- Phép vị tự biến đường tròn $(I; R)$ thành đường tròn $(I; R’)$ thỏa $I’ = H_{(O;k)} (I)$ và $R’ = |k|/R$
Định lý 3. Cho hai đường tròn $C(O;R)$ và $C’(O’;R’)$ sao cho $R \ne R’,O \equiv O’$
Khi đó tồn tại hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$ biến $(C )$ thành $(C‘)$ trong đó: $\dfrac{{\overline {{O_1}O} }}
{{\overline {{O_1}O’} }} = {k_1} = \dfrac{{R’}}{R}$ và $\dfrac{{\overline {{O_2}O} }}{{\overline {{O_2}O’} }} = {k_2} = – \dfrac{{R’}}{R}$
Hệ quả 4. Bốn điểm $O, O’, O_1, O_2$ tạo thành một hàng điểm điều hòa.
Hệ quả 5. Nếu hai đường tròn tiếp xúc nhau tại tiếp điểm $A$. Khi đó có một phép vị tự tâm $A$ biến đường tròn này thành đường tròn kia.
Tính chất 6. Cho hai đường tròn $(O)$ và $(I)$ tiếp xúc trong tại $A$. Một dây cung $BC$ của $(O)$ tiếp xúc với $(I)$ tại $P$. Khi đó $AP$ đi qua điểm $D$ chính giữa cung $BC$ của $(O)$ và $DP.DA = DB^2$.
Chứng minh.
Xét phép vị tự $H(A): (I) \mapsto (O)$. Khi đó $P \mapsto D$. Suy ra $IP ||OD$ mà $IP \bot BD$. Suy ra $OD \bot BC$. Do đó $D$ là điểm chình giữa cung $BC$.
Định lý 7. (Tích của hai phép vị tự)Ta xét tích của hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$:
- Trường hợp 1: Nếu $k_1k_2 = 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép tịnh tiến theo Vectơ $\overrightarrow v = \left( {1 – {k_2}} \right)\overrightarrow {{O_1}{O_2}} $
- Trường hợp 2: ${k_1}{k_2} \neq 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép vị tự tỉ số $k = k_1k_2$ và có tâm O được xác định bởi công thức $\overrightarrow {OO_1} = \dfrac{{k_2 + 1}}{k_1k_2}\overrightarrow {OO_2} $
Định lý 8. (Monge – D’alambert) Cho ba đường tròn $C_1(O_1, R_1), C_2(O_2, R_2), C_3(O_3, R_3)$ phân biệt trên mặt phẳng. Khi đó tâm vị tự ngoài của các cặp đường tròn $(C_1, C_2), (C_2, C_3), (C_3, C_1)$ cùng thuộc một đường thẳng. Hai tâm vị tự trong của hai trong ba cặp đường tròn trên và tâm vị tự ngoài của cặp đường tròn còn lại cùng thuộc một đường thẳng.
Định lý 9. Nếu có một phép nghịch đảo tâm I biến $(O)$ thành $(O’)$ thì sẽ có một phép vị tự tâm $I$ biến $(O)$ thành $(O’)$.
II. VÍ DỤ
Ví dụ 1. Cho tam giác $ABC$, gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. Các đường phân giác trong $AD, BE, CF$ cắt nhau tại $I$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $X, Y, Z$.
- (Đường thẳng Euler). Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn ngoại tiếp của tam giác $ABC$ cùng nằm trên một đường thẳng.
- Gọi $da$ là đường thẳng qua $M$ và song song với phân giác góc $A$, $d_b, d_c$ được định nghĩa tương tự. Chứng minh rằng $d_a, d_b$ và $d_c$ đồng quy tại một điểm.
Ví dụ 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với $BC, AC$ và $AB$ lần lượt tại $D, E, F$. Gọi $D’, E’, F’$là điểm đối xứng của $D, E, F$ qua $I$.
1. Chứng minh rằng $AD’, BE’$ và $CF’$ đồng quy $J$ .
2. Gọi G là trọng tâm tam giác. Chứng minh $I, J, G$ thẳng hàng và $GJ = 2GI$.
Ví dụ 3. (Chọn đội tuyển toán PTNK năm 2010) Cho tam giác ABC nội tiếp đường tròn (O). Gọi $I,I_1,I_2,I_3$ là tâm đường tròn nội tiếp và bàng tiếp các góc A, B, C tương tứng. Đường tròn ngoại tiếp tam giác $II_2 I_3$ cắt (O) tại hai điểm $M_1,N_1$. Gọi $J_1$ (khác A) là giao điểm của AI và (O). Ký hiệu $d_1$ là đường thẳng qua $J_1$ và vuông góc với $M_1 N_1$. Tương tự xác định các đường thẳng $d_2,d_3$. Chứng minh các đường thẳng $d_1,d_2,d_3$ đồng quy tại một điểm
Hàng điểm điều hòa – Phần 1
I. LÝ THUYẾT
Định nghĩa 1 Cho 4 điểm $A, B, C, D$ thẳng hàng. Khi đó tỉ số kép của 4 điểm $A, B, C, D$ kí hiệu là $(ABCD)$ và được tính bởi công thức
\[\left( {ABCD} \right) = \frac{{\overline {CA} }}{{\overline {CB} }}:\frac{{\overline {DA} }}{{\overline {DB} }}\]
Định nghĩa 2. Nếu tỉ số kép của 4 điểm $A, B, C, D$ bằng $-1$ thì 4 điểm $A, B, C, D$ được gọi là hàng điểm điều hòa. Kí hiệu là $(ABCD) = -1$.
Ví dụ 3. Cho tam giác $ABC$. Gọi $D, E$ là chân đường phân giác trong và phân giác ngoài của góc $A$. Khi đó $A, B, D, E$ là hàng điểm điều hòa.
Tính chất 4. Từ định nghĩa suy ra:
- $(ABCD) = (CDAB) = (BADC) = (DCBA)$
- $(ABCD) = 1/(BACD) = 1/(ABDC)$
- $(ABCD) = 1 -(ACBD) = 1 -(DBCA)$
- $(ABCD) = (A’BCD) \Leftrightarrow A \equiv A’$.
Tính chất 5. Trên trục số cho 4 điểm $A, B, C, D$. Khi đó các mệnh đề sau tương đương:
- $A , B, C, D$ là hàng điểm điều hòa.
- $\dfrac{{\overline {CA} }}{{\overline {CB} }} = – \frac{{\overline {DA} }}{{\overline {DB} }}$
- $\dfrac{2}{{\overline {AB} }} = \dfrac{1}{{\overline {AC} }} + \dfrac{1}{{\overline {AD} }}$
- ${\overline {IA} ^2} = \overline {IC} .\overline {ID}$ ($I$ là trung điểm của đoạn $AB$).
- $\overline {AC} .\overline {AD} = \overline {AB} .\overline {AK} $ ($K$ là trung điểm của đoạn $CD$).
Định lý 6. Cho $A, B, C, D$ thuộc đường thẳng $(d)$. $S$ nằm ngoài $(d)$. Từ $C$ kẻ đường thẳng song song với $SD$ cắt $SA$, $SB$ tại $A’$ và $B’$. Khi đó: \[\left( {ABCD} \right) = \dfrac{{\overline {CA’} }}{{\overline {CB’} }}\]
Hệ quả 7. Bốn điểm $A, B, C, D$ là hàng điểm điều hòa khi và chỉ khi $C$ là trung điểm của $A’B’$.
Định nghĩa 8. Cho đường thẳng $(d)$ và $S$ ở ngoài $(d)$. Với mỗi điểm $M$ ($M$ không thuộc đường thẳng qua $S$ và song song với $(d)$ , $SM$ cắt $(d)$ tại $M’$. Vậy $M \to M’$ là phép chiếu xuyên tâm $S$ lên đường thẳng $(d)$.
Định lý 9. Cho 4 đường thẳng $a, b, c, d$ cắt nhau tại $S$. Một đường thẳng cắt $a, b, c, d$ lần lượt tại $A, B, C, D$. Khi đó ta có:
\[\left( {abcd} \right) = \left( {ABCD} \right) = \frac{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SD} } \right)}}:\frac{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SD} } \right)}}\]
Tính chất 10. Phép chiếu xuyên tâm bảo toàn tỉ số kép. Tức là qua phép chiếu xuyên tâm S lên đường thẳng $(d), A \to A’, B \to B’ , C \to C’, D \to D’$ thì: $(ABCD) = (A’B’C’D’)$.
Tính chất 11. Cho bốn đường thẳng $a, b, c, d$ cắt nhau tại $S$, một đường thẳng $\Delta$ cắt 4 đường thẳng tại 4 điểm $A, B, C, D$ thì $(ABCD)$ không phụ thuộc vào $\Delta$. Người ta gọi $(ABCD)$ là tỉ số kép của chùm 4 đường thẳng. Kí hiệu là $S(ABCD)$ hay $(abcd)$.
Định nghĩa 12. Nếu $S(ABCD) = -1$ thì ta gọi $a, b, c, d$ là chùm điều hoà.
Tính chất 13. Từ tính chất của tỉ số kép ta có tính chất sau của chùm 4 đường thẳng: $$(a, b, c, d) = (a’, b, c, d) \Leftrightarrow a \equiv a’$$
Hệ quả 14. Nếu $S(ABCD) = S(A’BCD)$ thì $S, A, A’$ thẳng hàng.
Hệ quả 15. Cho hai đường thẳng $(d)$ và $(d’)$ cắt nhau tại $O$. Trên $(d)$ lấy các điểm $A, B, C$; trên $(d’)$ lấy các điểm $A’,B’, C’$ . Khi đó $(OABC) = (OA’B’C’)$ khi và chỉ khi $AA’, BB’$ và $CC’$ đôi một song song hoặc đồng qui.
Định lý 16. Cho chùm điều hòa $(abcd)$. Ta có $b \bot d$ khi và chỉ khi $b, d$ là phân giác trong và phân giác ngoài của góc tạo bởi $a$ và $c$.
Định lý 17. Cho đường $a, b, c$ cắt nhau tại $O$, và $a’,b’, c’$ cắt nhau tại $O’$. Gọi $d$ là đường thẳng đi qua hai điểm $OO’$. Gọi $A$ là giao của $a$ và $a’$; $B$ là giao của $b$ và $b’$; $C$ là giao của $c$ và $c’$. Khi đó $A, B, C$ thẳng hàng khi và chi khi $(abcd) = (a’b’c’d)$.
II. CÁC VÍ DỤ
- Một số ứng dụng của hàng điểm và phép chiếu xuyên tâm trong các định lý quen thuộc.
Đầu tiên là một số ví dụ về các hàng điểm điều hòa quen thuộc.
Ví dụ 1. Cho tứ giác $ABCD$. Gọi $O$ là giao điểm hai đường chéo $AC$ và $BD$; $I$ là giao điểm của hai cạnh bênh $AD$ và $BC$. $IO$ cắt $AB$ và $CD$ tại $MN$. Khi đó $I, O, M, N$ là hàng điểm điều hòa. Gọi $J$ là giao điểm của $AB$ và $CD$, khi đó $J, N, D, C$ cũng là hàng điểm điều hòa.
Ví dụ 2. Cho tam giác $ABC$ ngoại tiếp đường tròn $(I)$. Đường tròn $(I)$ tiếp xúc với $BC, AB, AC$ lần lượt tại $D, E, F$. $EF$ cắt $BC$ tại $P$.
a. Khi đó $P, D, B, C$ là hàng điểm điều hòa.
b. Gọi $H$ là hình chiếu của $D$ trên $EF$. Chứng minh $HD$ là phân giác $\angle BHC$.
Ngoài ra ta còn biết hàng điểm điều hòa như:
Tâm hai đường tròn và tâm vị tự ngoài và tâm vị tự trong của hai đường tròn đó tạo thành hàng điểm điều hòa.
Tâm đường tròn ngoại tiếp, tâm đường tròn Euler, trực tâm và trọng tâm tạo thành hàng điểm điều hòa. (Đây là trường hợp đặc biệt của tính chất trên)
Ta có thể sử dụng phép chiếu xuyên tâm để chứng minh các định lý sau.
Ví dụ 3. (Định lý Papus) Cho hai đường thẳng $\Delta$ và $\Delta ‘$. Trên $\Delta$ lấy các điểm $A, B, C$ và trên $\Delta’$ lấy các điểm $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.
Ví dụ 4. (Định lý Pascal) Cho đường tròn $(w)$. Trên $(w)$ lấy các điểm $A, B, C$ và $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.
Ví dụ 5. (Định lý Desargue) Cho hai tam giác $ABC$ và $A’B’C’$. Gọi $P$ là giao điểm của $AB$ và $A’B’$; $Q$ là giao điểm của $AC$ và $A’C’$; $R$ là giao điểm của $BC$ và $B’C’$. Khi đó $P, Q , R$ thẳng hàng khi và chỉ khi $AA’, BB’, CC’$ đồng quy.
2. Áp dụng vào giải các bài toán.
Ví dụ 6. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AC, AB, BC$ lần lượt tại $E$ , $F$ và $D$. $ID$ cắt $EF$ tại $K$. Chứng minh $AK$ đi qua trung điểm của $BC$.
Ví dụ 7. (BMO 2007) Cho tam giác $ABC$ vuông tại $A$, $D$ là một điểm trên cạnh $AC$. Gọi $E$ là điểm đối xứng của $A$ qua $BD$. Đường thẳng qua $D$ vuông góc với $BC$ cắt $CE$ tại $F$. Chứng minh $DE$ và $AF$ cắt nhau tại một điểm thuộc đường thẳng $BC$.
Ví dụ 8. (IMO Shortlist 2006) Hai đường tròn $(O_1)$, $(O_2)$ tiếp xúc ngoài nhau tại $C$ và tiếp xúc trong với $(O)$ tại $D$ và $E$. Gọi $(d)$ là tiếp tuyến chung của $(O_1)$ và $(O_2)$ tại $C$. $AB$ là đường kính của $(O)$ sao cho $A$, $D$, $O_1$ cùng phía đối với $(d)$. Chứng minh rằng $AO_1, BO_2$ và $DE$ đồng quy.
Bài tập.
- Tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ thuộc tia đối của tia $AO$. Đường thẳng $b, c$ đối xứng với $PB$ qua $AB$ và $PC$ qua $AC$. Chứng minh giao điểm của $b$ và $c$ thuộc trên một đường cố định.
- Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ đường kính $BC$ ($AB < AC$). Gọi $E$ là điểm đối xứng của $A$ qua $BC$ và $D$ là giao điểm của tiếp tuyến tại $A$ với $BC$. Gọi $X$ là hình chiếu của $A$ trên $BE$, $M$ là trung điểm $AX$. Gọi $Z$ là giao điểm của $BM$ và $(O)$. Chứng minh rằng $CD$ là tiếp tuyến của đường tròn $(AZD)$.
- Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $E$ là một điểm di động trên $(O)$. $AE$ cắt các tiếp tuyến tại $B, C$ của $(O)$ tương ứng tại $M, N$. $BN$ cắt $CM$ tại $F$. Chứng minh rằng đường thẳng $EF$ luôn đi qua một điểm cố định khi $E$ di động trên $(O)$.
- Cho đường tròn $(O)$, một điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ hai tiếp tuyến $AB$ và $AC$ đến $(O)$ ($B, C$ là hai tiếp điểm), và hai cát tuyến $AMQ, ANP $đến $(O) $($M$ nằm giữa $A, Q$ và $N $ nằm giữa $A, P$). Chứng minh rằng $BC, PM, QN $ đồng quy.
- Cho $(O)$ và một điểm cố định nằm ngoài $(O)$; kẻ tiếp tuyến $MB$ và một cát tuyến $MAC$ bất kì. Một đường thẳng $d$ song song với $MB$ cắt $BA; BC$ tại $N$ và $P$. Chứng minh rằng trung điểm $I$ của $NP$ thuộc một đường cố định.