Category Archives: Lớp 10

Đề thi học kì 2 môn toán lớp 10 trường PTNK năm 2020-2021

Bài 1: (2 điểm) Giải bất phương trình:

a) $\dfrac{-x-4}{x^2-7x+12} >0$

b) $\sqrt{x^2+4} \ge x+2$

Giải

a) $\dfrac{-x-4}{x^2-7x+12} >0 \Leftrightarrow \dfrac{x+4}{(x-3)(x-4)} <0 \Leftrightarrow x \in \left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

Vậy $S=\left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

b) $\sqrt{x^2+4} \ge x+2 \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x^2+4 \ge x^2 +4x+4 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x \le 0 \end{array} \right. \end{array} \right. \Leftrightarrow x \le 0 $

Vậy $S= \left( – \infty ; 0 \right] $

Bài 2: (1 điểm)  Tìm $m$ để bất phương trình: $2mx^2 – 2(m-4)x+m-4 \ge 0$ vô nghiệm.

Giải
  • $m=0 \Rightarrow 8x -4 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$ (loại)
  • $m \ne 0$

Đặt $f(x)= 2mx^2 – 2(m-4)x+m-4 $

Để $f(x) \ge 0$ vô nghiệm thì $f(x)\le 0$ với mọi $x \in \mathbb{R}$, khi và chỉ khi:

$\left\{ \begin{array}{l} m<0 \\ \Delta ‘= {\left( {m – 4} \right)^2} – 2m\left( {m – 4} \right) <0 \end{array} \right. \Leftrightarrow m<-4$

Bài 3: (1,5 điểm) Cho hệ bất phương trình: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0 \\ \left( m^2 +1 \right) x > 2mx + m^2 +1 \end{array} \right. \quad (I) $

a) Giải hệ bất phương trình $(I)$ khi $m=-1$.

b) Tìm $m$ để hệ bất phương trình có nghiệm.

Giải

a) Thay $m=-1$ vào $(I)$ ta được: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0\\ 2x>-2x + 2 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ x>\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow \dfrac{1}{2}<x<1$.

b) $(I) \Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ (m-1)^2x>m^2+1 \ \ (1) \end{array}\right. $

  • TH1: $m=1$ thì hệ bất phương trình vô nghiệm.
  • TH2: $m\ne 1$, khi đó $(1)\Leftrightarrow x>\dfrac{m^2+1}{(m-1)^2}$

Hệ bất phương trình có nghiệm khi và chỉ khi $\dfrac{m^2+1}{(m-1)^2} <1\Leftrightarrow m<0$

Vậy $m<0$ thì hệ bất phương trình $(I)$ có nghiệm.

Bài 4: (1 điểm) Chứng minh rằng:

a) $\sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) = 1 – \dfrac{1}{2}\cos\left( 2x – \dfrac{\pi}{3}\right) $

b) $ \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) + \sin x \cdot \sin \left( \dfrac{\pi}{3}-x \right) = \dfrac{3}{4}$

Giải

a) $VT= \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) = \dfrac{1}{2} – \dfrac{1}{2}\cos 2x + \dfrac{1}{2} – \dfrac{1}{2} \cos \left( \dfrac{2\pi}{3} -2x\right) $

$=1-\dfrac{1}{2} \left[ \cos 2x + \cos \left( \dfrac{2\pi}{3} -2x\right) \right] = 1-\dfrac{1}{2} \cdot 2 \cdot \cos \dfrac{\pi}{3} \cdot \cos \left(2x- \dfrac{\pi}{3}\right) $

$=1-\dfrac{1}{2}\cos \left( 2x-\dfrac{\pi}{3}\right)= VP $.

b) $VT = \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) + \sin x \cdot \sin \left( \dfrac{\pi}{3} -x\right) $

$= 1-\dfrac{1}{2} \cos \left( 2x-\dfrac{\pi}{3}\right) – \dfrac{1}{2} \left[ \cos \dfrac{\pi}{3} – \cos \left( 2x – \dfrac{\pi}{3}\right) \right] = \dfrac{3}{4}=VP$

Bài 5: (0,5 điểm) Cho hai số thực $a$, $b$ thỏa $2a + 3b=7$. Tìm giá trị lớn nhất của $M=(a+1)(b+1)$.

Giải
  • Cách 1: $2a + 3b =7 \Leftrightarrow a=\dfrac{7}{2} -\dfrac{3}{2}b$

Thay $a=\dfrac{7}{2} -\dfrac{3}{2}b$ vào $M$, ta được:

$M=\left( \dfrac{9}{2} – \dfrac{3}{2}b \right) (b+1) = -\dfrac{3}{2}b^2 + 3b + \dfrac{9}{2} = -\dfrac{3}{2}\left( b-1\right) ^2 +6\le 6$

Vậy giá trị nhỏ nhất của $M$ là $6$ khi và chỉ khi $b=1$ và $a=2$.

  • Cách 2: $6M = (2a+2)(3b+3) \le \dfrac{\left( 2a+2 + 3b +3\right) ^2}{4} =36 \Rightarrow M\le 6$

Vậy giá trị lớn nhất của $M$ là $6$ khi và chỉ khi $a=2$ và $b=1$.

Bài 6: (3 điểm) Trong mặt phẳng tọa độ $Oxy$ cho $2$ điểm $A(1;3)$, $B(2;1)$ và đường thẳng $(d): \left\{ \begin{array}{l} x=t \\ y=10+5t \end{array} \right. \quad (t \in \mathbb{R})$

a) Tìm tọa độ giao điểm của $AB$ với đường thẳng $(d)$. Viết phương trình đường thẳng $(d’)$ qua $A$ và song song với $(d)$.

b) Tìm $a \in \mathbb{R}$ sao cho khoảng cách từ $A$ đến đường thẳng $(\Delta )$ bằng $1$, biết

$( \Delta ): x+ (a-1)y-3a=0$

c) Viết phương trình đường tròn $(C)$ có tâm $A$ tiếp xúc với trục $Ox$. Tìm tọa độ giao điểm của đường tròn $(C)$ với trục $Oy$.

Giải

a)

  • Phương trình đường thẳng $AB: 2x + y -5=0$

Gọi $M(a; 10+5a)$ là giao điểm của $AB$ và $(d)$

Ta có: $M\in AB \Leftrightarrow 2a + 10 + 5a -5=0 \Leftrightarrow a=-\dfrac{5}{7}$

Vậy tọa độ giao điểm của $AB$ và $(d)$ là $M\left( -\dfrac{5}{7}; \dfrac{45}{7}\right) $

  • Đường thẳng $(d’)$ đi qua $A(1;3)$ và song song với $(d)$, khi đó:

$(d’): \left\{ \begin{array}{l}x=1+t’\\ y=3+5t’ \end{array}\right. $ $(t’\in \mathbb{R})$

b) Ta có: $d_{(A, (d’))} =1$

$ \Leftrightarrow \dfrac{|1 + (a-1)\cdot 3 -3a|}{\sqrt{1+(a-1)^2}} =1$

$\Leftrightarrow 1+ (a-1)^2 = 4 \Leftrightarrow \left[ \begin{array}{l} a=1+\sqrt{3}\\ a=1-\sqrt{3} \end{array}\right. $

c)

  • Ta có: $d_{(A, Ox)} = 3 = R$

Phương trình đường tròn $(C)$ tâm $A$, bán kính $R=3$ là:

$(C) : (x-1)^2 + (y-3)^2 =9$

  • Gọi $N(0,y)$ là giao điểm của $(C)$ và $Oy$.

Ta có: $N\in (C) \Leftrightarrow 1 + (y-3)^2 =9 \Leftrightarrow \left[ \begin{array}{l} y=3+2\sqrt{2}\\ y=3-2\sqrt{2} \end{array}\right. $

Vậy tọa độ giao điểm là $N_1(0; 3+2\sqrt{2})$ và $N_2(0; 3-2\sqrt{2})$.

Bài 7: (1 điểm) Trong mặt phẳng $Oxy$, cho Elip $(E): \dfrac{x^2}{25} + \dfrac{y^2}{9} =1$

a) Tính chu vi hình chữ nhật cơ sở của $(E)$.

b) Điểm $H(m;n)$ thuộc $(E)$ thỏa $F_1H=9F_2H^2$ với $F_1$, $F_2$ là hai tiêu điểm của $(E)$ và $x_{F_1} < 0$. Tìm $m$, $n$.

Giải

a) Ta có: $a=5$, $b=3$

Chu vi hình chữ nhật cơ sở là: $2(2a+2b) = 32$.

b) Ta có: $c^2 = a^2 – b^2 =16 \Rightarrow c=4 \Rightarrow e=\dfrac{4}{5}$

$F_1H = a+e\cdot m = 5+\dfrac{4}{5}m$, $F_2H = a-e\cdot m = 5-\dfrac{4}{5}m $

Ta có: $F_1H = 9F_2H^2 \Leftrightarrow 5+\dfrac{4}{5}m = 9\left( 5-\dfrac{4}{5}m\right) ^2$

$\Leftrightarrow \dfrac{144}{25}m^2 – \dfrac{364}{5}m + 220=0 \Leftrightarrow \left[ \begin{array}{l} m=5 \Rightarrow n=0\\ m=\dfrac{275}{36} \ (l) \end{array}\right. $

Vậy $H(5;0)$.

— HẾT —

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh
  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Phương pháp ánh xạ trong các bài toán tổ hợp

Bài viết dựa vào bài giảng của NCS. Vương Trung Dũng (trường PTNK-ĐHQG) trong lớp chuyên đề 10 toán tại Star Education.

 

Ánh xạ là một khái niệm khó và quan trọng trong toán học, có vai trò trong hầu hết các lĩnh vực toán học. Trong bài giảng này ta xét ứng dụng của ánh xạ trong các bài toán tổ hợp.

Ánh xạ và một số tính chất

Định nghĩa. Cho hai tập hợp $X$ và $Y$ khác rỗng. Một ánh xạ $f$ từ tập $X$ đến tập $Y$ là một quy tắc đặt tương ứng mỗi phần tử $x$ của $X$ với một và chỉ một phần tử $y$ của $Y$, kí hiệu là $y = f(x)$.

Kí hiệu $f: X \longrightarrow Y$.

$f(x) = y$.

Các khái niệm: Cho ánh xạ $f: X \longrightarrow Y$.

  • $y = f(x)$ được gọi là ảnh của $x$.
  • $f(X) = \{f(x)|x \in X\}$ tập ảnh của $f$.
  • $y \in Y$ thì $f^-1(y) = \{x\in X|f(x) = y\}$ được gọi là tạo ảnh của $y$.

Đơn ánh, toàn ánh, song ánh

  1. Ánh xạ $f: X \longrightarrow Y$ được gọi là đơn ánh nếu với $a,b \in X$ mà $a \ne b$ thì $f(a) \ne f(b)$. Nói một cách khác ánh xạ $f$ là một đơn ánh nếu và chỉ nếu với $a, b \in X$ mà $f(a)=f(b)$ thì suy ra $a=b.$
  2. Ánh xạ $f:X \longrightarrow Y$ được gọi là toàn ánh nếu với mỗi phần tử $y \in Y$ đều tồn tại một phần tử $x \in X$ sao cho $f(x)=y$. Như vậy $f$ là toàn ánh nếu và chỉ nếu $f(X)=Y$.
  3. Ánh xạ $f: X \longrightarrow Y$ được gọi là song ánh giữa $X$ và $Y$ nếu và chỉ nếu nó vừa là đơn ánh và vừa là toàn ánh. Như vậy $f$ là song ánh nếu với mỗi $y \in Y$ tồn tại duy nhất một phần tử $x \in X$ sao cho $y=f(x).$

Ánh xạ và tập hợp

Cho $A = { 1, 2,\cdots, n }$. $X$ là tập khác rỗng. Nếu có một song ánh từ tập $X$ đến $A$ thì ta nói $X$ có $n$ phần tử và kí hiệu $|X| = n$.

Nếu không tồn tại song ánh thì ta nói $X$ có vô hạn phần tử.

  • Nếu tồn tại một song ánh từ $X$ vào tập các số tự nhiên, ta nói $X$ có lực lượng đếm được, ngược lại thì ta nó $X$ có lực lượng không đếm được.
  • Các tập số tự nhiên, số nguyên và hữu tỷ là các tập có lực lượng đếm được.

Định lý Cho $A$ và $B$ là hai tập hợp hữu hạn.

  • Nếu có một đơn ánh $f: X \longrightarrow Y$ thì $|X| \le |Y|.$
  • Nếu có một toàn ánh $f: X \longrightarrow Y$ thì $|X| \ge |Y|.$
  • Nếu có một song ánh $f: X \longrightarrow Y$ thì $|X| = |Y|.$

Ánh xạ và các bài toán đếm, đẳng thức tổ hợp.

Ví dụ 1. Cho tập $X_n = {1, 2, \cdots, n}$, gọi $P(X_n)$ là tập các tập con của $X_n$, và $S_n$ là tập các dãy nhị phân có độ dài $n$. Tìm một song ánh từ $P(X_n)$ vào $S_n$, suy ra số tập con của $X_n$.

Gợi ý

Định nghĩa một ánh xạ $f: P(X_n) \longrightarrow S_n$ như sau:
Với mỗi $S \in P(X_n)$ (tức là $S \subset X_n$) ta đặt $$ f(S)=y_1y_2 \dots y_n$$
trong đó
$$y_i=\begin{cases}
1, y_i \in S&\\
0, y_i \notin S.&
\end{cases}
$$
Ví dụ , nếu $X=\{1; 2; 3; 4; 5\}, S_1=\{4\}, S_2=\{2; 3; 5\}$ thì $f(S_1)=00010, f(S_2)=01101, f(\emptyset)=00000, f(X)=11111$ .
Dễ dàng kiểm tra đây là một song ánh từ $P(X)$ vào $Y$.
Do đó theo nguyên lý song ánh ta có $|P(X)|=|Y|=2^n$.

Ví dụ 2. Hãy tính trung bình cộng của tất cả các số N gồm 2014 chữ số thỏa mãn N chia hết cho 9 và các chữ số của N được lập từ $X={1,2,…,8}$

Gợi ý

Gọi M là tập các số thỏa yêu cầu đề bài.

Ta xây dựng một ánh xạ đi từ M đến M như sau: Với mỗi $N=\overline{a_1a_2…a_{2014}} \in M$ dặt $f(N)=\overline{b_1,b_2,…,b_{2014}}$ với $b_i=9-a_i$ với mọi $i=1,2,…,2014$. Vì $N+f(N)=99…9$ (2014 số 9) chia hết cho 9 và N chia hết cho 9 nên suy ra $f(N)$ cũng chia hết cho 9. Do đó $f$ là một ánh xạ đi từ M vào M. Hơn nữa dễ thấy $f$ là một song ánh. Từ đó suy ra $$ 2\sum_{N \in M}N=\sum_{N \in M}(N+f(N))=|M|.99…9 .$$ Vậy trung bình cộng của các số trong M là $99…9:2.$

Ví dụ 3. Cho tập S gồm tất cả các số nguyên dương trong đoạn $[1,2,…,2002]$. Gọi T là tập hợp tất cả các tập con khác rỗng của S. Với mỗi X thuộc T ký hiệu m(X) là trung bình cộng các phần tử thuộc X. Tính $$ m=\frac{\sum_{X \in T}m(X)}{|T|}. $$

Gợi ý

Xây dựng song ánh $f: T \longrightarrow T$ như sau: với mọi $X \in T $ đặt tương ứng $f(X)=\{2003-x: x \in X\}$.\\
Khi đó $m(X)+m(f(X))=2003$. Do đó $$2 \sum m(X)=\sum (m(X)+m( f(X)))=|T|.2003 \Rightarrow m=\dfrac{\sum m(X)}{|T|}=\dfrac{2003}{2}$$

Ví dụ 4.  Cho $X={1,2,…,n}$. Có bao nhiêu tập con $k$ phần tử của X sao cho trong mỗi tập con không chứa 2 số nguyên liên tiếp.

Gợi ý

Gọi A là tập tất cả các tập con $k $ phần tử của X mà trong mỗi tập không chứa 2 số nguyên liên tiếp và B là tập tất cả các tập con của tập $Y=\{1,2,…, n-(k-1) \}$. Ta xây dựng song ánh từ A đến B như sau: Lấy $S=\{s_1,s_2,…,s_k \} \in A$ (không mất tổng quát có thể giả sử $s_1<s_2<…<s_k$) đặt tương ứng với $f(S)=\{s_1, s_2-1, s_3-2,…, s_k-(k-1) \}$. Dễ chứng minh đây là một song ánh. Từ đó có $C^k_{n-k+1}$ tập thoả yêu cầu đề bài.

Bài tập rèn luyện 

Bài 1. Cho $X={ 1,2,..,n}$. Một tập con $S={s_1,s_2,…,s_k }$ của X ($s_1<s_2<…<s_k$) được gọi là \textit{m- tách được} $(m \in \mathbb{N})$ nếu $s_i-s_{i-1} \ge m; i=1,2,…,k$. Có bao nhiêu tập con m- tách được gồm $k$ phần tử của X, trong đó $0 \le k \le n-(m-1)(k-1)$.

Bài 2. Cho $X={1,2,…,n}$, với mỗi tập con khác rỗng $A_i={a_1,a_2,…,a_i }$ (không mất tổng quát giả sử $a_1>a_2>…>a_i$) ta định nghĩa \textit{tổng hỗn tạp} của $A_i$ là số $m(A_i)=a_1-a_2+a_3-… \pm a_i$. Tính $\sum \limits_{A_i \subset X} m(A_i)$.

Bài 3. Cho số nguyên dương $n$ và $d$ là một ước dương của $n$. Gọi S là tập tất cả những bộ $(x_1,x_2,…,x_n)$ nguyên dương thỏa $0 \le x_1 \le x_2 \le… \le x_n \le n$ và $d| x_1+x_2+…+x_n$. Chứng minh rằng có đúng một nửa các phần tử của S có tính chất $x_n=n$.

Bài 4. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 5. Cho các số tự nhiên $k, n, m$ thỏa điều kiện $1<k \le n, m>1$. Hỏi có bao nhiêu chỉnh hợp chập $k: (a_1,a_2,…,a_k)$ của $n$ số tự nhiên đầu tiên mà mỗi chỉnh hợp đều thỏa mãn ít nhất một trong hai điều kiện sau:

i) Tồn tại $i, j \in {1,2,…,k}$ sao cho $i < j$ và $a_i>a_j$.

ii) Tồn tại $i \in {1,2,…,k}$ sao cho $a_i-i$ không chia hết cho $m$.

Bài 6. Cho các số nguyên dương $n, k, p$ với $k \ge 2$ và $k(p+1) \le n.$ Cho $n$ điểm phân biệt cùng nằm trên một đường tròn. Tô tất cả $n$ điểm đó bởi hai màu xanh, đỏ (mỗi điểm được tô bởi một màu) sao cho có đúng $k$ điểm được tô bởi màu xanh và trên mỗi cung tròn mà hai đầu mút là hai điểm màu xanh liên tiếp (tính theo chiều quay kim đồng hồ) đều có ít nhất $p$ điểm được tô màu đỏ. Hỏi có tất cả bao nhiêu cách tô khác nhau?

Bài 7. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 8. Trong một hội nghị có $n$ nhà toán học. Biết rằng nếu hai nhà toán học nào đó quen nhau thì họ không quen chung thêm một người nào nữa, còn nếu hai nhà toán học này không quen nhau thì họ quen chung với đúng hai nhà toán học khác nữa. Chứng minh rằng $8n-7$ là số chính phương.

Bài 9. Trong một trại hè toán học có 40 học sinh. Biết rằng cứ 19 học sinh bất kỳ thì đều viết thư hỏi bài một học sinh khác (Nếu học sinh A viết thư hỏi bài học sinh B thì không nhất thiết học sinh B phải viết thư hỏi bài học sinh A và dĩ nhiên A cũng không viết thư hỏi chính mình). Chứng minh rằng trong trại hè này tồn tại một tập $T_0$ gồm 20 học sinh sao cho với mỗi $P \in T_0$ thì 19 người còn lại không đồng thời viết thư hỏi bài P.

Bài 10. Gọi M là số số nguyên dương trong hệ thập phân có $2n$ chữ số trong đó có $n$ chữ số 1 và $n$ chữ số 2. Gọi N là số số nguyên dương có $n$ chữ số trong hệ thập phân trong đó chỉ có các chữ số 1, 2, 3, 4 và số chữ số 1 bằng số chữ số 2. Chứng minh $|M|=|N|.$

(Hết phần 1)

Nguyên lý Đirichlet và áp dụng

Nguyên lý Dirichlet hay còn được gọi là nguyên lý chuồng thỏ được phát biểu dưới dạng sau:”Có $n+1$ con thỏ được nhốt vào $n$ cái chuồng thì có một chuồng chứa ít nhất hai con thỏ“. Với nội dung khá đơn giản tuy nhiên nguyên lý này giúp giải được khá nhiều bài toán trong nhiều phân môn: đại số, số học, hình học, tổ hợp. Trong bài viết nhỏ này trình bày một vài ví dụ áp dụng nguyên lý Dirichlet giúp các bạn định hướng tốt hơn trong việc giải các bài toán.

1. Các ví dụ

a) Nguyên lý Dirichlet trong các bài toán đại số và số học

Nguyên lý Dirichlet có thể được phát biểu như sau: Có $n+1$ số tự nhiên lớn hơn $k$ và nhỏ hơn $k+n+1$, thì sẽ có 2 số bằng nhau.

Trong phát biểu trên ta xem $n+1$ số tự nhiên là $n+1$ con thỏ, các số tự nhiên lớn hơn $k$, nhỏ hơn $k+n+1$ gồm $k+1, k+2, \dots, k+n$ là $n$ cái chuồng. Khi đó chắc chắn có 2 con thỏ cùng một chuồng, hay sẽ có hai số bằng nhau.

Việc phát hiện đối tượng nào là thỏ, đối tượng nào là chuồng là một việc có ý nghĩa quan trọng, hoặc đôi khi ta phải xây dựng chuồng, thỏ, từ đó giải quyết vấn đề. Ta xét các ví dụ sau:

Ví dụ 1: Cho 676 số tự nhiên phân biệt không lớn hơn 2016. Chứng minh rằng chọn được hai số $a, b$ thỏa $|a-b| \in \left\{ 3, 6 \right\} $.

Giải

Gọi $676$ số đó là $a_1, a_2, …, a_{676}$.

Xét $676 \times 3 = 2028$ gồm $676$ số $a_1, a_2, …, a_{676}$; (nhóm 1), $676$ số $a_1+3, a_2+3, …,a_{676} +3$ (nhóm 2), $676$ số $a_1+6, a_2+6,…,a_{676}+6$ (nhóm 3).

$2028$ số này là các số tự nhiên không vượt quá $2022$ nên theo nguyên lý Dirichlet tồn tại $2$ số bằng nhau. Mà hai số cùng một nhóm không thể bằng nhau nên xảy ra $3$ trường hợp: $a_i = a_j+3$, $a_i = a_j + 6$ hoặc $a_i+3 = a_j+6$, trong cả ba trường hợp ta đều có $|a_i-a_j| \in \left\{3,6\right\}$.

Ví dụ 2: Cho tập $A = {1, 2, 3, …, 9}$. Lấy $S$ gồm các phần tử thuộc $A$ sao cho tổng hai số bất kì thuộc $S$ là các số phân biệt. Hỏi tập $S$ có số phần tử nhiều nhất là bao nhiêu? Tại sao?

Giải

Nếu tập $S$ có $7$ phần tử trở lên thì sẽ có không ít hơn $21$ tổng. Mà các tổng hai số chỉ nhận các giá trị từ $3$ đến $17$ nên theo nguyên lý dirichlet thì sẽ có hai tổng bằng nhau.

Do đó số phần tử của $S$ không lớn hơn $6$.

Xét $S$ có $6$ phần tử, khi đó có đúng $15$ tổng nhận các giá trị $3, 14, \dots, 17$ nên mỗi tổng hai số nhận đúng một giá trị. Để có tổng bằng $3$, $17$ thì tồn tại $4$ số $1, 2$ và $8, 9$. Khi đó $1 + 9 = 2+8$ (vô lý). Vậy tập không thể có $6$ phần tử.

Nếu tập có $5$ phần tử, ta thấy $S = \left\{ 1, 2, 5, 7, 9\right\} $ thỏa đề bài.

Vậy số phần tử lớn nhất của một tập con thỏa đề bài là $5$.

Ví dụ 3: Cho $1010$ số nguyên dương $a_1 < a_2 < …< a_{1010} \leq 2017$. Chứng minh rằng có $2$ số $a_i, a_k$ sao cho $a_i+a_1 = a_k$.

Giải

Xét $2019$ số gồm $1010$ số đã cho (nhóm 1) và $1009$ số $a_2-a_1, a_3-a_1, …, a_{1010} – a_1$ (nhóm 2) nhận giá trị nguyên từ $1$ đến $2017$, theo nguyên lý dirichlet thì có hai số bằng nhau, hơn nữa các số nhóm 1 khác nhau, các số nhóm 2 khác nhau nên một số thuộc nhóm 1 bằng một số thuộc nhóm 2, do đó tồn tại $i, k$ sao cho $a_k-a_1 = a_i$ hay $a_i+a_1 = a_k$.

Nguyên lý áp dụng trong các bài toán số học được phát biểu dưới dạng sau: “Cho $n+1$ số nguyên, khi đó có 2 số có hiệu chia hết cho $n$“.

Ví dụ 4: Chứng minh rằng trong $11$ số chính phương thì có $2$ số có hiệu chia hết cho $20$.

Giải

Theo nguyên lý đirichlet thì trong $11$ số có hai số có hiệu chia hết cho $10$, gọi $2$ số đó là $a, b$. Ta có $a = x^2, b = y^2$ và $a-b = (x-y)(x+y)$ chia hết cho $10$ nên $x, y$ cùng tính chẵn lẻ, do đó $(x-y)(x+y)$ chia hết cho $4$. Vậy $a-b$ chia hết cho $4$ và chia hết cho $10$ nên chia hết cho $20$.

Ví dụ 5: Cho $5$ số nguyên dương và mỗi số chỉ có ước nguyên tố là $2$ và $3$. Chứng minh rằng có $2$ số mà tích là một số chính phương.

Giải

$5$ số có dạng $2^a\cdot 3^b$ với $a, b$ là các số tự nhiên.

Xét tính chẵn lẻ của các cặp số $(a;b)$ ta chỉ có $4$ trường hợp là (chẵn; chẵn), (chẵn;lẻ), (lẻ; chẵn) và (lẻ; lẻ).

Khi đó với $5$ cặp số thì theo nguyên lý dirichlet có $2$ cặp $(a_1;b_1)$ và $(a_2;b_2)$ sao cho $a_1, a_2$ cùng tính chẵn lẻ và $b_1, b_2$ cùng tính chẵn lẻ.

Khi đó $a_1+a_2, b_1+b_2$ là chẵn, suy ra $2^{a_1}3^{b_1}\cdot 2^{a_2}3^{b_2} = 2^{a_1+a_2}\cdot 3^{b_1+b_2}$ là số chính phương.

Ví dụ 6: Xét $20$ số tự nhiên $1, 2, . . . , 20$. Hãy tìm số nguyên dương $k$ nhỏ nhất sao cho với mỗi cách lấy $k$ số phân biệt từ $20$ số trên đều lấy được hai số $a, b$ sao cho $a + b$ là một số nguyên tố.

Giải

Xét $10$ số chẵn thì tổng hai số bất kì đều là hợp số, do đó đó $ k \geq 11$.

Ta chứng minh $k= 11$.

Xét $10$ cặp số $(1;2), (3;20), (4;19), \dots, (11;12)$, mỗi cặp số có tổng là số nguyên tố, khi đó với $11$ số thì theo nguyên lý dirichlet có $2$ số cùng một cặp, khi đó tổng của chúng là một số nguyên tố.

b) Nguyên lý Dirichlet trong các bài toán hình học

Ví dụ 7: Có $33$ điểm trong hình vuông $4 \times 4$. Chứng minh rằng có $3$ điểm tạo thành tam giác có diện tích không lớn hơn $\dfrac{1}{2}$.

Giải

 

Chia hình vuông thành $16$ hình vuông như hình vẽ, khi đó theo nguyên lý dirichlet thì có $3$ điểm cùng thuộc một hình vuông $1 \times 1$.

Ta cần chứng minh tam giác có $3$ đỉnh nằm trong hoặc trên cạnh hình vuông $1$ thì diện tích không quá $\dfrac{1}{2}$.

 

 

Xét tam giác $EFG$, đường thẳng qua $E$ song song với cạnh hình vuông cắt $FG$ tại $I$.

Khi đó $S_{EFG} = S_{EFI} +S_{EGI} = \dfrac{1}{2}FM\cdot EI + \dfrac{1}{2}GK\cdot EI = \dfrac{EI}{2}(FM+GK) \leq \dfrac{1}{2}$.

Ví dụ 8: Cho một tập $S$ gồm $25$ điểm sao cho với ba điểm bất kì thuộc $S$ thì có $2$ điểm khoảng cách nhỏ hơn $1$. Chứng minh rằng tồn tại một hình tròn bán kính $1$ chứa ít nhất $13$ điểm thuộc $S$.

Giải

Xét $2$ điểm $A$ và $B$ sao cho $AB$ có độ dài lớn nhất. Khi đó xét $2$ hình tròn $(A;1), (B;1)$ nếu chứa hết $25$ điểm thì sẽ có $13$ điểm cùng thuộc một hình tròn, ta có điều cần chứng minh.

Nếu có $1$ điểm $C$ không thuộc $2$ hình tròn trên thì trong $3$ điểm $A, B, C$ không có $2$ điểm nào khoảng cách nhỏ hơn $1$ (vô lý).

Ví dụ 9: Cho đa giác đều có $14$ đỉnh. Chứng minh rằng từ $6$ đỉnh bất kì có thể chọn được $4$ đỉnh tạo thành một hình thang cân.

Giải

 

Do tính chất đối xứng của tứ giác đều nên với hai đỉnh bất kì thì độ dài nối hai đỉnh đó có thể nhận $1$ trong $7$ giá trị.

Với $6$ đỉnh ta có $15$ đoạn thẳng nhận bảy giá trị độ dài khác nhau, theo nguyên lý dirichlet thì có $3$ đoạn có đoạn thẳng bằng nhau.

TH1: Nếu $3$ đoạn bằng nhau đó cùng chung một đỉnh, ví dụ $AB= AC = AD$, suy ra $B, C, D$ thuộc đường tròn tâm A (vô lý).

TH2: Có $2$ đoạn bằng nhau không chung một đỉnh, giả sử $AB = CD$. Ta có $ABCD$ nội tiếp và $AB = CD$ nên $4$ đỉnh $A, B, C, D$ tạo thành hình thang cân. (điều cần chứng minh).

2. Bài tập

Bài 1: Cho $100$ số tự nhiên. Chứng minh rằng tồn tại một số hoặc mộ số các số có tổng chia hết cho $100$.

Bài 2: Chứng minh rằng tồn tại số tự nhiên chỉ toàn các chữ số $1$ và chia hết cho $2017$.

Bài 3: Cho bảng ô vuông $5 \times 5$, người ta điền vào các ô vuông các số $-1,0,1$. Xét tổng các số ở các dòng, cột và đường chéo, chứng minh rằng trong các tổng này có hai tổng bằng nhau.

Bài 4: Cho $5$ số nguyên dương đôi một phân biệt sao cho trong các số ấy thì chỉ có ước nguyên tố là $2$ và $3$. Chứng minh rằng có hai số mà tích của chúng là một số chính phương.

Bài 5: Có $20$ số nguyên dương phân biệt không lớn hơn $70$. Xét tất cả các hiệu của $2$ số, chứng minh rằng trong các hiệu đó có $4$ số bằng nhau.

Bài 6: Xét $20$ số tự nhiên $1, 2, \dots, 20$. Hãy tìm số nguyên dương $k$ nhỏ nhất sao cho với mỗi cách lấy $k$ số phân biệt từ $20$ số trên đều lấy được hai số $a, b$ sao cho $a + b$ là một số nguyên tố.

Bài 7:

a) Tô các cạnh của một lục giác bằng $2$ màu xanh đỏ. Chứng minh rằng tồn tại một tam giác được tô cùng một màu.

b) Tô các cạnh của một đa giác $17$ cạnh bằng $3$ màu. Chứng minh rằng tồn tại một tam giác được tô cùng một màu.

Bài 8: Trên đường tròn cho $16$ điểm tô bởi một trong ba mày: Xanh, Đỏ, Vàng. Các dây cung nối $2$ điểm trong $16$ điểm trên được tô bởi hai màu trắng, đen. Chứng minh ta luôn có $3$ điểm trong $16$ điểm trên tô cùng màu và $3$ cạnh của nó cũng được tô cùng màu.

Bài 9: Chứng minh rằng trong $52$ số tự nhiên bất kì luôn tìm được $2$ số mà tổng hoặc hiệu của chúng chia hết cho $100$.

Bài 10: Từ các số $1, 2, …, 2n$ lấy ra $n+1$ số. Chứng minh rằng:

a) Có $2$ số nguyên tố cùng nhau.

b) Có $2$ số mà số này chia hết cho số kia.

Bài 11: Có $81$ số gồm $9$ chữ số $1, 9$ chữ số $2, \dots, 9$ chữ số $9$. Xếp $81$ số này thành một dãy, có tồn tại hay không một cách xếp sao cho giữa hai chữ số $k$ có đúng $k$ số với $k = 1, 2, \dots, 9$.

Bài 12: Có $51$ điểm trong một hình vuông có cạnh bằng $1$. Chứng minh rằng tồn tại $3$ điểm có thể chứa trong một hình tròn bán kính $\dfrac{1}{7}$.

Bài 13: Cho đa giá có $2018$ cạnh, chứng minh rằng có một đường chéo không song song với bất kì cạnh nào.

Bài 14: Mỗi đỉnh của một đa giác đều $7$ cạnh được tô màu đỏ hoặc xanh. Chứng minh rằng có $3$ đỉnh tạo thành một tam giác cân và được tô cùng một màu.

Bài 15: Có $9$ đường thẳng trong đó mỗi đường thẳng chia hình vuông ra làm $2$ phần tỉ lệ diện tích là $2:3$. Chứng minh rằng có $3$ đường thẳng đồng quy.

Bài 16: (PTNK 2011) Cho hình chữ nhật $3 \times 4$.

a) Có $7$ điểm trong hình chữ nhật. Chứng minh có $2$ điểm khoảng cách không lớn hơn $\sqrt{5}$.

b) Có $6$ điểm trong hình chữ nhật. Chứng minh có $2$ điểm khoảng cách không lớn hơn $\sqrt{5}$.

Bất đẳng thức Cauchy – Phương pháp tách ghép

1. Phương pháp tách ghép

Ví dụ 1: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Giải

Áp dụng bất đẳng thức Cauchy ta có:

$\dfrac{ab}{c}+\dfrac{bc}{a} \ge 2b$

$\dfrac{bc}{a}+\dfrac{ca}{b} \ge 2c$

$\dfrac{ca}{b}+\dfrac{ab}{c} \ge 2a.$

Cộng vế theo vế các bất đẳng thức trên ta được

$2\left( \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)  \ge 2 (a+b+c)$

$\Leftrightarrow \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c$.

Ví dụ 2: Cho các số dương $a,b,c$. Chứng minh rằng

$$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c$$

Giải

Áp dụng bất đẳng thức Cauchy ta có

$\dfrac{a^3}{bc} +b+c \ge 3a $

$\dfrac{b^3}{ca}+c+a \ge 3b$

$\dfrac{c^3}{ab}+a+b \ge 3c.$

Cộng vế theo vế ba bất đẳng thức trên ta được

$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2(a+b+c) \ge 3(a+b+c)$

$\Leftrightarrow \dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c.$

Ví dụ 3: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh rằng $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Giải

Áp dụng bất đẳng thức $xy \le \dfrac{(x+y)^2}{4}$. Ta được:

$(a+b-c)(b+c-a) \le \dfrac{(a+b-c+b+c-a)^2}{4}=b^2$

$(b+c-a)(c+a-b) \le \dfrac{(b+c-a+c+a-b)^2}{4}=c^2$

$(c+a-b)(a+b-c) \le \dfrac{(c+a-b)(a+b-c)^2}{4} = a^2.$

Do $a,b,c$ là các cạnh của một tam giác nên các vế của bất đẳng thức trên đều dương do đó nhân vế theo vế ta được

$[(a+b-c)(b+c-a)(c+a-b)]^2 \le (abc)^2$

$\Leftrightarrow (a+b-c)(b+c-a)(c+a-b) \le abc.$

Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

2. Bài tập

Bài 1: Cho $a,b,c>0$. Chứng minh $\dfrac{a^4+b^4+c^4}{a+b+c} \ge abc$.

Bài 2: Cho $a,b,c>0$. Chứng minh:

a) $\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a} \ge a+b+c$

b) $\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c$

c) $\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \ge ab+bc+ca.$

d) $\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}.$

Bài 3: Chứng minh rằng với mọi $a,b,c$ dương ta có: $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Bài 4: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh:

a) $(p-a)(p-b)(p-c) \le \dfrac{1}{8}abc$.

b) $\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c} \ge 2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$.

c) $\dfrac{\sqrt{a}}{\sqrt{a+b-c}}+\dfrac{\sqrt{b}}{\sqrt{b+c-a}}+\dfrac{\sqrt{c}}{\sqrt{c+a-b}} \ge 3$

Bài 5: Cho 3 số không âm $a,b,c$ chứng minh rằng: $$ a+b+c \ge \sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}. $$

Bài 6: Cho $a,b,c \ge 0$. Chứng minh: $$ a^3+b^3+c^3 \ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}. $$

Bài 7: Cho $a,b,c$ là các số dương. Chứng minh rằng: $$ (a^2+bc)(b^2+ca)(c^2+ab) \ge abc(a+b)(b+c)(c+a). $$

Bài 8: Cho các số dương $x, y, z$. Chứng minh rằng: $$\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z} \le \dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}).$$

Bài 9: Cho các số thực dương $a,b,c$ thoả mãn $a+b+c=3$. Chứng minh: $$\dfrac{ab}{\sqrt{c^2+3}}+\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{c^2+3} \le \dfrac{3}{2}.$$

Bài 10: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c} \ge 2.$$

Bài 11: Cho các số dương $a,b,c$. Chứng minh: $$\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b} \le \dfrac{a+b+c}{6}.$$

Bài 12: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).$$

Bài 13: Cho các số dương $a,b,c$ thoả $a+b+c=3$. Chứng minh: $\sqrt{a}+\sqrt{b}+\sqrt{c} \ge ab+bc+ca.$

Bất đẳng thức Cauchy – Phương pháp chọn điểm rơi

1. Chọn điểm rơi

Ví dụ 1: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a}$.

Giải

Ta có $P =\dfrac{a}{4}+\dfrac{1}{a}+\dfrac{3a}{4} \ge 2 \sqrt{ \dfrac{a}{4}. \dfrac{1}{a}}+\dfrac{3.2}{4} =\dfrac{5}{2}.$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{4}=\dfrac{1}{a}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 2: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a^2}$.

Giải

Ta có: $P=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2} +\dfrac{6a}{8} \ge 3 \sqrt[3]{\dfrac{a}{8}. \dfrac{a}{8}. \dfrac{1}{a^2}}+\dfrac{6a}{8}$

$\hspace{6,5cm} \ge \dfrac{3}{4}+\dfrac{6.2}{8} \ge \dfrac{9}{4}.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{8}=\dfrac{1}{a^2}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 3: Cho các số không âm $a,b,c$ thoả $a^2+b^2+c^2=1$. Tìm GTNN của $P=a^3+b^3+c^3.$

Giải

Ta có: $a^3+a^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} a^2$

$b^3+b^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} b^2$

$c^3+c^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} c^2$

Cộng vế theo theo vế ba băt đẳng thức trên ta được

$2(a^3+b^3+c^3)+\dfrac{1}{\sqrt{3}} \ge \sqrt{3}(a^2+b^2+c^2)$

$\Leftrightarrow a^3+b^3+c^3 \ge \dfrac{1}{\sqrt{3}}.$

Dấu bằng xảy ra khi và chỉ chỉ $\begin{cases} a^2+b^2+c^2=1 &\\ a^3=b^3=c^3=\dfrac{1}{3\sqrt{3}} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}.$

Ví dụ 4: Cho $ a, b, c>0$, $a+b+c=1$. Chứng minh $ \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} \le \sqrt{6}. $

Giải

Đặt $P = \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} $.

Áp dụng bất đẳng thức $\sqrt{xy} \le \dfrac{x+y}{2}$ ta được:

$\sqrt{(a+b) \cdot \dfrac{2}{3}} \le \dfrac{a+b+\dfrac{2}{3}}{2}$

$\sqrt{(b+c) \cdot \dfrac{2}{3}} \le \dfrac{b+c+\dfrac{2}{3}}{2}$

$\sqrt{(c+a) \cdot \dfrac{2}{3}} \le \dfrac{c+a+\dfrac{2}{3}}{2}.$

Cộng vế theo vế các bất đẳng thức trên ta được:

$\sqrt{\dfrac{2}{3}} \cdot P \le \dfrac{2(a+b+c)+2}{2}=2 \Leftrightarrow P \le \sqrt{6}$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} a+b+c=1&\\ a+b=b+c=c+a=\dfrac{2}{3} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{3}.$

Ví dụ 5: Cho $a, b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab.$

Giải

Ta có: $\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab = \dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left( 4ab+\dfrac{1}{4ab}\right) + \dfrac{1}{4ab}$

$\hspace{5,4cm} \ge \dfrac{4}{(a+b)^2}+2\sqrt{4ab. \dfrac{1}{4ab}}+\dfrac{1}{(a+b)^2} \ge 7.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} a+b=1&\\a=b \end{cases} \Leftrightarrow a=b=\dfrac{1}{2}.$

Ví dụ 6: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh rằng $$\dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} \ge \dfrac{3}{2}.$$

Giải

Đặt $P = \dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} $

Ta có: $\dfrac{a^2}{1+b}+\dfrac{1+b}{4} \ge a$

$\dfrac{b^2}{1+c}+\dfrac{1+c}{4} \ge b$

$\dfrac{c^2}{1+a}+\dfrac{1+a}{4} \ge c.$

Cộng vế theo vế các bất đẳng thức trên ta được: $$P \ge (a+b+c)-\dfrac{1}{4}(a+b+c)-\dfrac{3}{4} \ge \dfrac{3}{4}.3.\sqrt[3]{abc}-\dfrac{3}{4}= \dfrac{3}{2}.$$

Dấu “=” xảy ra khi và chỉ khi $a=b=c=1.$

2. Bài tập

Bài 1: Cho $a \ge 6.$ Tìm GTNN của $ a^2+\dfrac{18}{a}$.

Bài 2: Cho $x \ge 1$. Tìm GTNN của $P=3x+\dfrac{1}{2x}.$

Bài 3: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=ab+\dfrac{1}{ab}.$

Bài 4: Cho $a,b>0$. Tìm GTNN của $P=\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}.$

Bài 5: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}$.

Bài 6: Cho $a,b>0$ thỏa $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{2ab}$.

Bài 7: Cho $a,b>0$, $a+b=1$. Chứng minh:

a) $a^3+b^3 \ge \dfrac{1}{4}$.

b) $a^4+b^4 \ge \dfrac{1}{8}.$

Bài 8: Cho $a, b, c >0$, $a+b+c=1$. Tìm GTLN của $$ P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}. $$

Bài 9: Cho $a, b, c >0$, $a+b+c=3$. Tìm GTLN của $$ P=\sqrt[3]{a(b+2c)}+\sqrt[3]{b(c+2a)}+\sqrt[3]{c(a+2b)}. $$

Bài 10: Cho $a, b, c >0$, $abc=1$. Chứng minh $$ \dfrac{a^3}{(a+1)(b+1)}+\dfrac{b^3}{(c+1)(a+1)}+\dfrac{c^3}{(a+1)(b+1)} \ge \dfrac{3}{4}. $$

Bài 11: Cho $a, b, c >0$, $a+b+c=3$. Chứng minh $$ \dfrac{a^3}{b(2c+a)}+\dfrac{b^3}{c(2a+b)}+\dfrac{c^3}{a(2b+c)} \ge 1.$$

Bài 12: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} \ge \dfrac{3}{2}$$

Bài 13: Cho các số thực dương $a,b,c$. Chứng minh rằng $$\dfrac{b^2c}{a^3(b+c)}+\dfrac{c^2a}{b^3(c+a)}+\dfrac{a^2b}{c^3(a+b)} \ge \dfrac{1}{2}(a+b+c).$$

Bài 14: Cho $x, y, z>0$, $xyz=1$. Chứng minh $x^3+y^3+z^3 \ge x+y+z$.

Bài 15: Cho $a,b,c>0$. Tìm GTNN của $P=a^3+b^3+c^3$. Biết $a^2+b^2+c^2=3$.

Bài 16: Cho $a,b,c>0$ và $a+2b+3c \ge 20$. Tìm GTNN của $$S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}.$$

Bài 17: Cho các số dương $a,b,c$ thoà $a+b+c=1$. Chứng minh $$a\sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c\sqrt[3]{1+a-b} \le 1.$$

Định lý Viete và áp dụng nâng cao

1. Định lý Viete và áp dụng

Định lý Viete: Nếu phương trình $ax^2 + bx + c=0$ $(a\ne 0)$ có hai nghiệm $x_1$, $x_2$ $(\Delta \ge 0)$  thì $$S=x_1+x_2 =-\dfrac{b}{a},\ P=x_1x_2 = \dfrac{c}{a}$$

Ví dụ 1: Cho phương trình $x^3 -4x\sqrt{x} +m + 1=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-33$

b) Tìm $m$ để phương trình $(1)$ có đúng hai nghiệm phân biệt $x_1$, $x_2$ thỏa $x_1^6 +x_2^6=82$.

Giải

Đặt $t=x\sqrt{x} \ge 0$

a) Khi $m=-33$ ta có phương trình: $t^2 -4t -32=0  \Leftrightarrow t=-4 \ ( \text{loại})  \text{ hoặc } \ t=8  ( \text{nhận})$

Với $t = 8$ ta được $x = 4$.

b) Với $t=x\sqrt{x}$ thì phương trình $(1)$ tương đương $t^2-4t+m+1=0 \ \ \ (2)$

Để $(1)$ có hai nghiệm phân biệt thì $(2)$ phải có hai nghiệm phân biệt không âm $\Leftrightarrow \begin{cases} \Delta’>0 &\\\\ S>0 &\\\\ P\ge 0 \end{cases}$

Ta có $\Delta’ =3-m >0 \Leftrightarrow m<3 $ và $\left\{ \begin{array}{l} S=t_1 + t_2 =4 \\ P =t_1t_2=m+1 \end{array} \right. $

Khi đó $x_1^6 + x_2^6 = t_1^4 + t_2^4 $

$= \left( t_1^2 + t_2^2 \right) ^2 – 2t_1^2 t_2^2 $

$= \left[ S^2 -2P \right] ^2 -2P^2 $

$= (14-2m)^2 -2(m+1)^2 $

$= 2m^2 -60m +194 $

$x_1^6 + x_2^6 =82 \Leftrightarrow m^2 -30m +56 =0 \Leftrightarrow \left[ \begin{array}{l} m=2 \\ m=28 \end{array} \right.$

Chỉ có $m=2$ thoả các điều kiện. Vậy $m=2$ thoả yêu cầu đề bài.

Ví dụ 2: Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 \ (1)$.

a) Giải phương trình $(1)$ khi $m = -8$.

b) Tìm $m$ để phương trình $(1)$ có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Giải

a) Điều kiện $x > 0$.

Khi $m = -8$ ta có phương trình:

$\dfrac{(x+1)(x^2-8x-2)}{\sqrt{x}} = 0 \Leftrightarrow x^2-8x – 2 = 0$ (do $x+1 > 0$).

$\Leftrightarrow x = 4+3\sqrt{2} $ (n) hoặc  $x=4-3\sqrt{2} $ (l).

Vậy phương trình có một nghiệm $x = 4 +3\sqrt{2}$.

b) Phương trình $(1)$ tương đương $x^2+mx+2m+14 = 0$  $(2)$

Để $(1)$ có $2$ nghiệm phân biệt thì $(2)$ có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0,  S = -m > 0,  P = 2m + 14 >0   (*)$

Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.

Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

$\Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$

$\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9$

$\Leftrightarrow 2\sqrt{2m+14}=9+m $ (điều kiện $m\ge -9$)

$\Leftrightarrow 4(2m+14) = m^2+18m+81 $

$\Leftrightarrow m^2 +10m+25 = 0 $

$\Leftrightarrow m = -5 \,\, (n) $

Vậy $m = -5$ thoả yêu cầu đề bài.

Ví dụ 3: Gọi $a, b$ là hai nghiệm của phương trình $x^2 + px + 1 = 0$; $c, d$ là hai nghiệm của phương trình $y^2 + qy + 1 = 0$. Chứng minh rằng $$(a-c)(a-d)(b-c)(b-d) = (p-q)^2$$

Giải

Theo định lý Viete ta có $a+b=-p, ab = 1$ và $c+d = -q, cd = 1$.

Khi đó $(a-c)(a-d)(b-c)(b-d) = (a^2-a(c+d)+cd)(b^2-b(c+d)+cd)$

$= (a^2+aq+1)(b^2+bq+1)$

$= a^2b^2+abq^2+ab^2q + a^2bq + a^2+b^2+aq+bq+1$

$= 1+q^2+abq(a+b) + q(a+b)+1+(a+b)^2-2ab$

$= q^2-2pq+p^2 = (p-q)^2$.

Ví dụ 4: Cho phương trình $(m^2+5)x^2-2mx-6m=0$.

a) Tìm $m$ để phương trình có hai nghiệm phân biệt. Chứng minh rằng khi đó tổng hai nghiệm không thể là số nguyên.

b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thoả $(x_1x_2-\sqrt{x_1+x_2})^4=16.$

Giải

a) Phương trình có hai nghiêm phân biệt khi và chỉ khi:

$\begin{cases} m^2+5 \ne 0 &\\ \Delta’=m^2+6m(m^2+5)>0 \end{cases}$

$\Leftrightarrow m(6m^2+m+30)>0$

$\Leftrightarrow m[5m^2+(m+\dfrac{1}{2})^2+\dfrac{119}{4}] >0$

$\Leftrightarrow m>0.$

Khi đó theo định lý Viete ta có $x_1 + x_2 = \dfrac{2m}{m^2+5}$.

Vì $m^2+5-2m = (m-1)^2 + 4 > 0$, suy ra $m^2+5 >2m > 0$.

Do đó $0 < \dfrac{2m}{m^2+5} < 1$ nên tổng hai nghiệm của phương trình không thể là số nguyên.

b) Điều kiện để phương trình có hai nghiệm $\Delta’ \geq 0 \Leftrightarrow m \geq 0$. Khi đó

$\begin{cases} x_1+x_2=\dfrac{2m}{m^2+5}&\\ x_1x_2=-\dfrac{6m}{m^2+5}. \end{cases}$

Ta có $(x_1x_2-\sqrt{x_1+x_2})^4=16 \Leftrightarrow x_1x_2-\sqrt{x_1+x_2}=2$ hoặc $x_1x_2-\sqrt{x_1+x_2}=-2$

Trường hợp 1: $x_1x_2 – \sqrt {x_1 + x_2} = 2 \Leftrightarrow \dfrac{{ – 6m}}{{{m^2} + 5}} – \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} = 2$ .

Đặt $t = \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} $ , ta có phương trình: $ – 3{t^2} – t = 2\left( {VN} \right)$

Trường hợp 2:  ${x_1}{x_2} – \sqrt {{x_1} + {x_2}} = – 2 \Leftrightarrow \dfrac{{ – 6m}}{{{m^2} + 5}} – \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} = – 2$ .

Đặt $t = \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} $ ta có phương trình: $-3t^2 -t = -2 \Leftrightarrow t = -1 (l), t=\dfrac{2}{3}$.

Với $t = \dfrac{2}{3}$ ta có $\dfrac{2m}{m^2+5} = \dfrac{4}{9}$. Giải ra được $m = 2\ (n), m = \dfrac{5}{2}\ (n)$.

Ví dụ 5: Cho phương trình $x^2-px+p=0$ với $p$. Tồn tại hay không số nguyên dương $p$ sao cho phương trình đã cho có nghiệm nguyên?

Giải

Ta có $\Delta=p^2-4p$.

Để phương trình có nghiệm nguyên thì $\Delta $ phải là số chính phương. Suy ra tồn tại số nguyên dương $k$ để

$p^2-4p=k^2$

$\Leftrightarrow k^2-(p-2)^2=4$

$\Leftrightarrow (k+p-2)(k-p+2)=4.$

Vì $k+p-2+k-p+2=2k $ là một số chẵn nên cả hai số $k+p-2$ và $k-p+2$ đều là số chẵn.

Từ đó $k+p-2=k-p+2=2$ hoặc $k+p-2=k-p+2=-2$.

Suy ra $p=2$. Khi đó phương trình trở thành $$x^2-2x+2=0.$$

Phương trình trên vô nghiệm vậy không tồn tại số nguyên dương $p$ thoả yêu cầu đề bài.

Ví dụ 6: Giả sử phương trình $2x^2+2ax+1-b=0$ có hai nghiệm nguyên . Chứng minh rằng $a^2-b^2+2$ là số nguyên không chia hết cho 3.

Giải

Theo định lý Viete ta có $x_1 + x_2 = -a, x_1x_2 = \dfrac{1-b}{2}$.

Khi đó $$Q= a^2 – b^2 + 2 = (x_1+x_2)^2 – (2x_1x_2-1)^2 + 2 = x_1^2 + x_2^2 -4x_1^2x_2^2 + 6x_1x_2 + 1$$ là một số nguyên.

Ta sẽ chứng minh $Q$ không chia hết cho 3.

Ta có tính chất sau, với một số nguyên $m$ bất kì thì nếu $m$ chia hết cho 3 thì $m^2$ chia hết cho 3. Nếu $m$ chia 3 dư 1 hoặc 2 thì $m^2$ chia 3 dư 1.

Ta có $Q = x_1^2 +x_2^2 – x_1^2x_2^2 + 1 – 3x_1^2x_2^2 + 6x_1x_2$.

Ta cần chứng minh $Q’ = x_1^2 + x_2^2 – x_1^2x_2^2 + 1$ không chia hết cho 3. Xét xác trường hợp sau:

TH1: Nếu $x_1, x_2$ không chia hết cho 3 thì $x_1^2 , x_2^2$ chia 3 dư 1. Khi đó $Q’$ chia 3 dư 2.

TH2: Nếu $x_1$ chia hết cho 3, $x_2$ không chia hết cho 3, khi đó $Q’$ chia 3 dư 2.

TH3: $x_1, x_2$ chia hết cho 3. Khi đó $Q’$ chia 3 dư 1.

Vậy $Q’$ không chia hết cho 3.

Do đó $Q$ không chia hết cho 3.

Ví dụ 7: Cho hai phương trình $x^2+ax+6=0$ và $x^2+bx+12=0$ có một nghiệm chung. Tìm GTNN của $|a|+|b|$.

Giải

Gọi $x_0$ là nghiệm chung của hai phương trình. Khi đó ta có

$\begin{cases} x_0^2+ax_0+6=0 \ \ \ (1)&\\ x_0^2+bx_0+12=0 \ \ \ (2) \end{cases}.$

Cộng vế theo vế hai phương trình trên ta được $2x_0^2+(a+b)x_0+18=0 \ \ \ (3).$

Tồn tại $x_0 \Leftrightarrow $ phương trình (3) phải có nghiệm $\Leftrightarrow \Delta=(a+b)^2-144 \ge 0 \Leftrightarrow |a+b| \ge 12.$

Mặt khác $|a|+|b| \ge |a+b| \ge 12$. Dấu “=” xảy ra $\Leftrightarrow \begin{cases} ab \ge 0&\\|a+b|=12. \end{cases}$

Nếu $a+b=12$ thì từ (3) suy ra $ 2x_0^2+12x_0+18=0$

$\Leftrightarrow x_0^2+6x_0+9=0$

$\Leftrightarrow (x_0+3)^2=0$

$\Leftrightarrow x_0=-3.$

Thay vào (1) và (2) suy ra $a=5, b=7$.

Nếu $a+b=-12$ thì từ (3) suy ra $2x_0^2-12x_0+18=0 \Leftrightarrow x_0=3.$

Thay vào (1) và (2) suy ra $a=-5, b=-7.$

Vậy GTNN của $|a|+|b|$ bằng 12 khi $(a,b)=(5,7)$ hoặc (-5,-7).

Ví dụ 8: Giả sử phương trình $ax^2+bx+c=0$ có hai nghiệm thuộc $[0,3]$. Tìm GTLN, GTNN của biểu thức $A=\dfrac{18a^2-9ab+b^2}{9a^2-3ab+ac}.$

Giải

Vì phương trình đã cho có hai nghiệm nên $a \ne 0$.

Khi đó $A=\dfrac{18- 9 \dfrac{b}{a}+ \left( \dfrac{b}{a}\right) ^2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}.$

Gọi $x_1, x_2$ là hai nghiệm của phương trình đã cho. Khi đó $\begin{cases} x_1+x_2=-\dfrac{b}{a}&\\x_1x_2=\dfrac{c}{a}. \end{cases}$

Biểu thức cần tính trở thành

$A=\dfrac{18- 9 \dfrac{b}{a}+ \left( \dfrac{b}{a}\right) 2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{18+9(x_1+x_2)+(x_1+x_2)^2}{9+3(x_1+x_2)+x_1x_2}$

Giả sử $0 \le x_1 \le x_2 \le 3 \Rightarrow \begin{cases} x_1^2 \le x_1x_2&\\ x_2^2 \le 9 \end{cases} \Rightarrow (x_1+x_2)^2 \le x_1^2+x_2^2+2x_1x_2 \le 9+3x_1x_2.$

Suy ra $Q=\dfrac{18- 9 \dfrac{b}{a}+ (\dfrac{b}{a})^2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}$

$=\dfrac{18+9(x_1+x_2)+(x_1+x_2)^2}{9+3(x_1+x_2)+x_1x_2} $

$\le \dfrac{18+9(x_1+x_2)+9+3x_1x_2}{9+3(x_1+x_2)+x_1x_2}=3.$

Dấu “=” xảy ra khi và chỉ khi $x_1=x_2=3$ hoặc $x_1=0$ và $x_2=3.$

Nếu $x_1=x_2=3$ thì $\begin{cases} \dfrac{-b}{a}=6&\\ \dfrac{c}{a}=9 \end{cases} \Leftrightarrow \begin{cases} b=-6a&\\ c=9a. \end{cases}$

Nếu $x_1=0, x_2=3$ thì $\begin{cases} -\dfrac{b}{a}=3&\\ \dfrac{c}{a}=0 \end{cases} \Leftrightarrow \begin{cases} b=-3a&\\ c=0. \end{cases}$

Ta có $$A-2=\dfrac{3(x_1+x_2)+x_1^2+x_2^2}{9+3(x_1+x_2)+x_1x_2} \ge 0 \Rightarrow A \ge 2.$$

Dấu “=” xảy ra khi $x_1=x_2=0 \Leftrightarrow b=c=0.$

Vậy GTLN của A là 3 và GTNN của A là 2.

2. Bài tập rèn luyện

Bài 1: Tìm $m$ để phương trình $\dfrac{(x+1)[m(mx+1)x+1-x]}{\sqrt{x}}=0$ có nghiệm.

Bài 2: Cho phương trình $(x^2-4(m+1)x-2m^2-1)(\sqrt{x}+x-6)=0$.

a) Giải phương trình khi $m=1$.

b) Chứng minh phương trình không thể có 3 nghiệm phân biệt.

Bài 3: Cho phương trình $\sqrt{x}(x+1)[mx^2+2(m+2)x+m+3=0]$.

a) Giải phương trình khi $m=1$.

b) Chứng minh phương trình không thể có 3 nghiệm phân biệt.

Bài 4: Cho phương trình $\dfrac{\sqrt{x}(mx^2-3(m+1)x+2m+3)}{x-2}=0$.

a) Giải phương trình khi $m=2$.

b) Tìm $m$ để phương trình có 3 nghiệm phân biệt.

Bài 5: Cho phương trình $x^4+2mx^2+4=0$.

a) Giải phương trình với $m=3$.

b) Tìm $m$ để phương trình có 0,1,2,3,4 nghiệm

c) Tìm $m$ để phương trình có 4 nghiệm phân biệt thoả $x_1^4+x_2^4+x_3^4+x_4^4=32$.

Bài 6: Cho phương trình $x^2-2(m+1)|x-2|-4x+m=0$.

a) Giải phương trình khi $m$=1.

b) Tìm $m$ để phương trình có 0,1,2,3,4 nghiệm.

Bài 7: Tìm $m$ để phương trình $x^3+2(m-1)x^2+(m^2-4m+1)x-2(m^2+1)=0$ có ba nghiệm phân biệt nhỏ hơn 3.

Bài 8: Tìm $m$ để phương trình $x^3-2mx^2+(2m^2-1)x+m(1-m^2)=0$ có 3 nghiệm phân biệt lớn hơn 1.

Bài 9: Cho phương trình $x++2\sqrt{x-1}-m^2+6m-11=0.$

a) Giải phương trình khi $m=2$.

b) Chứng minh rằng phương trình có nghiệm với mọi $m$.

Bài 10: Cho phương trình $(x^2-mx-2m^2)\sqrt{x-3}=0$.

a) Giài phương trình khi $m=2$.

b) Tìm $m$ để phương trình có hai nghiệm thoả $x_1^2+2x_2^2=7m^2+2$.

c) Chứng minh rằng phương trình đã cho luôn có không quá hai nghiệm phân biệt.

Bài 11: Cho phương trình $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$.

a) Giải phương trình khi $m=-1$.

b) Tìm $m$ để phương trình có hai nghiệm thoả $21x_1+7m(2+x_2+x_2^2)=58.$

Hệ phương trình – Phương pháp đặt ẩn phụ – Hệ đối xứng loại một

1. Hệ phương trình đối xứng loại một

Mục đích của đặt ẩn phụ là ta đưa hệ phương trình đã cho về một hệ phương trình đơn giản hơn đã biết cách giải, giải được hệ mới từ đó ta giải được hệ đã cho.

Trong phương pháp này, ứng dụng đầu tiên là áp dụng cho giải các hệ đối xứng loại một.

Hệ đối xứng loại một là hệ có dạng $\left\{\begin{array}{l} f(x,y)=0 (1) \\ g(x,y)=0 (2) \end{array} \right.$ trong đó $f(y, x) = f(y,x)$ và $g(x,y) = g(y,x)$, hay nói cách khác các biểu thức $f(x,y), g(x,y)$ là các biểu thức đối xứng theo hai biến $x, y$. Để giải hệ, ta thường đặt $s = x+y, p= xy$, từ đó đưa hệ về theo ẩn $s, p$. Giải $s,p$ ta sẽ giải được $x,y$. Sau đây là một số ví dụ, các bạn theo dõi nhé.

Ví dụ 1: Giải hệ phương trình $\begin{cases} x+y+xy=1 &\\ x^2+y^2+3xy=3. \end{cases} $

Giải

Đặt $S=x+y, P=xy$. Điều kiện $S^2 \ge 4P$.

Khi đó hệ trở thành $\begin{cases} S+P=1 &\\ S^2+P=3 \end{cases} \Leftrightarrow \begin{cases} P=1-S &\\ S^2-S-2=0.\end{cases}.$

Ta có $S^2-S-2=0 \Leftrightarrow S=-1$ hoặc $S=2.$

Nếu $S=-1$ thì $P=2$ (loại).

Nếu $S=2$ thì $P=-1$.

Khi đó $x,y $ là nghiệm của phương trình: $X^2-2X-1=0 \Leftrightarrow X=1\pm \sqrt{2}$.

Suy ra $(x,y)=(1+\sqrt{2};1-\sqrt{2})$ hoặc $(x,y)=(1-\sqrt{2}; 1+\sqrt{2}).$

Vậy hệ đã cho có nghiệm $(x,y)=(1+\sqrt{2};1-\sqrt{2})$ hoặc $(x,y)=(1-\sqrt{2}; 1+\sqrt{2}).$

Ví dụ 2: Giải hệ phương trình $\begin{cases}x-y+xy=1&\\ x^2+y^2=2 \end{cases}$

Giải

Đặt $u=x-y, v=xy$. Ta được hệ

$\begin{cases} u+v=1&\\ u^2+2v=2. \end{cases} $

$\Leftrightarrow \begin{cases} v=1-u&\\ u^2+2(1-u)=2 \end{cases}$

$\Leftrightarrow \begin{cases}v=1-u&\\ u^2-2u=0 \end{cases}$

$\Leftrightarrow \begin{cases} u=0&\\ v=1 \end{cases}$ hoặc  $\begin{cases} u=2&\\ v=-1. \end{cases}$

Trường hợp $\begin{cases} u=0&\\ v=1 \end{cases} \Leftrightarrow \begin{cases} x-y=0&\\ xy=1 \end{cases} \Leftrightarrow \begin{cases} x=1&\\ y=1 \end{cases}$  hoặc $\begin{cases} x=1&\\ y=-1. \end{cases}$.

Vậy hệ có nghiệm $(x,y)$ là  $(1,1), (-1,-1)$ hoặc $(1,-1)$.

Ví dụ 3: Giải hệ phương trình $\begin{cases} 2(x+y)=3(\sqrt[3]{x^2y}+\sqrt[3]{xy^2})&\\ \sqrt[3]{x}+\sqrt[3]{y}=6 \end{cases} $

Giải

Đặt $S=\sqrt[3]{x} + \sqrt[3]{y}$, $P=\sqrt[3]{xy}$ điều kiện $S^2\ge 4P$

Ta có: $S^3 = x+y + 3\sqrt[3]{xy}\left( \sqrt[3]{x} + \sqrt[3]{y}\right) \Rightarrow x+y = S^3 – 3SP$

Khi đó hệ phương trình trở thành

$\begin{cases} 2(S^3-3SP)=3SP&\\ S=6 \end{cases} \Leftrightarrow \begin{cases} S=6&\\ P=8 \end{cases}$

Với $\begin{cases} S=6&\\ P=8\end{cases} \Leftrightarrow  \begin{cases} \sqrt[3]{x} + \sqrt[3]{y} =6&\\ \sqrt[3]{xy} =8 \end{cases} \Leftrightarrow  \begin{cases} x=64&\\ y=8 \end{cases}$ hoặc $\begin{cases} x=8&\\ y=64 \end{cases}$

Vậy $(x;y) \in \left\{ (64;8); (8;64)\right\} $

Ví dụ 4: Giải hệ phương trình $\begin{cases} \dfrac{x}{y}+\dfrac{y}{x}=\dfrac{26}{5}&\\ x^2-y^2=24 \end{cases}$ $(*)$

Giải

Điều kiện $xy \ne 0$.

$(*) \Leftrightarrow \begin{cases} x^2+y^2=\dfrac{26}{5}xy&\\ (x-y)(x+y)=24\end{cases}\\ \Rightarrow \begin{cases} (x+y)^2-2xy=\dfrac{26}{5}xy&\\ [(x+y)^2-4xy](x+y)^2=24^2. \end{cases}$.

Đặt $u=(x+y)^2, v=xy$ ta được $\begin{cases} u=\dfrac{36}{v}&\\ u^2-4uv=24^2 \end{cases}\Leftrightarrow \begin{cases} u=36&\\ v=5. \end{cases}$

Từ đó ta được hệ phương trình $\begin{cases} (x+y)^2=36&\\ xy=5. \end{cases}$.

Trường hợp $\begin{cases} x+y=6&\\ xy=5 \end{cases} \Leftrightarrow \begin{cases} x=1&\\ y=5 \end{cases}$ hoặc $\begin{cases} x=5&\\ y=1. \end{cases}$

Trường hợp $\begin{cases}x+y=-6&\\ xy=5 \end{cases} \Leftrightarrow \begin{cases} x=-1&\\ y=-5 \end{cases}$ hoặc $\begin{cases} x=-5&\\ y=-1. \end{cases}$

Ví dụ 5: Giải hệ phương trình $\begin{cases} \dfrac{x^2}{(y+1)^2}+\dfrac{y^2}{(x+1)^2}=\dfrac{1}{2}&\\ 3xy=x+y+1. \end{cases}$

Giải

Điều kiện $(x+1)(y+1) \ne 0$.

Hệ $\Leftrightarrow \begin{cases} \left( \dfrac{x}{y+1}\right) ^2+\left( \dfrac{y}{x+1}\right) ^2=\dfrac{1}{2}&\\ \dfrac{xy}{(x+1)(y+1)}=\dfrac{1}{4} \end{cases}$.

Đặt $u=\dfrac{x}{y+1}, v=\dfrac{y}{x+1}$ ta được $\begin{cases}uv=\dfrac{1}{4}&\\ u^2+v^2=\dfrac{1}{2} \end{cases} \Leftrightarrow \begin{cases} u+v=1&\\ uv=\dfrac{1}{4} \end{cases}$ hoặc $\begin{cases} u+v=-1&\\ uv=-\dfrac{1}{4}. \end{cases}$

Trường hợp $\begin{cases}u+v=1&\\ uv=\dfrac{1}{4} \end{cases} \Leftrightarrow \begin{cases} \dfrac{x}{y+1}=\dfrac{1}{2}&\\  \dfrac{y}{x+1}=\dfrac{1}{2} \end{cases} \Leftrightarrow \begin{cases} 2x-y=1&\\ 2y-x=1 \end{cases} \Leftrightarrow x=y=1.$

Trường hợp $\begin{cases}u+v=-1&\\ uv=\dfrac{1}{4} \end{cases}$ giải tương tự ta được $x=y=-\dfrac{1}{3}.$

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( -\dfrac{1}{3}; -\dfrac{1}{3}\right) , (1;1)\right\} .$

2. Bài tập

Bài 1:  Giải các hệ phương trình sau:

a) $\begin{cases} x^2+xy+y^2=4&\\ x+xy+y=2 \end{cases}$

b) $\begin{cases} x+y+xy=3&\\ x^2y+xy^2=2 \end{cases}$

c) $\begin{cases} x^2+y^2+x+y=8&\\ xy+x+y=5 \end{cases}$

d) $\begin{cases} x^2+y^2=1&\\ x^3+y^3=1 \end{cases}$

e) $\begin{cases} x^2+y^2=1&\\ x^8+y^8=x^{10}+y^{10} \end{cases}$

f) $\begin{cases} 3xy-x^2-y^2=5&\\ 7x^2y^2-x^4-y^4=155 \end{cases}$

g) $\begin{cases} \dfrac{1}{x}+\frac{1}{y}+xy=\dfrac{7}{2}&\\ x+y=\dfrac{3}{2}xy \end{cases}$

h) $\begin{cases} (x-y)(x^2-y^2)=3&\\ (x+y)(x^2+y^2)=15 \end{cases}$

i) $\begin{cases} (x^2+y^2)xy=78&\\ x^4+y^4=97 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} x^2+xy+y^2=1&\\ x-y-xy=3 \end{cases}$

b) $\begin{cases} x-y+xy=1&\\ x^2+y^2=2 \end{cases}$

c) $\begin{cases} x^3y^3+1=2y^3&\\ \dfrac{x^2}{y}+\dfrac{x}{y^2}=2. \end{cases}$

d) $\begin{cases} x^2+y^2+x^2y^2=1+2xy&\\ (x-y)(1+xy)=1-xy \end{cases}$

e) $\begin{cases} \dfrac{y}{x}+\dfrac{x}{y}=\dfrac{26}{5}&\\ x^2-y^2=24 \end{cases}$

f) $\begin{cases} x^2+y^2+xy=3&\\ xy^3+x^3y=2 \end{cases}$

g) $\begin{cases} x+y+\dfrac{x}{y}=4&\\ x^2+xy-y=0 \end{cases}$

h) $\begin{cases} x-2y+\dfrac{x}{y}=6&\\ x^2-2xy-6y=0 \end{cases}$

i)  $\begin{cases} \dfrac{y}{x}+\dfrac{x}{y}=2&\\ \dfrac{1}{x}+\dfrac{1}{y}+x+y=4 \end{cases}$

j) $\begin{cases} x+y+\dfrac{x}{y}+\dfrac{y}{x}=4&\\ x+y+\dfrac{x^2}{y}+\dfrac{y^2}{x}=4 \end{cases}$

k) $\begin{cases} x+y+x^2y^2=3xy&\\ \dfrac{1}{x}+\dfrac{1}{y}-xy=1 \end{cases}$

l) $\begin{cases} x(x+1)+\dfrac{1}{y}\left( \dfrac{1}{y}+1\right) =4&\\ x^3y^3+xy+x^2y^2+1=4y^3 \end{cases}$

m) $\begin{cases} (x^2+y^2)\left( 1+\dfrac{1}{x^2y^2}\right) =49&\\ (x+y)\left( 1+\dfrac{1}{xy}\right) =5 \end{cases}$

3. Phương pháp đặt ẩn phụ

Ví dụ 6: Giải hệ phương trình $\begin{cases} x^2+y^2=xy+x+y&\\ x^2-y^2=3. \end{cases}$

Giải

Đặt $u=x+y, v=x-y$ khi đó hệ trở thành

$ \begin{cases} \dfrac{u^2+v^2}{2}=\dfrac{u^2-v^2}{4}+u&\\ uv=3 \end{cases} $

$\Leftrightarrow \begin{cases} u^2+3v^2-4u=0&\\ uv=3 \end{cases} $

$\Leftrightarrow \begin{cases} u^2+\dfrac{27}{u^2}-4u=0&\\ v=\dfrac{3}{u} \end{cases}$

$\Leftrightarrow \begin{cases} u^4-4u^3+27=0 &\\ v=\dfrac{3}{u} \end{cases}$

$\Leftrightarrow \begin{cases} (u-3)^2(u^2+2u+3)=0&\\ v=\dfrac{3}{u} \end{cases} $

$\Leftrightarrow \begin{cases} u=3&\\ v=1 \end{cases} $

$\Leftrightarrow \begin{cases} x+y=3&\\ x-y=1 \end{cases} \Leftrightarrow \begin{cases} x=2&\\ y=1. \end{cases}$

Vậy hệ có nghiệm $(x,y)=(2;1).$

Ví dụ 7: Giải hệ phương trình $\begin{cases} y(x^2+1)=2x(y^2+1)&\\ (x^2+y^2)\left( 1+\dfrac{1}{x^2y^2}\right) =24 \end{cases}$

Giải

Điều kiện $xy \ne 0$.

Đặt $u=x+\dfrac{1}{x}, v=y+\dfrac{1}{y}$ ta được hệ

$\begin{cases} \dfrac{u}{v}=2 &\\ u^2+v^2=20 \end{cases} \Leftrightarrow \begin{cases} u=2v&\\ 5v^2=20 \end{cases} \Leftrightarrow \begin{cases} u=\pm4 &\\ v=\pm 2. \end{cases}$.

Trường hợp $\begin{cases} u=4&\\ v=2 \end{cases}$ ta được

$\begin{cases} x+\dfrac{1}{x}=4&\\ y+\dfrac{1}{y}=2 \end{cases} \Leftrightarrow \begin{cases} x^2-4x+1=0&\\ y^2-2x+1=0 \end{cases} \Leftrightarrow \begin{cases} x=2 \pm \sqrt{3}&\\ y=1. \end{cases}$

Trường hợp $ \begin{cases} u=-4&\\ v=-2 \end{cases}$ ta được

$\begin{cases} x+\dfrac{1}{x}=-4&\\ y+\dfrac{1}{y}=-2 \end{cases} \Leftrightarrow \begin{cases} x^2+4x+1=0&\\ y^2+2y+1=0 \end{cases} \Leftrightarrow \begin{cases}x= -2 \pm \sqrt{3}&\\ y=-1. \end{cases}$

Vậy hệ có nghiệm $(x,y)\in \left\{ (2 \pm \sqrt{3};1); (-2 \pm \sqrt{3};-1)\right\} $.

Ví dụ 8: Giải hệ phương trình $\begin{cases} (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=9&\\ (x^3+y^3)\left( 1+\dfrac{1}{xy}\right) ^3=27. \end{cases}$

Giải

Điều kiện $xy \ne 0.$

Đặt $u=x+\dfrac{1}{y}, v=y+\dfrac{1}{x}.$ Ta được hệ

$\begin{cases} u^2+v^2=9&\\ u^3+v^3=27 \end{cases} \Leftrightarrow \begin{cases} (\dfrac{u}{3})^2+(\dfrac{v}{3})^2=1&\\ (\dfrac{u}{3})^3+(\dfrac{v}{3})^3=1 \end{cases}$

$\Leftrightarrow \begin{cases} \dfrac{u}{3} =1 &\\ v=0 \end{cases} \ \text{hoặc} \ \begin{cases} v=0&\\ \dfrac{v}{3} =1. \end{cases}$

Trường hợp $\begin{cases} u=3&\\ v=0 \end{cases} \Leftrightarrow \begin{cases} x+\dfrac{1}{y}=3&\\ y+\dfrac{1}{x}=0 \end{cases} \Leftrightarrow $ hệ vô nghiệm.

Trường hợp còn lại tương tự.

Vậy hệ đã cho vô nghiệm.

 

Ví dụ 9: Giải hệ phương trình $\begin{cases} 2x-y=1+\sqrt{x(1+y)}&\\ x^3-y^2=7. \end{cases}$

Giải

Điều kiện $x(y+1) \ge 0.$

Dễ dàng kiểm tra $(0,y)$ và $(x,-1)$ không là nghiệm của hệ. Xét $x \ne 0$ và $y \ne -1.$

Từ phương trình thứ nhất của hệ ta được

$2x=1+y+\sqrt{x(y+1)}  \Leftrightarrow 2\sqrt{\dfrac{x}{y+1}}=\sqrt{\dfrac{y+1}{x}}+1.$

Đặt $t=\sqrt{\dfrac{y+1}{x}}>0$ ta được

$ t^2+t-2=0 \Leftrightarrow t=1 \ \text{hoặc} \ t=-2 \text{(loại)}.$

Trường hợp $t=1 \Leftrightarrow y=x-1$ thay vào phương trình thứ hai của hệ ta được

$ x^3-x^2+2x-8=0 \Leftrightarrow (x-2)(x^2+x+4)=0 \Leftrightarrow x=2.$

Với $x=2$ thì $y=x-1=1$.

Vậy hệ có nghiệm $(x,y)=(2,1)$.

Ví dụ 10: Giải hệ phương trình $\begin{cases} (2x-y+2)(2x+y)+6x-3y=-6&\\ \sqrt{2x+1}+\sqrt{y-1}=4. \end{cases}$

Giải

Điều kiện $x \ge -\dfrac{1}{2}, y \ge 1$.

Đặt $\begin{cases} u=\sqrt{2x+1}&\\ v=\sqrt{y-1}\end{cases}$. Hệ trở thành

$\begin{cases} (u^2-v^2)(u^2+v^2)+3(u^2-v^2-2)=-6&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} 4(u-v)(u^2+v^2+3)=0&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} u=v&\\ u+v=4 \end{cases}$

$\Leftrightarrow \begin{cases} u=2&\\ v=2 \end{cases}$

$\Leftrightarrow \begin{cases} x=\dfrac{3}{2}&\\ y=5. \end{cases}$

Vậy hệ có nghiệm duy nhất $\begin{cases} x=\dfrac{3}{2}&\\ y=5. \end{cases}$

Ví dụ 11: Giải hệ phương trình $\begin{cases} x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}&\\ x^4+y^2+xy(1+2x)=-\dfrac{5}{4} \end{cases}$

Giải

Hệ $\Leftrightarrow \begin{cases} x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}&\\ (x^2+y)^2+xy=-\dfrac{5}{4.} \end{cases}$

Đặt $\begin{cases} u=x^2+y&\\ v=xy \end{cases}$. Hệ trở thành $\begin{cases} u+v+uv=-\dfrac{5}{4}&\\ u^2+v=-\dfrac{5}{4}. \end{cases}$

Trừ vế theo vế hai phương trình trên ta được

$u^2-uv-u=0  \Leftrightarrow u(u-v-1)=0 \Leftrightarrow u=0 \ \text{hoặc} \ u=1+v.$

Với $u=0 \Rightarrow v=-\dfrac{5}{4}$.

Với $u=v+1$ thay vào phương trình thứ hai của hệ trên ta được

$4u^2+4u+1=0 \Leftrightarrow u=-\dfrac{1}{2} \Rightarrow v=-\dfrac{3}{2}.$

Trường hợp $\begin{cases} u=0&\\ v=-\dfrac{5}{4} \end{cases}$

$\Leftrightarrow \begin{cases} y=-x^2&\\ x^3=\dfrac{5}{4} \end{cases}$

$\Leftrightarrow \begin{cases} x=\sqrt[3]{\dfrac{5}{4}}&\\ y=-\sqrt[3]{\dfrac{25}{16}} \end{cases}$

Trường hợp  $\begin{cases} u=-\dfrac{1}{2}&\\ v=-\dfrac{3}{2} \end{cases}$

$\Leftrightarrow \begin{cases} x^2+y=-\dfrac{1}{2}&\\ xy=-\dfrac{3}{2} \end{cases}$

$\Leftrightarrow \begin{cases} x^2-\dfrac{3}{2x}=-\dfrac{1}{2}&\\ xy=-\dfrac{3}{2} \end{cases} $

$\Leftrightarrow \begin{cases} x=1&\\ y=-\dfrac{3}{2}. \end{cases}.$

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( 1; -\dfrac{3}{2}\right) ; \left( \sqrt[3]{\dfrac{5}{4}};-\sqrt[3]{\dfrac{25}{16}}\right) \right\} .$

4. Bài tập

Bài 1: Giải các hệ phương trình

a) $\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5&\\ \sqrt{2x+y}+x-y=2. \end{cases}$

b) $\begin{cases} x^2+y^2=\dfrac{1}{2}&\\ 2x^3+6y^2x=1. \end{cases}$

c) $\begin{cases} x^3+3xy^2=-49&\\ x^2-8xy+y^2=8y-17 \end{cases}$

d) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =4&\\ xy+\dfrac{1}{xy}+\dfrac{x^2+y^2}{xy}=4. \end{cases}$

e) $\begin{cases} (x+y)(1+xy)=18xy&\\ (x^2+y^2)(1+x^2y^2)=208x^2y^2 \end{cases}$

f) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =5&\\ xy+\dfrac{1}{xy}=4 \end{cases}$

g) $\begin{cases} (x+y)\left( 1+\dfrac{1}{xy}\right) =6&\\ (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=18 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $ \begin{cases}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3} &\\ (x+y)\left( 1+\dfrac{1}{xy}\right) =6 \end{cases}$

b) $\begin{cases} xy(2x+y-6) +y+2x=0&\\ (x^2+y^2)\left( 1+\dfrac{1}{xy}\right) ^2=8 \end{cases}$

c) $\begin{cases}2x^2y+y^2x+2y+x=6xy&\\ xy+\dfrac{1}{xy} +\dfrac{y}{x}+\dfrac{x}{y}=4 \end{cases}$

d) $\begin{cases} x^2y^2+y^4+1=3y^2&\\ xy^2+x=2y \end{cases}$

e) $\begin{cases} 2x+y+\dfrac{1}{x}=4&\\ x^2+xy+\dfrac{1}{x}=3. \end{cases}$

f) $\begin{cases} x^2y+y=2&\\ x^2+\dfrac{1}{x^2}+x^2y^2=3. \end{cases}$

g) $\begin{cases} x^2+y^2+x+y=4xy&\\ \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{y}{x^2}+\dfrac{x}{y^2}=4 \end{cases}$

h) $\begin{cases} x^4+4x^2+y^2-4y=2&\\ x^2y+2x^2+6y=23 \end{cases}$

i) $\begin{cases} \dfrac{1}{x}+\dfrac{1}{y}=9&\\ \left( \dfrac{1}{\sqrt[3]{x}}+\dfrac{1}{\sqrt[3]{y}}\right) \left( 1+\dfrac{1}{\sqrt[3]{x}}\right) \left( 1+\dfrac{1}{\sqrt[3]{y}}\right) =18 \end{cases}$

j) $\begin{cases} x^2(y+z)^2=(3x^2+x+1)y^2z^2&\\ y^2(z+x)^2=(4y^2+y+1)z^2x^2&\\ z^2(x+y)^2=(5z^2+z+1)=x^2y^2 \end{cases}$

Đề thi và đáp án thi chọn đội dự tuyển trường PTNK năm học 2016-2017

ĐỀ BÀI

Bài 1. Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:
$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2. Tìm tất cả các hàm số $f:N^* \rightarrow  N^*$ thoả mãn đồng thời các điều kiện:

i)  $ f(mn)=f(m)f(n) \forall m,n \in N^* $.
ii) $f(m)+f(n)$ chia hết cho $m+n$, $\forall m,n \in N^* $.
iii) $f(2017)=2017^3$.

Bài 3.  Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.
a) Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.
b) Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4.  Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$. \medskip

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

 

Hệ phương trình – Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

 1. Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

Từ một hệ phương trình gồm có hai hay nhiều phương trình, ví dụ $\left\{\begin{array}{l} f(x,y)=0 (1) \\ g(x,y)=0 (2) \end{array} \right.$, ta tạo ra một hệ mới tương đương với hệ đã cho, bằng cách tạo thêm một phương trình dạng $af(x,y) + bg(x,y) = 0$, việc chọn lựa các hệ số $a, b$ đòi hỏi nhiều kinh nghiệm vì phương trình mới tạo ra phải đơn giản hơn, hoặc có ý để giúp giải được hệ.

Hệ đối xứng loại hai là hệ có dạng $\left\{\begin{array}{l} f(x,y)=0\ \ (1) \\ g(x,y)=0 \ \ (2) \end{array} \right.$ trong đó $f(y, x) = g(x,y)$ và $g(y,x) = f(x,y)$. Để giải hệ này ta lấy $(1)$ trừ $(2)$, sau đó xử lý tiếp.

Ví dụ 1:  Giải hệ phương trình $\begin{cases}x+3y=2x^2&\\ y+3x=2y^2 \end{cases}$ $(*)$

Giải

Ta có $(*) \Leftrightarrow \begin{cases} x+3y=2x^2&\\ -2(x-y)=2(x^2-y^2) \end{cases} \Leftrightarrow \begin{cases}x+3y=2x^2 \ \ (1)&\\ 2(x-y)(x+y+1)=0 \ \ (2) \end{cases}$.

Từ (2) suy ra $y=-x-1$ hoặc $x=y$.

Trường hợp $y=-x-1$ thay vào (1) ta được $x+3(-x-1) =2x^2 $ (vô nghiệm).

Trường hợp $x=y $ thay vào (1) ta được $4x=2x^2 \Leftrightarrow 2x(x-2)=0 \Leftrightarrow x=2$ hoặc $x=0$.

Vậy $(x,y)=(2;2)$ hoặc $(x,y)=(0;0)$.

Ví dụ 2: Giải hệ phương trình $\begin{cases} x^3+1=2y&\\ y^3+1=2x. \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^3+1=2y&\\(x-y)(x^2+xy+y^2)=-2(x-y) \end{cases}$

$\Leftrightarrow \begin{cases} x^3+1=2y \ \ (1)&\\ (x-y)(x^2+xy+y^2+2)=0 \ \ (2) \end{cases}$

$(2) \Leftrightarrow x=y$ hoặc $x^2+xy+y^2+2=0$.

Trường hợp $x=y $ thay vào (1) ta được $x^3-2x+1=0 \Leftrightarrow (x-1)(x^2+x-1)=0.$

Suy ra $ x=1$ hoặc $x=\dfrac{-1 \pm \sqrt{5}}{2}.$

Trường hợp $x^2+xy+y^2+2=0 \Leftrightarrow (x-\dfrac{y}{2})^2+\dfrac{3y^2}{4}+2=0$ (vô nghiệm)

Vậy hệ có nghiệm $(x,y)=(1,1)$ hoặc $(x,y)=(\dfrac{-1 \pm \sqrt{5}}{2}, \dfrac{-1 \pm \sqrt{5}}{2}).$

Ví dụ 3: Giải hệ phương trình $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases} $ $(*)$

Giải

Điều kiện $xy \ne 0$.

$(*) \Leftrightarrow \begin{cases} 3x^2y=y^2+2&\\ 3xy^2=x^2+2 \end{cases} $

$\Leftrightarrow \begin{cases} 3yx^2=y^2+2 \ \ (1) &\\ 3xy(x-y)=-(x-y)(x+y) \ \ (2) \end{cases} $

$(2) \Leftrightarrow (x-y)(x+y+3xy)=0$.

Trường hợp $x=y$, thay vào (1) ta được $3x^3-x^2-2=0\\ \Leftrightarrow (x-1)(3x^2+2x+2)=0$

$\Leftrightarrow x=1$ hoặc $3x^2+2x+2=0$ (vô nghiệm).

Vậy $(x,y)=(1,1)$.

Trường hợp $x+y+3xy=0$ không xảy ra. Thật vậy, để ý rằng từ hệ phương trình đã cho nếu có nghiệm $(x,y)$ thì $x,y>0$ do đó $x+y+3xy>0$.

Vậy hệ có nghiệm $(x,y)=(1,1).$

Trên đây là các hệ phương trình đối xứng loại hai, sau đây ta xét các ví dụ về một số hệ không mẫu mực khác, sử dụng phương pháp cộng đại số. Chú ý, tạo ra phương trình mới thì phương trình mới có thể xuất hiện hằng đẳng thức, phân tích thành nhân tử được…

Ví dụ 4: Giải hệ phương trình $\begin{cases} x^2+6y=6x&\\ y^2+9=2xy \end{cases}$

Giải

Lấy phương trình $(1)$ cộng phương trình $(2)$ ta có $x^2 + y^2 -2xy + 6(y-x) + 9 = 0 \Leftrightarrow (y-x+3)^2 = 0 \Leftrightarrow y = x -3$.

Thế vào $(1)$ ta có: $x^2 + 6(x-3) = 6x \Leftrightarrow x = 3\sqrt{2}, x=-3\sqrt{2}$.

Với $x = 3\sqrt{2} \Rightarrow y = 3\sqrt{2}-3$.

Với $x = -3\sqrt{2} \Rightarrow y = -3\sqrt{2}-3$.

Vậy hệ có hai nghiệm $(x;y)$ là $(3\sqrt{2};3\sqrt{2}-3); (-3\sqrt{2};-3\sqrt{2}-3)$.

Ví dụ 5: Giải hệ phương trình $\begin{cases}x^2+y^2+xy=3&\\ x^2+2xy=7x+5y-9. \end{cases}$

Giải

Cộng vế theo theo vế hai phương trình ta được

$ 2x^2+y^2+3xy-7x-5y+6=0 $

$\Leftrightarrow y^2+(3x-5)y+2x^2-7x+6=0$

$\Leftrightarrow y^2+(3x-5)y+(2x-3)(x-2)=0$

$\Leftrightarrow (y+2x-3)(y+x-2)=0$

$\Leftrightarrow y+2x-3=0 \ \text{hoặc } \ y+x-2=0.$

Trường hợp $\begin{cases} y+2x-3=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases} y=3-2x&\\ 3x^2-9x+6=0. \end{cases}$.

Ta được $\begin{cases} x=1&\\ y=1 \end{cases}$ hoặc $\begin{cases} x=2&\\ y=-1. \end{cases}$

Trường hợp $\begin{cases} y+x-2=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases}y=2-x&\\ x^2-2x+1=0 \end{cases} \Leftrightarrow \begin{cases}x=1&\\ y=1. \end{cases}$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); (2;-1)\right\} .$

Ví dụ 6: Giải hệ phương trình $\begin{cases} x^2+y^2+4xy=6&\\ 2x^2+8=3y+7x \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^2+y^2+4xy=6&\\ 4x^2+16=6y+14x. \end{cases}$

Cộng vế theo vế của hai phương trình ta được

$5x^2+y^2+4xy-6y-14x+10=0$

$\Leftrightarrow (x-1)^2+(2x+y-3)^2=0 $

$\Leftrightarrow \begin{cases}x=1&\\ 2x+y=3 \end{cases}$

$\Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Ví dụ 7: Giải hệ phương trình $\begin{cases} x^2y+2x+3y=6&\\ 3xy+x+y=5 \end{cases}$.

Giải

Trừ vế theo vế hai phương trình ta được $x^2y-3xy+x+2y-1=0.$

Dễ thấy với $y=0$ thì $(x,0)$ không thể là nghiệm của hệ nên ta chỉ xét $y \ne 0$.

Chia hai vế của phương trình trên cho $y$ ta được

$ x^2-3x+\dfrac{x}{y}+2-\dfrac{1}{y}=0$

$\Leftrightarrow x^2 -(3-\dfrac{1}{y})x+(2-\dfrac{1}{y})=0$

$\Leftrightarrow (x-1)(x+\dfrac{1}{y}-2)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x+ \dfrac{1}{y}-2=0.$

Trường hợp $\begin{cases}x=1&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Trường hợp $\begin{cases}x+\dfrac{1}{y}-2=0&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x+\dfrac{1}{y}=2&\\3x+\dfrac{x}{y}+1=\dfrac{5}{y}. \end{cases}$

Suy ra $\dfrac{1}{y}=2-x$ và $3x+x(2-x)+1=5(2-x) \Leftrightarrow x^2-10x+9=0 \Leftrightarrow x=1 \ \text{hoặc} \ x=9.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); \left( 9, -\dfrac{1}{7}\right) \right\} $.

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+2xy+2y^2+3x=0&\\ xy+y^2+3y+1=0. \end{cases}$

Giải

Lấy phương trình thứ nhất cộng hai lần phương trình thứ hai ta được

$(x+2y)^2+3(x+2y)+2=0$

$\Leftrightarrow (x+2y+1)(x+2y+2)=0.$

Trường hợp $x+2y+1=0 \Leftrightarrow x=-2y-1$ thay vào phương trình thứ hai của hệ ta được

$ y^2-2y-1=0 \Leftrightarrow y=1 \pm \sqrt{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Trường hợp $x+2y+2=0 \Leftrightarrow x=-2y-2$ thay vào phương trình thứ hai của hệ ta được

$y^2-y+1=0 \Leftrightarrow y=\dfrac{1 \pm \sqrt{5}}{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( -3-2\sqrt{2}; 1+\sqrt{2}\right) ; \left( -3+2\sqrt{2}; 1-\sqrt{2}\right) ; \left( -3+\sqrt{5}; \dfrac{1-\sqrt{5}}{2}\right) ;  \left( -3-\sqrt{5}; \dfrac{1+\sqrt{5}}{2}\right) \right\} $.

Ví dụ 9: Giải hệ phương trình $\begin{cases} x^3(2+3y)=1&\\ x(y^3-2)=3. \end{cases}$

Giải

Dễ thấy $x \ne 0.$

Khi đó hệ tương đương $\begin{cases} 2+3y=\dfrac{1}{x^3}&\\ y^3-2=\dfrac{3}{x} \end{cases}$

Cộng vế theo vế của hệ phương trình ta được

$y^3+3y=\dfrac{1}{x^3}+\dfrac{3}{x}$

$\Leftrightarrow y^3-\dfrac{1}{x^3}+3\left( y-\dfrac{1}{x}\right) =0 $

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left( y^2+\dfrac{1}{x^2}+\dfrac{y}{x}+3\right) =0$

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left[ \left( y+\dfrac{1}{2x}\right) ^2+\dfrac{3}{4x^2}+3\right] =0$

$\Leftrightarrow y=\dfrac{1}{x}.$

Thay vào phương trình thứ hai của hệ ta được

$\dfrac{1}{x^3}-2=\dfrac{3}{x} \Leftrightarrow 2x^3+3x^2-1=0 \Leftrightarrow x=-1 \ \text{hoặc} \ x=\dfrac{1}{2}.$

Với $x=-1$ ta được $y=-1$, với $x=\dfrac{1}{2}$ ta được $y=2$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-1;-1); \left( \dfrac{1}{2};2\right)\right\}  $.

2. Bài tập rèn luyện

Bài 1: Giải các hệ phương trình sau:

a) $\begin{cases} x^2-2x-y-1=0&\\ y^2-2y-x-1=0 \end{cases}$

b) $\begin{cases} x^3+3x=8y&\\ y^3+3y=8x \end{cases}$

c)  $\begin{cases} x^3=5x+y&\\ y^3=5y+x  \end{cases}$

d) $\begin{cases} x-3y=4\dfrac{y}{x}&\\ y-3x=4\dfrac{x}{y}  \end{cases}$

e) $\begin{cases} xy+x^2=1+y&\\ xy+y^2=1+x \end{cases}$

f) $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases}$

g) $\begin{cases} 3x^3=x^2+2y^2&\\ 3y^3=y^2+2x^2 \end{cases}$

h) $\begin{cases} 3x^2y-y^2-2=0&\\ 3y^2x-x^2-2=0 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} x+\sqrt{y+3} =3&\\ y+\sqrt{x+3}=3 \end{cases}$.

b) $\begin{cases} \sqrt{x+5}+\sqrt{y-2}=7&\\ \sqrt{y+5}+\sqrt{x-2}=7 \end{cases}$

c) $\begin{cases} \sqrt{x}+\sqrt{2-x}=\sqrt{2}&\\ \sqrt{y}+\sqrt{2-x}=\sqrt{2} \end{cases}$

d) $\begin{cases} x \sqrt{1+y^2}+y \sqrt{1+x^2}=2&\\ x \sqrt{1+x^2}+y\sqrt{1+y^2}=2 \end{cases}$

e) $\begin{cases} \sqrt{x^2+3}+2\sqrt{x}=3\sqrt{y}&\\ \sqrt{y^2+3}+2\sqrt{y}=3\sqrt{x} \end{cases}$

f) $\begin{cases} x+\dfrac{2}{y}=\dfrac{3}{x}&\\ y+\dfrac{2}{x}=\dfrac{3}{y} \end{cases}$

g) $\begin{cases} 2x+3\sqrt{5-y}=8&\\ 2y+3\sqrt{5-x}=8 \end{cases}$

h) $\begin{cases} \sqrt[3]{3x+5}=y+1&\\ \sqrt[3]{3y+5}=x+1 \end{cases}$

i) $\begin{cases} x+1=\sqrt{2+\sqrt{y+3}}&\\ y+1=\sqrt{2+\sqrt{x+3}} \end{cases}$

Bài 3: Giải các hệ phương trình sau

a) $\begin{cases} x^2(1-2y)=y^2(4x+2y)&\\ 2x^2+xy-y^2=x \end{cases}$

b) $\begin{cases} x^2(y^2+1)=2&\\ x^2y^2+xy+1=3x^2 \end{cases}$

c) $\begin{cases} x^2+2=x(y-1)&\\ y^2-7=y(x-1) \end{cases}$

d) $\begin{cases} 4x^2+y^4-4xy^3=1&\\ 2x^2+y^2-2xy=1 \end{cases}$

Bài 4: Giải các hệ phương trình sau:

a) $\begin{cases} x^2+2xy+y=4&\\ x^2+xy+2y+x=5 \end{cases}$

b) $\begin{cases} 2x^2+2xy+y=5&\\ y^2+xy+5x=7 \end{cases}$

c) $\begin{cases} x^2+y^2+xy=3&\\ y^2-xy+5x+4y=9 \end{cases}$

d) $\begin{cases} x^2+y^2=2&\\ 4(x+y)-x^2y^2=7 \end{cases}$

e) $\begin{cases} x^2+y^2+x+y=4&\\ x^2+2xy+9=7x+5 \end{cases}$

Bài 5: Giải hệ phương trình $\begin{cases} x^2+7=5y-6z&\\ y^2+7=10z+3x&\\ z^2+7=-x+3y \end{cases}$

Bài 6: Giải hệ phương trình $\begin{cases} x^3+3xy^2+3xz^2-6xyz=1&\\ y^2+3yx^2+3yz^2-6xyz=1&\\ z^3+3zy^2+3zx^2-6xyz=1. \end{cases}$

Bài 7: Giải hệ phương trình $\begin{cases} (x-2y)(x-4z)=3&\\ (y-2z)(y-4x)=5&\\ (z-2x)(z-4y)=-8. \end{cases}$

Bài 8: Giải hệ phương trình $\begin{cases} x(yz-1)=3&\\ y(zx-1)=4&\\ z(xy-1)=5. \end{cases}$

Bài 9: Giải hệ phương trình $\begin{cases}ab+c+d=3&\\ bc+d+a=5&\\ cd+a+b=2&\\ da+b+c=6 \end{cases}$

Bài 10: Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\  x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\\ …&\\ x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1 \end{cases}$