Category Archives: Lớp 8

TẬP HỢP – TẬP HỢP SỐ

Ví dụ 1.1. Số nguyên $A$ được tạo thành bằng các chữ viết liền nhau các số nguyên dương từ 1 đến 60 theo thứ tự từ nhỏ đến lớn: $A=123 \ldots 585960$.
(a) Hãy chỉ ra cách xóa 100 chữ số của $A$ sao cho số $A_1$ tạo bởi các chữ số còn lại là nhỏ nhất.
(b) Hãy chỉ ra cách xóa 100 chữ số của $A$ sao cho số $A_2$ tạo bởi các chữ số còn lại là lớn nhất.

Hướng dẫn giải

(a) Số $A$ có $9+2.51=111$ chữ số. Sau khi xóa 100 chữ số của $A$ ta còn 11 chữ số.
Ta có: $A=12 \ldots 10 \ldots 20 \ldots 30 \ldots 40 \ldots 50 \ldots 60$ có 6 chữ số 0 .
Để $A_1$ nhỏ nhất ta sẽ xóa sao cho $A_1$ có nhiều số 0 đứng đầu nhất.
Theo phân bố của các số 0 trong $A$ thì số $A_1$ có thể có tối đa 5 chữ số 0 đứng đầu. Còn lại 6 chữ số của $A_1$ sẽ được lấy từ dãy số sau: 51525354555657585960 .
Vậy số $A_1=00000123450$ là số nhỏ nhất cần tìm.
(b) Tương tự lập luận ở câu a)
Ta có: $A=1 \ldots 9 \ldots 19 \ldots 29 \ldots 39 \ldots 49 \ldots 5960$ có 6 chữ số 9 .
Để $A_2$ lớn nhất thì ta sẽ xóa sao cho $A_2$ có nhiều số 9 đứng đầu nhất.
Theo phân bố của các số 9 trong $A$ thì số $A_2$ có thể có tối đa 5 chữ số 9 đứng đầu. Còn lại 6 chữ số của $A_2$ sẽ được lấy từ dãy số sau: 51525354555657585960 .
Vậy số $A_2=99999785960$ là số lớn nhất cần tìm.

Ví dụ 1.2. Cho tập $A=\{1,2,3, \ldots, 9\}$.
(a) Hãy chỉ ra một cách chia tập $A$ thành 3 tập con rời nhau, có số phần tử bằng nhau và tổng các phần tử bằng nhau.
(b) Tìm tất cả cách chia trong câu a.

Hướng dẫn giải

(a) $A_1=\{1,5,9\}, A_2=\{2,6,7\}, A_3=\{3,4,8\}$ là một cách chia thỏa đề bài.
(b) Tổng các phần tử là $1+2+\cdots+9=45$ do đó mỗi tập hợp có tổng là 15 và có 3 phần tử.
Dễ thấy $1,2,3$ không cùng một tập hợp, vì nếu cùng thì phần tử còn lại sẽ lớn hơn hoặc bằng 10 (vô lý).
Giả sử $1 \in A_1, 2 \in A_2, 3 \in A_3$. hai phần tử còn lại của $A_1$ là $a, b$, ta có $a+b=14$, chỉ có thể là 6,8 hoặc 5,9.
Nếu $6,8 \in A_1$, thì hai phần tử thuộc $A_2$ tổng là 13, chỉ có thể là 4,9 .
Khi đó $5,7 \in A_3$. Ta có các kết quả $A_1=\{1,6,8\}, A_2=\{2,4,9\}, A_3=\{3,5,7\}$.
Nếu $5,9 \in A_1$, thì hai phần tử thuộc $A_2$ có tổng 13 là 6,7.
Khi đó $4,8 \in A_3$. Các kết quả là $A_1=\{1,5,9\}, A_2=\{2,6,7\}, A_3=\{3,4,8\}$.

Ví dụ 1.3. Biết rằng:
$$
A=\{1 ; a\}, B=\{a ; b ; 3\}, C=\{2 ; 4 ; c\}, D=\{a ; b ; 4\}, E=\{a ; b ; c ; e\}
$$
và biết $A \subset D ; B \subset E ; C \subset E ; D \subset E$. Tìm các phần tử $a, b, c, e$.

Hướng dẫn giải

Từ $A \subset D$, suy ra $b=1$.
Từ $B \subset E$, thì một trong hai số $c$ hoặc $e$ phải là $3(1)$.
Từ $D \subset E$ thì một trong hai số $c$ hoặc $e$ phải là $4(2)$.
Từ $C \subset E$ và (1),(2) thì $c, e$ không nhận giá trị 2 nên $a=2$ và $e=4$, suy ra $c=3$.
Vậy $a=2, b=1, c=3, e=4$.

Ví dụ 1.4. Tập hợp $M$ chứa 4 số nguyên phân biệt được gọi là tập liên kết nếu với mỗi $x \in M$ thì ít nhất một trong hai số $x-1, x+1$ thuộc $M$. Gọi $U_n$ là số tập con liên kết của tập $\{1,2, \ldots, n\}$.
(a) Tính $U_7$.
(b) Xác định giá trị nhỏ nhất của $n$ sao cho $U_n \geq 2019$.

Hướng dẫn giải

Gọi $a<b<c<d$ là 4 phần tử của một tập liên kết M.
Vì $a-1 \notin M $ nên $a+1 \in M$, suy ra $b=+1$. Vì $d-1 \in M$, suy ra $c=d-1$.
Như vậy một tập liên kết sẽ có dạng $\{a+1, d-1, d\}$, với $\{d-a>2\}$.
(a) Có 10 tập con liên kết của tập $\{1,2,3,4,5,6,7\}$ là
$$
\begin{aligned}
& \{1,2,3,4\},\{1,2,4,5\},\{1,2,5,6\},\{1,2,6,7\}, \
& \{2,3,4,5\},\{2,3,5,6\},\{2,3,6,7\}, \
& \{3,4,5,6\},\{3,4,6,7\},\{4,5,6,7\} .
\end{aligned}
$$
(b) Gọi $D=d-a+1$ là đường kính của tập $\{a, b=a+1, c=d-1, d\}$, hiển nhiên $3<D \leq$ $n-1+1=n$.
Với $D=4$ sẽ có $n-3$ tập liên kết, với $D=5$ sẽ có $n-4$ tập liên kết, …, với $D=n$ sẽ có đúng một tập liên kết. Do đó
$$
U_n=1+2+\ldots+(n-3)=\dfrac{(n-3)(n-2)}{2} .
$$
Do đó $U_n \geq 2019 \Leftrightarrow(n-3)(n-2) \geq 4038$. Như vậy giá trị nhỏ nhất của $n$ là $n=67$.

Ví dụ 1.5. Chứng minh rằng với mọi số dương $m$ thì $\dfrac{2 m}{m^2+5}$ không thể là số nguyên.

Hướng dẫn giải

Ta có $0<\dfrac{2 m}{m^2+5}<1$ nên $\dfrac{2 m}{m^2+5}$ không thể là số nguyên.

Ví dụ 1.6. (Đề tuyển sinh vào lớp 10 chuyên toán trường PTNK năm 2014) Cho 5 số tự nhiên phân biệt sao cho tổng của ba số bất kỳ trong chúng lớn hơn tổng của hai số còn lại.
(a) Chứng minh rằng tất cả 5 số đā cho đều không nhỏ hơn 5 .
(b) Tìm tất cả các bộ gồm 5 số thỏa mãn đề bài mà tồng của chúng nhỏ hơn 40 .

Hướng dẫn giải

(a) Gọi 5 số đó là $a, b, c, d, e$, do các số là phân biệt nên ta có thể giả sử $ad+e$, suy ra $a+b+c \geq d+e+1$. Suy ra $a \geq d+e+1-b-c$.
Mặt khác, do $b, c, d, e$ là số tự nhiên nên từ $d>c>b$ ta có $d \geq c+1 \geq b+2$, suy ra $d-b \geq 2$. $e>d>c$, suy ra $e-c \geq 2$.
Do đó $a \geq(d-b)+(e-c)+1 \geq 5$. Suy ra $b, c, d, e>5$.
Vậy các số đều không nhỏ hơn 5.
(b) Nếu $a \geq 6$, suy ra $b \geq 7, c \geq 8, d \geq 9, e \geq 10$, suy ra $a+b+c+d+e \geq 40$ ( vô lý),
suy ra $a<6$.
Theo câu a ta có $a=5$. Khi đó $b+c+5 \geq d+e+1$, suy ra $b+c \geq d+e-4$.
Mà $d-2 \geq b, e-2 \geq c$, suy ra $d+e-4 \geq b+c$. Do đó $b=d-2, c=e-2$.
Khi đó $a+b+c+d+e=5+2 b+2 c+4<40$. Suy ra $b+c<\dfrac{31}{2}$. Suy ra $b \geq 7$.
Từ đó ta có $b=6, b=7$.
Nếu $b=6$ ta có $d=8, c=8, e=10$. Ta có bộ $(5,6,7,8,9)$
Nếu $b=7, d=9, c=8, e=10$.
Ta có bộ $(5,7,8,9,10)$. Vậy có hai bộ số thỏa đề bài là $(5,6,7,8,9)$ và $(5,7,8,9,10)$.

Ví dụ 1.7. Trong một buôn của người dân tộc, cư dân có thể nói được tiếng dân tộc, có thể nói được tiếng Kinh hoặc nói được cả hai thứ tiếng. Kết quả của một đợt điều tra cơ bản cho biết:
Có 912 người nói tiếng dân tộc,
Có 653 người nói tiếng Kinh,
Có 435 người nói được cả hai thứ tiếng.
Hỏi buôn làng có bao nhiêu cư dân ?

Hướng dẫn giải

Gọi $A$ là tập các người các người nói tiếng dân tộc, ta có $|A|=912, B$ là tập các người nói tiếng Kinh, ta có $|B|=653$. Khi đó $|A \cap B|=435$.
$A \cup B$ là tập các người dân trong buông.
Ta có
$$
|A \cup B|=|A|+|B|-|A \cap B|=912+653-435=1130
$$

Bài 1.1. Viết các số từ 1 đến 9 vào một bảng vuông $3 \times 3$, mỗi số viết một lần, sao cho tồng số ở mỗi dòng, mỗi cột và hai đường chéo đều được số chia hết cho 9 .
(a) Chỉ ra một cách viết thỏa đề bài.
(b) Với cách viết thỏa đề bài thì ô chính giữa có thể là các số nào? Tại sao?

Hướng dẫn giải

(a)
(b) Giả sử ta có bảng sau thỏa đề bài

Ta có $a+e+k, c+e+g, d+e+f, b+e+h$ chia hết cho 9 .

$$
a+e+k+c+e+g+d+e+f+b+e+h=3 e+a+b+c+d+e+f+g+h+k=3 e+45
$$
nên $3 e+45$ chia hết cho 9 , do dó $e$ chia hết cho 3 , vậy $e \in\{3,6,9\}$.

Bài 1.2. Tích của $n$ số nguyên bằng 1 và tổng của chúng bằng 0 . Chứng minh rằng $n$ là một số chia hết cho 4 .

Hướng dẫn giải

Gọi $n$ số đó là $a_1, a_2, \cdots, a_n$. Ta có
$$
a_1+a_2+\cdots+a_n=0
$$

$$
a_1 \cdot a_2 \cdots a_n=1
$$
nên các số $a_i \in\{-1 ; 1\}$, mà tổng bằng 0 nên số các số 1 bằng số các số -1 , do đó $n$ chẵn, đặt $n=2 k$, khi đó
$$
1=a_1 \cdot a_2 \cdots a_n=(-1)^k
$$
Do đó $k$ cũng chẵn, suy ra $n$ chia hết cho 4.

Bài 1.3. Tập hợp $\mathrm{A}$ bao gồm các số tự nhiên thỏa các điều kiện sau:
(a) $1 \in A$;
(b) Nếu $n \in A$ thì $2 n+1 \in A$;
(c) Nếu $3 n+1 \in A$ thì $n \in A$;
Vậy 8 có thuộc $A$ không ?

Hướng dẫn giải

$\{1,3,7,15,31,63,127\} \in A$, và $\{42,85,171,343,114,229,76,25,8\} \in A$

Bài 1.4. Giả sử $x, y, z, t$ là bốn số khác nhau và là các phần tử của tập hợp
$$
A=\{1 ; 2 ; 3 ; 4\} .
$$
Tìm $x, y, z, t$ với các giả thiết:
Nếu $x \neq 1$ thì $z \neq 2$;
Nếu $t=2$ thì $y \neq 1$;
Nếu $y=2$ hoặc $y=3$ thì $x=1$;
Nếu $y \neq 3$ thì $z=4$;
Nếu $t \neq 1$ thì $y=1$.

Hướng dẫn giải

Bài 1.5. Một nhóm 6 học sinh làm bài kiểm tra môn toán được điểm là số tự nhiên từ 1 đến 10 . Hai bạn được gọi là bạn tốt nếu điểm trung bình của 2 bạn đó lớn điểm trung bình của 6 bạn.
(a) Có thể chia 6 bạn thành 3 cặp bạn tốt được không? Tại sao?
(b) Nếu số điểm của 6 bạn là khác nhau, chứng minh rằng có 2 bạn có số điểm hơn kém nhau là 1 .

Hướng dẫn giải

Gọi số điểm các bạn lằn lượt là $a_1, a_2, a_3, a_4, a_5, a_6$, và $a_i \in\{1,2,3,4,5,6,7,8,9,10\}$.
Đặt $s=a_1+a_2+a_3+a_4+a_5+a_6$
(a) Giả sử chia được thành 3 cặp bạn tốt, giả sử là các cặp $a_1, a_2 ; a_3, a_4$ và $a_5, a_6$ ta có
$$
\dfrac{a_1+a_2}{2}>\dfrac{s}{6}, \dfrac{a_3+a_4}{2}>\dfrac{s}{6}, \dfrac{a_5+a_6}{2}>\dfrac{s}{6}
$$
Suy ra
$$
\dfrac{a_1+a_2+a_3+a_4+a_5+a_6}{2}>\dfrac{s}{2}
$$

Điều này mâu thuẫn.
(b) Giả sử không có bạn nào hơn kém nhau là 1 , thì giả sử $a_1<a_2<a_3<a_4<a_5<a_6$ Suy ra $a_2 \geq 3, a_3 \geq 5, \cdots, a_6 \geq 11$, vô lí.

Bài 1.6. Trong kỳ thi tốt nghiệp THPT ở một trường, kết quả số thí sinh đạt danh hiệu xuất sắc nhu sau:
Về môn Toán: 48 thí sinh,
Về Toán hoặc Văn: 76 thí sinh,
Về Vật lí: 37 thí sinh,
Về Văn: 42 thí sinh,
Về Vật lí hoặc Văn: 66 thí sinh,
Về Toán hoặc Vật lí: 75 thí sinh,
Về cả ba môn: 4 thí sinh.
Vậy có bao nhiêu học sinh chỉ nhận được danh hiệu xuất sắc về:
(a) 1 môn ?
(b) 2 môn?
(c) Ít nhất 1 môn?

Hướng dẫn giải

Sử dụng biểu đồ Venn. Kí hiệu $A, B, C$ là tập hợp các học sinh đạt danh hiệu xuất sắc tương ứng với các môn Toán, Vật lí hoặc Văn. Các tập hợp này, theo giả thiết thì có 48,37 và 42 phần tử. Giao của ba tập hợp này có 3 phần tử. Kí hiệu qua $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ là số các thí sinh đạt danh hiệu xuất sắc.

Theo 1,2 hoặc 3 môn. Dựa vào biểu đồ Venn ta lập được các phương trình:
$$
\left\{\begin{array}{l}
a+x+y=44 \\\
b+x+z=33 \\\
a+b+x+y+z=71 \\\
a+c+x+y+z=72 \\\\
b+c+x+y+z=62
\end{array}\right.
$$
Ta có được một hệ 6 phương trình với 6 ần, nhưng diều mà ta cần biết không phải là các giá trị ẩn $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ mà là các tổng $\mathrm{a}+\mathrm{b}+\mathrm{c}, \mathrm{x}+\mathrm{y}+\mathrm{z}$.
Muốn vậy, ta cộng ba phương trình đầu của hệ và sau đó cộng ba phương trình sau của hệ với nhau và được:
$$
\left\{\begin{array}{l}
a+b+c+2(x+y+z)=115 \\\
2(a+b+c)+3(x+y+z)=205
\end{array}\right.
$$
Xem hệ này như là một hệ phương trình hai ẩn, ta tính được:

$$
\begin{aligned}
& a+b+c=65 \
& x+y+z=25
\end{aligned}
$$

Đáp số: 65 thí sinh đạt danh hiệu xuất sắc 1 môn, 25 thí sinh đạt danh hiệu xuất sắc 2 môn, 94 thí sinh đạt danh hiệu xuất sắc ít nhất 1 môn.

Bài 1.7. Một số $m$ được gọi là số ma thuật nếu tổng các chữ số của nó bằng tích các chữ số của nó. Ví dụ số 213 ta có $2+1+3=2 \times 1 \times 3$.
(a) Chứng minh rằng có số ma thuật có $1,2,3,4,5$ chữ số.
(b) Có số ma thuật có 6 chữ số hay không? Tại sao?
(c) Chứng minh rằng có số ma thuật có 2037 chữ số.

Hướng dẫn giải

(a) Các số ma thuật có $1,2,3,4,5$ chữ số là: $1,22,123,4211,52111$.
(b) Số ma thuật có 6 chữ số: 621111
(c) $22222222222111 \ldots .1,11$ chữ số 2 và 2025 chữ số 1 .

Bài 1.8. Có thể viết các số tự nhiên từ 1 đến 16 thành
(a) một đường thẳng
(b) một đường tròn
sao cho tồng hai số liên tiếp là bình phương của một số tự nhiên dược không? Tại sao

Hướng dẫn giải

(a) $8,1,15,10,6,3,13,12,4,5,11,14,2,7,9,16$.
(b) Giả sử tồn tại cách ghi thỏa đề bài, ta xét hai số kề bên số 8 , gọi là $a, b$ thì $8+a, 8+b$ đều là số chính phương, suy ra $a=b=1$, vô lí. Vậy không tồn tại cách ghi thỏa đề bài.

Bài 1.9. Cho $A$ là tập con của tập các số hữu tỷ dương thỏa mãn các điều kiện sau:
$1 \in A$
Nếu $x \in A$ thì $1+x \in A$
Nếu $x \in A$ thì $\dfrac{1}{x} \in A$

Hướng dẫn giải

(c) $\dfrac{13}{5}=2+\dfrac{3}{5}$.
Ta có $\dfrac{3}{5}=\dfrac{1}{1+\dfrac{2}{3}} \dfrac{3}{2} \in A \Rightarrow \dfrac{2}{3} \in A \Rightarrow \dfrac{5}{3}=1+\dfrac{2}{3} \in A$, do đó $\dfrac{3}{5} \in A$, hơn nữa $2 \in A$, suy ra $\dfrac{13}{5}=2+\dfrac{3}{5} \in A$.

Bài 1.10. Trên bảng có ghi các số tự nhiên từ 1 đến $n$. Cứ mỗi lần một học sinh xóa đi hai số và thay bằng tổng hoặc hiệu của hai số đó.
(a) Cho $n=8$ hỏi sau 7 lần có thể số trên bảng còn lại số 0 dược không?
(b) Câu hỏi tương tự với $n=9$.

Hướng dẫn giải

(a) Câu trả lời là thực hiện được, ta làm như sau:
$1,2,3,4,5,6,7,8$
$1,2,3,4,5,6,1$
$1,2,3,4,1,1$
$1,2,1,1,1$
$1,1,1,1$,
$1,1,0$
$0,0$
$0$
(b) Câu trả lời là không, vì mổi lần thay đổi thì tổng các số còn lại tính chẵn lẻ khồng đổi, tổng lúc đầu là $1+2+\cdots+9=45$ nên sau một số lần thay đổi thì số còn lại phải là số lẻ, không thể bằng 0 .

Bài 1.11. Có bao nhiêu cách viết số 1 thành tồng của 3 phân số mà mỗi phân số có tử số bằng 1 và mẫu số là một số tự nhiên? Tại sao?

Hướng dẫn giải

$$
1=\dfrac{1}{6}+\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}
$$

Bài 1.12. Chứng minh rằng giữa hai số hữu tỉ phân biệt luôn có một số hữu tỉ.

Hướng dẫn giải

Cho $a, b \in \mathbb{Q}, a<b$. Xét $c=\frac{a+b}{2}$ ta có $a<c<b$ và $c \in \mathbb{Q}$.

Bài 1.13. Gọi $S$ là tập hợp các số tự nhiên có thể viết thành tổng bình phương của hai số tự nhiên khác, ví dụ $5=1^2+2^2$ thì $5 \in S$. Chứng minh rằng nếu $x, y \in S$ thì $x y \in S$.

Hướng dẫn giải

Cho $a, b \in S$ ta có $a=x^2+y^2, b=z^2+t^2$, khi đó
$$
a b=\left(x^2+y^2\right)\left(z^2+t^2\right)=x^2 z^2+y^2 t^2+x^2 t^2+y^2 z^2=(x z+t y)^2+(x z-t y)^2
$$
Do đó $a b \in S$.

Bài 1.14. Cho $a, b$ là các số nguyên dương phân biệt, chứng minh rằng 1 không là nghiệm của phương trình $x^2-2(a+b) x+a b+2=0$.

Hướng dẫn giải

Giả sử 1 là nghiệm của phương trình ta có
$$
1^2-2(a+b) 1+a b+2=0 \Leftrightarrow a b-2 a-2 b+3=0 \Leftrightarrow(a-2)(b-2)=1
$$
Do $a, b$ là các số nguyên dương nên $a=1, b=1$ hoặc $a=3, b=3$ mâu thuẫn vì $a \neq b$.

Bài 1.15. Cho các số $a_1, a_2, \cdots, a_6$ thỏa $-\dfrac{1}{2} \leq a_i \leq \dfrac{1}{2}$ và tổng của 5 số bất kì là một số nguyên. Chứng minh rằng 6 số này bằng nhau.

Hướng dẫn giải

Đặt $S=a_1+a_2+\cdots a_6$, ta có $S \in \mathbb{Z}$
Ta có $S-a_i \in \mathbb{Z}$ với mọi $i$.
Giả sử có hai số $a_1 \neq a_2$ ta có $S-a_1-\left(S-a_2\right) \in \mathbb{Z} \Rightarrow a_2-a_1 \in \mathbb{Z}$, suy ra $a_1, a_2 \in\{\dfrac{1}{2},-\dfrac{1}{2}\}$, do $a_1 \neq a_2$ nên $a_1=\dfrac{1}{2}, a_2=-\dfrac{1}{2}$ hoặc $a_1=\dfrac{-1}{2}, a_2=\dfrac{1}{2}$.
Tương tự xét cặp số giữa $a_1$ với các số $a_3,a_4, a_5, a_6$ ta có cũng có các số còn lại thuộc $\{\dfrac{1}{2}, \dfrac{-1}{2}\}$, do đó tổng 5 số lúc này không thể là số nguyên.

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI ĐA THỨC

Định lý Bezout và áp dụng

1. Đa thức chia có dạng $x-a$ (a là hằng)

Ví dụ 1. Chứng minh rằng số dư khi chia đa thức $\mathrm{f}(\mathrm{x})$ cho nhị thức $\mathrm{x}$ – a bằng giá trị của đa thức $\mathrm{f}(\mathrm{x})$ tại $\mathrm{x}=\mathrm{a}$.

Định lí Bê-du (Bézout, 1730 – 1783, nhà toán học Pháp).

Giải : Do đa thức chia $\mathrm{x}$ – a có bậc nhất nên số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-\mathrm{a}$ là hằng số $\mathrm{r}$.

Ta có $\quad \mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a}) 、 \mathrm{Q}(\mathrm{x})+\mathrm{r}$.

Đẳng thức trên đúng với mọi $\mathrm{x}$ nên với $\mathrm{x}=\mathrm{a}$ ta có

$f(a)=0 . Q(a)+r \text { hay } f(a)=r \text {. }$

Chú ý : Từ định lí Bê-du ta suy ra :

Đa thức $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-\mathrm{a}$ khi và chỉ khi $\mathrm{f}(\mathrm{a})=0$ (tức là khi và chỉ khi a là nghiệm của đa thức).

Ví dụ 2. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số bằng 0 thì đa thức ấy chia hết cho $\mathrm{x}-1$ ‘.

Giải : Gọi : $f(x)=a_ox^n+a_1 x^n-1+\ldots+a_n-1x+a_n$.

Theo giả thiết, $\quad a_0+a_1+\ldots+a_{n-1}+a_n=0 $.

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}-1$ là

$r = f(1) = a_\circ + a_1 + \ldots + a_{n-1} + a_n $

Từ (1) và (2) suy ra $r=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}-1$.

Ví dụ 3. Chứng minh rằng nếu đa thức $\mathrm{f}(\mathrm{x})$ có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì đa thức ấy chia hết cho $x+1$.

Giải : Gọi $f(x)=a_0 x^{2 n}+a_1 x^{2 n-1}+a_2 x^{2 n-2}+\ldots+a_{2 n-2} x^2+a_{2 n-1} x+a_{2 n}$, trong đó $\mathrm{a}_0$ có thể bằng 0 .

Theo giả thiết

$a_\circ + a_2 + \ldots + a_{2n} = a_2 + a_3 + \ldots + a_{2n-1}$ nên

$\left(a_0+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right)=0 .$

Theo định lí Bê-du, số dư khi chia $\mathrm{f}(\mathrm{x})$ cho $\mathrm{x}+1$ bằng

$r =f(-1)=a_0-a_1+a_2-\ldots+a_{2 n-2}-a_{2 n-1}+a_{2 n} $

$=\left(a_o+a_2+\ldots+a_{2 n}\right)-\left(a_1+a_3+\ldots+a_{2 n-1}\right) $

Từ (1) và (2) suy ra $\mathrm{r}=0$. Vậy $\mathrm{f}(\mathrm{x})$ chia hết cho $\mathrm{x}+1$.

PHÂN THỨC ĐẠI SỐ – P.1

TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC.

RÚT GỌN PHÂN THỨC

Phân thức đại số là một biểu thức có dạng $\frac{\mathrm{A}}{\mathrm{B}}$, trong đó $\mathrm{A}$ và $\mathrm{B}$ là các đa thức, $\mathrm{B} \neq 0$.

Phân thức đại số có các tính chất cơ bản sau :

$-$ Nếu nhân cả tử thức và mẫu thức của một phân thức với cùng một đa thức khác 0 thì được một phân thức bằng phân thức đã cho.

$-$ Nếu chia cả tử thức và mầu thức của một phân thức cho cùng một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

Muốn rút gọn một phân thức đại số, ta có thể :

$-$ Phân tích tử thức và mẫu thức thành nhân tử ;

$-$ Chia cả tử thức và mẫu thức cho nhân tử chung.

Ví dụ 1. Cho phân thức

$M=\frac{\left(a^2+b^2+c^2\right)(a+b+c)^2+(a b+b c+c a)^2}{(a+b+c)^2-(a b+b c+c a)}$

a) Tìm các giá trị của $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để phân thức được xác định (tức là để mẫu . khác 0).

b) Rút gọn phân thức $M$.

Giải : Ta có

$(a+b+c)^2-(a b+b c+c a)=0 \Leftrightarrow a^2+b^2+c^2+a b+b c+c a=0 $

$\Leftrightarrow  2 a^2+2 b^2+2 c^2+2 a b+2 b c+2 c a=0 $

$\Leftrightarrow (a+b)^2+(b+c)^2+(c+a)^2=0 \Leftrightarrow a+b=b+c=c+a=0 $

$\Leftrightarrow  a=b=c=0$

Vậy điều kiện để phân thức $\mathrm{M}$ được xác định là $\mathrm{a}, \mathrm{b}$, $\mathrm{c}$ không đồng thời bằng $0 .$

b) Chú ý rằng $(a+b+c)^2=a^2+b^2+c^2+2(a b+b c+c a)$. Do đó, ta đặt $a^2+b^2+c^2=x, a b+b c+c a=y$. Khi đó $(a+b+c)^2=x+2 y$. Ta có

$M=\frac{x(x+2 y)+y^2}{x+2 y-y}=\frac{x^2+2 x y+y^2}{x+y}=\frac{(x+y)^2}{x+y}=x+y$

$=a^2+b^2+c^2+a b+b c+c a .$

Ví  dụ 2.Rút gọn phân thức

$A=\frac{(b-c)^3+(c-a)^3+(a-b)^3}{a^2(b-c)+b^2(c-a)+c^2(a-b)} .$

Giải : Phân tích mẫu thức thành nhân tử :

$a^2(b-c)+b^2(c-a)+c^2(a-b)=a^2(b-c)+b^2 c-a b^2+a c^2-b c^2 $

$= a^2(b-c)+b c(b-c)-a\left(b^2-c^2\right)=(b-c)\left(a a^2+b c-a b-a c\right) $

$=(b-c)[a(a-b)-c(a-b)]=(b-c)(a-b)(a-c) . $

$\text { Do đó } \quad A=\frac{(b-c)^3+(c-a)^3+(a-b)^3}{-(a-b)(b-c)(c-a)} .$

Ta có nhận xét : Nếu $x+y+z=0$ thì $x^3+y^3+z^3=3 x y z$ (chứng minh : xem bài tập 42). Đặt $b-c=x, c-a=y, a-b=z$ thì $x+y+z=0$. Theo nhận xét trên :

$A=\frac{x^3+y^3+z^3}{-x y z}=\frac{3 x y z}{-x y z}=-3$

Ví dụ 3. Chứng minh rằng với mọi số nguyên n thì phân số $\frac{n^3+2 n}{n^4+3 n^2+1}$ là phân số tối giản.

Giải : Để chứng minh phân số đã cho là tối giản, ta sẽ chứng tỏ rằng tử và mẫu chỉ có ước chung là $\pm 1$.

Gọi d là ước chung của $n^3+2 n$ và $n^4+3 n^2+1$. Ta có :

$n^3+2 n \vdots d \Rightarrow n\left(n^3+2 n\right) \vdots d \Rightarrow n^4+2 n^2 \vdots d $

$n^4+3 n^2+1-\left(n^4+2 n^2\right)=n^2+1 \vdots d \Rightarrow\left(n^2+1\right)^2=n^4+2 n^2+1 \vdots d$

Từ $(1)$ và $(2)$ suy ra

$\left(n^4+2 n^2+1\right)-\left(n^4+2 n^2\right): d \Rightarrow 1: d \Rightarrow d=\pm 1 .$

Vậy $\frac{n^3+2 n}{n^4+3 n^2+1}$ là phân số tối giản.

Ví dụ 4. Chứng minh rằng

$1+x+x^2+x^3+\ldots+x^{31}=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\quad(1)$

Giải : Gọi vế trái của đẳng thức (1) là $\mathrm{A}$, vế phải là $\mathrm{B}$.

Ta có $(1-\mathrm{x}) \cdot \mathrm{A}=1-\mathrm{x}^{32}$ theo hằng đẳng thức 8 ,

$(1-x) \cdot B=(1-x)(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)=1-x^{32} \text {. }$

Nếu $\mathrm{x} \neq 1$ thì $\mathrm{A}$ và $\mathrm{B}$ đều bằng phân thức $\frac{1-\mathrm{x}^{32}}{1-\mathrm{x}}$. Do đó $\mathrm{A}=\mathrm{B}$.

Nếu $\mathrm{x}=1$ thì hai vế của (1) đều bằng 32 . Do đó $\mathrm{A}=\mathrm{B}$.

Trong cả hai trường hợp, đẳng thức (1) đều đúng.

 

BÀI TẬP

1. Tìm giá trị của $\mathrm{x}$ để các phân thức sau bằng 0 :

a) $\frac{x^4+x^3+x+1}{x^4-x^3+2 x^2-x+1}$

b) $\frac{x^4-5 x^2+4}{x^4-10 x^2+9}$

2. Rút gọn các phân thức :

a) $\mathrm{A}=\frac{1235.2469-1234}{1234.2469+1235}$;

b) $\mathrm{B}=\frac{4002}{1000.1002-999.1001}$.

3. Rút gọn các phân thức :

a) $\frac{3 x^3-7 x^2+5 x-1}{2 x^3-x^2-4 x+3}$

b) $\frac{(x-y)^3-3 x y(x+y)+y^3}{x-6 y}$

c) $\frac{x^2+y^2+z^2-2 x y+2 x z-2 y z}{x^2-2 x y+y^2-z^2}$.

4. Rút gọn các phân thức với n là số tự nhiên :

a) $\frac{(n+1) !}{n !(n+2)}$

b) $\frac{n !}{(n+1) !-n !}$

c) $\frac{(n+1) !-(n+2) !}{(n+1) !+(n+2) !}$

5. Rút gọn các phân thức :

a) $\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{a b^2-a c^2-b^3+b c^2}$;

b) $\frac{2 x^3-7 x^2-12 x+45}{3 x^3-19 x^2+33 x-9}$

c) $\frac{x^3-y^3+z^3+3 x y z}{(x+y)^2+(y+z)^2+(z-x)^2}$

d) $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$.

6. Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên $\mathrm{n}$ :

a) $\frac{3 n+1}{5 n+2}$;

b) $\frac{12 n+1}{30 n+2}$

$\left.c^*\right) \frac{n^3+2 n}{n^4+3 n^2+1}$

d) $\frac{2 n+1}{2 n^2-1}$.

7. Chứng minh rằng phân số $\frac{n^7+n^2+1}{n^8+n+1}$ không tối giản với mọi số nguyên dương $n$.

8. Viết gọn biểu thức sau dưới dạng một phân thức :

$\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\left(x^{16}-x^8+1\right)\left(x^{32}-x^{16}+1\right)$

9. Cho biết $\mathrm{x}, \mathrm{y}, \mathrm{z}$ khác 0 và $\frac{(\mathrm{ax}+\mathrm{by}+\mathrm{cz})^2}{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}=\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2$.

Chứng minh rằng $\frac{\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{y}}=\frac{\mathrm{c}}{\mathrm{z}}$.

10*. Cho biết $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$.

Rút gọn $\mathrm{A}=\frac{\mathrm{bc}(\mathrm{y}-\mathrm{z})^2+\mathrm{ca}(\mathrm{z}-\mathrm{x})^2+\mathrm{ab}(\mathrm{x}-\mathrm{y})^2}{a \mathrm{x}^2+\mathrm{by}^2+c \mathrm{z}^2}$.

11. Rút gọn $\frac{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}{(\mathrm{y}-\mathrm{z})^2+(\mathrm{z}-\mathrm{x})^2+(\mathrm{x}-\mathrm{y})^2}$, biết rằng $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$.

12. Tính giá trị của biểu thức $\mathrm{A}=\frac{\mathrm{x}-\mathrm{y}}{\mathrm{x}+\mathrm{y}}$, biết $\mathrm{x}^2-2 \mathrm{y}^2=\mathrm{xy}(\mathrm{y} \neq 0 ; \mathrm{x}+\mathrm{y} \neq 0)$.

13. Tính giá trị của phân thức $A=\frac{3 x-2 y}{3 x+2 y}$, biết rằng $9 x^2+4 y^2=20 x y$ và $2 y<3 x<0$

14. Cho $3 \mathrm{x}-\mathrm{y}=3 \mathrm{z}$ và $2 \mathrm{x}+\mathrm{y}=7 \mathrm{z}$. Tính giá trị của biểu thức

$M=\frac{x^2-2 x y}{x^2+y^2}(x \neq 0, y \neq 0)$

15. Tìm số nguyên $x$ để phân thức sau có giá trị là số nguyên :

a) $\frac{3}{2 x-1}$

b) $\frac{5}{x^2+1}$;

c) $\frac{7}{x^2-x+1}$

d) $\frac{x^2-59}{x+8}$

e) $\frac{x+2}{x^2+4}$

16. Tìm số hữu tỉ $x$ để phân thức $\frac{10}{x^2+1}$ có giá trị là số nguyên.

17*. Chứng minh rằng nếu các chữ số $\mathrm{a}, \mathrm{b}, \mathrm{c}$ khác 0 thoả mãn điều kiện $\overline{\mathrm{ab}}: \overline{\mathrm{bc}}=\mathrm{a}: \mathrm{c}$ thì $\overline{\mathrm{abbb}}: \overline{\mathrm{bbbc}}=\mathrm{a}: \mathrm{c} .$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.2

CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

 

Thực hiện phép nhân đa thức, ta được các hằng đẳng thức sau :

1. $(a+b)^2=a^2+2 a b+b^2$.

2. $(a-b)^2=a^2-2 a b+b^2$.

3. $(a+b)(a-b)=a^2-b^2$.

4. $(a+b)^3=a^3+3 a^2 b+3 a b^2+b^3$

$(a+b)^3=a^3+b^3+3 a b(a+b) \text {. }$

5. $(a-b)^3=a^3-3 a^2 b+3 a b^2-b^3$

$(a-b)^3=a^3-b^3-3 a b(a-b)$

6. $(a+b)\left(a^2-a b+b^2\right)=a^3+b^3$

7. $(a-b)\left(a^2+a b+b^2\right)=a^3-b^3$.

Ta cũng có :

$(a+b+c)^2=a^2+b^2+c^2+2 a b+2 a c+2 b c .$

Tổng quát của các hằng đẳng thức 3 và 7 , ta có hằng đẳng thức :

8. $a^n-b^n=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^2+\ldots+a b^{n-2}+b^{n-1}\right)$

với mọi số nguyên dương $\mathrm{n}$.

Tổng quát của hằng đẳng thức 6 , ta có hằng đẳng thức :

9. $a^n+b^n=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^2-\ldots-a b^{n-2}+b^{n-1}\right)$

với mọi số lẻ n.

Tổng quát của các hằng đẳng thức $1,2,4,5$, ta có công thức Niu-tơn (xem chuyên đề Tính chia hết đối với số nguyên).

Ví dụ 1. Chứng minh rằng số 3599 viết được dưới dạng tích của hai số tự nhiên khác 1 .

Giải : $\quad 3599=3600-1=60^2-1=(60+1)(60-1)=61.59$.

Ví dụ 2. Chứng minh rằng biểu thức sau viết được dưới dạng tổng các bình phương của hai biểu thức :

$x^2+2(x+1)^2+3(x+2)^2+4(x+3)^2$

Giải: $\mathrm{x}^2+2(\mathrm{x}+1)^2+3(\mathrm{x}+2)^2+4(\mathrm{x}+3)^2=$

$=x^2+2\left(x^2+2 x+1\right)+3\left(x^2+4 x+4\right)+4\left(x^2+6 x+9\right) $

$=x^2+2 x^2+4 x+2+3 x^2+12 x+12+4 x^2+24 x+36 $

$=10 x^2+40 x+50 $

$=\left(x^2+10 x+25\right)+\left(9 x^2+30 x+25\right) $

$=(x+5)^2+(3 x+5)^2$

Ví dụ 3. Cho

$x+y+z=0 $

$4x y+y z+z x=0$

Chứng minh rằng $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

Giải : Ta có $(\mathrm{x}+\mathrm{y}+\mathrm{z})^2=\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2+2(\mathrm{xy}+\mathrm{yz}+\mathrm{zx})$.

Suy ra

$0=x^2+y^2+z^2+2.0$

hay

$\text { Vậy } x=y=z(=0) \text {. }$

Ví dụ 4 :

a) Tính $A=-1^2+2^2-3^2+4^2-\ldots-99^2+100^2$.

b) Tính $\mathrm{A}=-1^2+2^2-3^2+4^2-\ldots+(-1)^{\mathrm{n}} \cdot \mathrm{n}^2$.

Giải: a) $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left(100^2-99^2\right)$

$=(2-1)(1+2)+(4-3)(3+4)+\ldots+(100-99)(99+100) $

$=1+2+3+4+\ldots+99+100 $

$=\frac{100.101}{2}=5050 .$

b) Xét hai trường hợp :

Nếu n chẵn thì $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left[\mathrm{n}^2-(\mathrm{n}-1)^2\right]$

$=1+2+3+4+\ldots+(n-1)+n$

$=\frac{\mathrm{n}(\mathrm{n}+1)}{2} \text {. }$

Nếu n lẻ thì $\mathrm{A}=\left(2^2-1^2\right)+\left(4^2-3^2\right)+\ldots+\left[(\mathrm{n}-1)^2-(\mathrm{n}-2)^2\right]-\mathrm{n}^2$

$=1+2+3+4+\ldots+(n-1)-n^2 $

$=\frac{n(n-1)}{2}-n^2=-\frac{n(n+1)}{2}$

Chú ý : Hai kết quả trên có thể viết chung trong một công thức

$(-1)^{\mathrm{n}} \cdot \frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Ví dụ 5. Cho

$x+y=a+b\quad(1)$

$x^2+y^2=a^2+b^2\quad(2)$

Chứng minh rằng $x^3+y^3=a^3+b^3$.

Giải : Ta có : $\quad \mathrm{x}^3+\mathrm{y}^3=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^2-\mathrm{xy}+\mathrm{y}^2\right)\quad(3)$.

Từ (1) suy ra : $\quad(x+y)^2=(a+b)^2$,

tức là $\quad x^2+2 x y+y^2=a^2+2 a b+b^2$.

Do $x^2+y^2=a^2+b^2$ nên $2 x y=2 a b$, suy ra $x y=a b\quad(4)$

Thay các kết quả (1), (2), (4) vào (3), ta được

$x^3+y^3=(x+y)\left(x^2+y^2-x y\right)=(a+b)\left(a^2+b^2-a b\right)=a^3+b^3 .$

Ví dụ 6. Cho $a+b=m, a-b=n$. Tính $a b$ và $a^3-b^3$ theo $m$ và $n$.

Giải :

Cách 1. Từ $\mathrm{a}+\mathrm{b}=\mathrm{m}, \mathrm{a}-\mathrm{b}=\mathrm{n}$, ta tính được $\mathrm{b}=\frac{\mathrm{m}-\mathrm{n}}{2}, \mathrm{a}=\frac{\mathrm{m}+\mathrm{n}}{2}$.

Do đó $\quad \mathrm{ab}=\frac{\mathrm{m}+\mathrm{n}}{2} \cdot \frac{\mathrm{m}-\mathrm{n}}{2}=\frac{\mathrm{m}^2-\mathrm{n}^2}{4} ;$

$a^3-b^3=\left(\frac{m+n}{2}\right)^3-\left(\frac{m-n}{2}\right)^3=\frac{(m+n)^3-(m-n)^3}{8}$

Rút gọn biểu thức trên, ta được $\frac{3 \mathrm{~m}^2 \mathrm{n}+\mathrm{n}^3}{4}$.

Cách 2. Ta có

$4 a b =(a+b)^2-(a-b)^2=m^2-n^2 \text { nên } a b=\frac{m^2-n^2}{4} . $

$\text { Ta có } a^3-b^3 =(a-b)\left(a^2+a b+b^2\right)=(a-b)\left[(a+b)^2-a b\right] $

$=n\left(m^2-\frac{m^2-n^2}{4}\right)=\frac{n\left(3 m^2+n^2\right)}{4}=\frac{3 m^2 n+n^3}{4} .$

BÀI TẬP

16. Tính giá trị của các biểu thức :

a) $\frac{63^2-47^2}{215^2-105^2}$

b) $\frac{437^2-363^2}{537^2-463^2}$

17. So sánh $\mathrm{A}=26^2-24^2$ và $\mathrm{B}=27^2-25^2$.

18. Tìm $\mathrm{x}$, biết :

$4(x+1)^2+(2 x-1)^2-8(x-1)(x+1)=11$

19. Rút gọn các biểu thức :

a) $2 x(2 x-1)^2-3 x(x+3)(x-3)-4 x(x+1)^2$;

b) $(a-b+c)^2-(b-c)^2+2 a b-2 a c$;

c) $(3 x+1)^2-2(3 x+1)(3 x+5)+(3 x+5)^2$;

d) $(3+1)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)$;

e) $(a+b-c)^2+(a-b+c)^2-2(b-c)^2$

g) $(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2$;

h) $(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2$.

20. Cho $x+y=3$. Tính giá trị của biểu thức

$A=x^2+2 x y+y^2-4 x-4 y+1 $

21. Cho $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2=\mathrm{m}$. Tính giá trị của biểu thức sau theo $\mathrm{m}$ :

$A=(2 a+2 b-c)^2+(2 b+2 c-a)^2+(2 c+2 a-b)^2 .$

22. Hãy viết các số sau đây dưới dạng tích của hai số tự nhiên khác 1 :

a) $899$

b) $9991$

23. Chứng minh rằng hiệu sau đây là một số gồm toàn các chữ số như nhau :

$7778^2-2223^2$

24. Chứng minh các hằng đẳng thức :

a) $(a+b+c)^2+a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2$

b) $x^4+y^4+(x+y)^4=2\left(x^2+x y+y^2\right)^2$

25. Cho $\mathrm{a}^2-\mathrm{b}^2=4 \mathrm{c}^2$. Chứng minh hằng đẳng thức

$(5 a-3 b+8 c)(5 a-3 b-8 c)=(3 a-5 b)^2$

26. Chứng minh rằng nếu $\left(a^2+b^2\right)\left(x^2+y^2\right)=(a x+b y)^2$ với $x, y$ khác 0 thì $\frac{\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{y}}$

27. Chứng minh rằng nếu $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2\right)=(\mathrm{ax}+\mathrm{by}+\mathrm{cz})^2$ với $x, y, z$ khác 0 thì $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$.

28. Cho $(a+b)^2=2\left(a^2+b^2\right)$. Chứng minh rằng $a=b$.

29. Chứng minh rằng $\mathrm{a}=\mathrm{b}=\mathrm{c}$ nếu có một trong các điều kiện sau :

a) $a^2+b^2+c^2=a b+b c+c a$

b) $(a+b+c)^2=3\left(a^2+b^2+c^2\right)$

c) $(a+b+c)^2=3(a b+b c+c a)$.

  1. Hãy viết các biểu thức sau dưới dạng tổng của ba bình phương :

a) $(a+b+c)^2+a^2+b^2+c^2$

b) $2(a-b)(c-b)+2(b-a)(c-a)+2(b-c)(a-c)$

31. Tính giá trị của biểu thức $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4$, biết rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ và :

a) $a^2+b^2+c^2=2$;

b) $a^2+b^2+c^2=1$.

32. Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4$ bằng mỗi biểu thức :

a) $2\left(a^2 b^2+b^2 c^2+c^2 a^2\right)$;

b) $2(a b+b c+c a)^2$

c) $\frac{\left(a^2+b^2+c^2\right)^2}{2}$

33. Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến :

a) $9 x^2-6 x+2$

b) $\mathrm{x}^2+\mathrm{x}+1$

c) $2 x^2+2 x+1$.

34. Tìm giá trị nhỏ nhất của các biểu thức :

a) $A=x^2-3 x+5 ;$

b) $B=(2 x-1)^2+(x+2)^2$

35. Tìm giá trị lớn nhất của các biểu thức :

a) $A=4-x^2+2 x$

b) $B=4 x-x^2$

36. Chứng minh rằng :

a) Nếu $\mathrm{p}$ và $\mathrm{p}^2+8$ là các số nguyên tố thì $\mathrm{p}^2+2$ cũng là số nguyên tố.

b) Nếu $\mathrm{p}$ và $8 \mathrm{p}^2+1$ là các số nguyên tố thì $2 \mathrm{p}+1$ cũng là số nguyên tố.

37. Chứng minh rằng các số sau là hợp số :

a) 999991 ;

b) 1000027 .

38. Thực hiện phép tính :

a) $(x-2)^3-x(x+1)(x-1)+6 x(x-3)$

b) $(x-2)\left(x^2-2 x+4\right)(x+2)\left(x^2+2 x+4\right)$.

39. Tìm $x$, biết :

a) $(x-3)\left(x^2+3 x+9\right)+x(x+2)(2-x)=1$

b) $(x+1)^3-(x-1)^3-6(x-1)^2=-10$

40. Rút gọn các biểu thức :

a) $(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3$

b) $(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)$

41. Chứng minh các hằng đẳng thức :

a) $(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)$.

b) $a^3+b^3+c^3-3 a b c=(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$.

42. Cho $a+b+c=0$. Chứng minh rằng $a^3+b^3+c^3=3 a b c$.

43. Cho $\mathrm{x}+\mathrm{y}=\mathrm{a}$ và $\mathrm{xy}=\mathrm{b}$. Tính giá trị của các biểu thức sau theo $\mathrm{a}$ và $\mathrm{b}$ :

a) $x^2+y^2$

b) $x^3+y^3$

c) $x^4+y^4$;

d) $x^5+y^5$.

44. a) Cho $x+y=1$. Tính giá trị của biểu thức $x^3+y^3+3 x y$.

b) Cho $\mathrm{x}-\mathrm{y}=1$. Tính giá trị của biểu thức $\mathrm{x}^3-\mathrm{y}^3-3 \mathrm{xy}$.

45. Cho $\mathrm{a}+\mathrm{b}=1$. Tính giá trị của biểu thức

$M=a^3+b^3+3 a b\left(a^2+b^2\right)+6 a^2 b^2(a+b)$

46. a) Cho $x+y=2$ và $x^2+y^2=10$. Tính giá trị của biểu thức $x^3+y^3$.

b) Cho $x+y=a$ và $x^2+y^2=b$. Tính $x^3+y^3$ theo a và $b$.

47. Chứng minh rằng :

a) Nếu số n’ là tổng của hai số chính phương thì 2 n cũng là tổng của hai số chính phương.

b) Nếu số $2 \mathrm{n}$ là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.

c) Nếu số $\mathrm{n}$ là tổng của hai số chính phương thì $\mathrm{n}^2$ cũng là tổng của hai số chính phương.

d) Nếu mỗi số m và $\mathrm{n}$ đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương.

48. Chứng minh rằng với mọi số tự nhiên $\mathrm{a}$, tồn tại số tự nhiên $\mathrm{b}$ sao cho $\mathrm{ab}+4$ là số chính phương.

49. Cho a là số gồm $2 \mathrm{n}$ chữ số $1, \mathrm{~b}$ là số gồm $\mathrm{n}+1$ chữ số $1, \mathrm{c}$ là số gồm $\mathrm{n}$ chữ số 6. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+8$ là số chính phương.

50. Chứng minh rằng biểu thức sau không là lập phương của một số tự nhiên :

$10^{150}+5.10^{50}+1 .$

51. Chứng minh rằng tích ba số nguyền dương liên tiếp không là lập phương của một số tự nhiên.

52. Chia 27 quả cân có khối lượng $10,20,30, \ldots, 270$ gam thành ba nhóm có khối lượng bằng nhau.

53*. Chia 18 quả cân có khối lượng $1^2, 2^2, 3^2, \ldots, 18^2$ gam thành ba nhóm có khối lượng bằng nhau.

54*. Chia 27 quả cân có khối lượng $1^2, 2^2, 3^2, \ldots, 27^2$ gam thành ba nhóm có khối lượng bằng nhau.

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.4

CHIA ĐA THỨC

 

Đa thức $\mathrm{A}(\mathrm{x})$ gọi là chia hết cho đa thức $\mathrm{B}(\mathrm{x})$ khác 0 nếu tồn tại đa thức $\mathrm{Q}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})$.

Người ta chứng minh được rằng : Với mọi cặp đa thức $\mathrm{A}(\mathrm{x})$ và $\mathrm{B}(\mathrm{x})$ trong đó $\mathrm{B}(\mathrm{x}) \neq 0$, tồn tại duy nhất cặp đa thức $\mathrm{Q}(\mathrm{x})$ và $\mathrm{R}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})+\mathrm{R}(\mathrm{x})$, trong đó $R(x)=0$ hoặc bậc của $R(x)$ nhỏ hơn bậc của $B(x)$.

Nếu $R(x)=0$ thì $A(x)$ chia hết cho $B(x)$. Nếu $R(x) \neq 0$ thì $A(x)$ không chia hết cho $B(x)$, khi đó $Q(x)$ là thương và $R(x)$ là dư của phép chia $A(x)$ cho $B(x)$.

Ví dụ 1. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=3 x^{n-1} y^6-5 x^{n+1} y^4 ; B=2 x^3 y^n$

Tìm thương $\mathrm{A}: \mathrm{B}$ trong trường hợp đó.

Giải : Điều kiện để $\mathrm{A}$ chia hết cho $\mathrm{B}$ là :

$\left\{\begin{array}{r}\mathrm{n}-1 \geq 3 \\ \mathrm{n}+1 \geq 3 \\ 6 \geq \mathrm{n} \\ 4 \geq \mathrm{n}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{n} \geq 4 \\ \mathrm{n} \leq 4\end{array} \Leftrightarrow \mathrm{n}=4\right.\right.$

Vậy với $\mathrm{n}=4$ thì đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$. Khi đó

$A: B=\left(3 x^3 y^6-5 x^5 y^4\right):\left(2 x^3 y^4\right)=\frac{3}{2} y^2-\frac{5}{2} x^2$

Ví dụ 2. Xác định các số hữu tỉ a và $\mathrm{b}$ để đa thức $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho đa thức $x^2+x-2$.

Giải : Cách 1. Đặt tính chia :

Để chia hết thì đa thức dư phải bằng 0 với mọi giá trị của $x$, nên :

$\left\{\begin{array}{l}a+3=0 \\ b-2=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$.

Cách 2. (Phương pháp hệ số bất định)

Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là $\mathrm{x}^3: \mathrm{x}^2=\mathrm{x}$.

Gọi thương là $\mathrm{x}+\mathrm{c}$, ta có :

$x^3+a x+b=\left(x^2+x-2\right)(x+c)$

nên

$x^3+a x+b=x^3+(c+1) x^2+(c-2) x-2 c $

Hai đa thức trên bằng nhau nên :

$\left\{\begin{array}{l}\mathrm{c}+1=0 \\ \mathrm{c}-2=\mathrm{a} \\ -2 \mathrm{c}=\mathrm{b}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{c}=-1 \\ \mathrm{a}=-3 \\ \mathrm{~b}=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$, thương là $\mathrm{x}-1$.

Cách 3. (Phương pháp xét giá trị riêng)

Gọi thương khi chia $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ cho $\mathrm{x}^2+\mathrm{x}-2$ là $\mathrm{Q}(\mathrm{x})$, ta có :

$x^3+a x+b=(x-1)(x+2) Q(x)$

Vì đẳng thức đúng với mọi $x$ nên lần lượt cho $\mathrm{x}=1, \mathrm{x}=-2$, ta được :

$\left\{\begin{array}{l}1+a+b=0 \\ -8-2 a+b=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=-1 \\ -2 a+b=8\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2 .\end{array}\right.\right.\right.$

Với $a=-3 ; b=2$ thì $x^3+a x+b$ chia hết cho $x^2+x-2$.

BÀI TẬP

Chia đơn thức cho đơn thức

71. Thực hiện phép tính :

a) $8^{12}: 4^6$;

b) $27^6: 9^2$;

c) $\frac{9^{15} \cdot 25^3 \cdot 4^3}{3^{10} \cdot 50^6}$

72. Chứng minh rằng biểu thức sau không âm với mọi giá trị của biến :

$A=\left(-15 x^3 y^6\right):\left(-5 x y^2\right)$

73. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến $\mathrm{y}(\mathrm{x} \neq 0 ; \mathrm{y} \neq 0)$ :

$B=\frac{2}{3} x^2 y^3:\left(-\frac{1}{3} x y\right)+2 x(y-1)(y+1)$

74. Tìm số tự nhiên $\mathrm{n}$ để đơn thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=4 x^{n+1} y^2 ; B=3 x^3 y^{n-1}$

Chia đa thức cho dơn thức

75. Thực hiện phép tính :

a) $\left(\frac{1}{2} a^2 x^4+\frac{4}{3} a x^3-\frac{2}{3} a x^2\right):\left(-\frac{2}{3} a x^2\right)$

b) $4\left(\frac{3}{4} x-1\right)+\left(12 x^2-3 x\right):(-3 x)-(2 x+1)$.

76. Thực hiện phép tính rồi tìm giá trị nhỏ nhất của biểu thức :

$A=\left(9 x y^2-6 x^2 y\right):(-3 x y)+\left(6 x^2 y+2 x^4\right):\left(2 x^2\right) $

77. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=7 x^{n-1} y^5-5 x^3 y^4 ; \quad B=5 x^2 y^n$

Chia đa thức cho đa thức

78. Rút gọn biểu thức

$\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3(x+y)^2\right]:(x+y)$

79. Chia các đa thức :

a) $\left(3 x^4-2 x^3-2 x^2+4 x-8\right):\left(x^2-2\right)$;

b) $\left(2 x^3-26 x-24\right):\left(x^2+4 x+3\right)$;

c) $\left(x^3-7 x+6\right):(x+3)$.

80. Xác định hằng số a sao cho :

a) $4 x^2-6 x+$ a chia hết cho $x-3$;

b) $2 \mathrm{x}^2+\mathrm{x}+\mathrm{a}$ chia hết cho $\mathrm{x}+3$;

c) $x^3+a x^2-4$ chia hết cho $x^2+4 x+4$.

81. Xác địṇh hằng số a sao cho :

a) $10 x^2-7 x+a$ chia hết cho $2 x-3$;

b) $2 x^2+a x+1$ chia cho $x-3$ dư 4 ;

c) $a x^5+5 x^4-9$ chia hết cho $x-1$.

82. Xác định các hằng số a và $\mathrm{b}$ sao cho :

a) $\mathrm{x}^4+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2-4$;

b) $x^4+a x^3+b x-1$ chia hết cho $x^2-1$;

c) $x^3+a x+b$ chia hết cho $x^2+2 x-2$.

83. Xác định các hằng số a và b sao cho :

a) $x^4+a x^2+b$ chia hết cho $x^2-x+1$;

b) $a x^3+b x^2+5 x-50$ chia hết cho $x^2+3 x-10$;

c) $a x^4+b x^3+1$ chia hết cho $(x-1)^2$;

d) $x^4+4$ chia hết cho $x^2+a x+b$.

84. Tìm các hằng số $a$ và $b$ sao cho $x^3+a x+b$ chia cho $x+1$ thì dư 7 , chia cho $x-3$ thì dư $-5$.

85. Tìm các hằng số $\mathrm{a}, \mathrm{b}, \mathrm{c}$ sao cho $\mathrm{ax}^3+\mathrm{bx}^2+\mathrm{c}$ chia hết cho $\mathrm{x}+2$, chia cho $x^2-1$ thì dư $x+5$.

 

 

 

Bài tập số học ôn thi vào lớp 10 – Phần 3

Bài 21. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên

Lời giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Bài 22. Tìm tất cả các số tự nhiên n sao cho ${5^{{5^{n + 1}}}} + {5^{{5^n}}} + 1$ là một số nguyên tố.

Lời giải

Đặt $m = 5^n$ ta có bài trên.

Bài 23. Tìm số nguyên tố $p$ để $p^2 + 2^p$ cũng là số nguyên tố.

Lời giải

Nhận thấy $p=3$ thỏa đề bài.
Xét $p>3$ thì $p$ lẻ và $p$ không chia hết cho 3.
Khi đó $p^2 \equiv 1 (\mod 3)$ và $2^p \equiv -1 (\mod 3)$. Do đó $p^2 + 2^p \equiv 3$ nên không là số nguyên tố.

Bài 24. Cho $p, q$ là các số nguyên tố và phương trình $x^2 – px+q=0$ có nghiệm nguyên dương. Tìm $p$ và $q$.

Lời giải

Gọi $x_1, x_2$ là nghiệm của phương trình. Ta có $x_1 + x_2 = p, x_1 x_2 = q$. Do đó $x_1, x_2 $ đều là các số nguyên dương. Giả sử $x_1 \geq x_2$.
Suy ra $x_2 = 1, x_1 = q$, $1+q = p$. Do đó $p = 3, q=2$.
Thử lại thấy thỏa đề bài.

Bài 25. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
$p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 26. Tìm tất cả các số nguyên tố $p$ sao cho tồn tại các số nguyên dương $x, y$ thỏa phương trình $x(y^2-p)+y(x^2-p)=5p$.

Lời giải

$(x+y)(xy-p) = 5p$, $x+y \geq 2$ Do đó có các trường hợp sau:\\
$x+y = 5, xy-p=p$. Giải ra được $x=2, y=3, p=3$, $x=3, y=2, p=3$, $x=1, y=4, p=2$, $x=4,y=1, p=2$.\\
$x+y = p, xy -p=5$. $x^2-px+p+5 = 0$. $p^2-4(p+5) = =k^2 \Leftrightarrow (p-2)^2 – 24 = k^2 \Leftrightarrow (p-2-k)(p-2+k) = 24$. \\
Ta có $p-2-k, p-2+k$ cùng chẵn. Có các trường hợp sau:
+ $p-2-k = 2, p-2+k=12$, suy ra $p=9$ (loại)\\
+ $p-2 -k = 4, p-2+k = 6$, suy ra $p=7$. Khi đó $x+y = 7, xy = 12$. Giải ra được $x=3, y=4$ và $x=4, y=3$.

Bài 27. Cho các số nguyên dương $a, b, c, d$ thỏa $ab = cd$. Chứng minh rằng $a + b + c + d$ là hợp số.

Lời giải

Đặt $k = (a,c), a= ka’, c=kc’$, Suy ra $a’b = c’d$, suy ra $b \vdots c’$, đặt $b = mc’$, suy ra $d=ma’$.
Khi đó $a+b+c+d = ka’+mc’ + kc’+ma’ = (k+m)(a’+c’)$ là hợp số.

Bài 28. Tìm tất cả các số nguyên tố $p>q>r$ sao cho $p-r, p-q, q-r$ cũng là các số nguyên tố.

Lời giải

Nếu các số $p, q, r$ đều lẻ, thì $p-r, p-q, q-r$ đề chẵn mà là số nguyên tố và bằng 2, vô lý.
Do đó có 1 số nguyên tố chẳn, suy ra $r = 2$.
$p-2, q-2, p-q$ nguyên tố. Suy ra $p-q = 2$.
Vậy $p-2, p,p+2$ là các số nguyên tố. Suy ra $p-2=3$, $p=5$, $q=7$.

Bài 29. Tìm các số nguyên tố $p,q$ thỏa mãn hệ thức $p + q = {\left( {p – q} \right)^3}$

Lời giải

$p-q = r$ ta có $r^3 =2p+r$. Suy ra $p = \dfrac{r^3-r}{2}$ chia hết cho 3. Suy ra $p=3, q=5$.

Bài 30. Tìm tất cả các số nguyên tố $p$ sao cho hệ phương trình $p+1=2x^2,p^2+ 1=2y^2$ có nghiệm nguyên.

Lời giải

Ta xét $y, x>0$. Ta có $p = 2$ không thỏa.
$p(p-1) = 2(y-x)(y+x)$, suy ra $p |2(y-x)(y+x)$
$p|y-x$, suy ra $2(x+y)|p-1$ (vô lý)
$p|x+y$, mặt khác $p > x, p > y$, suy ra $2p>x+y$, do đó $p = x+y$. Khi đó $p-1 = 2x – 2y$. Từ đó suy ra $x = \dfrac{3p-1}{4}$, thế vào ta giải ra được $p = 7, x = 2, y = 5$.

Bài tập số học ôn thi vào 10 – Phần 2

Bài 11. Chứng minh rằng

a) Trong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.

Giải

a) Một số khi chia cho 3 có các số dư là 0, 1, 2.
Nếu trong 5 số khi chia cho 3 số có đủ 3 số dư 0, 1, 2 thì tổng 3 số này chia hết cho 3.
Nếu có 2 loại số dư thì có 3 số khi chia cho 3 có cùng một số dư, tổng của chúng chia hết cho 3.
Nếu có 1 loại số dư, thì tổng 3 số bất kì đều chia hết cho 3.
b) Đặt các số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.
Trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho 3, không mất tính tổng quát là $a_1, a_2, a_3$. Đặt $a_1 + a_2 + a_3 = 3b_1$.
Trong 5 số $a_4, \cdots, a_8$ có 3 số có tổng chia hết cho 3, giả sử $a_4, a_5, a_6$ và đặt $a_4 + a_5+ a_6 = 3b_2$.
Tương tự ta xây dựng được các số $b_3, b_4, b_5$.
Khi đó áp dụng tiếp cho 5 số $b_1, b_2, b_3, b_4, b_5$ có 3 số có tổng chia hết cho 3, giả sử $b_1, b_2,b_3$ có tổng chia hết cho 3. Khi đó 9 số $a_1, \cdots, a_9$ có tổng chia hết cho 9.

Bài 12. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 2018)\ Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Giải

a) \item Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $\\
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.\\
$ \Rightarrow A_n \ \vdots \ 3. $\\
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.\\
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.\\
$ \Rightarrow A_n \ \vdots\ 17. $\\
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$

b) Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
\item Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
Ta có \begin{align*}
A_n &\equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}\\\\
&\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} \\\\
& \equiv 2^n(1-2^n) \quad \text { (mod 9)}
\end{align*}
Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài 13. Tìm các nghiệm nguyên không âm $(x, y)$ của phương trình
${\left( {xy – 1} \right)^2} = {x^2} + {y^2}$

Giải

$(xy-6)^2 – (x+y)^2 = -13$.
$(xy-6-x-y)(xy-6+x+y) = -13$.
Ta có $xy – 6 +x+y \leq xy – 6 -x-y$ nên có các trường hợp.
$xy -6 -x-y = -13, xy -6 +x+y = 1$, giải ra được $(x;y)$ là $(7;0), (0;7)$;
$xy – 6 -x-y=-1, xy-6+x+y = 13$ (VN);
$Vậy phương trình có nghiệm $(0;7), (7;0)$.

Bài 14. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Giải

Ta có $x^3 = (y-x)(y+x+1)$.
Gọi $d$ là ước nguyên tố chung lớn nhất của $y-x, y+x+1$, nếu $d$ là số nguyên tố thì $d|x, d|y$, suy ra $d|1$ (vô lý), Vậy $y-x, y+x+1$ nguyên tố cùng nhau.
Do đó $y -x = a^3, y+x+1 = b^3, ab=x$.
Ta có phương trình $b^3-a^3 = 2ab+1$ với $a, b$ nguyên dương và $b > a\geq 1$. Ta có $b^3-a^3 \geq a^2+b^2+ab > 2ab + 1$.
Vậy phương trình không có nghiệm trong tập các số nguyên dương.

Bài 15. Tìm tất cả các bộ ba số nguyên dương thỏa phương trình:
${\left( {x + y} \right)^2} + 3x + y + 1 = {z^2}$

Giải

Ta có $(x+y)^2 < z^2 < (x+y+2)^2$. Do đó $z^2 = (x+y+1)^2$ hay $(x+y+1)^2 = (x+y)^2+3x+y + 1 \Leftrightarrow y = x$.
\Vậy bộ nghiệm là $(n, n, 2n+1)$ với $n$ là số nguyên dương.

Bài 16. Tìm nghiệm nguyên dương của phương trình sau
$xy + yz + zx – xyz = 2$

Giải

Vai trò của $(x, y, z)$ là như nhau, giả sử $x \geq y \geq z$.
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} – 1 = \dfrac{2}{xyz} > 0$. Suy ra $\dfrac{3}{z} -1 > 0$, suy ra $z < 3$.
Nếu $z = 1$ thì $x+y = 2$ ta có $x = y = 1$.
Nếu $z=2$ thì $2(x+y)-xy = 2 \Leftrightarrow (x-2)(y-2) = 2$, giải ra được $x = 4, y = 3$.
Do tính đối xứng nên nghiệm của phương trình là $(1, 1, 1), (4,3,2)$ và các hoán vị.

Bài 17. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$

Giải

Có một nghiệm là $(0;0)$.
Dễ thấy $y$ chẵn nên $y^4+4y+1 \equiv 1 (\mod 8)$. Suy ra $x$ chẵn, $x = 2k$. Khi đó $(5^k)^2 = y^4 + 4y+1$ là số chính phương.
Ta có $y\geq 1$ nên $y^4 < y^4+4y + 1 < (y^2+2)^2$. Suy ra $y^4+4y + 1 = (y^2+1)^2 \Leftrightarrow y = 2$, suy ra $x = 2$.
Vậy có 2 cặp nghiệm $(0;0), (2;2)$.

Bài 18. Giải phương trình nghiệm tự nhiên $x – {y^4} = 4$ với $x$ là số nguyên tố.

Giải

$x = y^4+4 = (y^2-2y+2)(y^2+2y+2)$ là số nguyên tố khi và chỉ khi $y^2-2y + 2 = 1$ hay $y=1$. Từ đó $x=1$.

Bài 19. Tìm nghiệm nguyên của phương trình sau
${\left( {{x^2} – {y^2}} \right)^2} = 1 + 16y$

Giải

Dễ thấy nghiệm là $(-1;0), (1;0)$.
Ta có $y \geq 0$, vì $x$ thỏa pt thì $-x$ cũng thỏa nên có thể giả sử $x\geq 0$.
Ta có $(x^2-y^2)^2 = 1 + 16y >1$, suy ra $x^2 > y^2 \Rightarrow x \geq y + 1$.
Nếu $x \geq y + 2$, suy ra $x^2-y^2 \geq 4y + 4 \Rightarrow (x^2-y^2)^2 > 1+16y$.
Do đó $x = y + 1$, suy ra $(1+2y)^2 = 1+16y \Leftrightarrow 4y^2 – 12y = 0 \Leftrightarrow y = 3$. Suy ra $x = 4$.
Vậy nghiệm là $(-4;3), (4;3),(-1;0), (1;0)$.

Bài 20. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên tố.

Giải

$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.

Giải bài toán bằng đại lượng cực biên – Phần 2

(Bài viết dành cho các em học sinh lớp 8, 9, 10)

Ví dụ 1. Tìm $n$ lớn nhất sao cho tồn tại $n$ điểm mà 3 điểm bất kì đều tạo thành tam giác vuông.

Lời giải. 

Ta thấy $n=3, n=4$ đều tồn tại. Ta chứng minh $n\geq 5$ thì không tồn tại. \
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.

Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp $ n = 5$, để chứng minh không tồn tại, ta sử dụng cực biên, kết hợp với phản chứng để cho lời giải trọn vẹn, chọn độ dài lớn nhất giúp mình gôm hết các điểm vào thành một đường tròn, từ đó giúp giải được bài toán.

Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.

Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.

Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó $A$ là tâm đường tròn, tâm các đường tròn còn lại là $A_1, \cdots, A_6$. Khi đó tồn tại $A_iA_{i+1} \leq 60^\circ$, suy ra $A_iA_{i+1} < AA_i$ vô lý, vì bán kính của $(A)$ là nhỏ nhất.

Ví dụ 3. Cho $n$ điểm trong mặt phẳng biết rằng cứ 3 điểm bất kì tạo thành một tam giác có diện tích không lớn hơn 1. Chứng minh rằng $n$ điểm thuộc một hình tam giác có diện tích không lớn hơn 4.

Lời giải. Gọi $A, B, C$ là 3 điểm tạo thành tam giác sao cho $ABC$ có diện tích lớn nhất. Từ $A, B, C$ vẽ các đường song song với các cạnh đối diện, các đường thẳng cắt nhau tại $A’, B’, C’$ ta chứng minh các điểm thuộc cạnh hoặc miền trong tam giác $A’B’C’$. \
Thật vậy, nếu có điểm nào nằm ngoài tam giác $A’B’C’$ thì điểm đó kết hợp với hai trong 3 điểm $A, B, C$ sẽ có diện tích lớn hơn diện tích tam giác $ABC$, vô lý. \
Do $S_{A’B’C’} = 4S_{ABC} \leq 4$.

Ví dụ 4. (Sylvester) Trong mặt phẳng cho $n$ điểm phân biệt, sao cho mỗi đường thẳng đi qua hai điểm thì đi qua ít nhất một điểm khác. Chứng minh rằng $n$ điểm này cùng thuộc một đường thẳng.

Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử $P$ là điểm có khoảng cách từ $P$ đến $d$ là nhỏ nhất, với $d$ là đường thẳng qua các điểm $A, B, C$ theo thứ tự. \
Gọi $H$ là hình chiếu của $P$ trên $d$, $D, E$ là hình chiếu của $A, B$ trên $B$ trên $PA, PC$. Nếu $H$ thuộc tia $BA$ thì $BE < PH$, nếu $H$ thuộc đoạn $BC$ thì $BD < PH$. Mâu thuẫn với $PH$ là nhỏ nhất. \
Vậy tất cả các điểm cùng thuộc một đường thẳng.

Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.

Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.

Ví dụ 5. Cho 3 trường, mỗi trường có $n$ học sinh, biết rằng cứ mỗi học sinh thì quen ít nhất $n + 1$ học sinh của hai trường khác. Chứng minh rằng có thể chọn được từ mỗi trường một bạn sao cho 3 bạn này đôi một quen nhau.

Lời giải. Giả sử 3 trường là $X, Y, Z$. Tồn tại một người có số người quen ở cùng một trường khác là nhiều nhất, giả sử $A$ thuộc $X$ có số người quen ở trường $Y$ nhiều nhất là $k$. Khi đó số người quen của $A$ ở $Z$ ít nhất là $n+1-k$. Nếu nhóm người quen $A$ ở $Z$ quen với số người quen $A$ ở $X$ có hai người quen nhau thì ta có điều chứng minh.\
Ngược lại xét người quen $A$ ở $Z$, đặt là $B$ quen số người ở $Y$ tối đa là $n-k$, khi đó $B$ quen ở $X$ ít nhất là $n+1 – (n-k) = k+1$, mâu thuẫn với cách chọn $A$. (Mâu thuẫn).

Ví dụ 6. Một bảng $2n \times 2n$ ô, người ta đánh dấu bất kì $3n$ ô trong bảng. Chứng minh rằng tồn tại $n$ dòng và $n$ cột sao cho $3n$ ô được đánh dấu thuộc $n$ dòng và $n$ cột này.

Lời giải. Chọn $n$ dòng sao cho số ô được tô là lớn nhất, ta chứng minh rằng số ô được tô trong $n$ dòng này là không ít hơn $2n$ ô.
Thực vậy giả sử số ô được tô là ít hơn $2n$, khi đó $n$ dòng còn lại có nhiều hơn $n$ ô được tô, nên có ít nhất một một dòng có 2 ô được tô.

Do đó $n$ dòng đã chọn, mỗi dòng ít nhất 2 ô được tô nên tổng số ô hơn hoặc bằng $2n$ (mâu thuẫn).
Vậy ta chỉ cần chọn $n$ cột chứa các ô được tô màu nhưng chưa được chọn trong $n$ dòng trên thì sẽ có điều cần chứng minh.

Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.

Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là $k$, $A_1A_2…A_k$, ta thấy các người còn lại không ai quen $A_1, A_k$ nên suy ra $k \geq 6$. \
Nếu $k = 6$, suy ra $A_1$ và $A_6$ quen nhau, khi đó trong các người còn lại $A_7$ quen một trong cái người giả sử là $A_i$, khi đó ta có chuỗi $A_7A_iA_{i-1}A_1A_6A_{i+1}$ có độ dài hơn 6, vô lý.\
Nếu $k =7$, khi đó $A_1$ quen từ $A_2$ đến $A_6$ và $A_7$ quen $A_2$ tới $A_6$, khi đó có một vòng $A_2A_7A_6A_5A_4A_3A_1A_2$. Khi đó sẽ có một người trong nhóm còn lại thì ta sẽ có chuỗi dài hơn, mâu thuẫn.\
Nếu $k=8,9$ xét tương tự, ta sẽ có $k=10$. Giả sử có chuỗi $A_1\cdots A_{10}$. Khi đó tồn tại $k>i$ sao cho $A_1$ quen $A_k$ và $A_{10}$ quen $A_i$, khi đó có cách xếp thỏa đề bài là $A_1A_k\cdot A_iA_{10}A_9…A_k$.

Bài tập Bài tập nguyên lý cực biên

Tài liệu tham khảo. 

  1. Problems – Solving Stretagies – Arthur Hegel
  2. Giải bài toàn bằng đại lượng cực biên – Nguyễn Hữu Điển

Các bài toán tổ hợp trong kì thi Junior Bankan – P1

Lê Phúc Lữ – Phạm Khánh Vĩnh

(Bài viết trích từ Tập san Star Education – Số 5)

Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?

Lời giải

Câu trả lời là phủ định.
Giả sử tồn tại các số thỏa mãn đề bài thì vì chúng có số dư đôi một khác nhau nên sẽ có đầy đủ các số dư $0,1,2,3,\ldots ,15$. Điều này có nghĩa là trong đó, có $8$ số chẵn và $8$ số lẻ. Suy ra, ba chữ số $a,b,c$ để tạo thành các số đã cho không thể có cùng tính chẵn lẻ. Ta có hai trường hợp:

  • Trong các số $a,b,c$, có hai số chẵn là $a,b$ và số $c$ lẻ. Ta có tất cả $9$ số lẻ tạo thành từ các chữ số này là:
    $aac,abc,acc,bac,bbc,bcc,cac,cbc,ccc$.
    Gọi ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{9}}$ là số có hai chữ số tạo thành bằng cách xóa đi chữ số cuối từ dãy trên.
    Rõ ràng số $\overline{{{a}_{i}}k}$ và $\overline{{{a}_{j}}k}$ với $i\ne j$ khác số dư với nhau theo modulo $16$ nếu như hiệu của chúng không chia hết cho $16$, suy ra ${{a}_{i}}-{{a}_{j}}$ không chia hết cho $8.$ Tuy nhiên, ta lại có đến $9$ số nên điều này không thể xảy theo nguyên lý chuồng bồ câu.
  • Trong các số $a,b,c$, có hai số lẻ là $a,b$ và số $c$ chẵn: cũng dẫn đến mâu thuẫn tương tự.

Vậy không tồn tại các số thỏa mãn đề bài.

Bài 2: (JBMO 2000)

Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?

 

Lời giải

Gọi số nam là $2n$, số nữ là $n$ và tổng số vận động viên là $3n.$ Tổng số trận đấu là

$\frac{3n(3n-1)}{2}.$ \medskip

 

Theo giả thiết thì số trận thắng bởi nam là $$\frac{5}{12}\cdot \frac{3n(3n-1)}{2}=\frac{5n(3n-1)}{8}.$$

Số trận đấu giữa các nam là $\frac{2n(2n-1)}{2}=n(2n-1)$ và rõ ràng số trận này không vượt quá số trận thắng của các nam.

Suy ra $$\frac{5n(3n-1)}{8}\ge n(2n-1)\Leftrightarrow n\le 3.$$ Mặt khác, $5n(3n-1)$ phải chia hết cho $8$ nên $n=3.$ Do đó, số vận động viên của giải đấu là $9.$

Bài 3: (JBMO 2006)

Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:

 

  •  Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
  •  Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.

Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?

 

Lời giải

Với mọi bảng kích thước $2n\times 2n,$ tổng số ô bị xóa đi là $$2\times 2\times (1+2+3+\cdots +n-1)=2n(n-1).$$

Bảng sẽ còn lại ${{(2n)}^{2}}-2n(n-1)=2n(n+1)$ ô, tức là phủ được tối đa $n(n+1)$ ô vuông.

Không có mô tả.

 

Với $n=1,2,3,4,$ ta có thể kiểm tra trực tiếp được rằng kết quả lần lượt sẽ là $2,6,12,20$ bởi khi đó ta có thể phủ kín toàn bộ bảng. Còn với $n\ge 4$, ta xét hai trường hợp:

 

  • Nếu $n$ lẻ, khi đó ta chia bảng $2n\times 2n$ đã cho thành $4$ hình vuông nhỏ thì rõ ràng, mỗi hình sẽ có $\frac{n(n+1)}{2}$ ô còn trống. Tiếp theo, ta tô màu theo dạng bàn cờ cho bảng này (ô ở góc thì tô đen), ta sẽ có tất cả $\frac{{{(n+1)}^{2}}}{4}$ ô đen và $\frac{{{n}^{2}}-1}{4}$ ô trắng. Rõ ràng mỗi hình chữ nhật khi đặt lên bảng sẽ chứa một ô đen và một ô trắng nên số cặp ô trắng – đen tối đa trong hình vuông con là $\frac{{{n}^{2}}-1}{4}$, và tương ứng sẽ có tối đa $$4\cdot \frac{{{n}^{2}}-1}{4}={{n}^{2}}-1$$ hình chữ nhật $1\times 2,2\times 1$ phủ được trên bảng.

Ngoài ra, giữa các hình vuông con cạnh nhau, ta còn có hai ô màu đen cạnh nhau nên ta có thể lát thêm vào đó tổng cộng $4$ hình chữ nhật nữa, tổng cộng là ${{n}^{2}}-1+4={{n}^{2}}+3$.

  •  Nếu $n$ chẵn, bằng cách tương tự trên, ta phủ được hình bởi tối đa ${{n}^{2}}+4$ ô.

Tóm lại,

  •  Với $n=1,2,3,4$, đáp số lần lượt là $2,6,12,20.$
  •  Với $n>4$ và $n$ lẻ thì đáp số là ${{n}^{2}}+3.$
  •  Với $n>4$ và $n$ chẵn thì đáp số là ${{n}^{2}}+4.$

Bài 4: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Không có mô tả.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Không có mô tả.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 5: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 6:

(JBMO 2010)

Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.

 

Không có mô tả.

 

Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.

 

Lời giải

Câu trả lời là $0$ hoặc $3.$

Gọi $x$ là số viên gạch chữ $L$ và $y$ là số viên gạch hình vuông $2\times 2.$ Đánh dấu chéo $20$ hình vuông của hình chữ nhật như sơ đồ bên dưới.

Không có mô tả.

Rõ ràng mỗi viên gạch sẽ chứa không quá một dấu chéo. Suy ra $x+y\ge 20.$

Ngoài ra ta cũng có $3x+4y=63.$

Từ đó suy ra $y\le 3$ và $y$ chia hết cho $3$, dựa theo điều kiện thứ hai.

Do đó $y=0$ hoặc $y=3.$ Dưới đây là các cách lát thỏa mãn điều kiện đó.

Không có mô tả.

Bài 7: (JBMO 2013)

Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:

 

  •  Alice chọn $n$ số thực, không nhất thiết phân biệt.
  •  Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
  •  Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.

Hỏi Bob có thể có cách chắc chắn thắng hay không với

 

  •  $n=5?$
  •  $n=6?$
  •  $n=8?$

 

 

Lời giải

1) Câu trả lời là khẳng định.

 

Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e$. Rõ ràng mỗi số xuất hiện trong các tổng đúng $4$ lần nên bằng cách cộng tất cả $10$ tổng và chia hết quả cho $4$, Bod sẽ thu được

$a+b+c+d+e.$

Trừ đi tổng lớn nhất và nhỏ nhất, Bob sẽ thu được số lớn thứ ba là $c.$ Tiếp tục trừ $c$ vào tổng lớn thứ nhì, chính là $c+e$ thì Bob thu được $e.$ Trừ $e$ vào tổng lớn nhất, Bob thu được $d$. Bằng cách tương tự, Bob sẽ tìm ra được các giá trị $a,b.$ \medskip

 

2) Câu trả lời là khẳng định. Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e\le f.$ Tương tự trên, ta cũng tính được tổng $S$ các số của bộ. Trừ $S$ cho tổng lớn nhất và nhỏ nhất, ta thu được tổng $c+d.$ \medskip

 

Trừ $S$ cho tổng lớn nhì và tổng nhỏ nhất, ta được $c+e.$ Trừ $S$ cho tổng lớn nhất và tổng nhỏ nhì, ta được $b+d.$

Từ đây suy ra $a+c=S-(b+d)-(e+f)$, trong đó ta biết $e+f$ vì đó là tổng lớn nhất.

Lúc bấy giờ, Bob đã tìm được ba tổng $a+b,a+c,b+c$ nên sẽ tính được $T=a+b+c$ và dễ dàng tìm được $a,b,c.$ Tương tự, Bob có thể tìm được $d,e,f.$ \medskip

 

3) Câu trả lời là phủ định.

Ta thấy rằng có hai bộ tám số là $1,5,7,9,12,14,16,20$ và $2,4,6,10,11,15,17,19$ đều cho cùng $28$ tổng theo đôi một giống nhau nên chắc chắn rằng Bob không thể biết được bộ mà Alice đã chọn.

 

Bài 8: (JBMO 2014)

Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?

 

Lời giải

Ta gọi các giá trị $s$ để cho người $A$ có chiến thuật thắng là vị trí thắng và các vị trí còn lại là vị trí thua. Ta cần tìm số lượng vị trí thua.

Giả sử có $k$ vị trí thua thuộc tập hợp $$X=\{{{s}_{1}},{{s}_{2}},{{s}_{3}},\ldots ,{{s}_{k}}\}.$$

Trước hết, ta thấy rằng mỗi bội của $n$ là vị trí thắng (vì người $A$ có thể lấy tất cả các viên sỏi ở ngay lần đi đầu tiên). Khi đó, nếu có ${{s}_{i}}\equiv {{s}_{j}}(\bmod n)$ và ${{s}_{i}}>{{s}_{j}}$ thì ở lượt đi đầu tiên, $A$ bốc ${{s}_{i}}-{{s}_{j}}$ viên sỏi (vì số này chia hết cho $n$). Nhưng lúc đó, còn lại ${{s}_{j}}$ viên sỏi và đây là vị trí thua của $B$ nên sẽ là vị trí thắng của $A$, mâu thuẫn.

Do đó, tất cả các số trong $X$ đều không đồng dư với nhau theo modulo $n$ hay $k=\left| X \right|\le n-1.$ \medskip

 

Ta sẽ chứng minh rằng $k=n-1.$ Thật vậy,

Để có được điều đó, ta sẽ chỉ ra rằng ở mỗi lớp thặng dư khác $0$ của $n$, luôn có một vị trí thua bằng phản chứng. Giả sử rằng tồn tại $r\in \{1,2,3,\ldots ,n-1\}$ sao cho $mn+r$ là vị trí thắng với mỗi số nguyên dương $m.$ Gọi $u$ là vị trị thua lớn nhất (nếu $k>0$) hoặc $0$ (nếu $k=0$).

Đặt $s$ là bội chung nhỏ nhất của tất cả các số nguyên dương từ $2$ đến $u+n+1.$ Khi đó, tất cả các số $s+2,s+3,\ldots ,s+u+n+1$ đều là hợp số. \medskip

 

Xét số nguyên dương ${m}’$ thỏa mãn

$s+u+2\le {m}’n+r\le s+u+n+1$.

Để ${m}’n+r$ là vị trí thắng thì phải có số tự nhiên $p$ là $1$, là số nguyên tố hoặc là bội của $n$ sao cho hiệu ${m}’n+r-p$ sẽ là vị trí thua, là $0$ hoặc là một số nhỏ hơn hoặc bằng $u.$ Chú ý rằng

$$s+2\le {m}’n+r-u\le p\le {m}’n+r\le s+u+n+1$$

nên $p$ phải là hợp số, chứng tỏ $p$ chỉ có thể là bội của $n$ (theo giả thiết của đề bài). \medskip

 

Đặt $p=qn$ thì ${m}’n+r-q=({m}’-q)n+r$ cũng sẽ là một vị trí thắng khác; tuy nhiên, theo nguyên lý trò chơi thì không thể đi từ vị trí thằng này đến vị trí thắng khác được. Điều mâu thuẫn này cho thấy không thể xảy ra trường hợp toàn bộ các số dạng $mn+r$ là vị trí thắng. \medskip

 

Từ đây ta suy ra rằng có ít nhất $n-1$ vị trí thua nên từ các điều trên, ta thấy có đúng $n-1$ vị trí thua hay có $n-1$ vị trí mà người $B$ có chiến lược để thắng.

Bài 9: (JBMO 2015)

Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:

 

 

Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip

 

Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip

 

Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.

 

Lời giải

Ta sẽ chứng minh rằng $A$ sẽ thắng nếu $k=1,2,3$ và $B$ thắng nếu $k=4.$ Suy ra giá trị nhỏ nhất của $k$ là $4.$ \medskip

 

1) Nếu $k=1$ thì người chơi $A$ sẽ đánh dấu ô ở góc trên bên trái và đặt các khối như bên dưới

 

Không có mô tả.

 

Khi đó, rõ ràng $A$ thắng. \medskip

 

2) Nếu $k=2$ thì vẫn tương tự trên, $A$ đánh dấu vào ô ở góc trên bên trái. Khi đó, cho dù $B$ đánh dấu ô nào đi nữa thì $A$ cũng sẽ có cách đặt tương tự như trên, thiếu đi nhiều nhất là $2$ ô thuộc cùng khối vuông chữ $L$ với ô mà $B$ chọn. Điều này chứng tỏ $A$ vẫn thắng. \medskip

 

3) Nếu $k=3$ thì cũng tương tự, ở lượt sau, $A$ đánh dấu vào ô cùng khối chữ $L$ với ô mà $B$ đã đánh dấu. Khi đó, $A$ vẫn thắng. \medskip

 

4) Với $k=4$, ta sẽ chứng minh rằng $B$ sẽ luôn có chiến lược thắng cho dù $A$ đi thế nào đi nữa. Rõ ràng còn lại $21$ ô nên $A$ phải chọn cách đánh dấu sao cho có thể đặt được toàn bộ $7$ khối vuông chữ $L$ (vì nếu không thì sẽ còn lại ít nhất $3$ ô chưa được đặt). \medskip

 

Giả sử trong lượt đầu tiên, $A$ không chọn ô nào trong hàng cuối (vì nếu có thì ta xoay ngược bảng lại và lập luận tiếp một cách tương tự). Khi đó, $B$ sẽ chọn ô số $1$ như bên dưới.

Không có mô tả.

 

  •  Nếu trong lượt tiếp theo, $A$ không chọn ô nào trong các ô $2,3,4$ thì $B$ chọn ô số $3.$ Khi đó, rõ ràng ô số $2$ sẽ không thể đặt lên bởi bất cứ khối chữ $L$ nào và $B$ chiến thắng.
  •  Nếu trong lượt tiếp theo, $A$ chọn ô số $2$ thì $B$ chọn ô số $5$, dẫn đến ô số $3$ không thể đặt lên bởi khối $L$ nào.
  •  Nếu trong lượt tiếp theo, $A$ chọn một trong hai ô $3$ hoặc $4$ thì $B$ chọn ô còn lại, kết quả tương tự trên, ô số $2$ cũng sẽ không thể tiếp cận.

Vậy nói tóm lại, $k=4$ là giá trị nhỏ nhất cần phải tìm.

Bài 10: (JBMO 2016)

Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.

 

Lời giải

Ta sẽ chứng minh rằng số giá phân biệt lớn nhất là $60.$ Ta có nhận xét sau: \medskip

 

Nhận xét:  Trong mỗi bảng tốt, mỗi hàng chứa đúng hai số trong các số hoặc mỗi cột chứa đúng hai số trong các số. \medskip

 

Thật vậy, ta thấy mỗi hàng của bảng đều chứa ít nhất hai số (vì nếu chứa toàn bộ là một số thì mâu thuẫn với giả thiết). Khi đó, nếu toàn bộ các hàng đều chứa hai số thì nhận xét đúng. \medskip

 

Giả sử ngược lại là có hàng $R$ chứa ít nhất ba số trong bốn số của bảng là $x,y,z,t$. Khi đó, các số đó phải có nằm ở vị trí liên tiếp nào đó trên hàng, giả sử là $x,y,z$ liên tiếp. Theo giả thiết thì trong mỗi bảng $2\times 2$, ta đều có đủ bốn giá trị nên trong hàng phía trên và phía dưới của $R$ phải chứa $z,t,x$ theo đúng thứ tự đó, và tương tự là $x,y,z$. Ta có bảng như bên dưới

 

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

 

Điền thêm các ô còn lại, dễ thấy rằng các cột đều chứa đúng hai số. Nhận xét được chứng minh. \medskip

 

Không mất tính tổng quát, ta có thể giả sử mỗi hàng của bảng đều có đúng hai số (nếu không thì có thể xoay bảng lại). Nếu không xét hàng đầu tiên và cột đầu tiên, ta sẽ có bảng $4\times 4$ mà trong đó, mỗi số trong $x,y,z,t$ đều xuất hiện $4$ lần nên tổng các số trong bảng này là $4(x+y+z+t).$

Do đó, ta chỉ cần tính xem có bao nhiêu cách khác nhau để đặt các số lên hàng đầu tiên ${{R}_{1}}$ và cột đầu tiên ${{C}_{1}}.$ Gọi $a,b,c,d$ là số lần xuất hiện của các số $x,y,z,t$ thì khi đó, tổng tất cả các số của bảng sẽ là

$$4(x+y+z+t)+xa+yb+zc+td.$$

Nếu hàng $1-3-5$ chứa các số $x,y$ với $x$ ở vị trí đầu tiên của hàng $1$ thì các hàng $2-4$ sẽ chứa các số $z,t$ (theo giả sử ở trên). Khi đó, ta có

$a+b=7$ và $a\ge 3,b\ge 2$,

$c+d=2$ và $c\ge d.$ \medskip

 

Khi đó $(a,b)=(5,2),(4,3)$ tương ứng với $(c,d)=(2,0),(1,1).$ Suy ra $(a,b,c,d)$ sẽ nhận các bộ là $$(5,2,2,0),(5,2,1,1),(4,3,2,0),(4,3,1,1).$$

Tổng số hoán vị của các bộ là $$\frac{4!}{2!}+\frac{4!}{2!}+4!+\frac{4!}{2!}=60.$$

Bằng cách chọn $x={{10}^{3}},y={{10}^{2}},z=10,t=1$ thì dễ thấy rằng các tổng tương ứng với mỗi hoán vị của bộ số trên đều phân biệt, nghĩa là giá của các bảng đều phân biệt. Vậy số lượng giá tối đa là $60.$

Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:

Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$

Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?